
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-test sunlineEKF

EKF MODULE AND TEST

Prepared by T. Teil

Status: Initial document

Scope/Contents

This module implements and tests a Extended Kalman Filter in order to estimate the sunline direction.

Rev: Change Description By

Draft Initial Revision T. Teil

Doc. ID: Basilisk-test sunlineEKF Page 1 of 10

Contents

1 Introduction 1

2 Filter Set-up, initialization, and I/O 1
2.1 Dynamics . 1
2.2 User initialization . 2
2.3 Inputs and Outputs . 3

3 Filter Algorithm 3

4 Test Design 5
4.1 sunline individual test . 5
4.2 StatePropStatic . 5
4.3 StatePropVariable . 7
4.4 Full Filter test . 7

1 Introduction

The Extended Kalman filter (EKF) in the AVS Basilisk simulation is a sequential filter implemented to
give the best estimate of the desired states. In this method we estimate the sun heading as well as it’s
rate of change in the body frame. The EKF reads in the message written by the coarse sun sensor, and
writes a message containing the sun estimate.

This document summarizes the content of the module, how to use it, and the test that was imple-
mented for it. More information on the filter derivation can be found in Reference [?].

Fig. 1: Filter module

2 Filter Set-up, initialization, and I/O

2.1 Dynamics

The states that are estimated in this filter are the sunline vector, and it’s rate of change X˚ “
“

d 9d
‰T

.
The star superscript represents that this is the reference state.

Doc. ID: Basilisk-test sunlineEKF Page 2 of 10

The dynamics are given in equation 1. Given the nature of the filter, there is an unobservable state
component: the rotation about the d axis. In order to remedy this, we project the states along this axis
and subtract them, in order to measure only observable state components.

F pXq “

„

F1pdq

F2p 9dq

“

»

–

9d´
´

pd ¨ 9dq d
||d||2

¯

´ 1
∆t

´

pd ¨ 9dq d
||d||2

¯

fi

fl (1)

This leads us to the computation of the dynamics matrix A “
”

BF pX,tiq
BX

ı˚

. The partials are given

in equation 2, and were verified in Mathematica.

A “

«

BF1pX,tiq
Bd

BF1pX,tiq

B 9d
BF2pX,tiq

Bd
BF2pX,tiq

B 9d

ff

(2)

“

»

–

´

´

9ddT

||d||2
` pd ¨ 9dq ||d||

2I´2ddT

||d||4

¯

I ´ ddT

||d||2

´ 1
∆t

´

9ddT

||d||2
` pd ¨ 9dq ||d||

2I´2ddT

||d||4

¯

´ 1
∆t

ddT

||d||2

fi

fl (3)

The measurement model is given in equation 4, and the H matrix defined as H “

”

BGpX,tiq
BX

ı˚

is

given in equation 5.
In this filter, the only measurements used are from the coarse sun sensor. For the ith sensor, the

measurement is simply given by the dot product of the sunline heading and the normal to the sensor.
This yields easy partial derivatives for the H matrix, which is a matrix formed of the rows of transposed
normal vectors (only for those which received a measurement). Hence the H matrix has a changing size
depending on the amount of measurements.

GipXq “ ni ¨ d (4)

HpXq “

»

—

–

nT
1
...

nT
i

fi

ffi

fl

(5)

2.2 User initialization

In order for the filter to run, the user must set a few parameters:

• The angle threshold under which the coarse sun sensors do not read the measurement:
FilterContainer.sensorUseThresh = 0.

• The process noise value, for instance:
FilterContainer.qProcVal = 0.001

• The measurement noise value, for instance:
FilterContainer.qObsVal = 0.001

• The threshold in the covariance norm leading to the switch from the EKF update to the linear
Kalman Filter update (discussed more closely in the Measurement update part):
FilterContainer.ekfSwitch = 5

Doc. ID: Basilisk-test sunlineEKF Page 3 of 10

• The initial covariance:
Filter.covar =

[0.4, 0., 0., 0., 0., 0.,

0.,0.4, 0., 0., 0., 0.,

0., 0., 0.4, 0., 0., 0.,

0., 0., 0., 0.004, 0., 0.,

0., 0., 0., 0., 0.004,

0., 0., 0., 0., 0.,, 0.004]

• The initial state :
Filter.state = [1., 0., 1., 0., 0.1, 0.]

The messages must also be set as such:

• filterObject.navStateOutMsgName = "sunline state estimate"

• filterObject.filtDataOutMsgName = "sunline filter data"

• filterObject.cssDataInMsgName = "css sensors data"

• filterObject.cssConfInMsgName = "css config data"

2.3 Inputs and Outputs

The EKF reads in the measurements from the coarse sun sensors. These are under the form of a list of
cosine values. Knowing the normals to each of the sensors, we can therefore use them to estimate sun
heading.

3 Filter Algorithm
Once the filter has been properly setup in the python code, it can go through it’s algorithm:

Initialization

First the filter is initialized. This can be done at any time during a simulation in order to reset the filter.

