
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-pixelLineBiasUKF

RELATIVE OD UNSCENTED FILTER WITH BIAS ESTIMATION

Prepared by T. Teil

Status: First Version

Scope/Contents

This module filters center and apparent diameter measurements in order to estimate spacecraft relative
position in the inertial frame. The filter used is an unscented Kalman filter, and the images are first
processed by houghCricles to produce this filter’s measurements. This filter is nearly identical to the
relativeOD filter except that it estimates bias in the circle measurements. To do this, it integrates the
pixelLine converter module as the measurement model.

Rev Change Description By Date

1.0 First documentation T. Teil 06/20/2019

Doc. ID: Basilisk-pixelLineBiasUKF Page 1 of 8

Contents

1 Model Description 1
1.1 Filter Setup . 1
1.2 Measurements . 2
1.3 Position computation . 2

2 Module Functions 3

3 Module Assumptions and Limitations 3

4 Test Description and Success Criteria 4
4.1 Test 1: Individual Methods Tests . 4
4.2 Test 2: State Propagation . 4

5 Test Parameters 7

6 Test Results 7

7 User Guide 7
7.1 Filter Set-up, initialization, and I/O . 7

1 Model Description
This module implements a square-root unscented Kalman Filter in order to achieve it’s best state
estimate of the inertial spacecraft attitude states. The estimated state is spacecraft rotation and
velocity in the inertial frame, as well as a bias on the measurements in pixels b.

Important: The default units in Basilisk are meters for distance, and meters per second for speed.
These are the units to be used for this filter, though the internals use km and km/s for numerical
precision.

1.1 Filter Setup

The equations and algorithm for the square root uKF are given in ”inertialUKF DesignBasis.pdf” [3]

alongside this document. The filter is therefore derived with the states being X “
“Nr Nv b

‰T

The dynamics of the filter are given in Equations (1). τ is the total torque read in by the wheels.

9r “ v (1)

9v “ ´
µ

|r|3
r 9b “ 0 (2)

The propagation is done using an RK4 integrator. The following square-root uKF coefficients are
used: α “ 0.02, and β “ 2.

Doc. ID: Basilisk-pixelLineBiasUKF Page 2 of 8

1.2 Measurements

Fig. 1: Camera Model

This converter module processes the output of a circle finding method to extract spacecraft inertial
position. It does this by reading spacecraft attitude (coming from star tracker or other means), camera
parameters, and the circle properties.

Messages read:

• CameraConfigMsg: containing focal length, resolution, and sensor size. These values are needed
for the following computations. Notably the camera frame relative to the body frame is used.

• CirclesInMsg: Circle radius, center pixel and line, and uncertainty around these values in pixels.

• NavAttInMsg: Used for the spacecraft attitude. This allows to move from the body frame to the
inertial frame.

Message written:

• OpNavFswMsg: Message containing Nr and it’s covariance.

1.3 Position computation

A geometrical method can be used to extract pose information from center and apparent diameter
information. The norm of the position vector is given by the apparent size, it’s direction is given by the

pixel and line data. Using Crc “
C“
r1 r2 r3

‰T
as the relative vector of the camera with respect to the

celestial center, A as the apparent diameter of the celestial body, D as the actual diameter:

|rc| “
1

2

D

sin
`

1
2A

˘

1

r3

„

r1
r2

“
1

r3
r̃ “

1

f

„

x
y

(3)

These equations have been used in multiple instances.1,2 The third component of rc provides the
range measurement to the body which can be extracted using the apparent diameter measurements.
Hence the definition of r̃ which only contains the first two components of rc. The vector components
of rc can be expressed relative to the inertial frame assuming inertial attitude knowledge from other
instruments. Using the position of the camera on the spacecraft this provides the measurement value
for an orbit determination filter using a circle-finding algorithm.

Doc. ID: Basilisk-pixelLineBiasUKF Page 3 of 8

2 Module Functions
• relativeOD UKF Time Update: Performs the filter time update as defined in the baseline

algorithm

• relativeOD UKF Meas Update: Performs the filter measurement update as defined in the
baseline algorithm

• relativeOD UKF Two Body Dynamics: Provides the function used for integration and incor-
porates all the known dynamics

• relativeOD UKF Meas Model: Predicts the measurements given current state and measure-
ment model G

• relativeOD State Prop: Integrates the state given the F dynamics of the system

• relativeOD Clean Update: Returns filter to a previous state in the case of a bad computation

3 Module Assumptions and Limitations
The assumptions of this module are all tied in to the underling assumptions and limitations to a working
filter. In order for a proper convergence of the filter, the dynamics need to be representative of the
actual spacecraft perturbations. In this module, the dynamics implemented in the filter are currently
just two-body dynamics. Many more perturbations could be added in the future.

Depending on the tuning of the filter (process noise value and measurement noise value), the
robustness of the solution will be weighed against it’s precision. The number of measurements and the
frequency of their availability also influences the general performance.

Doc. ID: Basilisk-pixelLineBiasUKF Page 4 of 8

4 Test Description and Success Criteria
This filter builds on the long test suite of other SRuKFs in Basilisk. This test focuses on the differences
from other filters: the measurement update. In order to keep a rigorous process, the state propagation
is test once more as well.

