

Autonomous Vehicle Simulation (AVS) Laboratory, University of Colorado

Basilisk Technical Memorandum Document ID: Basilisk-MRP_Steering

MRP STEERING ADCS CONTROL MODULE

Prepared by H. Schaub

Status: Initial Documentation

Scope/Contents

This module uses the MRP Steering control logic to determine the ADCS control torque vector L_r .

Rev:	Change Description	Ву
Draft	Initial Documentation Draft	H. Schaub
1.0	Updated the sign definition of $oldsymbol{L}_r$	H. Schaub
1.1	Small updates after code review	H. Schaub

Contents

1	Module Overview	1
2	Steering Law Goals	1
3	MRP Steering Law 3.1 Steering Law Stability Requirement 3.2 Saturated MRP Steering Law	2 2 2
4	Angular Velocity Servo Sub-System	4
5	Testing	6
6	User's guide	6

Fig. 1: MRP_Steering() Module I/O Illustration

1 Module Overview

The module input and output messages are illustrated in Figure 1. The intend of this module is to implement an MRP steering law where the control output is a vector of commanded body rates. To use this module it is required to use a separate rate tracking servo control module as well.

2 Steering Law Goals

This technical note develops a new MRP based steering law that drives a body frame $\mathcal{B}: \{\hat{b}_1, \hat{b}_2, \hat{b}_3\}$ towards a time varying reference frame $\mathcal{R}: \{\hat{r}_1, \hat{r}_2, \hat{r}_3\}$. The inertial frame is given by $\mathcal{N}: \{\hat{n}_1, \hat{n}_2, \hat{n}_3\}$. The RW coordinate frame is given by $\mathcal{W}_i: \{\hat{g}_{s_i}, \hat{g}_{t_i}, \hat{g}_{g_i}\}$. Using MRPs, the overall control goal is

$$\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}} \to 0 \tag{1}$$

The reference frame orientation $\sigma_{\mathcal{R}/\mathcal{N}}$, angular velocity $\omega_{\mathcal{R}/\mathcal{N}}$ and inertial angular acceleration $\dot{\omega}_{\mathcal{R}/\mathcal{N}}$ are assumed to be known.

The rotational equations of motion of a rigid spacecraft with N Reaction Wheels (RWs) attached are given ${\rm by}^1$

$$[I_{RW}]\dot{\boldsymbol{\omega}} = -[\tilde{\boldsymbol{\omega}}]\left([I_{RW}]\boldsymbol{\omega} + [G_s]\boldsymbol{h}_s\right) - [G_s]\boldsymbol{u}_s + \boldsymbol{L}$$
⁽²⁾

where the inertia tensor $\left[I_{RW} \right]$ is defined as

$$[I_{RW}] = [I_s] + \sum_{i=1}^{N} \left(J_{t_i} \hat{\boldsymbol{g}}_{t_i} \hat{\boldsymbol{g}}_{t_i}^T + J_{g_i} \hat{\boldsymbol{g}}_{g_i} \hat{\boldsymbol{g}}_{g_i}^T \right)$$
(3)

The spacecraft inertial without the N RWs is $[I_s]$, while J_{s_i} , J_{t_i} and J_{g_i} are the RW inertias about the body fixed RW axis \hat{g}_{s_i} (RW spin axis), \hat{g}_{t_i} and \hat{g}_{g_i} . The $3 \times N$ projection matrix $[G_s]$ is then defined as

$$[G_s] = \left[\cdots^{\mathcal{B}} \hat{g}_{s_i} \cdots \right] \tag{4}$$

The RW inertial angular momentum vector h_s is defined as

$$h_{s_i} = J_{s_i}(\omega_{s_i} + \Omega_i) \tag{5}$$

Here Ω_i is the *i*th RW spin relative to the spacecraft, and the body angular velocity is written in terms of body and RW frame components as

$$\boldsymbol{\omega} = \omega_1 \hat{\boldsymbol{b}}_1 + \omega_2 \hat{\boldsymbol{b}}_2 + \omega_3 \hat{\boldsymbol{b}}_3 = \omega_{s_i} \hat{\boldsymbol{g}}_{s_i} + \omega_{t_i} \hat{\boldsymbol{g}}_{t_i} + \omega_{g_i} \hat{\boldsymbol{g}}_{g_i}$$
(6)

