
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-coarseSunSensor

MODULE TO SENSE SUN DIRECTION

Prepared by S. Carnahan

Status: Tested

Scope/Contents

This module defines both individual Coarse Sun Sensor (CSS) modules, as well as an array or con-
stellation of CSS devices. The CSS modules determine an ideal cosine response behavior, and can be
corrupted through a Kelly-curve and gaussian noise. The CSS response can also be reduced due to
being partially or fully in a planet’s shadow. The CSS unit test tests a pure signal as well as each of
the corruptions individually and combined. Constellations are set up in multiple ways to ensure proper
functionality.

Rev Change Description By Date

1.0 Initial Document H. Schaub 20170720

1.1 Full Draft with test description S. Carnahan 20170803

1.2 Edit to reflect algorithm changes S. Carnahan 20170918

Doc. ID: Basilisk-coarseSunSensor Page 1 of 11

Contents

1 Model Description 1
1.1 Overview . 2
1.2 Single CSS module . 2

1.2.1 I/O Messages . 2
1.2.2 CSS Signal Simulation . 2

1.3 Constellation or Array of CSS Modules . 4

2 Model Functions 4

3 Model Assumptions and Limitations 5

4 Test Description and Success Criteria 5

5 Test Parameters 6

6 Test Results 7

7 User Guide 9
7.1 Setting the CSS Unit Direction Vector . 9

7.1.1 Direct Method . 9
7.1.2 Via a Common Sensor Platform . 9

7.2 CSS Field-of-View . 10
7.3 CSS Output Scale . 10
7.4 Specifying CSS Sensor Noise . 10
7.5 Connecting Messages . 11
7.6 Setting Up CSS Modules . 11

7.6.1 Individual CSS Units . 11
7.6.2 Array or Constellation of CSS Units . 11

1 Model Description

scaleFactor
fov
nHat_B

KellyFactor
SenBias
SenNoiseStd

SpicePlanetState
SimMsg

SCPlusStatesSim
Msg

EclipseSimMsg

CSSRawDataSim
Msg

CoarseSunSensor

Fig. 1: Illustration of the CoarseSunSensor() module I/O

Doc. ID: Basilisk-coarseSunSensor Page 2 of 11

1.1 Overview

This document describes how Coarse Sun Sensor (CSS) devices are modeled in the Basilisk software.
Each CSS is modeled through a nominal cosine response relative to the sunlight incidence angle and
proportional to light intensity. It is possible to add individual CSS sensors to the BSK evaluation stack.
However, it is typically simpler to use the CSSConstellation() class to store a list of CSS units which
are updated as a group, along with a unique CSS array output message.

1.2 Single CSS module

1.2.1 I/O Messages

First, let us discuss the input and output messages of the individual CSS sensor module. The two
required input messages are of the type SpicePlanetStateSimMsg and SCPlusStatesSimMsg. The
first message is used to determine the sun’s location relative to the inertial frame Nr☼{N . The second
message is used to read in the spacecraft inertial position vector relative to the same inertial frame
NrB{N . Finally, the last message is optional. If it is connected, it provides the sun shadow parameter
indicating if the spacecraft is in a planet’s shadow.

The output message of an individual CSS unit creates a message containing the simulated CSS
sensor.

1.2.2 CSS Signal Simulation

To evaluate the sun heading vector s, the satellite and sun position vectors are used.

Ns “ NrSun{N ´
NrB{N (1)

After normalizing this vector to ŝ and mapping σB{N to rBN s, it is mapped into body frame components
through

Bŝ “ rBN sNŝ (2)

The CSS sensor unit normal vector is given by Bn̂ in body frame components. The normalized cosine
sensor signal γ̂ is thus determined through

γ̂ “ n̂ ¨ ŝ “ cosφ (3)

where φ is the CSS sunlight incidence angle. This is the normalized CSS signal where 1 is returned if
the sensor is looking straight at the sun. If the sensor axis n̂ is more than the field of view half-angle
(set through fov) from the sun axis, then a 0 signal is simulated. This fov variable is the angle from
n̂ beyond which the CSS signal is set to zero.

