Source code for test_thrForceMapping

''' '''
'''
 ISC License

 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder

 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.

 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

'''
#
#   Unit Test Script
#   Module Name:        thrForceMapping
#   Author:             Hanspeter Schaub
#   Creation Date:      July 4, 2016
#
import os, inspect
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))

import pytest

# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.simulation import alg_contain
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
import matplotlib.pyplot as plt
from Basilisk.fswAlgorithms import thrForceMapping
from Basilisk.utilities import macros
from Basilisk.utilities import fswSetupThrusters
from Basilisk.simulation import simFswInterfaceMessages

import numpy as np


# Uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed.
# @pytest.mark.skipif(conditionstring)
# Uncomment this line if this test has an expected failure, adjust message as needed.
# @pytest.mark.xfail(conditionstring)
# Provide a unique test method name, starting with 'test_'.
# The following 'parametrize' function decorator provides the parameters and expected results for each
#   of the multiple test runs for this test.

[docs]@pytest.mark.parametrize("useDVThruster", [True, False]) @pytest.mark.parametrize(["useCOMOffset","dropThruster", "use2ndLoop"],[ (False, 0, False), (False, 1, True), (False, 2, True), # Any time we drop a thruster we should recompute the solution (True, 0, False)]) # We don't handle the case where there is a dropped thruster and and COM offset--see performance analysis. @pytest.mark.parametrize("asymmetricDrop", [False]) @pytest.mark.parametrize("numControlAxis", [1, 2, 3]) @pytest.mark.parametrize("saturateThrusters", [0,1,2]) @pytest.mark.parametrize("misconfigThruster", [False]) # update "module" in this function name to reflect the module name def test_module(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis, saturateThrusters, misconfigThruster, use2ndLoop): """Module Unit Test""" # each test method requires a single assert method to be called [testResults, testMessage] = thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis, saturateThrusters, misconfigThruster, use2ndLoop) assert testResults < 1, testMessage
def thrusterForceTest(show_plots, useDVThruster, useCOMOffset, dropThruster, asymmetricDrop, numControlAxis, saturateThrusters, misconfigThruster,use2ndLoop): testFailCount = 0 # zero unit test result counter testMessages = [] # create empty array to store test log messages unitTaskName = "unitTask" # arbitrary name (don't change) unitProcessName = "TestProcess" # arbitrary name (don't change) # Create a sim module as an empty container unitTestSim = SimulationBaseClass.SimBaseClass() # terminateSimulation() is needed if multiple unit test scripts are run # that run a simulation for the test. This creates a fresh and # consistent simulation environment for each test run. # Create test thread testProcessRate = macros.sec2nano(0.5) # update process rate update time testProc = unitTestSim.CreateNewProcess(unitProcessName) testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate)) # Construct algorithm and associated C++ container moduleConfig = thrForceMapping.thrForceMappingConfig() moduleWrap = unitTestSim.setModelDataWrap(moduleConfig) moduleWrap.ModelTag = "thrForceMapping" # Add test module to runtime call list unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig) # Initialize the test module configuration data moduleConfig.inputVehControlName = "LrRequested" moduleConfig.inputThrusterConfName = "RCSThrusters" moduleConfig.outputDataName = "thrusterForceOut" moduleConfig.inputVehicleConfigDataName = "vehicleConfigName" moduleConfig.use2ndLoop = use2ndLoop # write vehicle configuration message vehicleConfigOut = thrForceMapping.VehicleConfigFswMsg() inputMessageSize = vehicleConfigOut.getStructSize() unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputVehicleConfigDataName, inputMessageSize, 2) # number of buffers (leave at 2 as default, don't make zero) if useCOMOffset == 1: CoM_B = [0.03,0.001,0.02] else: CoM_B = [0,0,0] vehicleConfigOut.CoM_B = CoM_B unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputVehicleConfigDataName, inputMessageSize, 0, vehicleConfigOut) # Create input message and size it because the regular creator of that message # is not part of the test. inputMessageData = thrForceMapping.CmdTorqueBodyIntMsg() # Create a structure for the input message inputMessageSize = inputMessageData.getStructSize() # 3 doubles unitTestSim.TotalSim.CreateNewMessage(unitProcessName, moduleConfig.inputVehControlName, inputMessageSize, 2) # number of buffers (leave at 2 as default, don't make zero) requestedTorque = [1.0, -0.5, 0.7] # Set up a list as a 3-vector if saturateThrusters>0: # default angErrThresh is 0, thus this should trigger scaling requestedTorque = [10.0, -5.0, 7.0] if saturateThrusters==2: # angle is set and small enough to trigger scaling moduleConfig.angErrThresh = 10.0*macros.D2R if saturateThrusters==3: # angle is too large enough to trigger scaling moduleConfig.angErrThresh = 40.0*macros.D2R inputMessageData.torqueRequestBody = requestedTorque # write torque request to input message unitTestSim.TotalSim.WriteMessageData(moduleConfig.inputVehControlName, inputMessageSize, 0, inputMessageData) # write data into the simulator moduleConfig.epsilon = 0.0005 fswSetupThrusters.clearSetup() MAX_EFF_CNT = simFswInterfaceMessages.MAX_EFF_CNT rcsLocationData = np.zeros((MAX_EFF_CNT, 3)) rcsDirectionData = np.zeros((MAX_EFF_CNT, 3)) controlAxes_B = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) controlAxes_B = controlAxes_B[0:numControlAxis] if len(controlAxes_B) == 0: controlAxes_B = np.array([[]]) controlAxes_B = np.reshape(controlAxes_B, (1, 3 * numControlAxis)) moduleConfig.controlAxes_B = controlAxes_B[0].tolist() if useDVThruster: # DV thruster setup moduleConfig.thrForceSign = -1 numThrusters = 6 rcsLocationData[0:6] = [ \ [0, 0.413, -0.1671], [0, -0.413, -0.1671], [0.35766849176297305, 0.20650000000000013, -0.1671], [0.3576684917629732, -0.20649999999999988, -0.1671], [-0.35766849176297333, 0.20649999999999968, -0.1671], [-0.35766849176297305, -0.20650000000000018, -0.1671] \ ] rcsDirectionData[0:6] = [ \ [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0] \ ] else: # RCS thruster setup moduleConfig.thrForceSign = +1 numThrusters = 8 rcsLocationData[0:8] = [ \ [-0.86360, -0.82550, 1.79070], [-0.82550, -0.86360, 1.79070], [0.82550, 0.86360, 1.79070], [0.86360, 0.82550, 1.79070], [-0.86360, -0.82550, -1.79070], [-0.82550, -0.86360, -1.79070], [0.82550, 0.86360, -1.79070], [0.86360, 0.82550, -1.79070] \ ] rcsDirectionData[0:8] = [ \ [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [-1.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, -1.0, 0.0], [-1.0, 0.0, 0.0] \ ] if dropThruster > 0: if (dropThruster % 2==0) and asymmetricDrop: # Drop thrusters that don't share the same torque direction removedThrusters = 0 for i in range(0, numThrusters, 2): rcsLocationData[i] = [0.0, 0.0, 0.0] rcsDirectionData[i] = [0.0, 0.0, 0.0] removedThrusters += 1 if removedThrusters < dropThruster: rcsLocationData[1] = [0.0, 0.0, 0.0] removedThrusters += 1 else: for i in range(dropThruster): rcsLocationData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0] rcsDirectionData[numThrusters - 1 - i, :] = [0.0, 0.0, 0.0] indices = [] for i in range(numThrusters): if np.linalg.norm(rcsLocationData[i]) == 0: indices = np.append(indices, i) offset = 0 for i in indices: idx = (int) (i - offset) rcsLocationData = np.delete(rcsLocationData, idx, axis=0) rcsDirectionData = np.delete(rcsDirectionData, idx, axis=0) rcsLocationData = np.append(rcsLocationData,[[0.0, 0.0, 0.0]], axis=0) rcsDirectionData = np.append(rcsDirectionData, [[0.0, 0.0, 0.0]], axis=0) offset = offset + 1 numThrusters = numThrusters - dropThruster maxThrust = 0.95 if useDVThruster: maxThrust = 10.0 for i in range(numThrusters): if misconfigThruster and i == 0: maxThrustConfig = 0.0 else: maxThrustConfig = maxThrust fswSetupThrusters.create(rcsLocationData[i], rcsDirectionData[i], maxThrustConfig) fswSetupThrusters.writeConfigMessage( moduleConfig.inputThrusterConfName, unitTestSim.TotalSim, unitProcessName) # Setup logging on the test module output message so that we get all the writes to it unitTestSim.TotalSim.logThisMessage(moduleConfig.outputDataName, testProcessRate) # Need to call the self-init and cross-init methods unitTestSim.InitializeSimulation() # Set the simulation time. # NOTE: the total simulation time may be longer than this value. The # simulation is stopped at the next logging event on or after the # simulation end time. unitTestSim.ConfigureStopTime(macros.sec2nano(0.5)) # seconds to stop simulation # Begin the simulation time run set above unitTestSim.ExecuteSimulation() # This pulls the actual data log from the simulation run. # Note that range(3) will provide [0, 1, 2] Those are the elements you get from the vector (all of them) moduleOutputName = "thrForce" moduleOutput = unitTestSim.pullMessageLogData(moduleConfig.outputDataName + '.' + moduleOutputName, list(range(MAX_EFF_CNT))) if misconfigThruster: return [testFailCount, ''.join(testMessages)] # We don't handle cases where a thruster is configured incorrectly. if useDVThruster and numControlAxis == 3: return [testFailCount, ''.join(testMessages)] # 3 control axes doesn't work for dv thrusters (only two axes controllable) results = thrForceMapping.Results_thrForceMapping(requestedTorque, moduleConfig.controlAxes_B, vehicleConfigOut.CoM_B, rcsLocationData, rcsDirectionData, moduleConfig.thrForceSign, moduleConfig.thrForcMag, moduleConfig.angErrThresh, numThrusters, moduleConfig.epsilon, use2ndLoop) F, DNew = results.results_thrForceMapping() trueVector = np.zeros((2, MAX_EFF_CNT)) trueVector[0,:] = F trueVector[1,:] = F C = np.reshape(controlAxes_B, (numControlAxis, 3)) CT = np.transpose(C) D = np.cross(rcsDirectionData,rcsLocationData-CoM_B) receivedTorque = -1.0*np.array([np.matmul(np.transpose(D), np.transpose(moduleOutput[0, 1:MAX_EFF_CNT+1]))]) receivedTorque = np.append(np.array([0.0]), receivedTorque) Lr_offset = np.array([0.0, 0.0, 0.0]) Lr_B = np.array([0.0, 0.0, 0.0]) for i in range(0,numThrusters): if moduleConfig.thrForceSign < 0 and moduleConfig.thrForcMag[i] >= 0: Lr_offset -= moduleConfig.thrForcMag[i]*np.cross(rcsLocationData[i,:]-CoM_B,rcsDirectionData[i,:]) # off pulsing Lr_B = requestedTorque + Lr_offset # This computes the requested torque direction and the received torque directions Lr_Req_B_Unit = Lr_B / np.linalg.norm(Lr_B) Lr_Rec_B_Unit= receivedTorque[1:4] / np.linalg.norm(receivedTorque[1:4]) # This is the requested and recieved torque projected onto the control axes Lr_Req_Bar_B = np.matmul(CT, np.matmul(C,Lr_B)) Lr_Rec_Bar_B = np.matmul(CT, np.matmul(C,receivedTorque[1:4])) Lr_Rec_Bar_B = np.append(0, Lr_Rec_Bar_B) # This computes the projected requested and received control torque directions Lr_Req_Bar_B_Unit = Lr_Req_Bar_B/np.linalg.norm(Lr_Req_Bar_B) Lr_Rec_Bar_B_Unit = Lr_Rec_Bar_B[1:4]/np.linalg.norm(Lr_Rec_Bar_B[1:4]) if np.linalg.norm(Lr_Rec_Bar_B[1:4]) == 0.0: Lr_Rec_Bar_B_Unit = [0.0, 0.0, 0.0] Lr_Rec_Bar_B_Unit = np.append(0, Lr_Rec_Bar_B_Unit) accuracy = 1E-6 # Check that Python Math and C Math are Identical testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([F]), np.array([moduleOutput[0]]), accuracy, "CompareForces", MAX_EFF_CNT, testFailCount, testMessages) # Checks to make sure that no forces are negative if not useDVThruster and np.any(moduleOutput[0,1:]<0): testFailCount += 1 print("A negative force exists in the C RCS solution. This is not allowed!