3 MRP Steering Law

3.1 Steering Law Stability Requirement

As is commonly done in robotic applications where the steering laws are of the form $\dot{x} = u$, this section derives a kinematic based attitude steering law. Let us consider the simple Lyapunov candidate function^{1,2}

$$V(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) = 2\ln\left(1 + \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}^T \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}\right)$$
(7)

in terms of the MRP attitude tracking error $\sigma_{\mathcal{B}/\mathcal{R}}$. Using the MRP differential kinematic equations

$$\dot{\boldsymbol{\sigma}}_{\mathcal{B}/\mathcal{R}} = \frac{1}{4} [B(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}})]^{\mathcal{B}} \boldsymbol{\omega}_{\mathcal{B}/\mathcal{R}} = \frac{1}{4} \left[(1 - \sigma_{\mathcal{B}/\mathcal{R}}^2) [I_{3\times 3} + 2[\tilde{\boldsymbol{\sigma}}_{\mathcal{B}/\mathcal{R}}] + 2\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}} \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}^T \right]^{\mathcal{B}} \boldsymbol{\omega}_{\mathcal{B}/\mathcal{R}}$$
(8)

where $\sigma_{\mathcal{B}/\mathcal{R}}^2=\pmb{\sigma}_{\mathcal{B}/\mathcal{R}}^T\pmb{\sigma}_{\mathcal{B}/\mathcal{R}}$, the time derivative of V is

$$\dot{V} = \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}^{T} \left({}^{\mathcal{B}} \boldsymbol{\omega}_{\mathcal{B}/\mathcal{R}} \right)$$
(9)

To create a kinematic steering law, let \mathcal{B}^* be the desired body orientation, and $\omega_{\mathcal{B}^*/\mathcal{R}}$ be the desired angular velocity vector of this body orientation relative to the reference frame \mathcal{R} . The steering law requires an algorithm for the desired body rates $\omega_{\mathcal{B}^*/\mathcal{R}}$ relative to the reference frame make \dot{V} in Eq. (9) negative definite. For this purpose, let us select

$${}^{\mathcal{B}}\omega_{\mathcal{B}^*/\mathcal{R}} = -f(\sigma_{\mathcal{B}/\mathcal{R}}) \tag{10}$$

where $f(\sigma)$ is an even function such that

$$\boldsymbol{\sigma}^T \boldsymbol{f}(\boldsymbol{\sigma}) > 0 \tag{11}$$

The Lyapunov rate simplifies to the negative definite expression:

$$\dot{V} = -\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}^T \boldsymbol{f}(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) < 0$$
(12)

3.2 Saturated MRP Steering Law

A very simple example would be to set

$$\boldsymbol{f}(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) = K_1 \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}} \tag{13}$$

where $K_1 > 0$. This yields a kinematic control where the desired body rates are proportional to the MRP attitude error measure. If the rate should saturate, then f() could be defined as

$$\boldsymbol{f}(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) = \begin{cases} K_1 \sigma_i & \text{if } |K_1 \sigma_i| \leq \omega_{\max} \\ \omega_{\max} \text{sgn}(\sigma_i) & \text{if } |K_1 \sigma_i| > \omega_{\max} \end{cases}$$
(14)

where

$$\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}} = (\sigma_1, \sigma_2, \sigma_3)^T$$

A smoothly saturating function is given by

$$\boldsymbol{f}(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) = \arctan\left(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}} \frac{K_1 \pi}{2\omega_{\max}}\right) \frac{2\omega_{\max}}{\pi}$$
(15)

where

$$\boldsymbol{f}(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) = \begin{pmatrix} f(\sigma_1) \\ f(\sigma_2) \\ f(\sigma_3) \end{pmatrix}$$
(16)

Here as $\sigma_i \to \infty$ then the function f smoothly converges to the maximum speed rate $\pm \omega_{\text{max}}$. For small $|\sigma_{\mathcal{B}/\mathcal{R}}|$, this function linearizes to

$$f(\sigma_{\mathcal{B}/\mathcal{R}}) \approx K_1 \sigma_{\mathcal{B}/\mathcal{R}} + \text{H.O.T}$$
 (17)

If the MRP shadow set parameters are used to avoid the MRP singularity at 360°, then $|\sigma_{B/R}|$ is upper limited by 1. To control how rapidly the rate commands approach the ω_{max} limit, Eq. (15) is modified to include a cubic term:

$$f(\sigma_i) = \arctan\left((K_1\sigma_i + K_3\sigma_i^3)\frac{\pi}{2\omega_{\max}}\right)\frac{2\omega_{\max}}{\pi}$$
(18)

The order of the polynomial must be odd to keep f() an even function. A nice feature of Eq. (18) is that the control rate is saturated individually about each axis. If the smoothing component is removed to reduce this to a bang-band rate control, then this would yield a Lyapunov optimal control which minimizes \dot{V} subject to the allowable rate constraint ω_{max} .