The Kelly parameter allows for the CSS signal to pinch towards zero for larger incidence angles as
illustrated in Figure 2. The amount of signal distortion is set through κ, where the Kelly factor pκ is
then computed as

fκ “ 1´ e´γ̂
2{κ (4)

so that the normalized output curve with kelly application is:

γκ “ γfκ (5)

This reflects the true output behavior of a sun sensor at larger incidence angles. Next, this cosine curve
is scaled according to the intensity of the light the sensor receives This includes scaling based on solar
flux at a given distance from the sun as well as eclipse shadowing. Note that the model is standardized

Doc. ID: Basilisk-coarseSunSensor Page 3 of 11

-50 50
ϕ

0.2

0.4

0.6

0.8

1.0

Signal

Fig. 2: Kelly distortion (orange,lower) illustration with κ “ 0.1

for 1 AU from the sun so that the output will remain as seen in Fig. 2 for an un-eclipsed spacecraft at
1 AU from the sun. The solar intensity factor based on distance from the sun is:

fsunDist “
p1AUq2

r2
SC{Sun

r
m2

m2
s (6)

and the shadow factor due to eclipse is given as fs. So the output curve adjusted for light intensity is:

γli “ γκfsunDistfs (7)

If the spacecraft is outside of a planet’s shadow, fs is 1. If it is within the shadow, then it is 0 ď fs ă 1.
This curve has now accounted for light intensity, but not for the magnitude or units of the sensor
electronics output. To do that, a scale factor, fscale is factored into the equation:

γclean “ fscaleγli (8)

where γclean is the output of a sensor with no noise.
Next, Gaussian noise and sensor can be added to the signal The normalized bias is set through

SenBias, while the normalized noise is set through SenNoiseStd. Let n be the normalized sensor
noise and b be the normalized sensor bias. Note that these values are non-dimensional and apply to the
unscaled output. Therefore, they will also be scaled when a scale factor is applied to the output. The
noisy and appropriately scaled output of the sensor is:

γnoise “ pγli ` n` bqfscale (9)

This indicates that sensor noise is not a function of light incidence angle or light intensity. Now, the
noise or bias could have caused the sensor to produce a value less than 0 or higher than is possible for
the hardware. To prevent this, saturation values are input as and treated as max/min values:

γcapped “ minpmaxOutput, γnoiseq (10)

γout “ γfloored “ maxpminOutput, γcappedq (11)

This is the final ouput of the sensor module.

Doc. ID: Basilisk-coarseSunSensor Page 4 of 11

CSSConstellation

CSS1

CSS2

CSS3

CSS4

CSSArraySensorIntMsg

Fig. 3: Illustration of the CSS Constellation class

1.3 Constellation or Array of CSS Modules

The CSSConstellation class is defined as a convenience such that the Basilisk update function is
called on a group of CSS modules. Here the CSS BSK modules are created and configured as before,
but are then provided to the CSSConstellation class object as a list of CSS in python. The CSS can
be configured individually, and must each be connected with the required input messages. However,
the CSSConstellation will gather all the CSS outputs and write a single CSS Constellation output
message of the type CSSArraySensorIntMsg as shown in Figure 3.

2 Model Functions
The coarse sun sensor functions have been mentioned in passing but are described below:

• Cosine Curve: Given the sensor vector to the sun, a cosine signal is generated and returned.

• Field of View: The module can limit it’s outputs to be zero outside of a given half-conic angle
field of view.

• Kelly Curve: The module can apply a Kelly Factor to the cosine curve to simulation realistic
effects at high incidence angles.

• Noise: The module can apply Gaussian noise to the signal.

• Bias: The module can apply a bias to the signal.

