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Deriving and propagating a spacecraft’s equations of motion is fundamental to describing its behavior accurately.

These equations of motion depend on the spacecraft’s configuration, which includes any physical subsystem such as

attitude control devices, solar panels, gimbals, etc. Prior work introduced the backsubstitution method to yield a

modular and scalable formulation to develop complex spacecraft dynamics specific to rotating components attached

to a rigid hub as effectors. This paper relaxes assumptions made in deriving effector components in prior work, such

asmass properties and frame definitions. This produces a general architecture that uses common equations ofmotion

for physically equal parts. The result is an analytical solution of a set of general rotating effector equations of motion

that greatly expand the configuration space of spacecraft that can be simulated with the backsubstitution method. In

contrast to priorworkwhere the rotations are highly constrained, rigid-body components can rotate about one or two

general axes, and the componentmass distribution can be general, no longer requiring the component’s principal axis

to align with the center of mass or hinge axis. A numerical software solution demonstrates and verifies how these

effectors can mimic a range of dynamic spacecraft components.

Nomenclature

Ac = center-of-mass location of body A
aij = effector backsubstitution term for �rB∕N
_a, �a = first- and second-order time derivatives of

vector a with respect to the inertial frameN
a 0, a′′ = first- and second-order time derivatives of

vector a with respect to the body frame B
� ~a� = cross-product operatorwritten inmatrix form
bij = effector backsubstitution term for _ωB∕N
C = center-of-mass location of the system
c = vector from point B to the center of mass of

the spacecraft C, m
cij = independent effector backsubstitution term

Fext = vector sum of external forces on the space-
craft, N

�IA;A� = inertia tensor of body Awith respect to point

A, kg ⋅m2

LB = vector sum of external torques on the space-
craft about point B, N ⋅m

mA = mass of body A, kg
N, B, S = origin point for inertial, body, and compo-

nent frames
N ;B;S = inertial, body, and component frames

rA∕B, _rA∕B, �rA∕B = linear position, m; inertial velocity, m/s; and
inertial acceleration of pointAwith respect to

B, m∕s2
uS = scalar torque applied to the hinge, N ⋅m
θ, _θ, �θ = hinge’s angle, rad; angle rate, rad/s; and angle

acceleration, rad∕s2
σA∕B = attitude of frame A with respect to frame B

expressed in modified Rodrigues parameters
ωA∕B, _ωA∕B = angular velocity, rad/s, and inertial acceler-

ation of frame A with respect to B, rad∕s2

Subscripts

i = ith component body
hub = spacecraft’s hub
sc = spacecraft system

I. Introduction

S PACECRAFT simulations are critical to any mission, from
CubeSats to deep space missions. They enable detailed analysis

of the spacecraft’s dynamics, ultimately informing how it will behave
and if the mission requirements are met. As missions become more
complex, so do the simulations for the spacecraft’s behavior. For
example, whereas many spacecraft use rigid solar panels, new mis-
sions such as the Lucy mission to the Trojan asteroids have started to
use flexible solar panels [1] to meet higher power needs. Another
example of this increased complexity relates to the main thruster
platform. While many spacecraft attach the thruster directly to the
system’s hub, some have used a gimbaled platform instead. This is
particularly useful for spacecraft using ionic thrusters [2], as they tend
to thrust for long periods and need to account for offsets between the
thrust vector and the center of mass. Missions like Deep Space 1 [3],
Dawn [4], and Psyche [5] all use this technology. These mission-
critical features add a layer of complexity that needs to be included in
spacecraft simulations.
One of the critical steps in developing these comprehensive, high-

fidelity simulations is deriving the spacecraft’s translational and
rotational equations of motion, which can be used in many different
applications. Commercial structural dynamics solvers are very
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general in their spacecraft configuration space that they can model.
Still, they are not readily configured to model spacecraft orbital and
attitude motion subject to flight algorithms and sensor signals. This
requires a more modular spacecraft simulation architecture. NASA’s
open-source 42 software¶ can simulate spacecraft withmultiple rigid-
body subcomponents. However, the software requires creating the
differential equations of motion for each new subsystem. The JPL
closed-source Dshell software can also simulate spacecraft with
multiple actuated components.§ Here, an autocode generator step
yields the equations of motion. By numerically propagating non-
linearly coupled differential equations of motion, the behavior of the
spacecraft and its components can be analyzed, which can inform
their performance during all mission phases. More recently, the
spacecraft backsubstitution method (BSM) has been developed to
rapidly create spacecraft simulations with multiple articulated rigid
subcomponents [6]. Thismethod avoids the challenging systemmass
matrix inverse by analytically backsolving for the dependencies of
the rigid subcomponents onto a central spacecraft hub component.
The result is a closed-form set of differential equations of motion that
can be implemented modularly for rapid simulation prototyping and
execution [7]. However, this approach is limited by the availability of
analytical effector differential equations. The more general the effec-
tor solutions are, the more complex the spacecraft configuration can
be with this BSM. The equations of motion can also be used to
develop control laws to guarantee that the spacecraft stably performs
within the desired metrics. Moreover, the equations of motion are a
critical piece of state estimation and filtering, whether with respect to
orbitalmaneuvers or attitude. These equations ofmotionmust respect
physical conservation laws, which are developed in Ref. [6]. Another
critical aspect of simulation development is the software implemen-
tation of these equations, which is verified through energy and
angular momentum conservation laws. A modular, general software
architecture enables faster prototyping and guarantees the model’s
fidelity with increasing complexity.
Previous work with the spacecraft BSM has focused on the deri-

vation of equations of motion in a modular way, separating each
component’s contributions by assuming they are connected directly
to a common spacecraft’s hub [6]. The time-varying rigid subcom-
ponents are referred to as effectors. Some effector examples include
reaction wheels [8], variable-speed control moment gyroscopes [9],
and hinged solar arrays [10], which have symmetry constraints
imposed. In prior work, the approach to derive the effector equations
of motion relied on first making reasonable assumptions about the
modeled component. To illustrate this, Fig. 1 shows diagrams of two
rotating single-axis components: Fig. 1a shows the problem state-
ment of a spacecraft with a reaction wheel, and Fig. 1b shows the
problem statement of a spacecraft with a hinged panel.
To model the reaction wheel, some assumptions are placed on

the wheel frame W. The center of mass of the reaction wheel must
lie in the W2–W3 plane. The wheel’s frame is also defined so that
the first axis aligns with the spin axis and the second axis with the

center-of-mass offset. To model the solar panel, the frame’s first axis
is aligned with the center-of-mass offset, whereas the second axis is
identical to the hinge axis.
The result is a set of equations of motion that represent each

component individually. No further simplifications are done besides
the ones resulting from the initial model assumptions. Although it is
common to ignore some cross-coupling terms because their contri-
bution is much smaller than the more dominant ones, the approaches
presented in this paper and Refs. [6–11] retain the full equations.
First, this enables closed-form equations of motion solutions for
much more complex rotating subcomponents, which can readily be
simulated without autocoding or deriving spacecraft equations of
motion. The solutions are analytical. Second, this allows the verifi-
cation of each model using energy and momentum conservation
laws, as the solutions are fully coupled nonlinear solutions.
The main limitation of the work in Refs. [6–11] is that the equa-

tions of motion are specific to each component, even when different
effectors represent the same rotating or spinning rigid body from a
dynamic standpoint. Using the example of a reaction wheel and a
solar panel, they both represent rigid bodies rotating about a single
hinge. However, the initial assumptions on the center-of-mass offset,
spin axis, etc., defined before developing the equations of motion
yield distinct formulations. This means that the equations of motion
have to be derived, implemented, and verified for each element.
Moreover, while these equations can be implemented modularly,
the software implementation also relies on specifying the type of
component in the model. Further, they always assume that the rigid
subcomponent is performing a single-degree-of-freedom (single-
DoF) rotation relative to the parent component. This restricts the
spacecraft configuration space that can be modeled.
This paper aims to derive and implement the general equations of