\n") if not useDVThruster and np.any(F<0): testFailCount += 1 print("A negative force exists in the Python RCS solution. This is not allowed!\n") if testFailCount > 0: return [testFailCount, ''.join(testMessages)] # Check that Torques are Sensible print("\nReq Lr_Bar [B]: " + str(Lr_Req_Bar_B)) print("Rec Lr_Bar [B]: " + str(Lr_Rec_Bar_B[1:4])) testFailCount = 0 testFailCount, testMessages = unitTestSupport.compareArrayND(np.array([Lr_Req_Bar_B_Unit]), np.array([Lr_Rec_Bar_B_Unit]), accuracy, "CompareTorques", 3, testFailCount, testMessages) snippetName = "LrData_" + str(useDVThruster) + "_" + str(dropThruster) + "_" + str(numControlAxis) + "_" + str(useCOMOffset) + "____" + str(asymmetricDrop) + "_" + str(saturateThrusters) + "_" + str(misconfigThruster) snippetTex = "DV Thrusters:\t" + str(useDVThruster) + "\n" snippetTex += "Number of Dropped Thrusters:\t" + str(dropThruster)+ "\n" snippetTex += "Number of Control Axes:\t" + str(numControlAxis) + "\n" snippetTex += "COM Offset:\t" + str(useCOMOffset) + "\n\n" snippetTex += "Was the drop asymmetric about the COM?\t" + str(asymmetricDrop) + "\n" snippetTex += "Number of Saturated Thrusters:\t" + str(saturateThrusters) + "\n" snippetTex += "Misconfigured Thruster?:\t" + str(misconfigThruster) + "\n\n" snippetTex += "Original [B]:\t" + str(requestedTorque) + "\n" snippetTex += "Requested (Original + Offset) [B]:\t" + str(Lr_B) + "\n" snippetTex += "Received [B]:\t\t" + str(receivedTorque[1:4]) + "\n\n" snippetTex += "Requested Unit:\t\t" + str(Lr_Req_B_Unit) + "\n" snippetTex += "Received Unit:\t\t" + str(Lr_Rec_B_Unit) + "\n\n" snippetTex += "Requested On Control Axes (Original + Offset) [B]:\t" + str(Lr_Req_Bar_B) + "\n" snippetTex += "Received On Control Axes [B]:\t\t" + str(Lr_Rec_Bar_B[1:4]) + "\n\n" snippetTex += "Requested On Control Axes Unit:\t\t" + str(Lr_Req_Bar_B_Unit) + "\n" snippetTex += "Received On Control Axes Unit:\t\t" + str(Lr_Rec_Bar_B_Unit[1:4]) + "\n\n" snippetTex += "D-Matrix:\n" + str(D) + "\n\n" snippetTex += "Forces:\n" + str(np.transpose(F)) + "\n\n" directory = "Nom/UnitVec/" # Any solutions that dont have the correct torque, but do have the correct unit direction are called successful. if testFailCount > 0: unitTestSupport.writeTeXSnippet(directory+"Failed/"+snippetName, snippetTex, path) print("FAILED: " + moduleWrap.ModelTag) testMessages.append("FAILED: " + moduleWrap.ModelTag + " Module failed " + moduleOutputName + " unit test at t=" + str(moduleOutput[0, 0] * macros.NANO2SEC) + "sec\n") else: unitTestSupport.writeTeXSnippet(directory+"/Passed/" + snippetName, snippetTex, path) print("PASSED: " + moduleWrap.ModelTag) unitTestSupport.writeTeXSnippet('toleranceValue', str(accuracy), path) snippentName = "passFail_" + str(useDVThruster) + "_" + str(useCOMOffset) + "_" + str(dropThruster) + "_" + str( numControlAxis) + "_" + str(saturateThrusters) + "_" + str(misconfigThruster) if testFailCount == 0: colorText = 'ForestGreen' print("PASSED: " + moduleWrap.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "PASSED" + '}' else: colorText = 'Red' print("Failed: " + moduleWrap.ModelTag) passedText = r'\textcolor{' + colorText + '}{' + "Failed" + '}' unitTestSupport.writeTeXSnippet(snippentName, passedText, path) if testFailCount > 0: print("Python:\t " + str(F)) print("C: \t:" + str(moduleOutput[0])) return [testFailCount, ''.join(testMessages)] # # This statement below ensures that the unitTestScript can be run as a # stand-along python script # if __name__ == "__main__": test_module( # update "module" in function name False, False, # useDVThruster False, # use COM offset 2, # num drop thruster(s) False, # asymmetric drop 3, # num control axis 2, # saturateThrusters False, # misconfigThruster False # Use 2nd loop )