''' '''
'''
 ISC License
 Copyright (c) 2016-2018, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.
 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
import sys, os, inspect
import numpy as np
import pytest
import math
from Basilisk.utilities import SimulationBaseClass, macros, orbitalMotion, unitTestSupport
from Basilisk.fswAlgorithms import pixelLineBiasUKF  # import the module that is to be tested
from Basilisk.utilities import RigidBodyKinematics as rbk
import relativeODuKF_test_utilities as FilterPlots
import numpy as np
def rk4(f, t, x0):
    x = np.zeros([len(t),len(x0)+1])
    h = (t[len(t)-1] - t[0])/len(t)
    x[0,0] = t[0]
    x[0,1:] = x0
    for i in range(len(t)-1):
        h = t[i+1] - t[i]
        x[i,0] = t[i]
        k1 = h * f(t[i], x[i,1:])
        k2 = h * f(t[i] + 0.5 * h, x[i,1:] + 0.5 * k1)
        k3 = h * f(t[i] + 0.5 * h, x[i,1:] + 0.5 * k2)
        k4 = h * f(t[i] + h, x[i,1:] + k3)
        x[i+1,1:] = x[i,1:] + (k1 + 2.*k2 + 2.*k3 + k4) / 6.
        x[i+1,0] = t[i+1]
    return x
def twoBodyGrav(t, x, mu = 42828.314*1E9):
    dxdt = np.zeros(np.shape(x))
    dxdt[0:3] = x[3:6]
    dxdt[3:6] = -mu/np.linalg.norm(x[0:3])**3.*x[0:3]
    return dxdt
def setupFilterData(filterObject):
    filterObject.navStateOutMsgName = "relod_state_estimate"
    filterObject.filtDataOutMsgName = "relod_filter_data"
    filterObject.circlesInMsgName = "circles_data"
    filterObject.cameraConfigMsgName = "camera_config_data"
    filterObject.attInMsgName = "simple_att_nav_output"
    filterObject.planetIdInit = 2
    filterObject.alpha = 0.02
    filterObject.beta = 2.0
    filterObject.kappa = 0.0
    filterObject.gamma = 0.9
    mu = 42828.314*1E9 #m^3/s^2
    elementsInit = orbitalMotion.ClassicElements()
    elementsInit.a = 8000*1E3 #m
    elementsInit.e = 0.2
    elementsInit.i = 10
    elementsInit.Omega = 0.001
    elementsInit.omega = 0.01
    elementsInit.f = 0.1
    r, v = orbitalMotion.elem2rv(mu, elementsInit)
    bias = [1,1,-2]
    filterObject.stateInit = r.tolist() + v.tolist() + bias
    filterObject.covarInit = [1000.*1E6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                              0.0, 1000.*1E6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                              0.0, 0.0, 1000.*1E6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                              0.0, 0.0, 0.0, 5*1E6, 0.0, 0.0, 0.0, 0.0, 0.0,
                              0.0, 0.0, 0.0, 0.0, 5*1E6, 0.0, 0.0, 0.0, 0.0,
                              0.0, 0.0, 0.0, 0.0, 0.0, 5*1E6, 0.0, 0.0, 0.0,
                              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0,
                              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0,
                              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0,]
    qNoiseIn = np.identity(9)
    qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3]*0.00001*0.00001*1E-6
    qNoiseIn[3:6, 3:6] = qNoiseIn[3:6, 3:6]*0.0001*0.0001*1E-6
    qNoiseIn[6:9, 6:9] = qNoiseIn[3:6, 3:6]*0.0001*0.0001
    filterObject.qNoise = qNoiseIn.reshape(9*9).tolist()
# uncomment this line is this test is to be skipped in the global unit test run, adjust message as needed
# @pytest.mark.skipif(conditionstring)
# uncomment this line if this test has an expected failure, adjust message as needed
# @pytest.mark.xfail() # need to update how the RW states are defined
# provide a unique test method name, starting with test_
[docs]def test_methods_kf(show_plots):
    """Module Unit Test"""
    [testResults, testMessage] = relOD_method_test(show_plots)
    assert testResults < 1, testMessage 
[docs]def test_propagation_kf(show_plots):
    """Module Unit Test"""
    [testResults, testMessage] = StatePropRelOD(show_plots, 10.0)
    assert testResults < 1, testMessage 
def relOD_method_test(show_plots):