motion for rotating body components with one or 2 degrees of free-
dom in the most general manner possible while still leveraging the
benefits of the BSM, like its modularity and speed. Symmetry
assumptions and center-of-mass constraints of prior work are
removed. Rotating bodies with 1-DoF include reaction wheels and
single-hinged solar panels. Similarly, control moment gyroscopes
and dual-gimbaled thrusters are considered 2-DoF components.
However, in contrast to prior 2-DoF effector solutions, these can
have arbitrary mass distributions, such as mass and inertia, as well as
the rotating axis. This abstraction means that the same general
formulation can be used for any component that fits the specifications
of a single- or dual-axis rotating rigid body. This dramatically
expands the spacecraft dynamics design and configuration space;
instead of having tomodel new components from scratch, the general
model can be used.
The resulting formulation follows the BSM [6,7,10,11], which

requires analytically substituting the effector equations of motion to
decouple them from the hub equations of motion, thus avoiding
inverting huge system mass matrices. Instead, each additional equa-
tion of motion beyond the spacecraft’s translational and rotational
equations is written in terms of the system’s acceleration and angular
velocity �rB∕N and _ωB∕N , respectively. These terms are “backsubsti-
tuted” in such a way that �rB∕N and _ωB∕N can be solved for separately,

Fig. 1 Diagrams for two different single-axis components.

¶Data available online at https://software.nasa.gov/software/GSC-16720-1.
§Data available online at https://dartslab.jpl.nasa.gov/DSHELL.
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and then solve all other degrees of freedom. The full detailed descrip-
tion of this method is given in Ref. [6].
To find the general equations of motion of the spacecraft system

without making any assumptions about the rotating rigid bodies, the
inertia tensor transport theorem is applied extensively [12]. This
theorem converts the time derivative of the inertia tensor expressed
in one frame to another frame, which is analogous to the vector
transport theorem [13]. This theorem has no assumptions about the
frame needed to derive the spacecraft’s equations of motion. This is
crucial for the general formulation of the equations describing rotat-
ing rigid-body classes.
The outcome of this work is a general analytical description of

these rotating bodies that is agnostic to the type of rotating body being
simulated. These results can be applied to various scenarios, and the
proposed architecture can be implemented in any software package,
such as DARTS, or even as a customMATLAB/Simulink module. In
particular, Basilisk,** the open-source, spacecraft-centric simulation
software, is the chosen package used for software implementation in
this work. It includes modular spacecraft dynamics and flight soft-
waremodules and has been extensively used inmission analysis. The
Laboratory of Atmospheric and Space Physics (LASP) is a codevel-
oper of the open-source Basilisk astrodynamics simulation frame-
work and is using this tool in its mission development work.
Moreover, private companies like U-Space [14] and AstroScale
[15] have also used Basilisk for their own missions.
The general formulations presented in this work save development

time, as only one set of equations needs to be derived. They allow for
much faster prototyping of new components that conform to the
specifications of single- or dual-axis parts, as the underlying equa-
tions are identical. Moreover, they also facilitate the verification
process. For example, instead of verifying every different component
(with the same number of degrees of freedom), the common func-
tions, such as equations of motion, mass properties, and energy and
momentum contributions, can be verified using the general formu-
lation. For example, instead of verifying the implementation of the
reaction wheel, solar panel, and one-axis antenna modules, the gen-
eral 1-DoF module is verified, which can simulate all these different
components. The same reasoning can be applied to the 2-DoF
formulation. For a more detailed description of the software imple-
mentation of the formulation of the proposed dynamics, seeRef. [16].
This paper is organized as follows: First, the problem statement

and equations of motion for the 1-DoF system are shown. Then, this
process is repeated for the 2-DoF system. Finally, a numerical
simulation shows how a single general formulation can be applied
to different components. The Appendix section presents the verifi-
cation of the equations of motion by demonstrating that energy and
angular momentum are conserved for the example problem.

II. Backsubstitution Method

The backsubstitution method (BSM) is a dynamics formulation
where the spacecraft equations of motion are written in a modular
way. It is well-suited for single-spacecraft configurations consisting
of a rigid hub with multiple appendages, also called effectors,
attached to it. By separating the explicit and implicit second-order
terms and grouping spacecraft mass quantities, the contributions of
all effectors can be summed over each effector in parallel, enabling
the simulation of any number of effectors and giving rise to the
modularity of the equations of motion. This result is useful in space-
craft dynamics because spacecraft are often built using a rigid hub to
which multiple components are attached, which fits the assumption
in the BSM. The BSM speed and modularity benefits arise from
taking advantage of this assumed underlying structure of having a
rigid hub towhich other effectors are attached. However, this method
assumes the complex analytical backsubstitution process has been
developed for an effector model.
Beyond this, the BSM also increases the speed of propagating the

equations ofmotion. Instead of inverting a singlemassmatrix to solve
for all second-order state variables, the system of equations can be

solved by separating the hub’s position and attitude from each
effector’s unique equation of motion. This is possible because of
the unique structure of the system mass matrix under the assumption
of one hubwith multiple parallel effectors, which is shown in Eq. (1):
each effector has a direct coupling with the hub’s states and vice
versa, but each effector does not couple with others. Therefore, the
mass matrix’s first six rows and columns are fully populated, while
the remaining mass matrix is block diagonal. Instead of inverting an
N × N matrix (for N total degrees of freedom), the backsubstitution
only inverts a 6 × 6 matrix plus any smaller mass matrices for the

effectors. Because matrix inversion is an N3 process, separating this
into smaller matrices is an enormous computational effort saver.

�⋅�3×3 �⋅�3×3 �⋅�3×N1
�⋅�3×N2

::: �⋅�3×Ne

�⋅�3×3 �⋅�3×3 �⋅�3×N1
�⋅�3×N2

::: �⋅�3×Ne

�⋅�N1×3 �⋅�N1×3 �⋅�N1×N1
�0�N1×N2

::: �0�N1×Ne

�⋅�N2×3 �⋅�N2×3 �0�N2×N1
�⋅�N2×N2

::: �0�N2×Ne

..

. ..
. ..

. ..
. . .

. ..
.

�⋅�Ne×3 �⋅�Ne×3 �0�Ne×N1
�0�Ne×N2

::: �⋅�Ne×Ne

�rB∕N

_ωB∕N

α1

α2

..

.

αe

�

�⋅�3×1
�⋅�3×1
�⋅�N1×1

�⋅�N2×1

..

.

