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Fig. 1: MRP Steering() Module I/O Illustration

1 Module Overview
The module input and output messages are illustrated in Figure 1. The intend of this module is to
implement an MRP steering law where the control output is a vector of commanded body rates. To use
this module it is required to use a separate rate tracking servo control module as well.

2 Steering Law Goals

This technical note develops a new MRP based steering law that drives a body frame B : tb̂1, b̂2, b̂3u
towards a time varying reference frame R : tr̂1, r̂2, r̂3u. The inertial frame is given by N : tn̂1, n̂2, n̂3u.
The RW coordinate frame is given by W〉 : tĝsi , ĝti , ĝgiu. Using MRPs, the overall control goal is

σB{R Ñ 0 (1)

The reference frame orientation σR{N , angular velocity ωR{N and inertial angular acceleration 9ωR{N
are assumed to be known.

The rotational equations of motion of a rigid spacecraft with N Reaction Wheels (RWs) attached
are given by1

rIRW s 9ω “ ´rω̃s prIRW sω ` rGsshsq ´ rGssus `L (2)

where the inertia tensor rIRW s is defined as

rIRW s “ rIss `
N
ÿ

i“1

`

Jti ĝti ĝ
T
ti ` Jgi ĝgi ĝ

T
gi

˘

(3)
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The spacecraft inertial without the N RWs is rIss, while Jsi , Jti and Jgi are the RW inertias about the
body fixed RW axis ĝsi (RW spin axis), ĝti and ĝgi . The 3ˆN projection matrix rGss is then defined
as

rGss “
“

¨ ¨ ¨
Bĝsi ¨ ¨ ¨

‰

(4)

The RW inertial angular momentum vector hs is defined as

hsi “ Jsipωsi ` Ωiq (5)

Here Ωi is the ith RW spin relative to the spacecraft, and the body angular velocity is written in terms
of body and RW frame components as

ω “ ω1b̂1 ` ω2b̂2 ` ω3b̂3 “ ωsi ĝsi ` ωti ĝti ` ωgi ĝgi (6)

3 MRP Steering Law

3.1 Steering Law Stability Requirement

As is commonly done in robotic applications where the steering laws are of the form 9x “ u, this
section derives a kinematic based attitude steering law. Let us consider the simple Lyapunov candidate
function1,2

V pσB{Rq “ 2 ln
´

1` σTB{RσB{R

¯

(7)

in terms of the MRP attitude tracking error σB{R. Using the MRP differential kinematic equations

9σB{R “
1

4
rBpσB{Rqs

BωB{R “
1

4

”

p1´ σ2B{RqrI3ˆ3 ` 2rσ̃B{Rs ` 2σB{Rσ
T
B{R

ı

BωB{R (8)

where σ2B{R “ σ
T
B{RσB{R, the time derivative of V is

9V “ σTB{R
`BωB{R

˘

(9)

To create a kinematic steering law, let B˚ be the desired body orientation, and ωB˚{R be the
desired angular velocity vector of this body orientation relative to the reference frame R. The steering
law requires an algorithm for the desired body rates ωB˚{R relative to the reference frame make 9V in
Eq. (9) negative definite. For this purpose, let us select

BωB˚{R “ ´fpσB{Rq (10)

where fpσq is an even function such that

σTfpσq ą 0 (11)

The Lyapunov rate simplifies to the negative definite expression:

9V “ ´σTB{RfpσB{Rq ă 0 (12)

3.2 Saturated MRP Steering Law

A very simple example would be to set

fpσB{Rq “ K1σB{R (13)
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where K1 ą 0. This yields a kinematic control where the desired body rates are proportional to the
MRP attitude error measure. If the rate should saturate, then fpq could be defined as

fpσB{Rq “

#

K1σi if |K1σi| ď ωmax

ωmaxsgnpσiq if |K1σi| ą ωmax

(14)

where
σB{R “ pσ1, σ2, σ3q

T

A smoothly saturating function is given by

fpσB{Rq “ arctan

ˆ

σB{R
K1π

2ωmax

˙

2ωmax

π
(15)

where

fpσB{Rq “

¨

˝

fpσ1q
fpσ2q
fpσ3q

˛

‚ (16)