• Saturation: The module can apply floor and ceiling to prevent sensor outputs from straying
beyond reasonable values.

• Single Sensor: The module can set up a signal coarse sun sensor.

• CSS Constellation: The module can set up a constellation of coarse sun sensors.

• Interface: Spacecraft State: The module receives spacecraft state information from the mes-
saging system.

• Interface: Sun State: The module receives sun ephemeris information through the messaging
system

• Interface: Eclipse: The module receives optional eclipse information through the messaging
system.

• Interface: Outputs: The single CSS modules create individual CSS sensor output messages,
while the CSS Constellation creates a single output message with all the CSS sensor signals.

Doc. ID: Basilisk-coarseSunSensor Page 5 of 11

3 Model Assumptions and Limitations
Assumptions made in this coarse sun sensor module and the corresponding limitations are shown below.

1. Conical Symmetry: The module assumes that sensor readings and bias are the same in every
direction from normal. In reality, there may be different biases or errors depending on which
direction the sun vector is from the sensor normal vector. This limits the use of this module to
sensors that are symmetric or only slightly asymmetric.

2. Albedo: Currently, the model is hard-coded to zero-out any albedo input, so it is limited to cases
where albedo is not important.

3. Cosine Behavior: The model assumes the sensor to have a nominal cosine behavior. This is
distorted by the Kelly factor. To improve behavior closer to reality where housing and spacecraft
glint might cause slightly non-conical non-cosine behaviors, a look-up table of sensor outputs
compared to sun headings could be implemented in future work.

4 Test Description and Success Criteria
The Coarse Sun Sensor Test, test coarseSunSensor.py, contains 11 tests. The simulation is set up
with only the coarse sun sensor(s) and made-up messages to simulation spacecraft, sun, and eclipse
information. The spacecraft is in a convenient attitude relative to the sun and rotates all of the sensors
in a full circle past the sun.

1. Basic Functionality: A single sensor is run with minimal modifications and compared to a cosine.

Success Criteria: The output curve should match a cosine curve.

2. Eclipse: A single sensor is run with an eclipse simulated and compared to an eclipse factored
cosine.

Success Criteria: The output curve should match a cosine curve times the eclipse factor
input

3. Field of View: A single sensor is run with a smaller field of view and compared to a clipped
cosine.

Success Criteria: The output curve should match a cosine curve truncated to zero beyond
the field of view input.

4. Kelly Factor: A single sensor is run with a Kelly factor input and compared to a modified cosine.

Success Criteria: The output curve should match a cosine curve modified by the kelly curve
equation seen previously in this report

5. Scale Factor: A single sensor is run with a scale factor and compared to a scaled cosine.

Success Criteria: The output curve should match a cosine curve multiplied by the scaleFactor
input.

6. Bias: A single sensor is run with a bias and compared to a modified cosine.

Success Criteria: The output curve should match a cosine curve shifted in magnitude by
the bias input.

Doc. ID: Basilisk-coarseSunSensor Page 6 of 11

7. Noise: A single sensor is run with noise and the standard deviation of that noise is compared to
the input standard deviation.

Success Criteria: Once a clean cosine curve is subtracted from the output, the standard
deviation should match the standard deviation input.

8. Albedo: A single sensor is run with an albedo input and shown to be no different than the
standard cosine truth value. This is done because there is some albedo functionality programmed
into the module but it should be inactive at this time.

Success Criteria: The output curve should match a cosine curve because the albedo input
should have no effect.

9. Saturation: Non-zero minimum saturation and less-than-maximum-output maximum saturation
values are input.

SuccessCriteria: Output should match generated truth to high accuracy and saturation
values should be clearly visible in plot.

10. Sun Distance: The simulation is run with the spacecraft 2rAU s from the sun. The expected
result is compared to the output.

Success Criteria: Output should match the generated truth to high accuracy.

11. Clean Combined: All of the inputs above except for noise are run on a single simulation. The
expected result is compared to the output.