�⋅�Ne×1

(1)

One of the drawbacks of the BSM relates to the assumption that all
effectors are connected through the hub in parallel. It is impossible to
chain effectors in series, like in parallel, because the effectors would
cross-couple with each other, and the effector portion of the mass
matrix would no longer be block diagonal. Therefore, to increase the
degrees of freedom of a particular effector, it is necessary to rederive
the equations of motion for the intended configuration. This is why
there is a derivation of the equations of motion for one and 2-DoF
effectors since it is impossible to stack two 1-DoF effectors to get the
results for a dual-axis effector.
The equations of motion must bewritten in a specific way to apply

the BSM [6]. The translational equation of motion is

msc �rB∕N −msc� ~c � _ωB∕N �
Neff

i�1

NDOF;i

j�1

vTrans;LHSij �αij

�Fext−2msc� ~ωB∕N �c 0−msc� ~ωB∕N �� ~ωB∕N �c�
Neff

i�1

vTrans;RHSi (2)

The rotational equation of motion is

msc� ~c � �rB∕N � �Isc;B� _ωB∕N �
Neff

i�1

NDOF;i

j�1

vRot;LHSij �αij

� LB − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N �
Neff

i�1

vRot;RHSi (3)

The effector equation of motion is written as

�αij � aij ⋅ �rB∕N � bij ⋅ _ωB∕N � cij (4)

where αij corresponds to the jth DoF of the ith effector. The aij, bij,
and cij terms correspond to mass and inertia contributions. In the

equations above, the dot and apostrophe denote the inertial and
body-frame derivatives, respectively. Note that while some terms
are explicit effector contributions, namely those that are part of
summations, others include implicit effector contributions. These
consist of the mass properties of the overall spacecraft: c and c 0,
the positionvector between the center ofmass of the system and point
B and its body-frame derivative, aswell as �Isc;B� and �I 0sc;B�, the inertia
of the spacecraft about point B and its body-frame derivative. There-
fore, each effector must compute its contributions to the spacecraft’s
mass properties at each timestep to compute the updated mass and
inertia quantities.**Data available online at http://hanspeterschaub.info/basilisk.
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As shown, the goal of writing the equations in the presented form
is to apply the BSM. Taking Eq. (4), the �α term can be “back-
substituted” directly into Eqs. (2) and (3). This results in two sets of
equations that only depend on �rB∕N and _ωB∕N , which can be used to

solve for those two quantities directly. Finally, once �rB∕N and _ωB∕N
are known, they can be substituted back into Eq. (4), which yields a
solution �α. All second-order state variables are known, which can be
numerically propagated using a fourth-order Runge–Kutta numeri-
cal integrator.

III. Single-Axis Rotating Rigid-Body Dynamics

This section describes the derivation of the equations of motion of
a single-axis rotating rigid body attached to a rigid hub. It introduces
the generality of the problem statement bymaking fewer assumptions
on the simulated component than previous work on backsubstitution
while leveraging results such as the inertia transport theorem to find
the resulting equations of motion. The 1-DoF component is a rigid
body that can only rotate about one body-fixed axis through a rotary
joint. This general description can describe multiple common space-
craft components. Examples include single-hinge solar arrays for
deployment or first-order flexing analysis, reactionwheels as attitude
control devices, and one-axis gimbaled low-gain antennas. These
components can be defined through a general description, specified
by their mass, inertia matrix, location of the center of mass, and spin
axis. Themodule’s Basilisk framework implementation can be found
here.†† Note that, while the backsubstitution effector solution is
modeled in this paper using theBasilisk software [17], the underlying
math is agnostic to this software implementation.
A diagram for the single-axis rotating rigid body is shown in Fig. 2

as a gold box. It represents the skeleton for rigid spacecraft append-
ages that rotate about one axis. Several properties, such as the body’s
mass and inertia matrix, are common to all single-axis rotating rigid
bodies. The center-of-mass location and spin axis can be defined as
any vectorswithout any assumptions on how the frame is determined.
The frame conversion information relating the rotating rigid-body
frame to the body-fixed frame is expressed through a direction cosine
matrix (DCM). This generality enables using common equations of
motion that describe the system, mass property contributions to
compute the spacecraft’s center of mass and inertia matrix, and
energy and momentum contributions to calculate the spacecraft’s
total energy and angular momentum.
The gray boxes represent specific modules that can be derived

from the general 1-DoF formulation. These include hinged solar
panels, reaction wheels, or one-axis gimbaled antennas. These mod-
ules use the 1-DoF formulation, which means they all contain the

same properties from the parent structure. Adding new component
properties that define that particular component type can specify each

unique element. For example, a solar panel needs a vector normal to

the solar cells to point at the sun, as well as the total surface area of the

solar cells. Adding additional parameters makes the module more

specific while retaining the structure common to all single-axis
rotating rigid bodies.
Although the proposed method is agnostic to any dynamics for-

mulation, thiswork uses aNewtonian/Eulerian approach to derive the

motion equations. This means that the translational equations of
motion use the super particle theorem, or Newton’s second law,while

the rotational equations use Euler’s rotation equations [13]. The

derivations begin by considering the entire system to develop its

translational and rotational equations of motion. The components are
then considered separately, where their rotational motion equation is

developed. Different approaches to arrive at the same results exist.

For example, in Lagrange mechanics [18], the potential and kinetic

energy are used in the Lagrangian function, applying the Lagrange
equations of the first kind. Kane’smethod [19,20] uses the concept of

generalized forces and generalized inertia forces to create a system-

atic formulation suited for multibody systems and is easy to imple-

ment in software. Spatial operator logic [21] is another method that
has been applied to deriving the equations of motion spacecraft, with

particular importance to multibody robotic systems [22] and flexible

components [23]. The Jet Propulsion Laboratory has developed

DARTS,‡‡ which uses spatial operator algebra for its simulations.

A. Problem Statement

The problem statement for the single-axis rotating rigid body is

illustrated in Fig. 3. The inertial frame is represented byN with origin

at pointN. The spacecraft is composed of a rigid body connected to a
rigid hub through a single axis of rotation. The hub has a body-fixed

frame Bwith origin B, and its center of mass is at point Bc. The mass

of the hub ismhub, and its inertia tensor about point B is �Ihub;B�. The
rotating rigid body has the S frame attached to it with its origin at

point S. The center of mass of the spinner is located at point Sc. The
mass of the spinner is mS, and its inertia tensor about its center of

mass is �IS;Sc �. The combined center ofmass of the system is located at

pointC. The spin axis ŝ is constant, as seen by theB frame, and passes

through point S. This means that the position of point S does not
change as seen from the hub since the axis of rotation passes through

it. The angle about the rotation axis is θ, and its angle rate is _θ.
The single-axis rotating rigid body attached to the hub has

7 degrees of freedom, as shown in Table 1: three for the system’s

position, three for the system’s attitude, and one for the angle about
the rotation axis. The motion equations are developed so that all

Fig. 2 Diagram for the one-axis rotating rigid-body class.

††Data available online at https://hanspeterschaub.info/basilisk/
Documentation/simulation/dynamics/spinningBodies/spinningBodiesOneDOF/
spinningBodyOneDOFStateEffector.html.

‡‡Data available online at https://dartslab.jpl.nasa.gov/DSHELL/index.
php.

1102 VAZ CARNEIRO, ALLARD, AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

Se
pt

em
be

r 
16

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
86

5 

https://hanspeterschaub.info/basilisk/Documentation/simulation/dynamics/spinningBodies/spinningBodiesOneDOF/spinningBodyOneDOFStateEffector.html
https://hanspeterschaub.info/basilisk/Documentation/simulation/dynamics/spinningBodies/spinningBodiesOneDOF/spinningBodyOneDOFStateEffector.html
https://hanspeterschaub.info/basilisk/Documentation/simulation/dynamics/spinningBodies/spinningBodiesOneDOF/spinningBodyOneDOFStateEffector.html
https://dartslab.jpl.nasa.gov/DSHELL/index.php
https://dartslab.jpl.nasa.gov/DSHELL/index.php


degrees of freedom are described. The position state variables are
defined by the translational equation of motion, the attitude state
variables by the rotational equation of motion, and the rotation angle
by the spinner equation of motion.

