#
#  ISC License
#
#  Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder
#
#  Permission to use, copy, modify, and/or distribute this software for any
#  purpose with or without fee is hereby granted, provided that the above
#  copyright notice and this permission notice appear in all copies.
#
#  THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
#  WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
#  MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
#  ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
#  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
#  ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
#  OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#
r"""
Overview
--------
This scenario uses the two OpNav methods implemented in previous scenarios.
This can allows for different results to be compared in the same simulation
The script can be run at full length by calling::
    python3 scenario_DoubleOpNavOD.py
"""
# Import utilities
from Basilisk.utilities import orbitalMotion, macros, unitTestSupport
from Basilisk.utilities import RigidBodyKinematics as rbk
# Get current file path
import sys, os, inspect, time, signal, subprocess
filename = inspect.getframeinfo(inspect.currentframe()).filename
path = os.path.dirname(os.path.abspath(filename))
# Import master classes: simulation base class and scenario base class
sys.path.append(path + '/..')
from BSK_OpNav import BSKSim, BSKScenario
import BSK_OpNavDynamics, BSK_OpNavFsw
import numpy as np
from sys import platform
# Import plotting file for your scenario
sys.path.append(path + '/../plotting')
import OpNav_Plotting as BSK_plt
# Create your own scenario child class
[docs]class scenario_OpNav(BSKScenario):
    """Main Simulation Class"""
    def __init__(self, masterSim):
        super(scenario_OpNav, self).__init__(masterSim)
        self.name = 'scenario_opnav'
        self.masterSim = masterSim
[docs]    def log_outputs(self):
        print('%s: log_outputs' % self.name)
        # Dynamics process outputs: log messages below if desired.
        # FSW process outputs
        samplingTimeFsw = self.masterSim.get_FswModel().processTasksTimeStep
        samplingTimeDyn = self.masterSim.get_DynModel().processTasksTimeStep
        # self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().trackingErrorCamData.outputDataName, samplingTime)
        # self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().trackingErrorData.outputDataName, samplingTime)
        self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName,samplingTimeFsw)
        self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().pixelLineData.opNavOutMsgName,samplingTimeFsw)
        self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName, samplingTimeFsw)
        self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName, samplingTimeFsw)
        self.masterSim.TotalSim.logThisMessage(self.masterSim.get_DynModel().scObject.scStateOutMsgName, samplingTimeDyn)
        self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().horizonNavData.opNavOutMsgName, samplingTimeFsw)
        self.masterSim.TotalSim.logThisMessage(self.masterSim.get_FswModel().limbFinding.opnavLimbOutMsgName, samplingTimeFsw)
        # self.masterSim.TotalSim.logThisMessage("mars barycenter_planet_data", samplingTimeDyn)
        return 
[docs]    def pull_outputs(self, showPlots):
        print('%s: pull_outputs' % self.name)
        # Dynamics process outputs: pull log messages below if any
        # mars_pos = self.masterSim.pullMessageLogData("mars barycenter_planet_data" + ".PositionVector", range(3))
        # mars_vel = self.masterSim.pullMessageLogData("mars barycenter_planet_data" + ".VelocityVector", range(3))
        ## Spacecraft true states
        position_N = self.masterSim.pullMessageLogData(self.masterSim.get_DynModel().scObject.scStateOutMsgName + ".r_BN_N", range(3))
        velocity_N = self.masterSim.pullMessageLogData(self.masterSim.get_DynModel().scObject.scStateOutMsgName + ".v_BN_N", range(3))
        # position_N[:,1:] -= mars_pos[:,1:]
        # velocity_N[:,1:] -= mars_vel[:,1:]
        ## Attitude