    # The __tracebackhide__ setting influences pytest showing of tracebacks:
    # the mrp_steering_tracking() function will not be shown unless the
    # --fulltrace command line option is specified.
    __tracebackhide__ = True
    testFailCount = 0  # zero unit test result counter
    testMessages = []  # create empty list to store test log messages
    state = [250, 32000, 1000, 5, 3, 2, 1, 1, 1]
    covar = 10* np.eye(len(state))
    dt = 10
    mu = 42828.314
    # Measurement Model Test
    data = pixelLineBiasUKF.PixelLineBiasUKFConfig()
    msg = pixelLineBiasUKF.CirclesOpNavMsg()
    msg.circlesCenters = [100, 200]
    msg.circlesRadii = [100]
    msg.planetIds = [2]
    data.cirlcesInMsg = msg
    data.planetId = 2
    data.countHalfSPs = len(state)
    data.numStates = len(state)
    # Dynamics Model Test
    data.planetId = 2
    stateIn = pixelLineBiasUKF.new_doubleArray(len(state))
    for i in range(len(state)):
        pixelLineBiasUKF.doubleArray_setitem(stateIn, i, state[i])
    pixelLineBiasUKF.relODStateProp(data, stateIn, dt)
    propedState = []
    for i in range(len(state)):
        propedState.append(pixelLineBiasUKF.doubleArray_getitem(stateIn, i))
    expected = rk4(twoBodyGrav, [0, dt], np.array(state)*1E3)
    expected[:,1:]*=1E-3
    if np.linalg.norm((np.array(propedState) - expected[-1,1:])/(expected[-1,1:])) > 1.0E-15:
        testFailCount += 1
        testMessages.append("State Prop Failure")
    # Set up a measurement test
    data = pixelLineBiasUKF.PixelLineBiasUKFConfig()
    # Set up a circle input message
    msg = pixelLineBiasUKF.CirclesOpNavMsg()
    msg.circlesCenters = [100, 200]
    msg.circlesRadii = [100]
    msg.planetIds = [2]
    data.cirlcesInMsg = msg
    data.planetId = 2
    data.countHalfSPs = len(state)
    data.numStates = len(state)
    # Set up attitud message
    att = pixelLineBiasUKF.NavAttIntMsg()
    att.sigma_BN = [0, 0.2,-0.1]
    att.omega_BN_B = [0.,0.,0.]
    data.attInfo = att
    # Set up a camera message
    cam = pixelLineBiasUKF.CameraConfigMsg()
    cam.sigma_CB = [-0.2, 0., 0.3]
    cam.fieldOfView = 2.0 * np.arctan(10*1e-3 / 2.0 / (1.*1e-3) )  # 2*arctan(s/2 / f)
    cam.resolution = [512, 512]
    data.cameraSpecs = cam
    # Populate sigma points
    SP = np.zeros([len(state), 2*len(state) +1])
    for i in range(2*len(state) + 1):
        if i ==0:
            SP[:, i] = np.array(state)
        if i < len(state) + 1 and i>0:
            SP[:,i] = np.array(state) + covar[:,i-1]
        if i > len(state):
            SP[:,i] = np.array(state) - covar[:,i-(len(state)+1)]
    data.SP = np.transpose(SP).flatten().tolist()
    data.state = state
    pixelLineBiasUKF.pixelLineBiasUKFMeasModel(data)
    yMeasOut = data.yMeas
    expectedMeas = np.zeros([6, 2*len(state)+1])
    dcm_CB = rbk.MRP2C(cam.sigma_CB)
    dcm_BN = rbk.MRP2C(att.sigma_BN)
    dcm_CN = np.dot(dcm_CB, dcm_BN)
    pX = 2. * np.tan(cam.fieldOfView * cam.resolution[0] / cam.resolution[1] / 2.0)
    pY = 2. * np.tan(cam.fieldOfView / 2.0)
    X = pX / cam.resolution[0]
    Y = pY / cam.resolution[1]
    planetRad = 3396.19
    obs = np.array([msg.circlesCenters[0], msg.circlesCenters[1], msg.circlesRadii[0], 0, 0, 0])
    for i in range(2*len(state)+1):
        r_C = np.dot(dcm_CN, SP[0:3,i])
        rNorm = np.linalg.norm(SP[0:3,i])
        r_C = -1./r_C[2]*r_C
        centerX = r_C[0] / X
        centerY = r_C[1] / Y
        centerX += cam.resolution[0]/2 - 0.5
        centerY += cam.resolution[1] / 2 - 0.5
        rad = 1.0/X*np.tan(np.arcsin(planetRad/rNorm))
        if i == 0:
            obs[3:5] = np.array(msg.circlesCenters[0:2]) - obs[0:2]
            obs[5] = rad - obs[2]
        for j in range(3):
            obs[3+j] = round(obs[3+j])
        expectedMeas[0,i] = centerX - SP[6, i]
        expectedMeas[1,i] = centerY - SP[7, i]
        expectedMeas[2, i] = rad - SP[8, i]
        expectedMeas[3:, i] = SP[6:, i]
    yMeasTest = np.zeros([6, 2*len(state)+1])
    for i in range(2*len(state)+1):
        yMeasTest[:,i] = yMeasOut[i*6:i*6+6]
    if np.linalg.norm((yMeasTest - expectedMeas))/np.linalg.norm(expectedMeas[:,0]) > 1.0E-15:
        testFailCount += 1
        testMessages.append("State Prop Failure")
    return [testFailCount, ''.join(testMessages)]
def StatePropRelOD(show_plots, dt):