Success Criteria: Output should match the generated truth to high accuracy.

12. Combined: All of the inputs above are run on a single simulation. The expected result without
noise is subtracted from the result. Then, the standard deviation of the noise. is compared to the
expected standard deviation.

Success Criteria: Once a cosine curve modified by eclipse, field of view, kelly factor, scale
factor, bias, and albedo are subtracted from the output, the standard deviation should match the
given standard deviation.

13. Constellation: Two constellations of sensors are set up using various set up methods and simu-
lated with a clean signal. The two constellations are tested to be identical to one another. Con-
stellation P1 is established by directly assigning normal vectors to four sensors. Constellation P2 is
established by giving angles that specify the placement of the constellation platform relative to the
spacecraft body frame. Then, for constellation 2, the unit direction vector for each sensor is set
with an azimuth and an elevation via coarseSunSensor.setUnitDirectionVectorWithPerturbation().
Finally, the fourth sensor in constellation P2 is set up in a different way than the others. It is not
assigned platform frame angles but it is given incorrect azimuth and elevation headings which are
corrected with ”perturbation” inputs. Through all of these tests, constellation set up is verified,
including the default platform DCM (identity).

Success Criteria: The output curve from constellation P1 should match the output curve
from constellation P2.

5 Test Parameters

Pytest runs the following cases (numbered as above) when it is called for this test:

Doc. ID: Basilisk-coarseSunSensor Page 7 of 11

Table 2: Parameters for each test. Note that relative tolerance is truth´output
truth

Te
st

us
eC
on
st
el
la
tio
n

vi
sib
ili
ty
Fa
ct
or

fo
v

ke
lly

sc
al
eF
ac
to
r

bi
as

no
ise
St
d

al
be
do
Va
lu
e

sa
tu
ra
tio
n

er
rT
ol

su
nD
ist
In
pu
t

1 False 1.00 1.5708 0.00 1.00 0.00 0.000 0.0 10.00 ,0.00 1.0e-10 1.0
2 False 0.50 1.5708 0.00 1.00 0.00 0.000 0.0 10.00 ,0.00 1.0e-10 1.0
3 False 1.00 1.1781 0.00 1.00 0.00 0.000 0.0 10.00 ,0.00 1.0e-10 1.0
4 False 1.00 1.5708 0.15 1.00 0.00 0.000 0.0 10.00 ,0.00 1.0e-10 1.0
5 False 1.00 1.5708 0.00 2.00 0.00 0.000 0.0 10.00 ,0.00 1.0e-10 1.0
6 False 1.00 1.5708 0.00 1.00 0.50 0.000 0.0 10.00 ,0.00 1.0e-10 1.0
7 False 1.00 1.5708 0.00 1.00 0.00 0.125 0.0 10.00 ,-10.00 1.0e-02 1.0
8 False 1.00 1.5708 0.00 1.00 0.00 0.000 0.5 10.00 ,0.00 1.0e-10 1.0
9 False 1.00 1.5708 0.00 1.00 0.00 0.000 0.0 0.75 ,0.25 1.0e-10 1.0

10 False 1.00 1.5708 0.00 1.00 0.00 0.000 0.0 10.00 ,0.00 1.0e-10 2.0
11 False 0.50 1.1781 0.15 2.00 0.50 0.000 0.5 10.00 ,0.00 1.0e-10 2.0
12 False 0.50 1.1781 0.15 2.00 0.50 0.125 0.5 10.00 ,-10.00 1.0e-02 2.0
13 True 1.00 1.5708 0.00 1.00 0.00 0.000 0.0 10.00 ,0.00 1.0e-10 1.0

The tolerances above were chosen basically to be machine tolerance which is consistently passable
between machines and operating systems. Those tests involving noise have looser tolerances because
they are comparing the standard deviation of generated noise with the requested standard deviation.
longer runs would make this tolerance tighter, but take large amounts of time for users to run the tests.