        sigma_BN = self.masterSim.pullMessageLogData(
            self.masterSim.get_DynModel().scObject.scStateOutMsgName + ".sigma_BN", range(3))
        ## Image processing
        limb = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().limbFinding.opnavLimbOutMsgName + ".limbPoints", range(2*2000))
        numLimbPoints = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().limbFinding.opnavLimbOutMsgName + ".numLimbPoints", range(1))
        validLimb = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().limbFinding.opnavLimbOutMsgName + ".valid", range(1))
        ## OpNav Out
        measPos = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().horizonNavData.opNavOutMsgName + ".r_BN_N", range(3))
        r_C = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().horizonNavData.opNavOutMsgName + ".r_BN_C", range(3))
        measCovar = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().horizonNavData.opNavOutMsgName + ".covar_N", range(3 * 3))
        covar_C = self.masterSim.pullMessageLogData(
        self.masterSim.get_FswModel().horizonNavData.opNavOutMsgName + ".covar_C", range(3 * 3))
        NUM_STATES = 6
        ## Navigation results
        navState = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName + ".state", range(NUM_STATES))
        navCovar = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().relativeODData.filtDataOutMsgName + ".covar",
            range(NUM_STATES * NUM_STATES))
        ## Image processing
        circleCenters = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName+ ".circlesCenters", range(2*10))
        circleRadii = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName+ ".circlesRadii", range(10))
        validCircle = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().imageProcessing.opnavCirclesOutMsgName+ ".valid", range(1))
        measPosPL = self.masterSim.pullMessageLogData(
            self.masterSim.get_FswModel().pixelLineData.opNavOutMsgName + ".r_BN_N", range(3))
        sigma_CB = self.masterSim.get_DynModel().cameraMRP_CB
        sizeMM = self.masterSim.get_DynModel().cameraSize
        sizeOfCam = self.masterSim.get_DynModel().cameraRez
        focal = self.masterSim.get_DynModel().cameraFocal #in m
        pixelSize = []
        pixelSize.append(sizeMM[0] / sizeOfCam[0])
        pixelSize.append(sizeMM[1] / sizeOfCam[1])
        dcm_CB = rbk.MRP2C(sigma_CB)
        # Plot results
        BSK_plt.clear_all_plots()
        stateError = np.zeros([len(position_N[:,0]), NUM_STATES+1])
        navCovarLong = np.full([len(position_N[:,0]), 1+NUM_STATES*NUM_STATES], np.nan)
        navCovarLong[:,0] = np.copy(position_N[:,0])
        stateError[:, 0:4] = np.copy(position_N)
        stateError[:,4:7] = np.copy(velocity_N[:,1:])
        measError = np.full([len(measPos[:,0]), 4], np.nan)
        measError[:,0] = measPos[:,0]
        measError_C = np.full([len(measPos[:,0]), 5], np.nan)
        measError_C[:,0] = measPos[:,0]
        trueRhat_C = np.full([len(numLimbPoints[:,0]), 4], np.nan)
        trueCircles = np.full([len(numLimbPoints[:,0]), 4], np.nan)
        trueCircles[:,0] = numLimbPoints[:,0]
        trueRhat_C[:,0] = numLimbPoints[:,0]
        truth = np.zeros([len(position_N[:,0]), 7])
        truth[:,0:4] = np.copy(position_N)
        truth[:,4:7] = np.copy(velocity_N[:,1:])
        switchIdx = 0
        Rmars = 3396.19*1E3
        for j in range(len(stateError[:, 0])):
            if stateError[j, 0] in navState[:, 0]:
                stateError[j, 1:4] -= navState[j - switchIdx, 1:4]
                stateError[j, 4:] -= navState[j - switchIdx, 4:]
            else:
                stateError[j, 1:] = np.full(NUM_STATES, np.nan)
                switchIdx += 1
        for i in range(len(numLimbPoints[:,0])):
            if numLimbPoints[i,1] > 1E-8:
                measError[i, 1:4] = position_N[i +switchIdx, 1:4] - measPos[i, 1:4]
                measError_C[i, 4] = np.linalg.norm(position_N[i +switchIdx, 1:4]) - np.linalg.norm(r_C[i, 1:4])
                measError_C[i, 1:4] = trueRhat_C[i,1:] - r_C[i, 1:4]/np.linalg.norm(r_C[i, 1:4])
