

Autonomous Vehicle Simulation (AVS) Laboratory, University of Colorado

Basilisk Technical Memorandum

Document ID: Basilisk-MRP_Steering

MRP STEERING ADCS CONTROL MODULE

Prepared by H. Schaub

Status: Initial Documentation

Scope/Contents

This module uses the MRP Steering control logic to determine the ADCS control torque vector L_r .

Contents

Fig. 1: MRP_Steering() Module I/O Illustration

1 Module Overview

The module input and output messages are illustrated in Figure [1.](#page-1-2) The intend of this module is to implement an MRP steering law where the control output is a vector of commanded body rates. To use this module it is required to use a separate rate tracking servo control module as well.

2 Steering Law Goals

This technical note develops a new MRP based steering law that drives a body frame $\,\mathcal{B}:\{\hat{\bm b}_1,\hat{\bm b}_2,\hat{\bm b}_3\}$ towards a time varying reference frame \mathcal{R} : $\{\hat{r}_1, \hat{r}_2, \hat{r}_3\}$. The inertial frame is given by \mathcal{N} : $\{\hat{\bm{n}}_1, \hat{\bm{n}}_2, \hat{\bm{n}}_3\}$. The RW coordinate frame is given by $\mathcal{W}_\rangle:\{\hat{\bm{g}}_{s_i},\hat{\bm{g}}_{t_i},\hat{\bm{g}}_{g_i}\}.$ Using MRPs, the overall control goal is

$$
\sigma_{\mathcal{B}/\mathcal{R}} \to 0 \tag{1}
$$

The reference frame orientation $\sigma_{R/N}$, angular velocity $\omega_{R/N}$ and inertial angular acceleration $\omega_{R/N}$ are assumed to be known.

The rotational equations of motion of a rigid spacecraft with N Reaction Wheels (RWs) attached are given by $¹$ $¹$ $¹$ </sup>

$$
[I_{RW}]\dot{\boldsymbol{\omega}} = -[\tilde{\boldsymbol{\omega}}] \left([I_{RW}]\boldsymbol{\omega} + [G_s]\boldsymbol{h}_s \right) - [G_s]\boldsymbol{u}_s + \boldsymbol{L} \tag{2}
$$

where the inertia tensor $[I_{RW}]$ is defined as

$$
[I_{RW}] = [I_s] + \sum_{i=1}^{N} (J_{t_i} \hat{\mathbf{g}}_{t_i} \hat{\mathbf{g}}_{t_i}^T + J_{g_i} \hat{\mathbf{g}}_{g_i} \hat{\mathbf{g}}_{g_i}^T)
$$
(3)

The spacecraft inertial without the N RWs is $[I_s]$, while $J_{s_i}, \ J_{t_i}$ and J_{g_i} are the RW inertias about the body fixed RW axis $\hat{\bm{g}}_{s_i}$ (RW spin axis), $\hat{\bm{g}}_{t_i}$ and $\hat{\bm{g}}_{g_i}$. The $3\times N$ projection matrix $[G_s]$ is then defined as

$$
[G_s] = [\cdots^g \hat{g}_{s_i} \cdots]
$$
\n(4)

The RW inertial angular momentum vector \bm{h}_s is defined as

$$
h_{s_i} = J_{s_i}(\omega_{s_i} + \Omega_i) \tag{5}
$$

Here Ω_i is the i^{th} RW spin relative to the spacecraft, and the body angular velocity is written in terms of body and RW frame components as

$$
\boldsymbol{\omega} = \omega_1 \hat{\boldsymbol{b}}_1 + \omega_2 \hat{\boldsymbol{b}}_2 + \omega_3 \hat{\boldsymbol{b}}_3 = \omega_{s_i} \hat{\boldsymbol{g}}_{s_i} + \omega_{t_i} \hat{\boldsymbol{g}}_{t_i} + \omega_{g_i} \hat{\boldsymbol{g}}_{g_i}
$$
(6)