6 Test Results
The results of each test are shown in the table below. If a test did not pass, an error message is included.

Table 3: Test results.

Test Pass/Fail Notes
1 PASSED
2 PASSED
3 PASSED
4 PASSED
5 PASSED
6 PASSED
7 PASSED
8 PASSED
9 PASSED

10 PASSED
11 PASSED
12 PASSED
13 PASSED

In addition to the tabulated results, test data has been plotted for visual inspection. In Fig. 4, all
single coarse sun sensor simulations have been plotted on top of one another. This makes for convenient
comparison between the cases. For instance, the scaleFactor case can be seen to peak at 2 rather than
1 whereas the eclipse case peaks at 0.5. Furthermore, the fieldOfView test drops to zero at a value less
than π

2 but it follows the plain case otherwise. The kellyFactor case similarly follows the plain curve,
except at the edges. The albedo curve cannot be seen because it lies directly beneath the plain curve.
The bias curve is equivalent to the plain curve, but shifted up. Finally, the two curves with noise clearly
follow the ordinary curve pattern.

Doc. ID: Basilisk-coarseSunSensor Page 8 of 11

0 20 40 60 80 100
Time [min]

0.5

0.0

0.5

1.0

1.5

2.0

Ou
tp

ut
 V

al
ue

 [-
]

plain
eclipse
fieldOfView
kellyFactor
scaleFactor
bias
deviation
albedo
saturation
sunDistance
cleanCombined
combined

Fig. 4: Plot of all cases of individual coarse sun sensor in comparison to each other. Note that the incidence
angle starts at direct and linearly rotates in time until it returns to a direct view.

Doc. ID: Basilisk-coarseSunSensor Page 9 of 11

The constellation test results are shown in Fig. 5. The results are identical to each other and the
test has been successful.

0 20 40 60 80 100
Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

P1
 O

ut
pu

t V
al

ue
s [

-] cssP11
cssP12
cssP13
cssP14

0 20 40 60 80 100
Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

P2
 O

ut
pu

t V
al

ue
s [

-] cssP21
cssP22
cssP23
cssP24

Fig. 5: Plot of first and second constellation outputs for comparision. Note that the constellation starts pointing
directly at the sun and linearly rotates in time until it returns to a direct view.

7 User Guide

7.1 Setting the CSS Unit Direction Vector

7.1.1 Direct Method

The unit normal vector of each CSS sensor is set through the B frame vector representation

nHat B ” Bn̂ (12)

It is possible to set these vectors directly. However, there are some convenience functions that make
this process easier.

7.1.2 Via a Common Sensor Platform

Multiple CSS devices are often arranged together on a single CSS platform. The orientation of the
body-fixed platform frame P : tp̂1, p̂2, p̂3u relative to the body frame B : tb̂1, b̂2, b̂3u is given through
rPBs. In the CSS module, the DCM is specified through the variable dcm PB.

Assume the DCM dcm PB is set directly via Python. Two angles then define the orientation of the
sensor normal axis n̂. The elevation angle is φ and the azimuth angle is θ. These are an Euler angle

Doc. ID: Basilisk-coarseSunSensor Page 10 of 11

sequence with the order 3-(-2). The elevation angle is a positive 3-axis rotation, while the azimuth is a
minus 2-axis rotation. The helper function

setUnitDirectionVectorWithPerturbationpθp, φpq

where θp and φp are CSS heading perturbation can can be specified. The Euler angles implemented are
then

φactual “ φtrue ` φp (13)

θactual “ θtrue ` θp (14)

To setup un-perturbed CSS sensor axes simple set these perturbation angles to zero.
Instead of setting the DCM dcm PB variable directly, this can also be set via the helper function

setBodyToPlatformDCMpψ, θ, φq

where pψ, θ, φq are classical 3 ´ 2 ´ 1 Euler angles that map from the body frame B to the platform
frame P.

