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Fig. 1: Frame built off the body frame for Switch filters
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1 Introduction

The Switch Extended Kalman filter (SEKF) in the AVS Basilisk simulation is a sequential filter imple-
mented to give the best estimate of the desired states. In this method we estimate the sun heading as
well as it’s rate of change along the observable axes. The SEKF reads in the message written by the
coarse sun sensor, and writes a message containing the sun estimate.

This document summarizes the content of the module, how to use it, and the test that was im-
plemented for it. More information on the filter derivation can be found in Reference [?], and more
information on the EKF can be found in Reference [?].

2 Filter Set-up, initialization, and I/O

2.1 Filter Derivation

The Switch-EKF attempts to avoid subtracting any terms from the state, while still removing the
unobservable component of the rate. In order to do this, an appropriate frame must be defined. In
order to not track the rate component alongside the sunline direction, that vector needs to be one of
the basis vectors of the frame. It is decided to be the first vector for the frame, and therefore in that
frame, ω1 the component of the rotation rate can be removed from the states. This frame is called
S1 “ tŝ1 “

d
|d| , ŝ2, ŝ3u. This is seen in Figure ??, where the dotted line represents the 30˝ threshold

cone before switching frames.
The second vector of the frame must be created using only d, and the body frame vectors. The

first intuitive decision, is to use b̂1 of the body frame and define s2 in Equation (??). The third vector
ŝ3 of the S1 frame, is naturally created from the first two.

ŝ2 “
ŝ1 ˆ b̂1

|ŝ1 ˆ b̂1|
ŝ3 “

ŝ1 ˆ ŝ2

|ŝ1 ˆ ŝ2|
(1)

The problem that arises is the singularity that occurs when b̂1 and d become aligned: this frame
becomes undefined. In order to counteract this, using a similar process as the shadow set used for
Modified Rodrigues Parameters [?], a second frame is created. This frame S2 “ tˆ̄s1 “ ŝ1, ˆ̄s2, ˆ̄s3u is
created with the same first vector, but constructs ˆ̄s2 using b̂2 of the body frame as in Equation (??).
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The last vector, once again, finishes the orthonormal frame.

ˆ̄s2 “
ˆ̄s1 ˆ b̂2

|ˆ̄s1 ˆ b̂2|
(2)

With both these frames, S1 and S2, the singularities can always be avoided. Indeed, S1 becomes singular
when d approches b̂1, while S2 becomes singular when the sunheading approaches b̂2. By changing
frames, whenever the sunline gets within a safe cone of 30˝ (a modifiable value) of b̂1, the frame is
rotated into S2, which is not singular. Similarly, when d approches b̂2 the frame is switched back to S1.

Because the two frames share the sunline vector d, this vector is the same in both frames. This is a
clear advantage as this is the vector we desire to estimate, and not having to rotate it avoids numerical
issues. The rotation of the rates is done by computing the following DCMs, of which all the vectors are
known.

rBS1s “
“Bŝ1

Bŝ2
Bŝ3

‰

rBS2s “

”

Bˆ̄s1
Bˆ̄s2

Bˆ̄s3

ı

rS2S1s “ rBS2s
T rBS1s (3)

2.2 Filter Dynamics

The filter is therefore derived with the states being X “
“Bd ω2 ω3

‰T
, given that ωS{B “

S“
ω1 ω2 ω3

‰T
.

The rates of S relative to the body and inertial frame are related as such: ωS{N ´ωS{B “ ωB{N . Since
ω1 is unknown, it is set to zero. Furthermore, since the sun heading is considered to be constant in
the inertial frame over the period of time required for attitude determination and control, the equation
becomes ´ω̄S{B “ ω̄B{N .

ωS{B is estimated directly by the filter, and its skew matrix can be computed by setting ω1 to zero
(in the absence of information). This defines ω̃B{N as a function of known parameters. The dynamics

are therefore given by Equations (??) and (??), where ˜rdsp2, 3q corresponds to the 2nd and 3rd columns
of the ˜rds matrix.

