# ISC License
 #
 # Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
 #
 # Permission to use, copy, modify, and/or distribute this software for any
 # purpose with or without fee is hereby granted, provided that the above
 # copyright notice and this permission notice appear in all copies.
 #
 # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
#   Unit Test Script
#   Module Name:        thrForceMapping
#   Author:             Hanspeter Schaub
#   Creation Date:      July 4, 2016
#
import inspect
import os
import numpy as np
import pytest
from Basilisk.architecture import messaging
from Basilisk.fswAlgorithms import thrForceMapping
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import fswSetupThrusters
from Basilisk.utilities import macros
from Basilisk.utilities import unitTestSupport  # general support file with common unit test functions
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.
[docs]@pytest.mark.parametrize("useDVThruster", [True, False])
@pytest.mark.parametrize("useCOMOffset", [False])
@pytest.mark.parametrize("dropThruster", [0, 1, 2])
@pytest.mark.parametrize("asymmetricDrop", [False])
@pytest.mark.parametrize("numControlAxis", [0, 1])
@pytest.mark.parametrize("saturateThrusters", [0])
@pytest.mark.parametrize("misconfigThruster", [True, False])
# update "module" in this function name to reflect the module name
def test_module(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis, saturateThrusters, misconfigThruster):
    """Module Unit Test"""
    # each test method requires a single assert method to be called
    [testResults, testMessage] = thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop,
                                                   numControlAxis, saturateThrusters, misconfigThruster)
    assert testResults < 1, testMessage 
def thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis, saturateThrusters, misconfigThruster):
    testFailCount = 0                       # zero unit test result counter
    testMessages = []                       # create empty array to store test log messages
    unitTaskName = "unitTask"               # arbitrary name (don't change)
    unitProcessName = "TestProcess"         # arbitrary name (don't change)
    # Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.5)     # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    module = thrForceMapping.thrForceMapping()
    module.ModelTag = "thrForceMapping"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, module)
    # write vehicle configuration message
    vehicleConfigOut = messaging.VehicleConfigMsgPayload()
    if useCOMOffset == 1:
        CoM_B = [0.03,0.001,0.02]
    else:
        CoM_B = [0,0,0]
    vehicleConfigOut.CoM_B = CoM_B
    vcInMsg = messaging.VehicleConfigMsg().write(vehicleConfigOut)
    # Create input message and size it because the regular creator of that message
    # is not part of the test.
    inputMessageData = messaging.CmdTorqueBodyMsgPayload()  # Create a structure for the input message
    requestedTorque = [1.0, -0.5, 0.7]             # Set up a list as a 3-vector
    if saturateThrusters>0:        # default angErrThresh is 0, thus this should trigger scaling
        requestedTorque = [10.0, -5.0, 7.0]
    if saturateThrusters==2:        # angle is set and small enough to trigger scaling
        module.angErrThresh = 10.0*macros.D2R
    if saturateThrusters==3:        # angle is too large enough to trigger scaling
        module.angErrThresh = 40.0*macros.D2R
    inputMessageData.torqueRequestBody = requestedTorque   # write torque request to input message
    cmdTorqueInMsg = messaging.CmdTorqueBodyMsg().write(inputMessageData)
    module.epsilon = 0.0005
    fswSetupThrusters.clearSetup()
    MAX_EFF_CNT = messaging.MAX_EFF_CNT
    rcsLocationData = np.zeros((MAX_EFF_CNT, 3))
    rcsDirectionData = np.zeros((MAX_EFF_CNT, 3))
    controlAxes_B = np.array([
        [1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]
    ])
    controlAxes_B = controlAxes_B[0:numControlAxis]
    if len(controlAxes_B) == 0:
        controlAxes_B = np.array([[]])
    controlAxes_B = np.reshape(controlAxes_B, (1, 3 * numControlAxis))
    module.controlAxes_B = controlAxes_B[0].tolist()
    if useDVThruster:
        # DV thruster setup
        module.thrForceSign = -1
        numThrusters = 6
        rcsLocationData[0:6] = [ \
            [0, 0.413, -0.1671],
            [0, -0.413, -0.1671],
            [0.35766849176297305, 0.20650000000000013, -0.1671],
            [0.3576684917629732, -0.20649999999999988, -0.1671],
            [-0.35766849176297333, 0.20649999999999968, -0.1671],
            [-0.35766849176297305, -0.20650000000000018, -0.1671] \
            ]
        rcsDirectionData[0:6] = [ \
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0],
            [0.0, 0.0, 1.0] \
            ]
    else:
        # RCS thruster setup
        module.thrForceSign = +1
        numThrusters = 8
        rcsLocationData[0:8] = [ \
                [-0.86360, -0.82550, 1.79070],
                [-0.82550, -0.86360, 1.79070],
                [0.82550, 0.86360, 1.79070],
                [0.86360, 0.82550, 1.79070],
                [-0.86360, -0.82550, -1.79070],
                [-0.82550, -0.86360, -1.79070],
                [0.82550, 0.86360, -1.79070],
                [0.86360, 0.82550, -1.79070] \