Here as σi Ñ8 then the function f smoothly converges to the maximum speed rate ˘ωmax. For small
|σB{R|, this function linearizes to

fpσB{Rq « K1σB{R ` H.O.T (17)

If the MRP shadow set parameters are used to avoid the MRP singularity at 360˝, then |σB{R| is
upper limited by 1. To control how rapidly the rate commands approach the ωmax limit, Eq. (15) is
modified to include a cubic term:

fpσiq “ arctan

ˆ

pK1σi `K3σ
3
i q

π

2ωmax

˙

2ωmax

π
(18)

The order of the polynomial must be odd to keep fpq an even function. A nice feature of Eq. (18) is
that the control rate is saturated individually about each axis. If the smoothing component is removed
to reduce this to a bang-band rate control, then this would yield a Lyapunov optimal control which
minimizes 9V subject to the allowable rate constraint ωmax.

Figure 2 illustrates how the parameters ωmax, K1 and K3 impact the steering law behavior. The
maximum steering law rate commands are easily set through the ωmax parameters. The gain K1 controls
the linear stiffness when the attitude errors have become small, while K3 controls how rapidly the steering
law approaches the speed command limit.

The required velocity servo loop design is aided by knowing the body-frame derivative of BωB˚{R to
implement a feed-forward components. Using the fpq function definition in Eq. (16), this requires the
time derivatives of fpσiq.

B
dpBωB˚{Rq

dt
“ ω1B˚{R “ ´

Bf

BσB˚{R
9σB˚{R “ ´

¨

˚

˝

Bf
Bσ1

9σ1
Bf
Bσ2

9σ2
Bf
Bσ3

9σ3

˛

‹

‚

(19)

where

9σB˚{R “

¨

˝

9σ1
9σ2
9σ3

˛

‚“
1

4
rBpσB˚{Rqs

BωB˚{R (20)

Using the general fpq definition in Eq. (18), its sensitivity with respect to σi is

Bf

Bσi
“

pK1 ` 3K3σ
2
i q

1` pK1σi `K3σ3i q
2
´

π
2ωmax

¯2 (21)
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Fig. 2: Illustrations of MRP Steering Parameters Influence.

4 Angular Velocity Servo Sub-System
To implement the kinematic steering control, a servo sub-system must be included which will produce the
required torques to make the actual body rates track the desired body rates. The following development
is an illustration of such a servo control module, such as the rateServoFullNonlinear module.
However, other body rate tracking control modules could be used as well.

The angular velocity tracking error vector is defined as

δω “ ωB{B˚ “ ωB{N ´ ωB˚{N (22)

where the B˚ frame is the desired body frame from the kinematic steering law. Note that

ωB˚{N “ ωB˚{R ` ωR{N (23)

where ωR{N is obtained from the attitude navigation solution, and ωB˚{R is the kinematic steering
rate command. To create a rate-servo system that is robust to unmodeld torque biases, the state z is
defined as:

z “

ż tf

t0

Bδω dt (24)

The rate servo Lyapunov function is defined as

Vωpδω, zq “
1

2
δωT rIRWsδω `

1

2
zT rKIsz (25)



Doc. ID: Basilisk-MRP Steering Page 5 of 6

where the vector δω and tensor rIRWs are assumed to be given in body frame components, rKis is a
symmetric positive definite matrix. The time derivative of this Lyapunov function is

9Vω “ δωT
`

rIRWsδω
1 ` rKIsz

˘

(26)

Using the identities ω1B{N “ 9ωB{N and ω1R{N “ 9ωR{N ´ωB{N ˆωR{N ,1 the body frame derivative of
δω is

δω1 “ 9ωB{N ´ ω
1
B˚{R ´ 9ωR{N ` ωB{N ˆ ωR{N (27)