    # The __tracebackhide__ setting influences pytest showing of tracebacks:
    # the mrp_steering_tracking() function will not be shown unless the
    # --fulltrace command line option is specified.
    __tracebackhide__ = True
    testFailCount = 0  # zero unit test result counter
    testMessages = []  # create empty list to store test log messages
    unitTaskName = "unitTask"  # arbitrary name (don't change)
    unitProcessName = "TestProcess"  # arbitrary name (don't change)
    #   Create a sim module as an empty container
    unitTestSim = SimulationBaseClass.SimBaseClass()
    # Create test thread
    state = [250, 32000, 1000, 5, 3, 2, 1, 1, 1]
    testProcessRate = macros.sec2nano(dt)  # update process rate update time
    testProc = unitTestSim.CreateNewProcess(unitProcessName)
    testProc.addTask(unitTestSim.CreateNewTask(unitTaskName, testProcessRate))
    # Construct algorithm and associated C++ container
    moduleConfig = pixelLineBiasUKF.PixelLineBiasUKFConfig()
    moduleWrap = unitTestSim.setModelDataWrap(moduleConfig)
    moduleWrap.ModelTag = "relodSuKF"
    # Add test module to runtime call list
    unitTestSim.AddModelToTask(unitTaskName, moduleWrap, moduleConfig)
    setupFilterData(moduleConfig)
    # Create the input messages.
    inputCamera = pixelLineBiasUKF.CameraConfigMsg()
    inputAtt = pixelLineBiasUKF.NavAttIntMsg()
    # Set camera
    inputCamera.fieldOfView = 2.0 * np.arctan(10*1e-3 / 2.0 / 0.01)  # 2*arctan(s/2 / f)
    inputCamera.resolution = [512, 512]
    inputCamera.sigma_CB = [1., 0.3, 0.1]
    unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.cameraConfigMsgName, inputCamera)
    # Set attitude
    inputAtt.sigma_BN = [0.6, 1., 0.1]
    unitTestSupport.setMessage(unitTestSim.TotalSim, unitProcessName, moduleConfig.attInMsgName, inputAtt)
    unitTestSim.TotalSim.logThisMessage('relod_filter_data', testProcessRate)
    timeSim = 60
    unitTestSim.InitializeSimulation()
    unitTestSim.ConfigureStopTime(macros.min2nano(timeSim))
    unitTestSim.ExecuteSimulation()
    time = np.linspace(0, timeSim*60, (int) (timeSim*60/dt+1))
    dydt = np.zeros(len(moduleConfig.stateInit))
    energy = np.zeros(len(time))
    expected=np.zeros([len(time), len(moduleConfig.stateInit)+1])
    expected[0,1:] = moduleConfig.stateInit
    mu = 42828.314*1E9
    energy[0] = -mu/(2*orbitalMotion.rv2elem(mu, expected[0,1:4], expected[0,4:7]).a)
    expected = rk4(twoBodyGrav, time, moduleConfig.stateInit)
    for i in range(1, len(time)):
        energy[i] = - mu / (2 * orbitalMotion.rv2elem(mu, expected[i, 1:4], expected[i, 4:7]).a)
    stateLog = unitTestSim.pullMessageLogData('relod_filter_data' + ".state", range(len(moduleConfig.stateInit)))
    covarLog = unitTestSim.pullMessageLogData('relod_filter_data' + ".covar", range(len(moduleConfig.stateInit) * len(moduleConfig.stateInit)))
    diff = np.copy(stateLog)
    diff[:,1:]-=expected[:,1:]
    FilterPlots.plot_TwoOrbits(expected[:,0:4], stateLog[:,0:4])
    FilterPlots.EnergyPlot(time, energy, 'Prop', show_plots)
    FilterPlots.StateCovarPlot(stateLog, covarLog, 'Prop', show_plots)
    FilterPlots.StatePlot(diff, 'Prop', show_plots)
    if (np.linalg.norm(diff[-1,1:]/expected[-1,1:]) > 1.0E-10):
        testFailCount += 1
        testMessages.append("State propagation failure")
    if (energy[0] - energy[-1])/energy[0] > 1.0E-10:
        testFailCount += 1
        testMessages.append("State propagation failure")
    # print out success message if no error were found
    if testFailCount == 0:
        print("PASSED: " + moduleWrap.ModelTag + " state propagation")
    # return fail count and join into a single string all messages in the list
    # testMessage
    return [testFailCount, ''.join(testMessages)]
if __name__ == "__main__":
    # relOD_method_test(True)
    StatePropRelOD(True, 1.0)