Figure 2 illustrates how the parameters ω_{max} , K_1 and K_3 impact the steering law behavior. The maximum steering law rate commands are easily set through the ω_{max} parameters. The gain K_1 controls the linear stiffness when the attitude errors have become small, while K_3 controls how rapidly the steering law approaches the speed command limit.

The required velocity servo loop design is aided by knowing the body-frame derivative of ${}^{\mathcal{B}}\omega_{\mathcal{B}^*/\mathcal{R}}$ to implement a feed-forward components. Using the f() function definition in Eq. (16), this requires the time derivatives of $f(\sigma_i)$.

$$\frac{{}^{\mathcal{B}}\mathbf{d}({}^{\mathcal{B}}\boldsymbol{\omega}_{\mathcal{B}^*/\mathcal{R}})}{\mathbf{d}t} = \boldsymbol{\omega}_{\mathcal{B}^*/\mathcal{R}}' = -\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\sigma}_{\mathcal{B}^*/\mathcal{R}}} \dot{\boldsymbol{\sigma}}_{\mathcal{B}^*/\mathcal{R}} = -\begin{pmatrix} \frac{\partial f}{\partial \sigma_1} \dot{\boldsymbol{\sigma}}_1 \\ \frac{\partial f}{\partial \sigma_2} \dot{\boldsymbol{\sigma}}_2 \\ \frac{\partial f}{\partial \sigma_3} \dot{\boldsymbol{\sigma}}_3 \end{pmatrix}$$
(19)

where

$$\dot{\boldsymbol{\sigma}}_{\mathcal{B}^*/\mathcal{R}} = \begin{pmatrix} \dot{\sigma}_1 \\ \dot{\sigma}_2 \\ \dot{\sigma}_3 \end{pmatrix} = \frac{1}{4} [B(\boldsymbol{\sigma}_{\mathcal{B}^*/\mathcal{R}})]^{\mathcal{B}} \boldsymbol{\omega}_{\mathcal{B}^*/\mathcal{R}}$$
(20)

Using the general f() definition in Eq. (18), its sensitivity with respect to σ_i is

$$\frac{\partial f}{\partial \sigma_i} = \frac{(K_1 + 3K_3\sigma_i^2)}{1 + (K_1\sigma_i + K_3\sigma_i^3)^2 \left(\frac{\pi}{2\omega_{\max}}\right)^2}$$
(21)

(c) K_3 dependency with $\omega_{\max} = 1^{\circ}/s$, $K_1 = 0.1$

4 Angular Velocity Servo Sub-System

To implement the kinematic steering control, a servo sub-system must be included which will produce the required torques to make the actual body rates track the desired body rates. The following development is an illustration of such a servo control module, such as the rateServoFullNonlinear module. However, other body rate tracking control modules could be used as well.

The angular velocity tracking error vector is defined as

$$\delta \boldsymbol{\omega} = \boldsymbol{\omega}_{\mathcal{B}/\mathcal{B}^*} = \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} - \boldsymbol{\omega}_{\mathcal{B}^*/\mathcal{N}}$$
(22)

where the \mathcal{B}^* frame is the desired body frame from the kinematic steering law. Note that

$$\omega_{\mathcal{B}^*/\mathcal{N}} = \omega_{\mathcal{B}^*/\mathcal{R}} + \omega_{\mathcal{R}/\mathcal{N}} \tag{23}$$

where $\omega_{\mathcal{R}/\mathcal{N}}$ is obtained from the attitude navigation solution, and $\omega_{\mathcal{B}^*/\mathcal{R}}$ is the kinematic steering rate command. To create a rate-servo system that is robust to unmodeld torque biases, the state z is defined as:

$$\boldsymbol{z} = \int_{t_0}^{t_f} {}^{\mathcal{B}}\!\delta\boldsymbol{\omega} \, \mathrm{d}t \tag{24}$$