3 MRP Steering Law

3.1 Steering Law Stability Requirement

As is commonly done in robotic applications where the steering laws are of the form $\dot{x} = u$, this section derives a kinematic based attitude steering law. Let us consider the simple Lyapunov candidate function $1, 2$ $1, 2$ $1, 2$

$$
V(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) = 2\ln\left(1 + \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}^T \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}\right)
$$
(7)

in terms of the MRP attitude tracking error $\sigma_{\beta/R}$. Using the MRP differential kinematic equations

$$
\dot{\boldsymbol{\sigma}}_{\mathcal{B}/\mathcal{R}} = \frac{1}{4} [B(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}})]^{\mathcal{B}} \boldsymbol{\omega}_{\mathcal{B}/\mathcal{R}} = \frac{1}{4} \left[(1 - \sigma_{\mathcal{B}/\mathcal{R}}^2) [I_{3 \times 3} + 2[\tilde{\boldsymbol{\sigma}}_{\mathcal{B}/\mathcal{R}}] + 2 \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}} \boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}^T \right]^{\mathcal{B}} \boldsymbol{\omega}_{\mathcal{B}/\mathcal{R}} \tag{8}
$$

where $\sigma^2_{\mathcal{B}/\mathcal{R}} = \bm{\sigma}^T_{\mathcal{B}/\mathcal{R}}\bm{\sigma}_{\mathcal{B}/\mathcal{R}}$, the time derivative of V is

$$
\dot{V} = \sigma_{\mathcal{B}/\mathcal{R}}^T \left(\mathcal{B}_{\omega_{\mathcal{B}/\mathcal{R}}} \right) \tag{9}
$$

To create a kinematic steering law, let \mathcal{B}^* be the desired body orientation, and $\bm{\omega_{\mathcal{B}^*/\mathcal{R}}}$ be the desired angular velocity vector of this body orientation relative to the reference frame R . The steering law requires an algorithm for the desired body rates $\omega_{\mathcal{B}^*/\mathcal{R}}$ relative to the reference frame make \dot{V} in Eq. [\(9\)](#page-2-3) negative definite. For this purpose, let us select

$$
{}^{\mathcal{B}}\!\omega_{\mathcal{B}^*/\mathcal{R}} = -f(\sigma_{\mathcal{B}/\mathcal{R}}) \tag{10}
$$

where $f(\sigma)$ is an even function such that

$$
\sigma^T f(\sigma) > 0 \tag{11}
$$

The Lyapunov rate simplifies to the negative definite expression:

$$
\dot{V} = -\sigma_{\mathcal{B}/\mathcal{R}}^T f(\sigma_{\mathcal{B}/\mathcal{R}}) < 0 \tag{12}
$$

3.2 Saturated MRP Steering Law

A very simple example would be to set

$$
f(\sigma_{\mathcal{B}/\mathcal{R}})=K_1\sigma_{\mathcal{B}/\mathcal{R}}
$$
\n(13)

where $K_1 > 0$. This yields a kinematic control where the desired body rates are proportional to the MRP attitude error measure. If the rate should saturate, then $f()$ could be defined as

$$
f(\sigma_{\mathcal{B}/\mathcal{R}}) = \begin{cases} K_1 \sigma_i & \text{if } |K_1 \sigma_i| \leq \omega_{\text{max}} \\ \omega_{\text{max}} \text{sgn}(\sigma_i) & \text{if } |K_1 \sigma_i| > \omega_{\text{max}} \end{cases}
$$
(14)

where

$$
\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}=(\sigma_1,\sigma_2,\sigma_3)^T
$$

A smoothly saturating function is given by

$$
f(\sigma_{\mathcal{B}/\mathcal{R}}) = \arctan\left(\sigma_{\mathcal{B}/\mathcal{R}}\frac{K_1\pi}{2\omega_{\text{max}}}\right)\frac{2\omega_{\text{max}}}{\pi}
$$
(15)

where

$$
\boldsymbol{f}(\boldsymbol{\sigma}_{\mathcal{B}/\mathcal{R}}) = \begin{pmatrix} f(\sigma_1) \\ f(\sigma_2) \\ f(\sigma_3) \end{pmatrix}
$$
\n(16)

Here as $\sigma_i \to \infty$ then the function f smoothly converges to the maximum speed rate $\pm \omega_{\text{max}}$. For small $|\sigma_{\mathcal{B}/\mathcal{R}}|$, this function linearizes to

$$
f(\sigma_{\mathcal{B}/\mathcal{R}}) \approx K_1 \sigma_{\mathcal{B}/\mathcal{R}} + \text{ H.O.T}
$$
 (17)

