''' '''
'''
 ISC License
 Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
 Permission to use, copy, modify, and/or distribute this software for any
 purpose with or without fee is hereby granted, provided that the above
 copyright notice and this permission notice appear in all copies.
 THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
'''
from Basilisk.utilities import macros
import numpy as np
[docs]def exponentialAtmosphere(atmosModule, name):
    """
    Sets the exponential atmosphere model parameters for a particular planet.
    :param atmosModule: atmospheric environment module
    :param name: planet name string
    :return:
    """
    if name is "earth":
        atmosModule.planetRadius = 6378136.6   # meters
        atmosModule.baseDensity = 1.217  # kg/m^3
        atmosModule.scaleHeight = 8500.0 # meters
        atmosModule.localTemp = 293.0
    else:
        print("ERROR: " + name + " not setup for exponential atmosphere model\n")
    return 
[docs]def centeredDipoleMagField(magFieldModule, name):
    """
    Sets the centered dipole magnetic field model parameters for a particular planet
    :param magFieldModule: magnetic field environment module
    :param name: planet name string
    :return:
    """
    if name is "earth":
        # The following parameters are from the 2020 IGRF model
        # (https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html)
        magFieldModule.g10 = -30926.00/1e9     # Tesla
        magFieldModule.g11 =  -2318.00/1e9     # Tesla
        magFieldModule.h11 =   5817.00/1e9     # Tesla
        magFieldModule.planetRadius = 6371.2*1000   # meters
    elif name is "mercury":
        # The following parameters are from NASA planetary fact sheet
        # (https://nssdc.gsfc.nasa.gov/planetary/planetfact.html)
        magFieldModule.planetRadius = 2440.0*1000   # meters
        convertToIgrfDipoleCoefficients(0.002/10000,        # [T]   dipole strength
                                        0.0*macros.D2R,     # [rad] Dipole tilt to rotational axis
                                        0.0*macros.D2R,     # [rad] Longitude of tilt
                                        magFieldModule)
    elif name is "jupiter":
        # The following parameters are from NASA planetary fact sheet
        # (https://nssdc.gsfc.nasa.gov/planetary/planetfact.html)
        magFieldModule.planetRadius = 71398.0*1000   # meters
        convertToIgrfDipoleCoefficients(4.30/10000,         # [T]   dipole strength
                                        9.4*macros.D2R,     # [rad] Dipole tilt to rotational axis
                                        200.1*macros.D2R,   # [rad] Longitude of tilt
                                        magFieldModule)
    elif name is "saturn":
        # The following parameters are from NASA planetary fact sheet
        # (https://nssdc.gsfc.nasa.gov/planetary/planetfact.html)
        magFieldModule.planetRadius = 60330.0*1000   # meters
        convertToIgrfDipoleCoefficients(0.215/10000,        # [T]   dipole strength
                                        0.0*macros.D2R,     # [rad] Dipole tilt to rotational axis
                                        0.0*macros.D2R,     # [rad] Longitude of tilt
                                        magFieldModule)
    elif name is "uranus":
        # The following parameters are from NASA planetary fact sheet
        # (https://nssdc.gsfc.nasa.gov/planetary/planetfact.html)
        magFieldModule.planetRadius = 25600.0*1000   # meters
        convertToIgrfDipoleCoefficients(0.228/10000,        # [T]   dipole strength
                                        58.6*macros.D2R,    # [rad] Dipole tilt to rotational axis
                                        53.6*macros.D2R,    # [rad] Longitude of tilt
                                        magFieldModule)
    elif name is "neptune":
        # The following parameters are from NASA planetary fact sheet
        # (https://nssdc.gsfc.nasa.gov/planetary/planetfact.html)
        magFieldModule.planetRadius = 24765.0*1000   # meters
        convertToIgrfDipoleCoefficients(0.142/10000,        # [T]   dipole strength
                                        46.9*macros.D2R,    # [rad] Dipole tilt to rotational axis
                                        288.*macros.D2R,    # [rad] Longitude of tilt
                                        magFieldModule)
    else:
        print("ERROR: " + name + " not setup for centered dipole magnetic field model. Options include mercury, earth, jupiter, saturn, uranus and neptune. \n")
    return 
[docs]def convertToIgrfDipoleCoefficients(nominalField, tilt, longitudeOfTilt, magFieldModule):
    """
    Converts the NASA Magnetosphere parameters from https://nssdc.gsfc.nasa.gov/planetary/planetfact.html
    to IGRF compatible dipole coefficients.
    :param nominalField: nominal magnetic field parameter given in Tesla
    :param tilt: Dipole tilt to rotational axis in radians
    :param longitudeOfTilt: Longitude of tilt in radians
    :param magFieldModule: magnetic field environment module
    :return:
    """
    # the following conversion is taken from Appendix D of doi:10.1007/978-1-4939-0802-8
    theta_m = np.pi - tilt
    alpha_m = np.pi - longitudeOfTilt
    magFieldModule.g11 = nominalField*np.sin(theta_m)*np.cos(alpha_m)
    magFieldModule.h11 = nominalField*np.sin(theta_m)*np.sin(alpha_m)
    magFieldModule.g10 = nominalField*np.cos(theta_m)
    return