• Time is set to t0

• The state X˚ is set to the initial state X˚
0

• The state error x is set to it’s initial value x0

• The covariance P is set to the initial state P0

Time Update

At some time ti, if the update filter method is called, a time update will first be executed.

• The state is propagated using the dynamics F with initial conditions X˚pti´1q

• Compute the dynamics matrix Aptq “
”

BF pX,tq
BX

ı˚

which is evaluated on the reference trajectory

• Integrate the STM, 9Φpt, ti´1q “ AptqΦpt, ti´1q with initial conditions Φpti´1, ti´1q “ I

This gives us X˚ptiq and Φpti, ti´1q.

Doc. ID: Basilisk-test sunlineEKF Page 4 of 10

Observation read in

If no measurement is read in at time ti:

• X˚ptiq previously computed becomes the most recent reference state

• xi “ x̄i “ Φpti, ti´1qxi´1 is the new state error

• Pi “ P̄i “ Φpti, ti´1qPi´1ΦT pti, ti´1q becomes the updated covariance

If a measurement is read in, the algorithm computes the observation, the observation state matrix, and
the Kalman Gain.

• The observation (Yi) is compared to the observation model, giving the innovation: yi “ Yi ´

GpX˚
i , tiq

• Compute the observation matrix along the reference trajectory: H̃i “

”

BGpX,tiq
BX

ı˚

• Compute the Kalman Gain Ki “ P̄iH̃i
T

´

H̃iP̄iH̃i
T
`Ri

¯´1

Measurement Update

Depending on the covariance, the filter can either update as a classic, linear Kalman Filter, or as the
Extended Kalman filter. This is done in order to assure robust and fast filter convergence. Indeed in
a scenario with a very large initial covariance, the EKF’s change in reference trajectory could delay or
inhibit the convergence. In order to remedy this, a few linear updates are performed if the maximum
value in the covariance is greater than a user-set threshold.

Linear update:

• The state error is updated using the time updated value: xi “ x̄i `Ki

”

yi ´ H̃ix̄i

ı

• The covariance is updated using the Joseph form of the covariance update equation: Pi “
´

I ´KiH̃i

¯

P̄i

´

I ´KiH̃i

¯T
`KiRiK

T
i

• The reference state stays the same, and it’s propagated value X˚ptiq becomes X˚pti´1q

EKF update:

• The state error is updated using the innovation and the Kalman Gain: xi “ Kiyi

• The reference state is changed by the state error: X˚ptiq “X˚ptiq ` xi

• The covariance is updated using the Joseph form of the covariance update equation: Pi “
´

I ´KiH̃i

¯

P̄i

´

I ´KiH̃i

¯T
`KiRiK

T
i

• The new reference state is now used X˚ptiq becomes X˚pti´1q

Doc. ID: Basilisk-test sunlineEKF Page 5 of 10

4 Test Design
The unit test for the sunlineEKF module is located in:

fswAlgorithms/attDetermination/sunlineEKF/ UnitTest/test SunlineEKF.py

As well as another python file containing plotting functions:
fswAlgorithms/attDetermination/sunlineEKF/ UnitTest/SunlineEKF test utilities.py

The test is split up into 4 subtests, the last one is parametrized in order to test different scenarios.
The first test creaks up all of the individual filter methods and tests them individually. The second test
verifies that in the case where the state is zeroed out from the start of the simulation, it remains at
zero. The third test verifies the behavior of the time update in a general case. The final test is a full
filter test.

4.1 sunline individual test

In each of these individual tests, random inputs are fed to the methods and their values are computed
in parallel in python. These two values are then compared to assure that the correct computations are
taking place.

• Dynamics Matrix: This method computes the dynamics matrix A. Tolerance to absolute error
ε “ 10´10.

Passed

• State and STM propagation: This method propagates the state using the F function as well as

the STM using 9Φ “ AΦ. Tolerance to absolute error ε “ 10´10.

Passed

• H and y propagation: This method computes the H matrix, and compares the measurements to
the expected measurements given the state. Tolerance to absolute error ε “ 10´10.

Passed

• Kalman gain: This method computes the K matrix. Tolerance to absolute error ε “ 10´10.

Passed

• EKF update: This method performs the measurement update in the case of an EKF. Tolerance
to absolute error ε “ 10´10.

Passed

• Linear Update: This method performs the measurement update in the linear case. Tolerance to
absolute error ε “ 10´10.

Passed

4.2 StatePropStatic

This test runs the filter with no measurements. It initializes with a zeroed state, and assures that at
the end of the simulation all values are still at zero. Plotted results are seen in Figure 2.

