#
 # ISC License
 #
 # Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
 #
 # Permission to use, copy, modify, and/or distribute this software for any
 # purpose with or without fee is hereby granted, provided that the above
 # copyright notice and this permission notice appear in all copies.
 #
 # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 #
import pytest
import os, inspect
import numpy as np
import math
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
bskName = 'Basilisk'
splitPath = path.split(bskName)
# Import all of the modules that we are going to be called in this simulation
from Basilisk.utilities import SimulationBaseClass
from Basilisk.utilities import unitTestSupport                  # general support file with common unit test functions
from Basilisk.simulation import simpleInstrument
from Basilisk.simulation import simMessages
from Basilisk.simulation import simFswInterfaceMessages
from Basilisk.utilities import macros
# update "module" in this function name to reflect the module name
[docs]def test_module():
    """Module Unit Test"""
    # each test method requires a single assert method to be called
    default_results, default_message = test_default()
    status_results, status_message = test_status()
    testResults = sum([default_results, status_results])
    testMessage = [default_message, status_message]
    assert testResults < 1, testMessage 
[docs]def test_default():
    """
    **Validation Test Description**
    1. Whether the simpleInstrument provides the right output message (baudRate) while on;
    2. Whether the simpleInstrument provides the right output message (baudRate) while off.
    :param show_plots: Not used; no plots to be shown.
    :return:
    """
    testFailCount = 0                       # zero unit test result counter
    testMessages = []                       # create empty array to store test log messages
    unitTaskName = "unitTask"               # arbitrary name (don't change)
    unitProcessName = "TestProcess"         # arbitrary name (don't change)
    # Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.5)     # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    testModule = simpleInstrument.SimpleInstrument()
    testModule.ModelTag = "instrument1"
    testModule.nodeBaudRate = 9600. # baud
    unitTestSim.AddModelToTask(unitTaskName, testModule)
    unitTestSim.TotalSim.logThisMessage(testModule.nodeDataOutMsgName, testProcessRate)
    unitTestSim.InitializeSimulation()
    unitTestSim.ConfigureStopTime(macros.sec2nano(1.0))        # seconds to stop simulation
    # Begin the simulation time run set above
    unitTestSim.ExecuteSimulation()
    # This pulls the actual data log from the simulation run.
    # Note that range(3) will provide [0, 1, 2]  Those are the elements you get from the vector (all of them)
    generatedData = unitTestSim.pullMessageLogData(testModule.nodeDataOutMsgName + ".baudRate")
    # compare the module results to the truth values
    accuracy = 1e-16
    trueData = 9600. #Module should be on
    testFailCount, testMessages = unitTestSupport.compareDoubleArray(
        [trueData]*3, generatedData, accuracy, "dataOutput",
        testFailCount, testMessages)
    # each test method requires a single assert method to be called
    # this check below just makes sure no sub-test failures were found
    return [testFailCount, ''.join(testMessages)] 
def test_status():
    testFailCount = 0                       # zero unit test result counter
    testMessages = []                       # create empty array to store test log messages
    unitTaskName = "unitTask"               # arbitrary name (don't change)
    unitProcessName = "TestProcess"         # arbitrary name (don't change)
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    testProcessRate = macros.sec2nano(0.5)     # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    testModule = simpleInstrument.SimpleInstrument()
    testModule.ModelTag = "instrument1"
    testModule.nodeStatusInMsgName="DataStatusMsg"
    testModule.nodeBaudRate = 9600. # baud
    unitTestSim.AddModelToTask(unitTaskName, testModule)
    # create the input messages
    dataStatusMsg = simFswInterfaceMessages.DeviceStatusIntMsg()  # Create a structure for the input message
    dataStatusMsg.deviceStatus=0
    unitTestSupport.setMessage(unitTestSim.TotalSim,
                               unitProcessName,
                               testModule.nodeStatusInMsgName,
                               dataStatusMsg)
    # Setup logging on the test module output message so that we get all the writes to it
    unitTestSim.TotalSim.logThisMessage(testModule.nodeDataOutMsgName, testProcessRate)
    # Need to call the self-init and cross-init methods
    unitTestSim.InitializeSimulation()
    # Set the simulation time.
    # NOTE: the total simulation time may be longer than this value. The
    # simulation is stopped at the next logging event on or after the
    # simulation end time.
    unitTestSim.ConfigureStopTime(macros.sec2nano(1.0))        # seconds to stop simulation
    # Begin the simulation time run set above
    unitTestSim.ExecuteSimulation()
    # This pulls the actual data log from the simulation run.
    # Note that range(3) will provide [0, 1, 2]  Those are the elements you get from the vector (all of them)
    drawData = unitTestSim.pullMessageLogData(testModule.nodeDataOutMsgName + ".baudRate")
    # compare the module results to the truth values
    accuracy = 1e-16
    trueData = 0.0 #Module should be off
    testFailCount, testMessages = unitTestSupport.compareDoubleArray(
        [trueData]*3, drawData, accuracy, "instrumentStatusTest",
        testFailCount, testMessages)
    # each test method requires a single assert method to be called
    # this check below just makes sure no sub-test failures were found
    return [testFailCount, ''.join(testMessages)]
#
# This statement below ensures that the unitTestScript can be run as a
# stand-alone python script
#
if __name__ == "__main__":
    test_module()