If the MRP shadow set parameters are used to avoid the MRP singularity at 360 $^{\circ}$, then $|\bm{\sigma}_{\mathcal{B}/\mathcal{R}}|$ is upper limited by 1. To control how rapidly the rate commands approach the ω_{max} limit, Eq. [\(15\)](#page-3-1) is modified to include a cubic term:

$$
f(\sigma_i) = \arctan\left((K_1 \sigma_i + K_3 \sigma_i^3) \frac{\pi}{2\omega_{\text{max}}} \right) \frac{2\omega_{\text{max}}}{\pi}
$$
 (18)

The order of the polynomial must be odd to keep $f()$ an even function. A nice feature of Eq. [\(18\)](#page-3-2) is that the control rate is saturated individually about each axis. If the smoothing component is removed to reduce this to a bang-band rate control, then this would yield a Lyapunov optimal control which minimizes V subject to the allowable rate constraint ω_{max} .

Figure [2](#page-4-0) illustrates how the parameters ω_{max} , K_1 and K_3 impact the steering law behavior. The maximum steering law rate commands are easily set through the $\omega_{\sf max}$ parameters. The gain K_1 controls the linear stiffness when the attitude errors have become small, while K_3 controls how rapidly the steering law approaches the speed command limit.

The required velocity servo loop design is aided by knowing the body-frame derivative of ${}^{\cal B}\!\omega_{\cal B^*/\cal R}$ to implement a feed-forward components. Using the $f()$ function definition in Eq. [\(16\)](#page-3-3), this requires the time derivatives of $f(\sigma_i)$.

$$
\frac{\partial^2 \mathbf{d}(\mathcal{B}_{\omega_{\mathcal{B}^*}/\mathcal{R}})}{\partial t} = \omega'_{\mathcal{B}^*/\mathcal{R}} = -\frac{\partial \mathbf{f}}{\partial \sigma_{\mathcal{B}^*/\mathcal{R}}}\dot{\sigma}_{\mathcal{B}^*/\mathcal{R}} = -\begin{pmatrix} \frac{\partial f}{\partial \sigma_1} \dot{\sigma}_1 \\ \frac{\partial f}{\partial \sigma_2} \dot{\sigma}_2 \\ \frac{\partial f}{\partial \sigma_3} \dot{\sigma}_3 \end{pmatrix}
$$
(19)

where

$$
\dot{\sigma}_{\mathcal{B}^*/\mathcal{R}} = \begin{pmatrix} \dot{\sigma}_1 \\ \dot{\sigma}_2 \\ \dot{\sigma}_3 \end{pmatrix} = \frac{1}{4} [B(\sigma_{\mathcal{B}^*/\mathcal{R}})]^{\mathcal{B}} \omega_{\mathcal{B}^*/\mathcal{R}}
$$
(20)

Using the general $f()$ definition in Eq. [\(18\)](#page-3-2), its sensitivity with respect to σ_i is

$$
\frac{\partial f}{\partial \sigma_i} = \frac{(K_1 + 3K_3\sigma_i^2)}{1 + (K_1\sigma_i + K_3\sigma_i^3)^2 \left(\frac{\pi}{2\omega_{\text{max}}}\right)^2}
$$
(21)

(c) K_3 dependency with $\omega_{\text{max}} = 1^{\circ}/s$, $K_1 = 0.1$

4 Angular Velocity Servo Sub-System

To implement the kinematic steering control, a servo sub-system must be included which will produce the required torques to make the actual body rates track the desired body rates. The following development is an illustration of such a servo control module, such as the rateServoFullNonlinear module. However, other body rate tracking control modules could be used as well.

The angular velocity tracking error vector is defined as

$$
\delta\omega = \omega_{\mathcal{B}/\mathcal{B}^*} = \omega_{\mathcal{B}/\mathcal{N}} - \omega_{\mathcal{B}^*/\mathcal{N}} \tag{22}
$$