B. Translational Equations of Motion

The entire system is considered for the translational equation of
motion, including the hub and the spinner. This equation of motion
defines 3 degrees of freedom of the system. Using the super particle
theorem

msc �rC∕N � msc �rB∕N �msc �c � Fext (5)

where c ≡ rC∕B is the vector from the origin of the body frameB to the
system’s center of mass C, and Fext is the combined force acting on
the system. A single dot above a vector represents the first-order
inertial frame derivative, and a double dot represents the second-
order inertial frame derivative. Using the definition of the center of
mass of the system

mscc � mhubrBc∕B �mSrSc∕B (6)

and using the transport theorem, the inertial time derivatives are
expressed using body-frame derivatives as

_c � c 0 � ωB∕N × c (7)

�c � c′′ � _ωB∕N × c� ωB∕N × c 0 � ωB∕N × _c (8)

where a single apostrophe represents a first-order body-frame deriva-
tive and a double apostrophe represents a second-order body-frame
derivative. The term ωB∕N represents the angular velocity of the B
frame relative to theN frame.As for the body-frame time derivatives,
the rBc∕B and rS∕B vectors are fixed with respect to the B frame

(r 0Bc∕B � r 0S∕B � 0) because the B frame is attached to the rigid

hub and ŝ passes through point S. It follows that

mscc
0 � mSr

0
Sc∕B � mSr

0
Sc∕S � mSωS∕B × rSc∕S (9)

mscc
′′ � mS

�θ ŝ× rSc∕S � ωS∕B × r 0Sc∕S (10)

where by definition

ωS∕B � _θ ŝ; ω 0
S∕B � �θ ŝ (11)

because ŝ is fixed in theB frame. Finally, all these terms are combined
to yield

msc �rB∕N −msc� ~c � _ωB∕N −mS� ~rSc∕S�ŝ �θ � Fext − 2msc� ~ωB∕N �c 0

−msc� ~ωB∕N �� ~ωB∕N �c −mS� ~ωS∕B�r 0Sc∕S (12)

In the equation above, the matrix cross-product operator is used.

For an arbitrary vector a � �a1; a2; a3�T, the corresponding matrix
cross product operator is written as � ~a� and is given by

� ~a� �
0 −a3 a2
a3 0 −a1
−a2 a1 0

(13)

C. Rotational Equations of Motion

For the rotational equation of motion, the entire spacecraft is
considered. This equation of motion defines 3 degrees of freedom
of the system. The rotational differential equation given about point
B, which is not the system’s center of mass, is given by

_Hsc;B � LB �msc �rB∕N × c (14)

where Hsc;B is the angular momentum of the spacecraft (sc) about

pointB andLB is the torque about pointB. The angularmomentum is

Hsc;B � Hhub;B �HS;B

� �Ihub;B�ωB∕N � �IS;Sc �ωS∕N �mSrSc∕B × _rSc∕B (15)

where Hhub;B is the angular momentum of the hub and HS;B is the

angular momentum of the spinner, both about point B. The terms
multiplied byωB∕N are grouped to simplify the expression above. To

express the inertial time derivative using the B frame time derivative,
the equality ωS∕N � ωS∕B � ωB∕N and _rSc∕B � r 0Sc∕B � ωB∕N ×
rSc∕B is used, which yields

Hsc;B � �Isc;B�ωB∕N � �IS;Sc �ωS∕B �mSrSc∕B × r 0Sc∕B (16)

where the spacecraft’s total inertia about point B can be found using
the parallel axis theorem and is given by

�Isc;B� � �Ihub;B� � �IS;Sc � −mS� ~rSc∕B�� ~rSc∕B� (17)

The inertial time derivative of the total angular momentum is
expressed as

_Hsc;B � �Isc;B� _ωB∕N � �I 0sc;B�ωB∕N � ωB∕N × �Isc;B�ωB∕N

� �IS;Sc ��θ ŝ�ωS∕N × �IS;Sc �ωS∕B �mSrSc∕B × r′′Sc∕B

�mSωB∕N × �rSc∕B × r 0Sc∕B� (18)

Some terms are defined before writing the final equation to yield
a notationally compact solution description. The inertia transport
theorem needs to be used to take the body-frame time derivative of
the total spacecraft inertia. The time derivative of the inertia tensor �I�
with respect to the A frame can be written using the time derivative
with respect to the B frame as [12]

Ad

dt
�I� �

Bd

dt
�I� � � ~ωB∕A��I� − �I�� ~ωB∕A� (19)

Table 1 State variables for the single-axis rotating

rigid-body spacecraft

State variables Degrees of freedom Equations of motion

rB∕N; _rB∕N 3 Translational

σB∕N ;ωB∕N 3 Rotational

θ; _θ 1 Spinner rotational

Fig. 3 Problem statement for the 1-DoF spinning rigid body.
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With this result, the body-frame time derivative of the total spacecraft
inertia is

�I 0sc;B� � �I 0sc;Sc � −mS� ~r 0Sc∕B�� ~rSc∕B� −mS� ~rSc∕B�� ~r 0Sc∕B�
� � ~ωS∕B��IS;Sc � − �IS;Sc �� ~ωS∕B� −mS� ~r 0Sc∕B�� ~rSc∕B�
−mS� ~rSc∕B�� ~r 0Sc∕B� (20)

The final equation includes four distinct terms. The first two relate
to the time rate of change of the inertia about the center of mass
(pointSc), which is calculated using Eq. (19). Note that the first term
in the theorem is not present because the inertia is constant, as seen
from the S frame. The second two terms result from the parallel axis
theorem. From Eq. (17), taking the B frame derivative of the last
term results in these two additional terms using the derivative
chain rule.
Because r′′Sc∕B contains second-order terms, it must be simplified to

r′′Sc∕B � r′′Sc∕S � �θ ŝ× rSc∕S � ωS∕B × r 0Sc∕S (21)

Combining these results into the rotational equation of motion
yields the final expression for the rotational equation of motion:

msc� ~c� �rB∕N � �Isc;B� _ωB∕N � �IS;Sc � −mS� ~rSc∕B�� ~rSc∕S� ŝ �θ
� LB − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N − � ~ωS∕N ��IS;Sc �ωS∕B

−mS� ~ωB∕N �� ~rSc∕B�r 0Sc∕B −mS� ~rSc∕B�� ~ωS∕B�r 0Sc∕S (22)

D. Spinning Body Equations of Motion

Only the rotating rigid body is considered for the final equation of
motion. This solves the final DoF of the system. The general formu-
lation of the equation of motion of the spinning body is

_HS;S � LS −mSrSc∕S × �rS∕N (23)

The angular momentum of the spinner about point S is

HS;S � �IS;S�ωS∕N (24)

where �IS;S� is defined using the parallel axis theorem as

�IS;S� � �IS;Sc � −mS� ~rSc∕S�� ~rSc∕S�. The inertial time derivative of the

angular momentum is given by

_HS;S � �IS;S� _ωS∕N � ωS∕N × �IS;S�ωS∕N (25)

As for the �rS∕N term, it can be separated into two terms:

�rS∕N � �rS∕B � �rB∕N (26)

To compute �rS∕B, the fact that rS∕B is constant in theB frame is used

to yield

_rS∕B � ωB∕N × rS∕B (27)

�rS∕B � _ωB∕N × rS∕B � ωB∕N × _rS∕B (28)

The term _ωS∕N can be separated into three distinct terms:

_ωS∕N � _ωB∕N � �θ ŝ�ωB∕N × ωS∕B (29)

Before these results are combined, the dot product with the spin
axis ŝ is applied to all terms. This isolates the independent equation of
motion along the axis of interest corresponding to the remainingDoF.
When the dot product is applied, the originalLS term, which encom-
passes all torques applied to the spinning body, becomes uS, which
corresponds to the torque about the torque about the spin axis. This
torque includes control torques and rotational springs and dampers

along the spinning axis. The torques in other directions are structural

and keep the single-axis rotation constraint in place. This approach

consists of a minimal coordinate set formulation since the structural

torques do not allow motion in other directions. This results in the

following equation of motion:

ŝT �IS;S�ŝ �θ�uS−mSŝ
T � ~rSc∕S� �rB∕N − ŝT �IS;S�−mS� ~rSc∕S�� ~rS∕B� _ωB∕N

− ŝT � ~ωS∕N ��IS;S�ωS∕N − ŝT �IS;S�� ~ωB∕N �ωS∕B

−mSŝ
T � ~rSc∕S�� ~ωB∕N � _rS∕B (30)