Substituting Eqs. (2) and (27) into the 9Vω expression in Eq. (26) yields

9Vω “ δωT
´

´ rω̃B{N s
`

rIRW sωB{N ` rGsshs
˘

´ rGssus `L` rKIsz

´ rIRWspω
1
B˚{R ` 9ωR{N ´ ωB{N ˆ ωR{N q

¯

(28)

Let rP sT “ rP s ą be a symmetric positive definite rate feedback gain matrix. The servo rate
feedback control is defined as

rGssus “ rP sδω ` rKIsz ´ rω̃B˚{N s
`

rIRWsωB{N ` rGsshs
˘

´ rIRWspω
1
B˚{R ` 9ωR{N ´ ωB{N ˆ ωR{N q `L (29)

Defining the right-hand-side as Lr, this is rewritten in compact form as

rGssus “ ´Lr (30)

The array of RW motor torques can be solved with the typical minimum norm inverse

us “ rGss
T
`

rGssrGss
T
˘´1

p´Lrq (31)

To analyze the stability of this rate servo control, the rGssus expression in Eq. (29) is substituted
into the Lyapunov rate expression in Eq. (28).

9Vω “ δωT
´

´ rP sδω ´ rω̃B{N s
`

rIRW sωB{N ` rGsshs
˘

` rω̃B˚{N s
`

rIRWsωB{N ` rGsshs
˘

¯

“ δωT
´

´ rP sδω ´ rĂδωs
`

rIRW sωB{N ` rGsshs
˘

¯

“ ´δωT rP sδω ă 0 (32)

Thus, in the absence of unmodeled torques, the servo control in Eq. (29) is asymptotically stabilizing
in rate tracking error δω.

Next, the servo robustness to unmodeled external torques is investigated. Let us assume that the
external torque vector L in Eq. (2) only approximates the true external torque, and the unmodeled
component is given by ∆L. Substituting the true equations of motion and the same servo control in
Eq. (29) into the Lyapunov rate expression in Eq. (26) leads to

9Vω “ ´δω
T rP sδω ´ δωT∆L (33)

This 9Vω is no longer negative definite due to the underdetermined sign of the δωT∆L components.
Equating the Lyapunov rates in Eqs. (26) and (33) yields the following servo closed loop dynamics:

rIRWsδω
1 ` rP sδω ` rKIsz “ ∆L (34)

Assuming that ∆L is either constant as seen by the body frame, or at least varies slowly, then taking
a body-frame time derivative of Eq. (34) is

rIRWsδω
2 ` rP sδω1 ` rKIsδω “ ∆L1 « 0 (35)

As rIRWs, rP s and rKIs are all symmetric positive definite matrices, these linear differential equations
are stable, and δω Ñ 0 given that assumption that ∆L1 « 0.
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5 Testing
Two tests are provided with this module. The first is a unit test that compares the computed ωB˚{R
and ω1B˚{R to truth values computed in the python unit test. The second is an integrated test of this
module with rateServoFullNonlin as well, comparing the desired torques computed Lr with truth
values computed in the test. Both tests check a set of gains K1,K3 and ωmax on a rigid body with
no external torques, and with a fixed input reference attitude message. The torque requested by the
controller is evaluated against python computed torques at 0s, 0.5s, 1s, 1.5s and 2s to within a tolerance
of 10´12 for the integrated test.

• The test is run for a case with K1 “ 0 or 0.15

• The gain K3 is set to 0 or 1

• The saturation rate ωmax is set to 1.5 degrees/second or 0.001 degree/second

All permutations of these test cases are expected to pass. The rate servo module rateServoFullNonlin
has dedicated unit tests to check various parameters required there, including integral gain on/off,
presence of external torques and other variables.

6 User’s guide
The following variables are required for this module:

• The gains K1,K3

• The value of ωmax

This module returns the values of ωB˚{R and ω1B˚{R, which are used in the rate servo-level controller
to compute required torques.

The control update period ∆t is evaluated automatically.
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