The rate servo Lyapunov function is defined as

$$V_{\boldsymbol{\omega}}(\delta\boldsymbol{\omega}, \boldsymbol{z}) = \frac{1}{2}\delta\boldsymbol{\omega}^{T}[I_{\mathsf{RW}}]\delta\boldsymbol{\omega} + \frac{1}{2}\boldsymbol{z}^{T}[K_{I}]\boldsymbol{z}$$
(25)

where the vector $\delta \omega$ and tensor $[I_{RW}]$ are assumed to be given in body frame components, $[K_i]$ is a symmetric positive definite matrix. The time derivative of this Lyapunov function is

$$\dot{V}_{\boldsymbol{\omega}} = \delta \boldsymbol{\omega}^T \left([I_{\mathsf{RW}}] \delta \boldsymbol{\omega}' + [K_I] \boldsymbol{z} \right)$$
(26)

Using the identities $\omega'_{\mathcal{B}/\mathcal{N}} = \dot{\omega}_{\mathcal{B}/\mathcal{N}}$ and $\omega'_{\mathcal{R}/\mathcal{N}} = \dot{\omega}_{\mathcal{R}/\mathcal{N}} - \omega_{\mathcal{B}/\mathcal{N}} \times \omega_{\mathcal{R}/\mathcal{N}}$,¹ the body frame derivative of $\delta \omega$ is

$$\delta \omega' = \dot{\omega}_{\mathcal{B}/\mathcal{N}} - \omega'_{\mathcal{B}^*/\mathcal{R}} - \dot{\omega}_{\mathcal{R}/\mathcal{N}} + \omega_{\mathcal{B}/\mathcal{N}} \times \omega_{\mathcal{R}/\mathcal{N}}$$
(27)

Substituting Eqs. (2) and (27) into the \dot{V}_{ω} expression in Eq. (26) yields

$$\dot{V}_{\boldsymbol{\omega}} = \delta \boldsymbol{\omega}^{T} \Big(- [\tilde{\boldsymbol{\omega}}_{\mathcal{B}/\mathcal{N}}] \left([I_{RW}] \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + [G_{s}] \boldsymbol{h}_{s} \right) - [G_{s}] \boldsymbol{u}_{s} + \boldsymbol{L} + [K_{I}] \boldsymbol{z} \\ - [I_{RW}] (\boldsymbol{\omega}_{\mathcal{B}^{*}/\mathcal{R}}^{\prime} + \dot{\boldsymbol{\omega}}_{\mathcal{R}/\mathcal{N}} - \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} \times \boldsymbol{\omega}_{\mathcal{R}/\mathcal{N}}) \Big) \quad (28)$$

Let $[P]^T = [P] >$ be a symmetric positive definite rate feedback gain matrix. The servo rate feedback control is defined as

$$[G_{s}]\boldsymbol{u}_{s} = [P]\delta\boldsymbol{\omega} + [K_{I}]\boldsymbol{z} - [\tilde{\boldsymbol{\omega}}_{\mathcal{B}^{*}/\mathcal{N}}]\left([I_{\mathsf{RW}}]\boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + [G_{s}]\boldsymbol{h}_{s}\right) - [I_{\mathsf{RW}}](\boldsymbol{\omega}_{\mathcal{B}^{*}/\mathcal{R}}' + \dot{\boldsymbol{\omega}}_{\mathcal{R}/\mathcal{N}} - \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} \times \boldsymbol{\omega}_{\mathcal{R}/\mathcal{N}}) + \boldsymbol{L} \quad (29)$$

Defining the right-hand-side as L_r , this is rewritten in compact form as

$$[G_s]\boldsymbol{u}_s = -\boldsymbol{L}_r \tag{30}$$

The array of RW motor torques can be solved with the typical minimum norm inverse

$$\boldsymbol{u}_{s} = [G_{s}]^{T} \left([G_{s}] [G_{s}]^{T} \right)^{-1} \left(-\boldsymbol{L}_{r} \right)$$
(31)

To analyze the stability of this rate servo control, the $[G_s]u_s$ expression in Eq. (29) is substituted into the Lyapunov rate expression in Eq. (28).