E. Backsubstitution Formulation

The backsubstitution formulation must be defined to conform to

the structure of the equations of motion in the BSM [6]. The spinning

body equation of motion can be written in the form

mθ
�θ � a�

θ ⋅ �rB∕N � b�θ ⋅ _ωB∕N � c�θ (31)

where the following terms are introduced

a�
θ � mS� ~rSc∕S�ŝ (32)

b�θ � −��IS;S� −mS� ~rS∕B�� ~rSc∕S��ŝ (33)

c�θ � uS − ŝT � ~ωS∕N ��IS;S�ωS∕N � �IS;S�� ~ωB∕N �ωS∕B

�mS� ~rSc∕S�� ~ωB∕N � _rS∕B (34)

along with the mass-like term mθ � ŝT �IS;S�ŝ. Using these terms,

the spinning body equation of motion can be written in its compact

form as

�θ � aθ ⋅ �rB∕N � bθ ⋅ _ωB∕N � cθ (35)

where the new variables are defined as

aθ �
a�
θ

mθ
; bθ �

b�θ
mθ

; cθ �
c�θ
mθ

(36)

This result can be backsubstituted into Eqs. (12) and (22), which

yields

�A� �B�
�C� �D�

�rB∕N

_ωB∕N
�

vtrans

vrot
(37)

using the following matrices

�A� � msc�I3×3� −mS� ~rSc∕S�ŝaT
θ (38)

�B� � −msc� ~c� −mS� ~rSc∕S�ŝbTθ (39)

�C� � msc� ~c� � �IS;Sc � −mS� ~rSc∕B�� ~rSc∕S� ŝaTθ (40)

�D� � �Isc;B� � �IS;Sc � −mS� ~rSc∕B�� ~rSc∕S� ŝbTθ (41)

and vectors

vtrans � Fext − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c
−mS� ~ωS∕B�r 0Sc∕S �mScθ� ~rSc∕S�ŝ (42)

vrot � LB − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N − � ~ωS∕N ��IS;Sc �ωS∕B

−mS� ~ωB∕N �� ~rSc∕B�r 0Sc∕B −mS� ~rSc∕B�� ~ωS∕B�r 0Sc∕S
− cθ �IS;Sc � −mS� ~rSc∕B�� ~rSc∕S� ŝ (43)
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The Appendix shows the verification of the derived equations of
motion by demonstrating that energy and angular momentum are
conserved for the example problem.

IV. Dual-Axis Rotating Rigid-Body Dynamics

This section shows the derivation of the equations of motion of a
dual-axis rotating rigid body attached to a rigid hub. The 2-DoF
component can be described in one of two ways: first, as a chain of
two rigid bodies connected by rotary joints, each rotating about a
particular spin axis; second, as a single rigid body connected to the
hub through a universal joint, which can have two spin axes. These
descriptions can represent various common spacecraft components.
Examples include dual-hinge solar arrays for deployment or second-
order flexing analysis, control moment gyroscopes as attitude control
devices, and two-axis gimbaled high-gain antennas. All these com-
ponents can be defined through a general description, where they
are specified by their masses, inertia matrices, location of the centers
of mass, and spin axes. The module’s implementation can be found
here.§§

A diagram for the dual-axis rotating rigid-body class is shown in
Fig. 4. It contains similar properties but is now adapted to represent a
2-DoF system. There are twomasses, inertiamatrices, center-of-mass
locations, spin axes, and frame conversions. The equations ofmotion,
mass properties, and energy and momentum contributions are
adapted to dual-axis kinematics and dynamics.
Similar to the 1-DoF example, modules represented in gray follow

from the 2-DoF parent structure. Examples include dual-hinged solar
panels, control moment gyroscopes, and two-axis gimbaled anten-
nas. As previously discussed, each module contains properties that
define the specific component, such as a pointing vector for the
antenna or a surface area for the solar panels.
An essential property of the dual-DoF formulation is that it can also

represent a component connected through a dual-hinged joint. While
the formulation takes two masses and two inertia tensors, it is
possible to set the mass and inertia of the lower body to zero without
introducing any singularity to the equations ofmotion. Instead of two
bodies connected through rotary joints, the system represents a single
body connected via a universal joint. This dramatically expands the
configuration space to model using this formulation.

A. Problem Statement

The problem statement for the dual-axis rotating rigid body is
illustrated in Fig. 5. The inertial frame is represented byN with origin
at pointN. The spacecraft comprises two rigid bodies connected to a

rigid hub through two axes of rotation. The hub has a body-fixed

frame Bwith origin B, and its center of mass is at point Bc. The mass

of the hub ismhub, and its inertia tensor about point B is �Ihub;B�. The
lower rotating rigid body has theS1 frame attached to it, originating at

point S1 and its center of mass at point Sc1 . The mass of the lower

body ismS1 , and its inertia tensor about its center of mass is �IS1;Sc1 �.
The upper rotating rigid body has the S2 frame attached to it,

originating at point S2 and its center of mass at point Sc2 . The mass

of the upper body ismS2 , and its inertia tensor about its center ofmass

is �IS2;Sc2 �. The center of mass of the spinning system is located at

point Sc, and its mass is mS. The combined center of mass of the

spacecraft is located at point C. The first spin axis ŝ1 is constant, as
seen by theB frame, and passes through the point S1. The angle about

this rotation axis is θ1, and its angle rate is _θ1. The second spin axis ŝ2
is constant, as seen by the S1 frame, and passes through the point S2.

The angle about this rotation axis is θ2, and its angle rate is _θ2. Again,
the position of points S1 and S2 do not change as seen from the B and

S1 frames, respectively, since the axes of rotation pass through them.
The two-body description is used to describe the two-axis rotating

rigid-body system as generally as possible. However, the resulting

equations of motion still apply to a single rotating body attached by a

universal joint. To do this, the mass and inertia tensor of the lower

body are set to zero, which does not impart any singularity in the

equations.
The dual-axis rotating rigid body attached to the hub has 8 degrees

of freedom shown in Table 2: three for the system’s position, three for

the system’s attitude, and one for the angle about each rotation axis.

Like the 1-DoF case, the motion equations are developed to describe

all 8 degrees of freedom. Therefore, beyond the translational and

Fig. 4 Diagram for the two-axis rotating rigid-body class.

Fig. 5 Problem statement for the 2-DoF spinning rigid body.

§§Data available online at https://hanspeterschaub.info/basilisk/
Documentation/simulation/dynamics/spinningBodies/spinningBodiesTwo
DOF/spinningBodyTwoDOFStateEffector.html.
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rotational equations of motion, the system needs two spinner equa-

tions to describe each angle.

