Autonomous Vehicle Simulation (AVS) Laboratory,

University of Colorado

Basilisk Technical Memorandum

INTEGRATORS
Rev Change Description By Date
1.0 Initial Revision H. Schaub 07/2017
1.1 Small typo fixes H. Schaub 10/18/2017
2.0 Added variable time step integrators J. Vaz Carneiro 10/2021

Doc. ID: Basilisk-Integrators Page 1 of 9

Contents
1 Model Description 1
1.1 Overview 1
1.2 Implemented Integrators. 1
1.2.1 4th Order Runge Kutta - Default Integrator 1
1.2.2 2nd Order Runge Kutta (Heun's Method) 2
1.2.3 1st Order Runge Kutta (Euler's Method) 2
1.2.4 4th Order Runge Kutta Fehlberg Variable Time Step 2
1.2.,5 7th Order Runge Kutta Fehlberg Variable Time Step 3
2 Model Functions 5
3 Model Assumptions and Limitations 5
3.1 AssumPptions e 5
3.2 Limitations L 5
4 Test Description and Success Criteria 5
4.1 Testinputs 5
4.2 Test seCtions e e 6
4.3 Test SUCCESS Criteria v o i e e 7
5 Test Parameters 7
6 Test Results 7
7 User Guide 7
7.1 Not Specifying an Integration Method 7
7.2 Selecting Alternate Integration Methods L 7
7.3 Creating New Integration Methods 9

:I Python Task (Simulation Task)

[sMmodule
—> MPI Path v
Integration < > spacecraft() < gravityEffector()

Fig. 1: lllustration of the Integrator Diagram

1 Model Description

1.1 Overview

The Basilisk integration capability is implemented in a modular manner such that different integrators
can be assigned to the equations of motion that must be solved. Figure 1 illustrates how the integrator
functions relative to a dynamical systems model, here the spacecraft() object. The ODE's are

Doc. ID: Basilisk-Integrators Page 2 of 9

provided by a sub-class of Dynamic0Object which must be able to respond to the equations0fMotion()
method. Integration of the state vector forward one time step is then handled by the integrate method
of the integrator class. By default the DynamicObject is integrated using a fixed time step 4th order
Runge-Kutta method.

Assume the dynamical system is given by

&= f(t x) (1)
The initial conditions are specified through o = x(ty). In integration time step is given through h.
1.2 Implemented Integrators
1.2.1 4th Order Runge Kutta - Default Integrator

A standard fixed time step 4th order Runge Kutta integrator is enabled by default. The 4 k; values are
defined as

kl = f(tnamn) (2)
ko= f <tn + g>wn + ;Lk1> (3)
k3 = .f <tn + gvmn + ;Lk2> (4)
ks = f (tn + h,x, + hk3) (5)

The state at the next integration time t,1 1 =t, + h is

h
Tnt1 = Tn + o (k1 + 2ko + 2k3 + k4) (6)

1.2.2 2nd Order Runge Kutta (Heun’s Method)

A 2nd order Runge-Kutta method is implemented through Heun's method.* The 2 k; values are defined
as

kl = f(tna mn) (7)
ko = f(tn + h,x, + hky) (8)

The state at the next integration time t,.1 =t, + h is
h
Tn+1 = Tp + 5 (kl + kZ) (9)

1.2.3 1st Order Runge Kutta (Euler's Method)

A first order Runge-Kutta method is implemented through Euler's method. The one k; value is defined
as

kl = f(tnamn) (10)
The state at the next integration time t,. 1 =t, + h is

Tpi1 = Ty + hk (11)

* http://goo.gl/SWdyBZ

http://goo.gl/SWdyBZ

Doc. ID: Basilisk-Integrators Page 3 of 9

1.2.4 4th Order Runge Kutta Fehlberg Variable Time Step

A fourth order Runge-Kutta-Fehlberg is implemented. It propagates the state using a fourth order
integration method, while comparing the resulting truncation error with a fifth order integration method.
The k; values are defined as

kl f(tnua:n) (12)
h h
k? = .f <tn + Zywn + 4kl> (13)
3h 3h 9h
ks = th + —,x, + —k k 14
0= 1 (1 St S+) (14)
12h 1932h 7200h 7296h
= f (= @+ ook - 1
e f<t T3 Tt g7 BT G197 R T G107 k3> (15)
439h 3680h 8450h
ks = tn + h,x, + ——k1 — 8hk ks — k 1
5f<+m+216182+5133 41044> (16)
h 8h 3544h 1859h 11h
ke = th + =, ®n — ——k1 + 2hks — k - —k 17
6f< R T T R T TIVIAS 405> (17)
The state at the next integration time t,.1 =t, + h is
25 1408 2197 1
n = Ln a1 n e I 1
Tl = Jrh<216k1 95657 T 1104 5k5> (18)
The estimate for the relative truncation error is
1 128 2197
5 — h“%kl 12753 — 75010k — k5 + 55’“6“ (19)
|zn |
The updated time step is calculated through the following equation
1/5
Pinew = 095 5> : (20)

where € corresponds to the relative tolerance and its default value is 1074, If the norm of the state is
smaller than the absolute tolerance (default value of 10~8), the relative error is calculated with respect
to that absolute tolerance instead of the true vector norm. The time step is scaled by 0.9 for robustness,
so that the integrator will not use values that barely pass through the relative tolerance.