$$\dot{V}_{\omega} = \delta \boldsymbol{\omega}^{T} \Big(-[P] \delta \boldsymbol{\omega} - [\tilde{\boldsymbol{\omega}}_{\mathcal{B}/\mathcal{N}}] \left([I_{RW}] \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + [G_{s}] \boldsymbol{h}_{s} \right) + [\tilde{\boldsymbol{\omega}}_{\mathcal{B}^{*}/\mathcal{N}}] \left([I_{RW}] \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + [G_{s}] \boldsymbol{h}_{s} \right) \Big) = \delta \boldsymbol{\omega}^{T} \Big(-[P] \delta \boldsymbol{\omega} - [\tilde{\delta \boldsymbol{\omega}}] \left([I_{RW}] \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + [G_{s}] \boldsymbol{h}_{s} \right) \Big) = -\delta \boldsymbol{\omega}^{T} [P] \delta \boldsymbol{\omega} < 0$$
(32)

Thus, in the absence of unmodeled torques, the servo control in Eq. (29) is asymptotically stabilizing in rate tracking error $\delta \omega$.

Next, the servo robustness to unmodeled external torques is investigated. Let us assume that the external torque vector L in Eq. (2) only approximates the true external torque, and the unmodeled component is given by ΔL . Substituting the true equations of motion and the same servo control in Eq. (29) into the Lyapunov rate expression in Eq. (26) leads to

$$\dot{V}_{\omega} = -\delta \boldsymbol{\omega}^T [P] \delta \boldsymbol{\omega} - \delta \boldsymbol{\omega}^T \Delta \boldsymbol{L}$$
(33)

This \dot{V}_{ω} is no longer negative definite due to the underdetermined sign of the $\delta \omega^T \Delta L$ components. Equating the Lyapunov rates in Eqs. (26) and (33) yields the following servo closed loop dynamics:

$$[I_{\mathsf{RW}}]\delta\omega' + [P]\delta\omega + [K_I]\boldsymbol{z} = \Delta \boldsymbol{L}$$
(34)

Assuming that ΔL is either constant as seen by the body frame, or at least varies slowly, then taking a body-frame time derivative of Eq. (34) is

$$[I_{\mathsf{RW}}]\delta\omega'' + [P]\delta\omega' + [K_I]\delta\omega = \Delta L' \approx 0$$
(35)

As $[I_{\text{RW}}]$, [P] and $[K_I]$ are all symmetric positive definite matrices, these linear differential equations are stable, and $\delta \omega \to 0$ given that assumption that $\Delta L' \approx 0$.

5 Testing

Two tests are provided with this module. The first is a unit test that compares the computed $\omega_{\mathcal{B}^*/\mathcal{R}}$ and $\omega'_{\mathcal{B}^*/\mathcal{R}}$ to truth values computed in the python unit test. The second is an integrated test of this module with rateServoFullNonlin as well, comparing the desired torques computed L_r with truth values computed in the test. Both tests check a set of gains K1, K3 and ω_{\max} on a rigid body with no external torques, and with a fixed input reference attitude message. The torque requested by the controller is evaluated against python computed torques at 0s, 0.5s, 1s, 1.5s and 2s to within a tolerance of 10^{-12} for the integrated test.

- The test is run for a case with K1 = 0 or 0.15
- The gain K3 is set to 0 or 1
- The saturation rate ω_{\max} is set to 1.5 degrees/second or 0.001 degree/second

All permutations of these test cases are expected to pass. The rate servo module rateServoFullNonlin has dedicated unit tests to check various parameters required there, including integral gain on/off, presence of external torques and other variables.

6 User's guide

The following variables are required for this module:

- The gains K1, K3
- The value of $\omega_{\rm max}$

This module returns the values of $\omega_{\mathcal{B}^*/\mathcal{R}}$ and $\omega'_{\mathcal{B}^*/\mathcal{R}}$, which are used in the rate servo-level controller to compute required torques.

The control update period Δt is evaluated automatically.

REFERENCES

- [1] Hanspeter Schaub and John L. Junkins. *Analytical Mechanics of Space Systems*. AIAA Education Series, Reston, VA, 3rd edition, 2014.
- [2] Panagiotis Tsiotras. New control laws for the attitude stabilization of rigid bodies. In 13th IFAC Symposium on Automatic Control in Aerospace, pages 316–321, Palo Alto, CA, Sept. 12–16 1994.
- [3] Peter Carlisle Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, Inc., New York, 1986.