 σ_i

where the \mathcal{B}^* frame is the desired body frame from the kinematic steering law. Note that

$$
\omega_{\mathcal{B}^*/\mathcal{N}} = \omega_{\mathcal{B}^*/\mathcal{R}} + \omega_{\mathcal{R}/\mathcal{N}} \tag{23}
$$

where $\omega_{R/N}$ is obtained from the attitude navigation solution, and $\omega_{B^*/R}$ is the kinematic steering rate command. To create a rate-servo system that is robust to unmodeld torque biases, the state z is defined as: $\int_0^t f$

$$
z = \int_{t_0}^{t_f} \mathcal{B}_{\delta \omega} \, \mathrm{d}t \tag{24}
$$

The rate servo Lyapunov function is defined as

$$
V_{\omega}(\delta\omega, z) = \frac{1}{2}\delta\omega^{T}[I_{\rm RW}]\delta\omega + \frac{1}{2}z^{T}[K_{I}]z
$$
\n(25)

where the vector $\delta \omega$ and tensor $[I_{\rm RW}]$ are assumed to be given in body frame components, $[K_i]$ is a symmetric positive definite matrix. The time derivative of this Lyapunov function is
 $\tilde{}$

$$
\dot{V}_{\omega} = \delta \omega^T \left(\left[I_{\rm RW} \right] \delta \omega' + \left[K_I \right] z \right) \tag{26}
$$

Using the identities $\omega'_{\cal B/N}=\dot\omega_{\cal B/N}$ and $\omega'_{\cal R/N}=\dot\omega_{\cal R/N}-\omega_{\cal B/N}\times\omega_{\cal R/N}^{-1}$ $\omega'_{\cal R/N}=\dot\omega_{\cal R/N}-\omega_{\cal B/N}\times\omega_{\cal R/N}^{-1}$ $\omega'_{\cal R/N}=\dot\omega_{\cal R/N}-\omega_{\cal B/N}\times\omega_{\cal R/N}^{-1}$ the body frame derivative of $\delta \boldsymbol{\omega}$ is

$$
\delta\omega' = \dot{\omega}_{\mathcal{B}/\mathcal{N}} - \omega'_{\mathcal{B}^*/\mathcal{R}} - \dot{\omega}_{\mathcal{R}/\mathcal{N}} + \omega_{\mathcal{B}/\mathcal{N}} \times \omega_{\mathcal{R}/\mathcal{N}}
$$
(27)

Substituting Eqs. [\(2\)](#page-1-3) and [\(27\)](#page-5-1) into the \dot{V}_{ω} expression in Eq. [\(26\)](#page-5-2) yields

$$
\dot{V}_{\omega} = \delta \omega^{T} \Big(- \left[\tilde{\omega}_{\mathcal{B}/\mathcal{N}} \right] \left(\left[I_{RW} \right] \omega_{\mathcal{B}/\mathcal{N}} + \left[G_s \right] h_s \right) - \left[G_s \right] u_s + \mathbf{L} + \left[K_I \right] z \n- \left[I_{RW} \right] \left(\omega_{\mathcal{B}^*/\mathcal{R}}' + \dot{\omega}_{\mathcal{R}/\mathcal{N}} - \omega_{\mathcal{B}/\mathcal{N}} \times \omega_{\mathcal{R}/\mathcal{N}} \right) \Big) \tag{28}
$$

Let $[P]^T \, = \, [P] \, > \,$ be a symmetric positive definite rate feedback gain matrix. $\,$ The servo rate feedback control is defined as

$$
[G_s] \boldsymbol{u}_s = [P] \delta \boldsymbol{\omega} + [K_I] \boldsymbol{z} - [\tilde{\boldsymbol{\omega}}_{\mathcal{B}^*/\mathcal{N}}] \left([I_{\text{RW}}] \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} + [G_s] \boldsymbol{h}_s \right) - [I_{\text{RW}}] (\boldsymbol{\omega}'_{\mathcal{B}^*/\mathcal{R}} + \dot{\boldsymbol{\omega}}_{\mathcal{R}/\mathcal{N}} - \boldsymbol{\omega}_{\mathcal{B}/\mathcal{N}} \times \boldsymbol{\omega}_{\mathcal{R}/\mathcal{N}}) + \boldsymbol{L}
$$
(29)

Defining the right-hand-side as L_r , this is rewritten in compact form as

$$
[G_s]u_s = -L_r \tag{30}
$$

The array of RW motor torques can be solved with the typical minimum norm inverse

$$
\boldsymbol{u}_s = [G_s]^T \left([G_s][G_s]^T \right)^{-1} \left(-\boldsymbol{L}_r \right) \tag{31}
$$

To analyze the stability of this rate servo control, the $[G_s]u_s$ expression in Eq. [\(29\)](#page-5-3) is substituted into the Lyapunov rate expression in Eq. (28) .

