
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-Integrators

MODULAR DYNAMICS INTEGRATOR CAPABILITY

Prepared by H. Schaub

Status: Initial Document

Scope/Contents

Basilisk has the capability to select a range of integration types when solve the dynamical differential
equations of motion. The default integrator is a fixed time step 4th order Runge Kutta integrator. This
document outlines the types of implemented integration methods, how they are validated, as well as
how they can be setup.

Rev Change Description By Date

1.0 Initial Revision H. Schaub 07/2017

1.1 Small typo fixes H. Schaub 10/18/2017

Doc. ID: Basilisk-Integrators Page 1 of 6

Contents

1 Model Description 1
1.1 Overview . 1
1.2 Implemented Integrators . 1

1.2.1 4th Order Runge Kutta - Default Integrator . 1
1.2.2 2nd Order Runge Kutta (Heun’s Method) . 2
1.2.3 1st Order Runge Kutta (Euler’s Method) . 2

2 Model Functions 2

3 Model Assumptions and Limitations 2
3.1 Assumptions . 2
3.2 Limitations . 2

4 Test Description and Success Criteria 2
4.1 Test inputs . 3
4.2 Test sections . 3
4.3 Test success criteria . 3

5 Test Parameters 3

6 Test Results 4

7 User Guide 4
7.1 Not Specifying an Integration Method . 4
7.2 Selecting Alternate Integration Methods . 6
7.3 Creating New Integration Methods . 6

spacecraft() gravityEffector()

Simulation Task

Integration

SIM module

MPI Path

Python Task

Fig. 1: Illustration of the Integrator Diagram

1 Model Description

1.1 Overview

The Basilisk integration capability is implemented in a modular manner such that different integrators
can be assigned to the equations of motion that must be solved. Figure 1 illustrates how the integrator
functions relative to a dynamical systems model, here the spacecraft() object. The ODE’s are
provided by a sub-class of DynamicObject which must be able to respond to the equationsOfMotion()
method. Integration of the state vector forward one time step is then handled by the integrate method

Doc. ID: Basilisk-Integrators Page 2 of 6

of the integrator class. By default the DynamicObject is integrated using a fixed time step 4th order
Runge-Kutta method.

Assume the dynamical system is given by

9x “ fpt,xq (1)

The initial conditions are specified through x0 “ xpt0q. In integration time step is given through h.

1.2 Implemented Integrators

1.2.1 4th Order Runge Kutta - Default Integrator

A standard fixed time step 4th order Runge Kutta integrator is enabled by default. The 4 ki values are
defined as

k1 “ fptn,xnq (2)

k2 “ fptn `
h

2
,xn `

h

2
k1q (3)

k3 “ fptn `
h

2
,xn `

h

2
k2q (4)

k4 “ fptn ` h,xn ` hk3q (5)

The states at the next integration time tn`1 “ tn ` h is

xn`1 “ xn `
h

6
pk1 ` 2k2 ` 2k3 ` k4q (6)

1.2.2 2nd Order Runge Kutta (Heun’s Method)

A 2nd order Runge-Kutta method is implemented through Heun’s method.1 The 2 ki values are defined
as

k1 “ fptn,xnq (7)

k2 “ fptn ` h,xn ` hk1q (8)

The states at the next integration time tn`1 “ tn ` h is

xn`1 “ xn `
h

2
pk1 ` k2q (9)

1.2.3 1st Order Runge Kutta (Euler’s Method)

A first order Runge-Kutta method is implemented through Euler’s method. The one k1 value is defined
as

k1 “ fptn,xnq (10)

The states at the next integration time tn`1 “ tn ` h is

xn`1 “ xn ` hk1 (11)

1 http://goo.gl/SWdyBZ

http://goo.gl/SWdyBZ

Doc. ID: Basilisk-Integrators Page 3 of 6

2 Model Functions
The Basilisk integrator functionality is not a regular BSK module, but rather works in conjunction with
the DynamicalObject class. The integration functions and goals are:

• Default Integrator: The dynamical object should have a default integrator assigned when created.
This avoids the user having to add an integrator in Python, unless they want to select an alternate
integrator.

• Works on any equations of motion: The integrator needs to function on any dynamical system.

3 Model Assumptions and Limitations

3.1 Assumptions

The equations of motion class DynamicalObject is assumed to respond to the method equationsOfMotion.
The integrator then integrates the system forward in time one BSK time step.

3.2 Limitations

Currently only fixed-time step integrators have been implemented. However, the architecture allows for
variable time-step integrators to be implemented as long as their integration time step does not exceed
the BSK time step setup for the dynamic equations of motion solving task.