                trueRhat_C[i,1:] = np.dot(np.dot(dcm_CB, rbk.MRP2C(sigma_BN[i +switchIdx, 1:4])) ,position_N[i +switchIdx, 1:4])/np.linalg.norm(position_N[i +switchIdx, 1:4])
                trueCircles[i,3] = focal*np.tan(np.arcsin(Rmars/np.linalg.norm(position_N[i,1:4])))/pixelSize[0]
                trueRhat_C[i,1:] *= focal/trueRhat_C[i,3]
                trueCircles[i, 1] = trueRhat_C[i, 1] / pixelSize[0] + sizeOfCam[0]/2 - 0.5
                trueCircles[i, 2] = trueRhat_C[i, 2] / pixelSize[1] + sizeOfCam[1]/2 - 0.5
            else:
                measCovar[i,1:] = np.full(3*3, np.nan)
                covar_C[i, 1:] = np.full(3 * 3, np.nan)
        navCovarLong[switchIdx:,:] = np.copy(navCovar)
        timeData = position_N[:, 0] * macros.NANO2MIN
        BSK_plt.nav_percentages(truth[switchIdx:,:], navState, navCovar, validLimb, "Fault")
        BSK_plt.diff_methods(position_N[switchIdx:,:], measPos, measPosPL, validLimb, validCircle)
        BSK_plt.plot_cirlces(circleCenters, circleRadii, validCircle, sizeOfCam)
        BSK_plt.plot_limb(limb, numLimbPoints, validLimb, sizeOfCam)
        # BSK_plt.AnimatedScatter(sizeOfCam, circleCenters, circleRadii, validCircle)
        # BSK_plt.plot_cirlces(timeData[switchIdx:], circleCenters, circleRadii, validCircle, sizeOfCam)
        BSK_plt.plotStateCovarPlot(stateError, navCovarLong)
        # BSK_plt.imgProcVsExp(trueCircles, circleCenters, circleRadii, np.array(sizeOfCam))
        # BSK_plt.plotPostFitResiduals(navPostFits, measCovar)
        figureList = {}
        if showPlots:
            BSK_plt.show_all_plots()
        else:
            fileName = os.path.basename(os.path.splitext(__file__)[0])
            figureNames = ["attitudeErrorNorm", "rwMotorTorque", "rateError", "rwSpeed"]
            figureList = BSK_plt.save_all_plots(fileName, figureNames)
        return figureList  
def run(showPlots, simTime = None):
    # Instantiate base simulation
    TheBSKSim = BSKSim(fswRate=0.5, dynRate=0.5)
    TheBSKSim.set_DynModel(BSK_OpNavDynamics)
    TheBSKSim.set_FswModel(BSK_OpNavFsw)
    TheBSKSim.initInterfaces()
    # Configure a scenario in the base simulation
    TheScenario = scenario_OpNav(TheBSKSim)
    TheScenario.log_outputs()
    TheScenario.configure_initial_conditions()
    TheBSKSim.get_DynModel().cameraMod.saveImages = 0
    # opNavMode 1 is used for viewing the spacecraft as it navigates, opNavMode 2 is for headless camera simulation
    TheBSKSim.get_DynModel().vizInterface.opNavMode = 2
    mode = ["None", "-directComm", "-opNavMode"]
    # The following code spawns the Vizard application from python as a function of the mode selected above, and the platform.
    if platform != "darwin":
        child = subprocess.Popen([TheBSKSim.vizPath, "--args", mode[TheBSKSim.get_DynModel().vizInterface.opNavMode],
             "tcp://localhost:5556"])
    else:
        child = subprocess.Popen(["open", TheBSKSim.vizPath, "--args", mode[TheBSKSim.get_DynModel().vizInterface.opNavMode],
                                  "tcp://localhost:5556"])
    print("Vizard spawned with PID = " + str(child.pid))
    # Configure FSW mode
    TheScenario.masterSim.modeRequest = 'prepOpNav'
    # Initialize simulation
    TheBSKSim.InitializeSimulationAndDiscover()
    # Configure run time and execute simulation
    simulationTime = macros.min2nano(3.)
    TheBSKSim.ConfigureStopTime(simulationTime)
    print('Starting Execution')
    t1 = time.time()
    TheBSKSim.ExecuteSimulation()
    TheScenario.masterSim.modeRequest = 'DoubleOD'
    if simTime != None:
        simulationTime = macros.min2nano(simTime)
    else:
        simulationTime = macros.min2nano(200)
    TheBSKSim.ConfigureStopTime(simulationTime)
    TheBSKSim.ExecuteSimulation()
    t2 = time.time()
    print('Finished Execution in ', t2-t1, ' seconds. Post-processing results')
    try:
        os.kill(child.pid + 1, signal.SIGKILL)
    except:
        print("IDK how to turn this thing off")
    # Pull the results of the base simulation running the chosen scenario
    if showPlots:
        figureList = TheScenario.pull_outputs(showPlots)
        return figureList
    else:
        return {}
if __name__ == "__main__":
    run(True)