$$
\dot{V}_{\omega} = \delta \omega^{T} \Big(- [P] \delta \omega - [\tilde{\omega}_{\mathcal{B}/\mathcal{N}}] \left([I_{RW}] \omega_{\mathcal{B}/\mathcal{N}} + [G_s] \mathbf{h}_s \right) + [\tilde{\omega}_{\mathcal{B}^*/\mathcal{N}}] \left([I_{RW}] \omega_{\mathcal{B}/\mathcal{N}} + [G_s] \mathbf{h}_s \right) \Big)
$$
\n
$$
= \delta \omega^{T} \Big(- [P] \delta \omega - [\tilde{\delta \omega}] \left([I_{RW}] \omega_{\mathcal{B}/\mathcal{N}} + [G_s] \mathbf{h}_s \right) \Big)
$$
\n
$$
= -\delta \omega^{T} [P] \delta \omega < 0 \tag{32}
$$

Thus, in the absence of unmodeled torques, the servo control in Eq. [\(29\)](#page-5-3) is asymptotically stabilizing in rate tracking error $\delta \omega$.

Next, the servo robustness to unmodeled external torques is investigated. Let us assume that the external torque vector L in Eq. [\(2\)](#page-1-3) only approximates the true external torque, and the unmodeled component is given by ΔL . Substituting the true equations of motion and the same servo control in Eq. [\(29\)](#page-5-3) into the Lyapunov rate expression in Eq. [\(26\)](#page-5-2) leads to

$$
\dot{V}_{\omega} = -\delta \omega^T [P] \delta \omega - \delta \omega^T \Delta L \tag{33}
$$

This \dot{V}_ω is no longer negative definite due to the underdetermined sign of the $\delta\bm{\omega}^T\Delta\bm{L}$ components. Equating the Lyapunov rates in Eqs. [\(26\)](#page-5-2) and [\(33\)](#page-5-5) yields the following servo closed loop dynamics:

$$
[I_{RW}]\delta\omega' + [P]\delta\omega + [K_I]z = \Delta L \tag{34}
$$

Assuming that ΔL is either constant as seen by the body frame, or at least varies slowly, then taking a body-frame time derivative of Eq. [\(34\)](#page-5-6) is

$$
[I_{\rm RW}]\delta\omega'' + [P]\delta\omega' + [K_I]\delta\omega = \Delta L' \approx 0 \tag{35}
$$

As $[I_{RW}]$, $[P]$ and $[K_I]$ are all symmetric positive definite matrices, these linear differential equations are stable, and $\delta \omega \rightarrow 0$ given that assumption that $\Delta L' \approx 0$.

5 Testing

Two tests are provided with this module. The first is a unit test that compares the computed ω_{B^*R} and $\omega'_{\mathcal{B}^*/\mathcal{R}}$ to truth values computed in the python unit test. The second is an integrated test of this module with rateServoFullNonlin as well, comparing the desired torques computed L_r with truth values computed in the test. Both tests check a set of gains $K1, K3$ and ω_{max} on a rigid body with no external torques, and with a fixed input reference attitude message. The torque requested by the controller is evaluated against python computed torques at 0s, 0.5s, 1s, 1.5s and 2s to within a tolerance of 10^{-12} for the integrated test.

- The test is run for a case with $K1 = 0$ or 0.15
- The gain $K3$ is set to 0 or 1
- The saturation rate ω_{max} is set to 1.5 degrees/second or 0.001 degree/second

All permutations of these test cases are expected to pass. The rate servo module rateServoFullNonlin has dedicated unit tests to check various parameters required there, including integral gain on/off, presence of external torques and other variables.

6 User's guide

The following variables are required for this module:

- The gains $K1, K3$
- The value of ω_{max}

This module returns the values of $\omega_{\mathcal{B}^*/\mathcal{R}}$ and $\omega'_{\mathcal{B}^*/\mathcal{R}}$, which are used in the rate servo-level controller to compute required torques.

The control update period Δt is evaluated automatically.

REFERENCES

- [1] Hanspeter Schaub and John L. Junkins. Analytical Mechanics of Space Systems. AIAA Education Series, Reston, VA, 3rd edition, 2014.
- [2] Panagiotis Tsiotras. New control laws for the attitude stabilization of rigid bodies. In 13th IFAC Symposium on Automatic Control in Aerospace, pages 316–321, Palo Alto, CA, Sept. 12–16 1994.
- [3] Peter Carlisle Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, Inc., New York, 1986.