B. Translational Equations of Motion

For the translational equations of motion, the entire spacecraft is

considered. This describes 3 degrees of freedom. Using the super

particle theorem

msc �rC∕N � msc �rB∕N �msc �c � Fext (44)

where c ≡ rC∕B. Using the definition of the center of mass of the

system

mscc � mhubrBc∕B �mS1
rSc1 ∕B

�mS2
rSc2 ∕B

(45)

and using the transport theorem, the inertial time derivatives can be

expressed using body-frame derivatives as

_c � c 0 � ωB∕N × c (46)

�c � c′′ � _ωB∕N × c� 2ωB∕N × c 0 � ωB∕N × �ωB∕N × c� (47)

The first-order body-frame derivatives for the three terms that are

part of c are given by

r 0Bc∕B � 0 (48)

r 0Sc1 ∕B � r 0Sc1 ∕S1 � ωS1∕B × rSc1 ∕S1 (49)

r 0Sc2 ∕B
� r 0Sc2 ∕S2

� r 0S2∕S1 � ωS2∕B × rSc2 ∕S2 � ωS1∕B × rS2∕S1 (50)

where, by definition,ωS1∕B � _θ1ŝ1 andωS2∕B � ωS2∕S1
� ωS1∕B �

_θ2ŝ2 � _θ1ŝ1. In the equation above, some terms vanish because rS1∕B
and rS2∕S1 are constant as seen from theB andS1 frames, respectively,

because the spin axes pass through points S1 and S2. The second-

order body-frame derivatives are given by

r′′Bc∕B � 0 (51)

r′′Sc1 ∕B
� �θ1ŝ1 × rSc1 ∕S1 �ωS1∕B × r 0Sc1 ∕S1

(52)

r′′Sc2 ∕B
� �θ2ŝ2 × rSc2 ∕S2 � �θ1ŝ1 × rSc2 ∕S1 � ωS1∕B ×ωS2∕S1

× rSc2 ∕S2

�ωS2∕S1
× r 0Sc2 ∕S2

�ωS1∕B × r 0Sc2 ∕S1
(53)

where ω 0
S1∕B � �θ1ŝ1 and ω 0

S2∕B � �θ1ŝ1 � �θ2ŝ2 �ωS1∕B ×ωS2∕S1

because ŝ1 is fixed in the B frame and ŝ2 is fixed in the S1 frame.

With these results, the expressions for mscc
0 and mscc

′′ are

mscc
0 � mS1

r 0Sc1 ∕B
�mS2

r 0Sc2 ∕B
� mSr

0
Sc∕B (54)

mscc
′′ � mS1

r′′Sc1 ∕B
�mS2

r′′Sc2 ∕B

� −mS� ~rSc∕S1 �ŝ1 �θ1 −mS2
� ~rSc2 ∕S2 �ŝ2 �θ2 �mS� ~ωS1∕B�r 0Sc∕B

�mS2
� ~ωS2∕S1

�r 0Sc2 ∕S2 − � ~rSc2 ∕S2 �� ~ωS1∕B�ωS2∕S1
(55)

The center of mass of the spinning bodies system about point S1 is
defined as mSrSc∕S1 � mS1rSc1 ∕S1 �mS2rSc2 ∕S1. Finally, combining

similar terms yields

msc �rB∕N −msc� ~c� _ωB∕N −mS� ~rSc∕S1 �ŝ1 �θ1 −mS2
� ~rSc2 ∕S2 �ŝ2 �θ2

� Fext − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c −mS� ~ωS1∕B�r 0Sc∕B
−mS2

� ~ωS2∕S1
�r 0Sc2 ∕S2 − � ~rSc2 ∕S2 �� ~ωS1∕B�ωS2∕S1

(56)

C. Rotational Equations of Motion

For the rotational equation of motion, the entire spacecraft is

considered. This equation of motion describes the 3 degrees of free-

dom of the system. The rotational differential equation given about

point B, which is not the system’s center of mass, is given by

_Hsc;B � LB �msc �rB∕N × c (57)

The angular momentum about point B is

Hsc;B � Hhub;B �HS1 ;B �HS2;B

� �Ihub;B�ωB∕N � �IS1;Sc1 �ωS1∕N �mS1rSc1 ∕B × _rSc1 ∕B

� �IS2 ;Sc2 �ωS2∕N �mS2rSc2 ∕B × _rSc2 ∕B (58)

As previously discussed, it is useful to express the inertial time

derivative using the B frame derivative and the transport theorem by

noting that ωS1∕N � ωS1∕B � ωB∕N and _rSc1 ∕B
� r 0Sc1 ∕B

� ωB∕N ×

rSc1 ∕B. An equivalent development can be used for the second spin-

ning body. Grouping the terms multiplied by each angular velocity

yields

Hsc;B � �Isc;B�ωB∕N � �IS1;Sc1 �ωS1∕B � �IS2;Sc2 �ωS2∕B

�mS1rSc1 ∕B × r 0Sc1 ∕B
�mS2rSc2 ∕B × r 0Sc2 ∕B

(59)

where �Isc;B� � �Ihub;B� � �IS1 ;Sc1 � � �IS2;Sc2 � −mS1 � ~rSc1 ∕B�� ~rSc1 ∕B�−
mS2 � ~rSc2 ∕B�� ~rSc2 ∕B� is the spacecraft’s total inertia about point B. To
take the inertial time derivative of the total angular momentum, the

transport theorem is used to take the body-frame time derivatives

instead, which yields

_Hsc;B � H 0
sc;B �ωB∕N ×Hsc;B (60)

The body-frame derivative of the angular momentum is

H 0
sc;B � �I 0sc;B�ωB∕N � �Isc;B� _ωB∕N � �I 0S1;Sc1 �ωS1∕B � �IS1;Sc1 �ω 0

S1∕B

� �I 0S2 ;Sc2 �ωS2∕B � �IS2 ;Sc2 �ω 0
S2∕B �mS1rSc1 ∕B × r′′Sc1 ∕B

�mS2rSc2 ∕B × r′′Sc2 ∕B
(61)

where the derivative product rule is applied. To simplify the expres-

sion above, the body-frame derivatives of the inertia tensors are

defined using the inertia transport theorem

�I 0S1;Sc1 � � � ~ωS1∕B��IS1 ;Sc1 � − �IS1 ;Sc1 �� ~ωS1∕B� (62)

�I 0S2;Sc2 � � � ~ωS2∕B��IS2 ;Sc2 � − �IS2 ;Sc2 �� ~ωS2∕B� (63)

Table 2 State variables for the dual-axis rotating rigid-

body spacecraft

State variables Degrees of freedom Equations of motion

rB∕N; _rB∕N 3 Translational

σB∕N ;ωB∕N 3 Rotational

θ1; _θ1 1 First spinner rotational

θ2; _θ2 1 Second spinner rotational
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�I 0sc;B� � �I 0S1 ;Sc1 � � �I 0S2 ;Sc2 � −mS1 � ~r 0Sc1 ∕B�� ~rSc1 ∕B� � � ~rSc1 ∕B�� ~r 0Sc1 ∕B�

−mS2 � ~r 0Sc2 ∕B�� ~rSc2 ∕B� � � ~rSc2 ∕B�� ~r 0Sc2 ∕B� (64)

Combining these results with the definitions derived in the trans-

lational equation of motion sections yields the following rotational

equation of motion

msc� ~c� �rB∕N � �Isc;B� _ωB∕N � �IS1;Sc1 � � �IS2;Sc2 �

−mS1
� ~rSc1 ∕B�� ~rSc1 ∕S1 � −mS2

� ~rSc2 ∕B�� ~rSc2 ∕S1 � ŝ1 �θ1

� �IS2;Sc2 � −mS2
� ~rSc2 ∕B�� ~rSc2 ∕S2 � ŝ2 �θ2

� LB − �I 0sc;B� � � ~ωB∕N ��Isc;B� ωB∕N

− �I 0S1;Sc1 � � � ~ωB∕N ��IS1;Sc1 � ωS1∕B

− �I 0S2;Sc2 � � � ~ωB∕N ��IS2;Sc2 � ωS2∕B

− �IS2;Sc2 � −mS2
� ~rSc2 ∕B�� ~rSc2 ∕S2 � � ~ωS1∕B�ωS2∕S1

−mS1
� ~rSc1 ∕B�� ~ωS1∕B� � � ~ωB∕N �� ~rSc1 ∕B� r 0Sc1 ∕B

−mS2
� ~rSc2 ∕B�� ~ωS1∕B� � � ~ωB∕N �� ~rSc2 ∕B� r 0Sc2 ∕B

−mS2
� ~rSc2 ∕B�� ~ωS2∕S1

�r 0Sc2 ∕S2 (65)

D. First Spinning Body Equations of Motion

The first spinning body equation ofmotion describes themotion of

the spinning body system, defining another DoF of the spacecraft.