X 1 “ F pXq “

»

–

Bd1

ω12
ω13

fi

fl “

»

–

´Bω̄B{N ˆ
Bd

0
0

fi

fl “

»

—

—

—

—

–

rBSs
S»

–

0
ω2

ω3

fi

flˆ Bd

0
0

fi

ffi

ffi

ffi

ffi

fl

(4)

rAs “
”

BF pd,tiq
BX

ı

“

„

r
B˜̄ωS{Bs ´ ˜rdsrBSsp2, 3q
r0s2ˆ3 r0s2ˆ2



(5)

This formulation leads to simple dynamics, much simpler than those of the filter which subtracts the
unobservable states, yet can actually estimate the observable of the rate, instead of using past estimates
of d.

2.3 Switching Frames

When switching occurs, the switch matrix rW s can be computed in Equation (??) using the previously
computed DCMs. This equation assumes the switch is going from frame 1 to frame 2 (the reciprocal is
equivalent), and rS2S1sp2, 3q corresponds to the 2nd and 3rd columns of the rS2S1s matrix.

rW s “

„

rIs3ˆ3 r0s3ˆ2

r0s2ˆ3 rS2S1sp2, 3q



(6)

The new states X and covariance [P] after the switch are therefore given in Equation (??)

X̄ “ rW sX rP̄ s “ rW srP srW sT (7)
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When writing out the values of the state and covariance, it is necessary to bring it back into the body
frame, using the rBSs DCM (S representing the current frame in use).

2.4 Process Noise for Switch-EKF

The time update of the error covariance matrix from time tk to tk`1 (∆t “ tk`1´tk)is given in equation
(??). The process noise matrix rQs is added via the rΓs matrix defined in equation (??). Process noise

is only added on the accelerations, meaning that rBs “

„

r0s3ˆ3

rIs3ˆ3



when there are 6 states.

rP sk`1 “ rΦsptk`1, tkqrP skrΦsptk`1, tkq
T ` rΓsptk`1, tkqrQsrΓsptk`1, tkq

T (8)

rΓsptk`1, tkq “

ż tk`1

tk

rΦsptk`1, τqrBspτqdτ (9)

In others filters (the EKF and the UKF), the second half of the state vector is a direct derivative of
the sun heading vector. Regarding state noise compensation, this allowed the approximation in equation
(??), along with the fact that measurements are received frequently with regard to the evolution of the
dynamics.

rΓsptk`1, tkq “ ∆t

„

∆t
2 rIs3ˆ3

rIs3ˆ3



(10)

This is not the case for this filter. Indeed, rΦs is a 5 by 5 matrix, expanded in equation (??) using the

fact that rΦsptk`1, τq “
BXptk`1q

BXpτq , and that X “
“

d ω̄
‰T

. With this, equation (??) can be re-written

as equation (??).

rΦsptk`1, τq “

„

rΦ1s3ˆ3 rΦ2s3ˆ2

rΦ3s2ˆ3 rΦ3s2ˆ2



“

«

Bdptk`1q

Bdpτq
Bdptk`1q

Bω̄pτq
Bω̄ptk`1q

Bdpτq
Bω̄ptk`1q

Bω̄pτq

ff

(11)

rΓsptk`1, tkq “

ż tk`1

tk

„

rΦ1s3ˆ3 rΦ2s3ˆ2

rΦ3s2ˆ3 rΦ3s2ˆ2

 „

r0s3ˆ3

rIs3ˆ3



dτ “

ż tk`1

tk

„

rΦ2s3ˆ2

rΦ4s2ˆ2



dτ (12)

These submatrices of the state transition matrix now need to be approximated. As before, assuming

dense tracking data, rΦ4s2ˆ2 “
Bω̄ptk`1q

Bω̄pτq « rIs2ˆ2. In order to approximate rΦ2s3ˆ2 “
Bdptk`1q

Bω̄pτq , the

discrete state update is used as seen in equation (??), where di is the sun heading at time τ . It is
reminded that ω̄ “ ω̄S{B, and that ω̄B{N “ ´ω̄ “ ´ω̄S{B.

dk`1 “ di ´ ptk`1 ´ τq ˜rdisω̄B{N (13)

dk`1 “ di ` ptk`1 ´ τq ˜rdisω̄ (14)

ñ
Bdptk`1q

Bω̄pτq
“ ptk`1 ´ τq ˜rdis (15)

Therefore, assuming the state does not vary over the time between two updates, rΦ2s3ˆ2 “
Bdptk`1q

Bω̄pτq “ ptk`1 ´ τq ˜rdis. This leads to the new rΓs matrix in equation (??), which is used for
state noise compensation.