                ]
        rcsDirectionData[0:8] = [ \
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, -1.0, 0.0],
            [-1.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [0.0, -1.0, 0.0],
            [-1.0, 0.0, 0.0] \
            ]
    if dropThruster > 0:
        if (dropThruster % 2==0) and asymmetricDrop: # Drop thrusters that dont share the same torque direction
            removedThrusters = 0
            for i in range(0, numThrusters, 2):
                rcsLocationData[i] = [0.0, 0.0, 0.0]
                rcsDirectionData[i] = [0.0, 0.0, 0.0]
                removedThrusters += 1
            if removedThrusters < dropThruster:
                rcsLocationData[1] = [0.0, 0.0, 0.0]
                removedThrusters += 1
        else:
            for i in range(dropThruster):
                rcsLocationData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0]
                rcsDirectionData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0]
        indices = []
        for i in range(numThrusters):
            if np.linalg.norm(rcsLocationData[i]) == 0:
                indices = np.append(indices, i)
        offset = 0
        for i in indices:
            idx = (int) (i - offset)
            rcsLocationData = np.delete(rcsLocationData, idx, axis=0)
            rcsDirectionData = np.delete(rcsDirectionData, idx, axis=0)
            rcsLocationData = np.append(rcsLocationData,[[0.0, 0.0, 0.0]], axis=0)
            rcsDirectionData = np.append(rcsDirectionData, [[0.0, 0.0, 0.0]], axis=0)
            offset = offset + 1
        numThrusters = numThrusters - dropThruster
    maxThrust = 0.95
    if useDVThruster:
        maxThrust = 10.0
    for i in range(numThrusters):
        if misconfigThruster and i == 0:
            maxThrustConfig = 0.0
        else:
            maxThrustConfig = maxThrust
        fswSetupThrusters.create(rcsLocationData[i], rcsDirectionData[i], maxThrustConfig)
    thrConfigInMsg = fswSetupThrusters.writeConfigMessage()
    # Setup logging on the test module output message so that we get all the writes to it
    dataLog = module.thrForceCmdOutMsg.recorder()
    unitTestSim.AddModelToTask(unitTaskName, dataLog)
    # connect messages
    module.cmdTorqueInMsg.subscribeTo(cmdTorqueInMsg)
    module.thrConfigInMsg.subscribeTo(thrConfigInMsg)
    module.vehConfigInMsg.subscribeTo(vcInMsg)
    # Need to call the self-init and cross-init methods
    unitTestSim.InitializeSimulation()
    # Set the simulation time.
    # NOTE: the total simulation time may be longer than this value. The
    # simulation is stopped at the next logging event on or after the
    # simulation end time.
    unitTestSim.ConfigureStopTime(macros.sec2nano(0.5))        # seconds to stop simulation
    # Begin the simulation time run set above
    unitTestSim.ExecuteSimulation()
    # This pulls the actual data log from the simulation run.
    moduleOutput = dataLog.thrForce
    if misconfigThruster:
        return [testFailCount, ''.join(testMessages)] # We don't handle cases where a thruster is configured incorrectly.
    if useDVThruster and numControlAxis == 3:
        return [testFailCount, ''.join(testMessages)] # 3 control axes doesn't work for dv thrusters (only two axes controllable)
    results = thrForceMapping.Results_thrForceMapping(requestedTorque, module.controlAxes_B,
                                         vehicleConfigOut.CoM_B, rcsLocationData,
                                         rcsDirectionData, module.thrForceSign,
                                         module.thrForcMag, module.angErrThresh,
                                         numThrusters, module.epsilon, False)
    F, DNew = results.results_thrForceMapping()
    accuracy = 1E-6
    # Check that Python Math and C Math are Identical
    testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([F]), np.array([moduleOutput[0]]), accuracy,
                                                                 "CompareForces",
                                                                 numThrusters, testFailCount, testMessages)
    unitTestSupport.writeTeXSnippet('toleranceValue', str(accuracy), path)
    snippentName = "passFail_" + str(useDVThruster) + "_" + str(useCOMOffset) + "_" + str(dropThruster) + "_" + str(
        numControlAxis) + "_" + str(saturateThrusters) + "_" + str(misconfigThruster)
    if testFailCount == 0:
        colorText = 'ForestGreen'
        print("PASSED: " + module.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}'
    else:
        colorText = 'Red'
        print("Failed: " + module.ModelTag)
        passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}'
    unitTestSupport.writeTeXSnippet(snippentName, passedText, path)
    return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-along python script
#
if __name__ == "__main__":
    test_module(              # update "module" in function name
                 False,
                 True,           # useDVThruster
                 False,           # use COM offset
                 0,               # num drop thruster(s)
                 False,            # asymmetric drop
                 1,               # num control axis
                 0,               # saturateThrusters
                 False            # misconfigThruster
    )