The formulation of the equation of motion for the spinning body

system is

_HS;S1 � LS1 −mSrSc∕S1 × �rS1∕N (66)

The angular momentum of the spinning system is

HS;S1 � HS1 ;S1 �HS2 ;S1

� �IS1;Sc1 �ωS1∕N �mS1rSc1 ∕S1 × _rSc1 ∕S1 � �IS2;Sc2 �ωS2∕N

�mS2rSc2 ∕S1 × _rSc2 ∕S1 (67)

The expression above can be simplified by applying the transport

theorem to the _r terms and grouping the ωB∕N terms as follows:

HS;S1 � �IS;S1 �ωB∕N � �IS1;Sc1 �ωS1∕B � �IS2;Sc2 �ωS2∕B

�mS1rSc1 ∕S1
× r 0Sc1 ∕S1

�mS2rSc2 ∕S1
× r 0Sc2 ∕S1

(68)

where three new inertia tensors are defined

�IS;S1 � � �IS1 ;S1 � � �IS2;S1 � (69)

�IS1;S1 � � �IS1;Sc1 � −mS1 � ~rSc1 ∕S1 �� ~rSc1 ∕S1 � (70)

�IS2;S1 � � �IS2;Sc2 � −mS2 � ~rSc2 ∕S1 �� ~rSc2 ∕S1 � (71)

Using the transport theorem to take the derivatives in the B frame,

the inertial time derivative of the angular momentum is given by

_HS;S1 � H 0
S;S1

� ωB∕N ×HS;S1 (72)

The body-frame derivative of the angular momentum is

H 0
S;S1

� �I 0S;S1 �ωB∕N � �IS;S1 � _ωB∕N � �I 0S1;Sc1 �ωS1∕B � �IS1;Sc1 �ω 0
S1∕B

� �I 0S2;Sc2 �ωS2∕B � �IS2;Sc2 �ω 0
S2∕B �mS1rSc1 ∕S1 × r′′Sc1 ∕S1

�mS2rSc2 ∕S1 × r′′Sc2 ∕S1
(73)

The body-frame derivatives of the inertia tensors are

�I 0S;S1 � � �I 0S1;S1 � � �I 0S2 ;S1 � (74)

�I 0S1;S1 � � �I 0S1 ;Sc1 � −mS1 � ~r 0Sc1 ∕S1 �� ~rSc1 ∕S1 � � � ~rSc1 ∕S1 �� ~r 0Sc1 ∕S1 � (75)

�I 0S2;S1 � � �I 0S2 ;Sc2 � −mS2 � ~r 0Sc2 ∕S1 �� ~rSc2 ∕S1 � � � ~rSc2 ∕S1 �� ~r 0Sc2 ∕S1 � (76)

As for the �rS1∕N term, it can be separated into two terms:

�rS1∕N � �rS1∕B � �rB∕N (77)

To compute �rS1∕B, it should be noted that rS1∕B is constant in the B
frame, which yields

_rS1∕B � ωB∕N × rS1∕B; �rS1∕B � _ωB∕N × rS1∕B � ωB∕N × _rS1∕B

(78)

Here, all terms are dotted with the spin axis ŝ1 to ignore the dynamics

in any other direction, where structural torques keep the constraints in

place. This results in the first spinning body equation of motion:

ŝT1 �IS;S1 �ŝ1 �θ1 � ŝT1 �IS2;Sc2 � −mS2 � ~rSc2 ∕S1 �� ~rSc2 ∕S2 � ŝ2 �θ2

� uS1 −mSŝ
T
1 � ~rSc∕S1 � �rB∕N − ŝT1 �IS;S1 � −mS� ~rSc∕S1 �� ~rS1∕B� _ωB∕N

− ŝT1 �I 0S;S1 � � � ~ωB∕N ��IS;S1 � ωB∕N

− ŝT1 �I 0S1;Sc1 � � � ~ωB∕N ��IS1 ;Sc1 � ωS1∕B

− ŝT1 �I 0S2;Sc2 � � � ~ωB∕N ��IS2 ;Sc2 � ωS2∕B

− ŝT1 �IS2;Sc2 � −mS2 � ~rSc2 ∕S1 �� ~rSc2 ∕S2 � � ~ωS1∕B�ωS2∕S1

−mS1 ŝ
T
1 � ~rSc1 ∕S1 �� ~ωS1∕B� � � ~ωB∕N �� ~rSc1 ∕S1 � r 0Sc1 ∕S1

−mS2 ŝ
T
1 � ~rSc2 ∕S1 �� ~ωS1∕B� � � ~ωB∕N �� ~rSc2 ∕S1 � r 0Sc2 ∕S1

−mS2 ŝ
T
1 � ~rSc2 ∕S1 �� ~ωS2∕S1

�r 0Sc2 ∕S2 −mSŝ
T
1 � ~rSc∕S1 �� ~ωB∕N � _rS1∕B (79)

E. Second Spinning Body Equations of Motion

For the final equation ofmotion, only the top spinner is considered,

describing the last DoF of the system. The formulation for the

equation of motion for the second spinner is

_HS2;S2 � LS2 −mS2rSc2 ∕S2 × �rS2∕N (80)

The angular momentum of the top spinner about point S2 is

HS2 ;S2 � �IS2;S2 �ωS2∕N � �IS2 ;S2 �ωB∕N � �IS2 ;S2 �ωS2∕B (81)

where �IS2;S2 � is defined as �IS2 ;S2 � � �IS2 ;Sc2 � −mS2 � ~rSc2 ∕S2 �� ~rSc2 ∕S2 �
using the parallel axis theorem. The inertial time derivative of the

angular momentum is given by

_HS2;S2 � H 0
S2;S2

�ωB∕N ×HS2 ;S2 (82)

The body-frame time derivative of HS2;S2 is
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H 0
S2;S2

� �I 0S2 ;S2 �ωB∕N � �IS2 ;S2 � _ωB∕N � �I 0S2 ;S2 �ωS2∕B

� �IS2;S2 �ω 0
S2∕B (83)

As for the �rS2∕N term, it can be separated into three terms

�rS2∕N � �rS2∕S1 � �rS1∕B � �rB∕N (84)

where �rS2∕S1 is equal to

_rS2∕S1 � r 0S2∕S1 � ωB∕N × rS2∕S1 (85)

�rS2∕S1 � r′′S2∕S1 � _ωB∕N × rS2∕S1 � ωB∕N × r 0S2∕S1 � ωB∕N × _rS2∕S1

(86)

These results can be combined into the second spinning body

equation of motion by dotting each term with ŝ2

ŝT2 �IS2;S2 �−mS2 � ~rSc2 ∕S2 �� ~rS2∕S1 � ŝ1 �θ1� ŝT2 �IS2;S2 �ŝ2 �θ2
�uS2 −mS2 ŝ

T
2 � ~rSc2 ∕S2 � �rB∕N− ŝT2 �IS2;S2 �−mS2 � ~rSc2 ∕S2 �� ~rS2∕B� _ωB∕N

− ŝT2 �I 0S2 ;S2 ��� ~ωB∕N ��IS2;S2 � ωS2∕N − ŝT2 �IS2;S2 �� ~ωS1∕B�ωS2∕S1

−mS2 ŝ
T
2 � ~rSc2 ∕S2 �� ~ωS1∕N �r0S2∕S1 −mS2 ŝ

T
2 � ~rSc2 ∕S2 �� ~ωB∕N �� _rS2∕S1 � _rS1∕B�

(87)