rΓsptk`1, tkq “

ż tk`1

tk

„

rΦ2s3ˆ2

rΦ4s2ˆ2



dτ “ ∆t

„

∆t
2

˜rdksp2, 3q
rIs2ˆ2



(16)
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2.5 Measurements

The measurement model is given in equation ??, and the H matrix defined as H “

”

BGpX,tiq
BX

ı˚

is given

in equation ??.
In this filter, the only measurements used are from the coarse sun sensor. For the ith sensor, the

measurement is simply given by the dot product of the sunline heading and the normal to the sensor.
This yields easy partial derivatives for the H matrix, which is a matrix formed of the rows of transposed
normal vectors (only for those which received a measurement). Hence the H matrix has a changing size
depending on the amount of measurements.

GipXq “ ni ¨ d (17)

HpXq “

»

—

–

nT1
...

nTi

fi

ffi

fl

(18)

2.6 User initialization

In order for the filter to run, the user must set a few parameters:

• The angle threshold under which the coarse sun sensors do not read the measurement:
FilterContainer.sensorUseThresh = 0.

• The process noise value, for instance:
FilterContainer.qProcVal = 0.001

• The measurement noise value, for instance:
FilterContainer.qObsVal = 0.001

• The threshold in the covariance norm leading to the switch from the EKF update to the linear
Kalman Filter update (discussed more closely in the Measurement update part): FilterContainer.ekfSwitch
= 5

• The initial covariance:
Filter.covar =

[0.4, 0., 0., 0., 0., 0.,

0., 0.4, 0., 0., 0., 0.,

0., 0., 0.4, 0., 0., 0.,

0., 0., 0., 0.004, 0., 0.,

0., 0., 0., 0., 0.004, 0.,

0., 0., 0., 0., 0., 0.004]

• The initial state :
Filter.state =[0.0, 0.0, 1.0, 0.0, 0.0]

The messages must also be set as such:

• filterObject.navStateOutMsgName = "sunline state estimate"

• filterObject.filtDataOutMsgName = "sunline filter data"

• filterObject.cssDataInMsgName = "css sensors data"

• filterObject.cssConfInMsgName = "css config data"
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2.7 Inputs and Outputs

The EKF reads in the measurements from the coarse sun sensors. These are under the form of a list of
cosine values. Knowing the normals to each of the sensors, we can therefore use them to estimate sun
heading.

3 Filter Algorithm
Once the filter has been properly setup in the python code, it can go through it’s algorithm. This is
done according to the algorithms derived in Reference [?].

Initialization

First the filter is initialized. This can be done at any time during a simulation in order to reset the filter.

• Time is set to t0

• The state X˚ is set to the initial state X˚
0

• The state error x is set to it’s initial value x0

• The covariance P is set to the initial state P0

Time Update

At some time ti, if the update filter method is called, a time update will first be executed.

• The state is propagated using the dynamics F with initial conditions X˚pti´1q

• Compute the dynamics matrix Aptq “
”

BF pX,tq
BX

ı˚

which is evaluated on the reference trajectory

• Integrate the STM, 9Φpt, ti´1q “ AptqΦpt, ti´1q with initial conditions Φpti´1, ti´1q “ I

This gives us X˚ptiq and Φpti, ti´1q.

Observation read in

If no measurement is read in at time ti:

• X˚ptiq previously computed becomes the most recent reference state

• xi “ x̄i “ Φpti, ti´1qxi´1 is the new state error

• Pi “ P̄i “ Φpti, ti´1qPi´1ΦT pti, ti´1q becomes the updated covariance

If a measurement is read in, the algorithm computes the observation, the observation state matrix, and
the Kalman Gain.

• The observation (Yi) is compared to the observation model, giving the innovation: yi “ Yi ´
GpX˚

i , tiq

• Compute the observation matrix along the reference trajectory: H̃i “

”

BGpX,tiq
BX

ı˚

• Compute the Kalman Gain Ki “ P̄iH̃i
T
´

H̃iP̄iH̃i
T
`Ri

¯´1
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Measurement Update

Depending on the covariance, the filter can either update as a classic, linear Kalman Filter, or as the
Extended Kalman filter. This is done in order to assure robust and fast filter convergence. Indeed in
a scenario with a very large initial covariance, the EKF’s change in reference trajectory could delay or
inhibit the convergence. In order to remedy this, a few linear updates are performed if the maximum
value in the covariance is greater than a user-set threshold.