4.1 Test 1: Individual Methods Tests

The first test in this suite runs methods individually:

• pixel Line uKF Meas Model: This test creates a Sigma Point matrix and predicts the measurements
model’s computations. It compares the expected output and the actual output down to 1E-15

• pixel Line State Prop: This test runs the state propagation after one step of simulation. It’s main
goal is to test the RK4, as it runs one in python and compares them down to 1E-15

4.2 Test 2: State Propagation

This test runs a pure propagation test. The states are set to a fixed value and integrated with the filter.
This shows filter stability in the simple case and a very low tolerance for error is permitted (1E-10).

Input circle measurement parameters are:

• Input circlesCenters = [100, 200]

• Input circlesRadii = [100]

• Input planetIds = [2]

• Input cirlcesInMsg = msg

• Input planetId = 2

• Input countHalfSPs = 9

• Input numStates =9

Input attitude parameters are:

• Input sigma BN = [0, 0.2,-0.1]

• Input omega BN B = [0.,0.,0.]

• Input sigma CB = [-0.2, 0., 0.3]

• Input focalLength = 1

• Input sensorSize = [10,10]

• Input resolution = [512, 512]

Figures 2 and 3 show the results for the energy and state errors.
Energy is conserved, and state errors are down to machine precision

Doc. ID: Basilisk-pixelLineBiasUKF Page 5 of 8

0 500 1000 1500 2000 2500 3000 3500

0.0

0.5

1.0

1.5

2.0

1e 14 Energy Prop

Energy

Fig. 2: Orbital Energy

Doc. ID: Basilisk-pixelLineBiasUKF Page 6 of 8

0 500 1000 1500 2000 2500 3000 3500
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e 7 First pos component (m)

Error Filter

0 500 1000 1500 2000 2500 3000 3500
1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

1e 10 Second rate component (m/s)

0 500 1000 1500 2000 2500 3000 3500
1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00
1e 7 Second pos component (m)

0 500 1000 1500 2000 2500 3000 3500
t(s)

6

4

2

0

1e 11 Third rate component (m/s)

0 500 1000 1500 2000 2500 3000 3500
t(s)

1.0

0.8

0.6

0.4

0.2

0.0
1e 7 Third pos component (m)

0 500 1000 1500 2000 2500 3000 3500
t(s)

5

4

3

2

1

0
1e 11 Third rate component (m/s)

Fig. 3: State error

Doc. ID: Basilisk-pixelLineBiasUKF Page 7 of 8

Output Value Tested Tolerated Error
Test 1-Measurement 1E-15
Test 1-Propagation 1E-15

Test 2-Energy 1E-10
Test 2-States 1E-10

5 Test Parameters

6 Test Results

Table 2: Test results

Check Pass/Fail
Test 1 PASS
Test 2 PASS

7 User Guide

7.1 Filter Set-up, initialization, and I/O

In order for the filter to run, the user must set a few parameters:

• The unscented filter has 3 parameters that need to be set, and are best as:
filterObject.alpha = 0.02

filterObject.beta = 2.0

filterObject.kappa = 0.0

• Initialize orbit:
mu = 42828.314*1E9 #m3/s2

elementsInit = orbitalMotion.ClassicElements()

elementsInit.a = 4000*1E3 #meters

elementsInit.e = 0.2

elementsInit.i = 10

elementsInit.Omega = 0.001

elementsInit.omega = 0.01

elementsInit.f = 0.1

r, v = orbitalMotion.elem2rv(mu, elementsInit)

• The initial covariance:
Filter.covar =

[1000*1E6, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0,

0.0, 1000.*1E6, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0,

0.0, 0.0, 1000.*1E6, 0.0, 0.0, 0.0,0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 5.*1E6, 0.0, 0.0,0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 5.*1E6, 0.0,0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 5.*1E6, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 5.0,]

• The initial state :
bias = [1,1,1]

filterObject.stateInit = r.tolist() + v.tolist() + bias

Doc. ID: Basilisk-pixelLineBiasUKF Page 8 of 8

• The process noise :
qNoiseIn = np.identity(9)

qNoiseIn[0:3, 0:3] = qNoiseIn[0:3, 0:3]*1E-8*1E-8

qNoiseIn[3:6, 3:6] = qNoiseIn[3:6, 3:6]*1E-7*1E-7

qNoiseIn[6:, 6:] = qNoiseIn[6:, 6:]*1E-1*1E-1

filterObject.qNoise = qNoiseIn.reshape(9*9).tolist()

The messages must also be set as such:

• filterObject.navStateOutMsgName = "pixelLine state estimate"

• filterObject.filtDataOutMsgName = "pixelLine filter data"

• filterObject.circlesInMsgName = "circles data"

• filterObject.cameraConfigMsgName = "camera config data"

• filterObject.attInMsgName = "simple att nav output"

REFERENCES

[1] Richard H. Battin. An Introduction to the Mathematics and Methods of Astrodynamics, Revised
Edition. American Institute of Aeronautics and Astronautics, 2019/01/10 1999.

[2] Wiliam M. Owen. Optical navigation program mathematical models. Engineering Memorandum
314-513, Jet Propulsion Laboratory, August 1991.

[3] R. van der Merwe. The square-root unscented kalman filter for state and parameter-estimation.
Acoustics, Speech, and Signal Processing, 2001.

	Model Description
	Filter Setup
	Measurements
	Position computation

	Module Functions
	Module Assumptions and Limitations
	Test Description and Success Criteria
	Test 1: Individual Methods Tests
	Test 2: State Propagation

	Test Parameters
	Test Results
	User Guide
	Filter Set-up, initialization, and I/O