Tolerance to absolute error: ε “ 10´10

Passed

Doc. ID: Basilisk-test sunlineEKF Page 6 of 10

0 200 400 600 800 1000

1000

500

0

500

1000

First LOS component
Expected
Filter
Covar

0 200 400 600 800 1000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
First rate component

0 200 400 600 800 1000

1000

500

0

500

1000

Second LOS component

0 200 400 600 800 1000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Second rate component

0 200 400 600 800 1000
t(s)

1000

500

0

500

1000

Third LOS component

0 200 400 600 800 1000
t(s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Third rate component

Fig. 2: States vs true states in static case

Doc. ID: Basilisk-test sunlineEKF Page 7 of 10

4.3 StatePropVariable

This test also takes no measurements in, but gives a random state with rate of change. It then tests
that the states and covariance are as expected throughout the time of simulation. Plotted results are
seen in Figure 3. We indeed see that the state and covariance for the test and the code overlap perfectly.

Tolerance to absolute error: ε “ 10´10

Passed

0 2 4 6 8 10 12 14

6

4

2

0

2

4

6

First LOS component
Error Filter
Covar Filter
Error Expected
Covar Expected

0 2 4 6 8 10 12 14

0.6

0.4

0.2

0.0

0.2

0.4

0.6

First rate component

0 2 4 6 8 10 12 14

6

4

2

0

2

4

6

Second LOS component

0 2 4 6 8 10 12 14

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Second rate component

0 2 4 6 8 10 12 14
t(s)

6

4

2

0

2

4

6

Third LOS component

0 2 4 6 8 10 12 14
t(s)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Third rate component

Fig. 3: State error and covariance vs expected Values

4.4 Full Filter tests

This test the filter working from start to finish. No measurements are taken in for the first 20 time steps.
Then a heading is given through the CSS message. Halfway through the simulation, measurements stop,
and 20 time steps later a different heading is read. The filter must be robust and detect this change. This
test is parametrized for different test lengths, different initial conditions, different measured headings,
and with or without measurement noise. All these are successful.

Doc. ID: Basilisk-test sunlineEKF Page 8 of 10

Tolerance to absolute error without measurement noise: ε “ 10´10

Tolerance to absolute error with measurement noise: ε “ 10´2

Passed
Plotted results are seen in Figures 4, 5, and 6. Figure 4 shows the state error and covariance over

the run. We see the covariance initially grow, then come down quickly as measurements are used. It
grows once again as the measurements stop before bringing the state error back to zero with a change
in sun heading.

Figure 5 shows the evolution of the state vector compared to the true values. The parts were there
is a slight delay is due to the fact that no observations are read in.

Figure 6 shows the post fit residuals for the filter, with the 3σ measurement noise values. We see
that the observations are read in well an that the residuals are brought back down to noise. We do
observe a slight bias in the noise. This could be due to the equations of motion, and is not concerning.

0 25 50 75 100 125 150 175 200

3

2

1

0

1

2

3

First LOS component
Error Filter
Covar Filter

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

First rate component

0 25 50 75 100 125 150 175 200

3

2

1

0

1

2

3

Second LOS component

0 25 50 75 100 125 150 175 200

1.0

0.5

0.0

0.5

1.0

Second rate component

0 25 50 75 100 125 150 175 200
t(s)

4

3

2

1

0

1

2

3

4
Third LOS component

0 25 50 75 100 125 150 175 200
t(s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Third rate component

Fig. 4: State error and covariance

Doc. ID: Basilisk-test sunlineEKF Page 9 of 10

0 25 50 75 100 125 150 175 200
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
First LOS component

Filter
Expected

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0
First rate component

0 25 50 75 100 125 150 175 200

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Second LOS component

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0
Second rate component

0 25 50 75 100 125 150 175 200
t(s)

0.0

0.2

0.4

0.6

0.8

1.0
Third LOS component

0 25 50 75 100 125 150 175 200
t(s)

0.0

0.2

0.4

0.6

0.8

1.0
Third rate component

Fig. 5: States tracking target values

Doc. ID: Basilisk-test sunlineEKF Page 10 of 10

0 25 50 75 100 125 150 175 200

0.002

0.001

0.000

0.001

0.002

First CSS
Residual
Covar

0 25 50 75 100 125 150 175 200

0.002

0.001

0.000

0.001

0.002

Fifth CSS

0 25 50 75 100 125 150 175 200

0.002

0.001

0.000

0.001

0.002

Second CSS

0 25 50 75 100 125 150 175 200

0.002

0.001

0.000

0.001

0.002

Sixth CSS

0 25 50 75 100 125 150 175 200

0.002

0.001

0.000

0.001

0.002

Third CSS

0 25 50 75 100 125 150 175 200

0.002

0.001

0.000

0.001

0.002

Seventh CSS

0 25 50 75 100 125 150 175 200
t(s)

0.002

0.001

0.000

0.001

0.002

Fourth CSS

0 25 50 75 100 125 150 175 200
t(s)

0.002

0.001

0.000

0.001

0.002

Eight CSS

Fig. 6: Post Fit Residuals

	Introduction
	Filter Set-up, initialization, and I/O
	Dynamics
	User initialization
	Inputs and Outputs

	Filter Algorithm
	Test Design
	sunline_individual_test
	StatePropStatic
	StatePropVariable
	Full Filter test