Linear update:

• The state error is updated using the time updated value: xi “ x̄i `Ki

”

yi ´ H̃ix̄i

ı

• The covariance is updated using the Joseph form of the covariance update equation: Pi “
´

I ´KiH̃i

¯

P̄i

´

I ´KiH̃i

¯T
`KiRiK

T
i

• The reference state stays the same, and it’s propagated value X˚ptiq becomes X˚pti´1q

EKF update:

• The state error is updated using the innovation and the Kalman Gain: xi “ Kiyi

• The reference state is changed by the state error: X˚ptiq “X˚ptiq ` xi

• The covariance is updated using the Joseph form of the covariance update equation: Pi “
´

I ´KiH̃i

¯

P̄i

´

I ´KiH̃i

¯T
`KiRiK

T
i

• The new reference state is now used X˚ptiq becomes X˚pti´1q

4 Test Design
The unit test for the sunlineEKF module is located in:

fswAlgorithms/attDetermination/sunlineEKF/ UnitTest/test SunlineEKF.py

As well as another python file containing plotting functions:
fswAlgorithms/attDetermination/sunlineEKF/ UnitTest/SunlineEKF test utilities.py

The test is split up into 4 subtests, the last one is parametrized in order to test different scenarios.
The first test creaks up all of the individual filter methods and tests them individually. The second test
verifies that in the case where the state is zeroed out from the start of the simulation, it remains at
zero. The third test verifies the behavior of the time update in a general case. The final test is a full
filter test.

4.1 sunline individual test

In each of these individual tests, random inputs are fed to the methods and their values are computed
in parallel in python. These two values are then compared to assure that the correct computations are
taking place.

• Dynamics Matrix: This method computes the dynamics matrix A. Tolerance to absolute error
ε “ 10´10.

Passed
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• State and STM propagation: This method propagates the state using the F function as well as

the STM using 9Φ “ AΦ. Tolerance to absolute error ε “ 10´10.

Passed

• H and y propagation: This method computes the H matrix, and compares the measurements to
the expected measurements given the state. Tolerance to absolute error ε “ 10´10.

Passed

• Kalman gain: This method computes the K matrix. Tolerance to absolute error ε “ 10´10.

Passed

• EKF update: This method performs the measurement update in the case of an EKF. Tolerance
to absolute error ε “ 10´10.

Passed

• Linear Update: This method performs the measurement update in the linear case. Tolerance to
absolute error ε “ 10´10.

Passed

4.2 StatePropStatic

This test runs the filter with no measurements. It initializes with a zeroed state, and assures that at
the end of the simulation all values are still at zero. Plotted results are seen in Figure ??.

Tolerance to absolute error: ε “ 10´10

Passed

4.3 StatePropVariable

This test also takes no measurements in, but gives a random state with rate of change. It then tests that
the states and covariance are as expected throughout the time of simulation. Plotted results are seen
in Figure ??. We indeed see that the state and covariance for the test and the code overlap perfectly.

Tolerance to absolute error: ε “ 10´10

Passed

4.4 Full Filter test

This test the filter working from start to finish. No measurements are taken in for the first 20 time steps.
Then a heading is given through the CSS message. Halfway through the simulation, measurements stop,
and 20 time steps later a different heading is read. The filter must be robust and detect this change. This
test is parametrized for different test lengths, different initial conditions, different measured headings,
and with or without measurement noise. All these are successful.

Tolerance to absolute error without measurement noise: ε “ 10´10

Tolerance to absolute error with measurement noise: ε “ 10´2

Passed
Plotted results are seen in Figures ??, ??, and ??. Figure ?? shows the state error and covariance

over the run. We see the covariance initially grow, then come down quickly as measurements are used.
It grows once again as the measurements stop before bringing the state error back to zero with a change
in sun heading.

Figure ?? shows the evolution of the state vector compared to the true values. The parts were there
is a slight delay is due to the fact that no observations are read in.
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Fig. 2: States vs true states in static case
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Fig. 3: State error and covariance vs expected Values
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Figure ?? shows the post fit residuals for the filter, with the 3σ measurement noise values. We see
that the observations are read in well an that the residuals are brought back down to noise. We do
observe a slight bias in the noise. This could be due to the equations of motion, and is not concerning.
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Fig. 4: State error and covariance
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Fig. 6: Post Fit Residuals