The algorithm for the variable time step integrator works as follows:

1. For every state vector, compute the k; integration weights through equations 12-17.
2. Propagate the state to the next time step using those weights using equation 18.

3. For every state, calculate the relative truncation error (19) and store the largest value of all the
state errors.

4. Compute the new time step through 20.

5. If the relative truncation error § is larger than the relative tolerance €, repeat steps 1-4 with the
new time step until it does.

6. Update the integration time with the time step used during integration: t,,1 = t, + h.

Doc. ID: Basilisk-Integrators Page 4 of 9

7. Update the integration time step with the new time step: h = hpew-

8. Check if the new time step would overpass the final integration time. If it does, change it so that
h == tf - tTL+1-

9. Go back to step 1 until the final integration time has been reached.

1.2.5 7th Order Runge Kutta Fehlberg Variable Time Step

A seventh order Runge-Kutta-Fehlberg is implemented. It propagates the state using a seventh order
integration method, while comparing the resulting truncation error with an eighth order integration
method. The k; values are defined in a general way as

ki = f(tn + arh,x,) (21)
i—1
ki=1Ff tn-I-Oéih,aJn—l-hZBijkj , 1=2,..,13 (22)
Jj=1
where the v and 3 matrices are defines as
0
2 2
27 27
1 1 1
9 36 12
1 1 1
6 21 0 3
5 5 9 _2 _2
12 12 16 16
1 1 1 1
2 w 0 0 g 5
_|s _ | _25 125 65 125
a=15 B= s U 0 108 2 54 (23)
1 31 61 _2 13
6 300 0 0 0 225 9 900
2 53 704 107 67
3 2 0 0 -% FH —9 w 3
1 91 o 9 2 _96 31 _19 17 _ 1
3 108 108 135 54 60 6 12
1 2383 g _341 4496 301 2133 45 45 18
4100 164 1025 82 4100 82 164 41
3 6 3 3 3 6
0 s O 0 0 O —a1 —205 —ar a1 a0
1 _1mT g g 34l 4496 _289 2193 51 33 12 1
[~ | ™ 4100 164 1025 82 4100 82 164 41 |
The state at the next integration time t,1 1 =t, + h is
13
Tni1 = @y + h Y CH(i)k; (24)
i=1

and the truncation error is

_ ZE etk

||

5 (25)

Doc. ID: Basilisk-Integrators Page 5 of 9

The CH and CT matrices are given by

B T 41
0 ~ 840
0 0
0 0
0 0
0 0
34
4 0
CH=| & CT=]| 0 (26)
9
2 0
9
o5 0
9
o5 0
41
0 ~ 840
41 41
840 840
a1 a1
| 840 | |l 840 |

The algorithm used to update the time step is the same as the one described for the 4th order variable
time step integrator.

2 Model Functions

The Basilisk integrator functionality is not a regular BSK module, but rather works in conjunction with
the DynamicalObject class. The integration functions and goals are:

e Default Integrator: The dynamical object should have a default integrator assigned when created.
This avoids the user having to add an integrator in Python, unless they want to select an alternate
integrator.

e Works on any equations of motion: The integrator needs to function on any dynamical system.

3 Model Assumptions and Limitations

3.1 Assumptions

The equations of motion class DynamicalObject is assumed to respond to the method equationsO0fMotion.
The integrator then integrates the system forward in time one BSK time step.

3.2 Limitations

4 Test Description and Success Criteria

As the integrator functionality is not a regular BSK module with specified input/output behavior, the
integration can only be tested in an integrated test. The integrated test employed is located in:

src/tests/scenarios/test_scenariolntegrators.py

Doc. ID: Basilisk-Integrators Page 6 of 9

4.1 Test inputs
Each simulation uses the point-mass spacecraft equations of motion

. !

T=——=T 27

5 (27)

with the initial orbit elements shown in Table 2. The only gravitational body considered is Earth. The
simulation time for each case is 3/4 of an orbit period. Each implemented Integrator method is tested
using the above initial conditions and a large time step of 120 seconds. This large time step makes the

integrator errors more easily visible between the integration methods.

Table 2: Initial Spacecraft Ephemeris

Element Description Value
a Semi-Major Axis | 7000km
e Eccentricity 0.0001
1 Inclination Angle 33.3°
Q Ascending Node 33.3°
w Argument of Periapses 48.2°
f True Anomaly 347.8°

4.2 Test sections

The same simulation setup is run for each of the integration methods:

1. The first test uses the default RK4 integration method. Here the simulation script does not specify
the integration method, testing both that the RK4 integrator is the default integration method,
and that that the integrator is implemented correctly.