7.2 CSS Field-of-View

The CSS sensor field of view is set by specifying the class variable

fov

This angle is the angle from the bore-sight axis to the edge of the field of view, and is expressed in
terms of radians.

7.3 CSS Output Scale

The general CSS signal computation is performed in a normalized manner yielding an unperturbed
output between 0 and 1. The CSS module variable

scaleFactor

is the scale factor α which scales the output to the desired range of values, as well as the desired units.
For example, if the maximum sun signal (n̂ points directly at sun) should yield 1 mA, then the scale
factor is set to this value.

7.4 Specifying CSS Sensor Noise

Three types of CSS signal corruptions can be simulated. If not specified, all these corruptions are zeroed.
The Kelly corruption parameter κ is set by specifying the variable

KellyFactor

Second, to add a gaussian noise component to the normalized output the variable, the variable

SenNoiseStd

is set to a non-zero value. This is the standard deviation of normalized gaussian noise. Note that this
noise magnitude is in terms of normalized units as it is added to the 0-1 nominal signal.

Next, to simulate a signal bias, the variable

SenBias

Doc. ID: Basilisk-coarseSunSensor Page 11 of 11

is set to a non-zero value. This constant bias of the normalized gaussian noise.
Finally, to set saturation values, the variables

maxOutput

minOutput

are used. minOutput is 0 by default and maxOutput is 1,000,000 by default.

7.5 Connecting Messages

Of the three possible input messages to the CSS module, the following message inputs are required for
the module to properly operate:

SpicePlanetStateSimMsgSCPlusStatesSimMsg

The first message is used to know the sun heading vector, while the second message provides the
spacecraft inertial orientation,

The last message is optional. If the EclipseSimMsg is connected, then the solar eclipse information
is taking into account. The eclipse info provides 0 if the spacecraft is fully in a planet’s shadow, 1 if in
free space fully exposed to the, and a value between (0,1) if in the penumbra region. The cosine sensor
value γ̂ is scaled by this eclipse value. If the message is not connected, then this value default to 1,
thus simulating a spacecraft that is fully exposed to the sun.

7.6 Setting Up CSS Modules

7.6.1 Individual CSS Units

It is possible to add Individual CSS units to the Basilisk simulation. This is done by invoking instances
of the CoarseSunSensor() class from python, configuring the required states, and then adding each
to the BSK evaluation stack. Each CoarseSunSensor class has it’s own UpdateState() method that
get’s evaluated each update period.

This setup is convenient if only 1-2 CSS units have to be modeled, but can be cumbersome if a
larger cluster of CSS units must be administered. When setup this way, each CSS unit will output an
individual CSS output message.

7.6.2 Array or Constellation of CSS Units

An alternate method to setup a series of CSS units is to use the CSSConstellation() class. This class
is able to store a series of CSS CoarseSunSensor objects, and engage the update routine on all of them
at once. This way only the CSSConstellation module needs to be added to the BSK update stack.
In this method the CSSConstellation module outputs a single CSS sensor message which contains an
array of doubles with the CSS sensor signal. Here the individual CSS units CSS1, CSS2, etc. are setup
and configured first. Next, they are added to the CSSConstellation through the python command

cssConstellation.sensorList “ coarse sun sensor.CSSVectorprCSS1, CSS2, ..., CSS8sq

	Model Description
	Overview
	Single CSS module
	I/O Messages
	CSS Signal Simulation

	Constellation or Array of CSS Modules

	Model Functions
	Model Assumptions and Limitations
	Test Description and Success Criteria
	Test Parameters
	Test Results
	User Guide
	Setting the CSS Unit Direction Vector
	Direct Method
	Via a Common Sensor Platform

	CSS Field-of-View
	CSS Output Scale
	Specifying CSS Sensor Noise
	Connecting Messages
	Setting Up CSS Modules
	Individual CSS Units
	Array or Constellation of CSS Units