4 Test Description and Success Criteria

As the integrator functionality is not a regular BSK module with specified input/output behavior, the
integration can only be tested in an integrated test. The integrated test employed is located in:

src/tests/scenarios/test scenarioIntegrators.py

4.1 Test inputs

Each simulation uses the point-mass spacecraft equations of motion

:r “ ´
µ

r3
r (12)

with the initial orbit elements shown in Table 2. The only gravitational body considered is Earth. The
simulation time for each case is 3/4 of an orbit period. Each implemented Integrator method is tested
using the above initial conditions and a large time step of 120 seconds. This large time step makes the
integrator errors more easily visible between the integration methods.

Table 2: Initial Spacecraft Ephemeris

Element Description Value
a Semi-Major Axis 7000km
e Eccentricity 0.0001
i Inclination Angle 33.3˝

Ω Ascending Node 33.3˝

ω Argument of Periapses 48.2˝

f True Anomaly 347.8˝

Doc. ID: Basilisk-Integrators Page 4 of 6

Fig. 2: Illustration of the true orbit position samples (Black) versus the RK4 (Blue), RK2 (Green) and RK1 (Red)
integration results.

4.2 Test sections

The same simulation setup is run for each of the integration methods:

1. The first test uses the default RK4 integration method. Here the simulation script does not specify
the integration method, testing both that the RK4 integrator is the default integration method,
and that that the integrator is implemented correctly.

2. The 2nd test uses the Euler’s integration method.

3. the 3rd test uses Heun’s integration method.

The resulting data points are illustrated in Figure 2. The large 120 second time step causes all the
integration methods to significantly deviate from the truth locations (shown in black). The integrated
validation test ensures that the BSK integrations yield the same integration corruptions to validate the
mathematical implementation.

4.3 Test success criteria

The integrated position states are checked at 5 even data points along the simulation time again pre-
computed truth answers. These truth answers were generated in Mathematica implementing the same

Doc. ID: Basilisk-Integrators Page 5 of 6

initial conditions, and replicating the integration math. The accuracy threshold is set to 1 meter, a
small value compared to the 7,000,000 meter near-circular orbit radius.

5 Test Parameters
Three tests are run controlled through a single test parameter called integratorCase. The possible
values are shown in Table 3.

Table 3: Error tolerance for each test.

Test Tolerated Error
“rk4” 1 meter

“euler” 1 meter
“rk2” 1 meter

6 Test Results
All integration checks within the integrated test scenarios/test scenarioIntegrators.py passed.
Table 4 shows the test results, while Figure ?? shows the resulting trajectories for each integration test.

8000 6000 4000 2000 0 2000 4000 6000 8000
ie Cord. [km]

8000

6000

4000

2000

0

2000

4000

6000

8000

i p
 C

or
d.

 [k
m

]

rk4

Fig. 3: Illustration of the BSK integrated trajectories

Doc. ID: Basilisk-Integrators Page 6 of 6

Table 4: Integration test results.

Test Pass/Fail BSK Error Notes
“rk4” PASSED

“euler” PASSED
“rk2” PASSED

7 User Guide

7.1 Not Specifying an Integration Method

If a Python BSK simulation is setup without specifying an integration method, then the default behavior
is to load the fixed time step 4th order Runge-Kutta (RK4) method. No additional code is required by
the user.

7.2 Selecting Alternate Integration Methods

Assume the DynamicObject class is the spacecraft() object, declared through

scObject = spacecraft.spacecraft()

To invoke the Euler’s integration scheme, the corresponding integration module is created using

integratorObject = svIntegrators.svIntegratorEuler(scObject)

If the 2nd order Heun’s integration method is desired, use instead

integratorObject = svIntegrators.svIntegratorRK2(scObject)

To force the default RK4 method, use

integratorObject = svIntegrators.svIntegratorRK4(scObject)

Next, to connect this integrator module to the DynamicObject instance (i.e. spacecraft() called
scObject, use the following code

scObject.setIntegrator(integratorObject)

That is it, the Basilisk simulation is now setup to use the desired numerical integration method.

7.3 Creating New Integration Methods

New integration modules can readily be created for Basilisk. They are all stored in the folder

Basilisk/simulation/dynamics/Integrators/

The integrators must be created to function on a general state vector and be independent of the particular
dynamics being integrated. Note that the default integrator is placed inside the GeneralModulesFiles

folder within the dynamics folder.

	Model Description
	Overview
	Implemented Integrators
	4th Order Runge Kutta - Default Integrator
	2nd Order Runge Kutta (Heun's Method)
	1st Order Runge Kutta (Euler's Method)

	Model Functions
	Model Assumptions and Limitations
	Assumptions
	Limitations

	Test Description and Success Criteria
	Test inputs
	Test sections
	Test success criteria

	Test Parameters
	Test Results
	User Guide
	Not Specifying an Integration Method
	Selecting Alternate Integration Methods
	Creating New Integration Methods