The 2nd test uses the RKF45 integration method.
The 3rd test used the RK78 integration method.

The 4th test uses the Euler's integration method.

o s w DN

the 5th test uses Heun's integration method.

The resulting data points are illustrated in Figure 2. The large 120 second time step causes all the
integration methods to significantly deviate from the truth locations (shown in black). The integrated
validation test ensures that the BSK integrations yield the same integration corruptions to validate the
mathematical implementation.

4.3 Test success criteria

The integrated position states are checked at 5 even data points along the simulation time again pre-
computed truth answers. These truth answers were generated in Mathematica implementing the same
initial conditions, and replicating the integration math. The accuracy threshold is set to 1 meter, a
small value compared to the 7,000,000 meter near-circular orbit radius.

5 Test Parameters

Three tests are run controlled through a single test parameter called integratorCase. The possible
values are shown in Table 3.

6 Test Results

All integration checks within the integrated test scenarios/test_scenariolntegrators.py passed.
Table 4 shows the test results, while Figure 2 shows the resulting trajectories for each integration test.

Doc. ID: Basilisk-Integrators Page 7 of 9

79000 x_Axis [km]

Y-Axis [km]

-5000

-10000
Z-Axis [km]

-5000

Fig. 2: Illustration of the true orbit position samples (Black) versus the RK4 (Blue), RK2 (Green) and RK1 (Red)
integration results.

7 User Guide

7.1 Not Specifying an Integration Method

If a Python BSK simulation is setup without specifying an integration method, then the default behavior
is to load the fixed time step 4th order Runge-Kutta (RK4) method. No additional code is required by
the user.

7.2 Selecting Alternate Integration Methods
Assume the DynamicObject class is the spacecraft () object, declared through
scObject = spacecraft.spacecraft()

To invoke the Euler's integration scheme, the corresponding integration module is created using

Table 3: Error tolerance for each test.

Test Tolerated Error
“rk4” 1 meter
“rkf45" 1 meter
“rkf78" 1 meter
“euler” 1 meter
“rk2"” 1 meter

Doc. ID: Basilisk-Integrators

Page 8 of 9

8000 A

6000 -

4000 A

2000

0_

|
I
o “....'/
—4000 Q 4 rkd
rkf45
—6000 - < rkf78
euler
—8000 e rk2
T T T T T
—8000—6000-4000—-2000 O

T T T T
2000 4000 6000 8000
ie Cord. [km]

Fig. 3: lllustration of the BSK integrated trajectories

Doc. ID: Basilisk-Integrators Page 9 of 9

Table 4: Integration test results.

Test | Pass/Fail | BSK Error Notes
“rkd” PASSED
"rkf45" | PASSED
"rkf78" | PASSED
"euler” | PASSED
“rk2” PASSED

integratorObject = svIntegrators.svIntegratorEuler (scObject)
If the 2nd order Heun's integration method is desired, use instead
integratorObject = svIntegrators.svIntegratorRK2(scObject)
To force the default RK4 method, use

integratorObject = svIntegrators.svIntegratorRK4(scObject)

If the 4th order variable time step integration method is desired, use instead
integratorObject = svIntegrators.svIntegratorRKF45(scObject)
If the 7th order variable time step integration method is desired, use instead
integratorObject = svIntegrators.svIntegratorRKF78(scObject)

Next, to connect this integrator module to the DynamicObject instance (i.e. spacecraft() called
scObject, use the following code

scObject.setIntegrator(integratorObject)

That is it, the Basilisk simulation is now setup to use the desired numerical integration method. If the
user is using a variable time step and wants to override the default tolerance values, add the following
lines of code

le-6
le-3

integratorObject.absTol
integratorObject.relTol

7.3 Creating New Integration Methods

New integration modules can readily be created for Basilisk. They are all stored in the folder
Basilisk/simulation/dynamics/Integrators/

The integrators must be created to function on a general state vector and be independent of the particular
dynamics being integrated. Note that the default integrator is placed inside the _GeneralModulesFiles
folder within the dynamics folder.

	Model Description
	Overview
	Implemented Integrators
	4th Order Runge Kutta - Default Integrator
	2nd Order Runge Kutta (Heun's Method)
	1st Order Runge Kutta (Euler's Method)
	4th Order Runge Kutta Fehlberg Variable Time Step
	7th Order Runge Kutta Fehlberg Variable Time Step

	Model Functions
	Model Assumptions and Limitations
	Assumptions
	Limitations

	Test Description and Success Criteria
	Test inputs
	Test sections
	Test success criteria

	Test Parameters
	Test Results
	User Guide
	Not Specifying an Integration Method
	Selecting Alternate Integration Methods
	Creating New Integration Methods

