
Bas i l i s k

Autonomous Vehicle Simulation (AVS) Laboratory,
University of Colorado

Basilisk Technical Memorandum
Document ID: Basilisk-FacetDrag

FACETDRAG

Prepared by A. Harris

Status: Released

Scope/Contents

The facetedDrag class used to calculate drag forces acting on a spacecraft modeled as a collection of
flat, angled facets. Spacecraft geometry is settable by the user. In a given simulation, each spacecraft
should have only one drag effector associated with it.

Rev Change Description By Date

1.0 Initial release A. Harris 05-15-2019

Doc. ID: Basilisk-FacetDrag Page 1 of 3

Contents

1 Model Description 1
1.1 General Module Function . 1
1.2 Facet Model . 1

2 Module Functions 1

3 Module Assumptions and Limitations 1

4 Test Description and Success Criteria 1
4.1 General Functionality . 2

4.1.1 setDensityMessage . 2
4.1.2 testDragForce . 2
4.1.3 testShadow . 2

4.2 Model-Specific Tests . 2
4.2.1 test unitFacetDrag.py . 2

5 Test Parameters 2

6 Test Results 2

7 User Guide 2
7.1 General Module Setup . 2

1 Model Description

1.1 General Module Function

The purpose of this module is to implement simple, attitude-dependent drag forces and torques for
spacecraft with convex (i.e., non-self-shadowing) shape models. Spacecraft are considered as collections
of facets consisting of an area, an offset from Point B, a surface normal (defined in the body frame),
and a drag coefficient. Facets can be added from the Python level by using the addFacetToModel

method. This module does not support self-shadowing.

1.2 Facet Model

The simplest model of spacecraft drag that considers the dependence of attitude is a faceted model.
These models compute drag by considering the spacecraft as a collection of facets. The drag force
contributed by an individual facet is given by

FD “ ´
1

2
CDρAfacetpn̂ ¨ v̂q|v|

2v̂ (1)

where CD is the facet’s drag coefficient, ρ is the local neutral density, Afacet is total facet area, n̂ is the
facet surface normal unit vector, and v is the atmosphere-relative velocity.

Doc. ID: Basilisk-FacetDrag Page 2 of 3

2 Module Functions
This module will:

• Compute atmospheric drag: Each of the provided models is fundamentally intended to compute
the neutral atmospheric density and temperature for a spacecraft relative to a body. These
parameters are stored in the AtmoPropsSimMsg struct. Supporting parameters needed by each
model, such as planet-relative position, are also computed.

• Support simple spacecraft geometry dependence: This module interfaces with modules that
subscribe to neutral density messages via the messaging system.

• Subscribe to model-relevant information: Each provided atmospheric model requires different
input information to operate, such as current space weather conditions and spacecraft positions.
This module automatically attempts to subscribe to the relevant messages for a specified model.

3 Module Assumptions and Limitations
This module is only intended for simple convex geometries that do not self-shadow; facets that are
turned “away” from the flow are considered to be non-interacting, while facets that are turned “into”
the flow are, regardless of other panel geometry. Additionally, specular reflection is not considered, so
lift effects are not calculated.

Drag modeling is complex and subject to a variety of assumptions and limitations. For further
details, an interested reader is pointed to 1.

4 Test Description and Success Criteria
This section describes the specific unit tests conducted on this module.

4.1 General Functionality

4.1.1 setDensityMessage

This test verifies that the user can specify the atmospheric density message used by the module.

4.1.2 testDragForce

This test verifies that the module correctly calculates the drag force given the model’s assumptions. It
also implicitly tests the compatibility of facetDrag and exponentialAtmosphere.

4.1.3 testShadow

This test verifies that panels that are not in the flow are correctly ignored for the purposes of drag
calculation.

4.2 Model-Specific Tests

4.2.1 test unitFacetDrag.py

This unit test runs setDensityMessage, testDragForce, and testShadow to verify the functionality of the
module.

5 Test Parameters
The simulation tolerances are shown in Table 2. In each simulation the neutral density output message
is checked relative to python computed true values.

Doc. ID: Basilisk-FacetDrag Page 3 of 3

Table 2: Error tolerance for each test.

Output Value Tested Tolerated Error
newDrag.forceExternal N 0.001 (relative)

6 Test Results
The following table shows the test result.

Table 3: Test result for test unitFacetDrag.py

Check Pass/Fail
1 PASSED

7 User Guide

7.1 General Module Setup

This section outlines the steps needed to add a facetDrag effector to a spacecraft, add facets to that
module, and connect said module to an atmosphere module.

First, import the module and set its tag:

from Basilisk.simulation import facetDragDynamicEffector

newDrag = facetDragDynamicEffector.FacetDragDynamicEffector()

newDrag.ModelTag = "FacetDrag"

Assuming an atmospheric density model has already been set up, the density message to be used by
this drag effector can be set by calling

newDrag.setDensityMessage(atmoModule.envOutMsgs[0])

By default, the module has no facets and drag calculation is skipped. To add a facet, call th
addFacet function with an area, drag coefficient, body-frame normal vector, and body-frame facet
location. For example, to add multiple facets, call

scAreas = [1.0, 1.0]

scCoeff = np.array([2.0, 2.0])

B_normals = [np.array([1, 0, 0]), np.array([0, 1, 0])]

B_locations = [np.array([0.1,0,0]), np.array([0,0.1,0])]

for ind in range(0,len(scAreas)):

newDrag.addFacet(scAreas[ind], scCoeff[ind], B_normals[ind], B_locations[ind])

Finally, add the module to a spacecraft object using the addDynamicEffector method:

scObject = spacecraft.Spacecraft()

scObject.ModelTag = "spacecraftBody"

scObject.addDynamicEffector(newDrag)

REFERENCES

[1] David Vallado. Fundamentals of Astrodynamics and Applications. Microcosm press, 4 edition, 2013.

	Model Description
	General Module Function
	Facet Model

	Module Functions
	Module Assumptions and Limitations
	Test Description and Success Criteria
	General Functionality
	setDensityMessage
	testDragForce
	testShadow

	Model-Specific Tests
	test_unitFacetDrag.py

	Test Parameters
	Test Results
	User Guide
	General Module Setup