F. Backsubstitution Formulation

To get a compact formulation for both equations, they are

expressed in matrix form as such

�Mθ��θ � �A�
θ � �rB∕N � �B�

θ � _ωB∕N � �C�
θ � (88)

where the matrices above are defined as

�Mθ� �
ŝT1 �IS;S1 �ŝ1 ŝT1 �IS2 ;Sc2 � −mS2 � ~rSc2 ∕S1 �� ~rSc2 ∕S2 � ŝ2

ŝT2 �IS2;S2 � −mS2 � ~rSc2 ∕S2 �� ~rS2∕S1 � ŝ1 ŝT2 �IS2 ;S2 �ŝ2
(89)

�A�
θ � �

−mSŝ
T
1 � ~rSc∕S1 �

−mS2 ŝ
T
2 � ~rSc2 ∕S2 �

(90)

�B�
θ � �

−ŝT1 �IS;S1 � −mS� ~rSc∕S1 �� ~rS1∕B�

−ŝT2 �IS2;S2 � −mS2 � ~rSc2 ∕S2 �� ~rS2∕B�
(91)

�C�
θ � �

uS1 − ŝT1 �I 0S;S1 � � � ~ωB∕N ��IS;S1 � ωB∕N � �I 0S1;Sc1 � � � ~ωB∕N ��IS1 ;Sc1 � ωS1∕B

� �I 0S2;Sc2 � � � ~ωB∕N ��IS2 ;Sc2 � ωS2∕B

� �IS2 ;Sc2 � −mS2 � ~rSc2 ∕S1 �� ~rSc2 ∕S2 � � ~ωS1∕B�ωS2∕S1

�mS1 � ~rSc1 ∕S1 �� ~ωS1∕B� � � ~ωB∕N �� ~rSc1 ∕S1 � r 0Sc1 ∕S1

�mS2 � ~rSc2 ∕S1 �� ~ωS1∕B� � � ~ωB∕N �� ~rSc2 ∕S1 � r 0Sc2 ∕S1

�mS2 � ~rSc2 ∕S1 �� ~ωS2∕S1
�r 0Sc2 ∕S2 �mS� ~rSc∕S1 �� ~ωB∕N � _rS1∕B

uS2 − ŝT2 ��I 0S2;S2 � � � ~ωB∕N ��IS2;S2 � ωS2∕N � �IS2 ;S2 �� ~ωS1∕B�ωS2∕S1
�

mS2 � ~rSc2 ∕S2 � ~ωS1∕N �r 0S2∕S1 �mS2 � ~rSc2 ∕S2 �� ~ωB∕N � _rS2∕S1 � _rS1∕B

(92)

Note that the �Mθ� matrix is full rank even when mS1 � 0 and

�IS1;S1 � � 0. This particular case represents a universal (two-axis)

joint instead of the chain of rotary joints in the more general case.

When the �Mθ� matrix is inverted, no singularities appear due to its

full rankness.
The canonical form of equation (88) is given by

�θ � �Aθ� �rB∕N � �Bθ� _ωB∕N � �Cθ� (93)

where the new matrices are defined as

�Aθ� � �Mθ�−1�A�
θ �; �Bθ � � �Mθ�−1�B�

θ �; �Cθ� � �Mθ�−1�C�
θ �
(94)

These results can be plugged into the backsubstitution formulation

as such

�A� �B�
�C� �D�

�rB∕N

_ωB∕N
�

vtrans

vrot
(95)

using the following matrices:

�A� � msc�I3×3� −mS� ~rSc∕S1 �ŝ1Aθ1 −mS2
� ~rSc2 ∕S2 �ŝ2Aθ2 (96)

�B� � −msc� ~c� −mS� ~rSc∕S1 �ŝ1Bθ1 −mS2
� ~rSc2 ∕S2 �ŝ2Bθ2 (97)

�C� � msc� ~c� � �IS1;Sc1 � � �IS2;Sc2 � −mS1
� ~rSc1 ∕B�� ~rSc1 ∕S1 �

−mS2
� ~rSc2 ∕B�� ~rSc2 ∕S1 � ŝ1Aθ1

� �IS2 ;Sc2 � −mS2
� ~rSc2 ∕B�� ~rSc2 ∕S2 � ŝ2Aθ2 (98)
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�D� � �Isc;B� � �IS1 ;Sc1 � � �IS2;Sc2 � −mS1
� ~rSc1 ∕B�� ~rSc1 ∕S1 �

−mS2
� ~rSc2 ∕B�� ~rSc2 ∕S1 � ŝ1Bθ1

� �IS2 ;Sc2 � −mS2
� ~rSc2 ∕B�� ~rSc2 ∕S2 � ŝ2Bθ2 (99)

and vectors

vtrans �Fext − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �� ~ωB∕N �c−mS� ~ωS1∕B�r 0Sc∕B
−mS2

� ~ωS2∕S1
�r 0Sc2 ∕S2 − � ~rSc2 ∕S2 �� ~ωS1∕B�ωS2∕S1

�mS� ~rSc∕S1 �ŝ1Cθ1 �mS2
� ~rSc2 ∕S2 �ŝ2Cθ2 (100)

vrot � LB − � ~ωB∕N ��Isc;B�ωB∕N − �I 0sc;B�ωB∕N

− �I 0S1;Sc1 � � � ~ωB∕N ��IS1;Sc1 � ωS1∕B

− �I 0S2;Sc2 � � � ~ωB∕N ��IS2;Sc2 � ωS2∕B

− �IS2;Sc2 � −mS2 � ~rSc2 ∕B�� ~rSc2 ∕S2 � � ~ωS1∕B�ωS2∕S1

−mS1 � ~rSc1 ∕B�� ~ωS1∕B� � � ~ωB∕N �� ~rSc1 ∕B� r 0Sc1 ∕B

−mS2 � ~rSc2 ∕B�� ~ωS1∕B� � � ~ωB∕N �� ~rSc2 ∕B� r 0Sc2 ∕B

−mS2 � ~rSc2 ∕B�� ~ωS2∕S1
�r 0Sc2 ∕S2 − �IS1;Sc1 � � �IS2;Sc2 �

−mS1 � ~rSc1 ∕B�� ~rSc1 ∕S1 � −mS2 � ~rSc2 ∕B�� ~rSc2 ∕S1 � ŝ1Cθ1

− �IS2;Sc2 � −mS2 � ~rSc2 ∕B�� ~rSc2 ∕S2 � ŝ2Cθ2 (101)

The Appendix shows the verification of the derived equations of
motion by demonstrating that energy and angular momentum are
conserved for the example problem.

V. Numerical Simulation

This section describes a comprehensive simulation using the
dual-axis component attached to a rigid hub. The software solution
is implemented using the open-source Basilisk Astrodynamics
Simulation Framework.¶¶ The full spacecraft simulation scenario
is found here.*** The goals are to show the dynamic behavior
of the components whose equations of motion have been given
in previous sections and to demonstrate how a single implementa-
tion of the general model can describe an array of different com-
ponents.
The hub comprises a solid cylinder with a diameter of 2 m and a

height of 4m.Themass and inertia properties of the spacecraft’s hub are
given in Table 3. The center of mass of the hub is assumed to coincide

with the origin of the body frameB, a common assumption in dynamic
systems. The initial attitude coincides with the inertial frame such that

σB∕N � �0; 0; 0�T , written in modified Rodrigues parameters, and the

initial angular velocity is BωB∕N � �0.05;−0.05; 0.05�T rad∕s.
Two different simulations show the practicality and usefulness of

having one general model. In the first simulation, a two-panel sub-
system is added to the hub, as shown in Fig. 6. These panels are
rectangular prisms with a length of 4 m, a width of 2 m, and a
thickness of 0.1 m. The first panel connects to the hub by a rotary
hinge (1 DoF), and the second connects to the first through another
rotary hinge. The hinges are perpendicular to each other. This con-
figuration represents a two-panel subsystem, which can be tucked in
for launch and deployed once the spacecraft reaches orbit. The
subsystem’s properties for this specific simulation are shown in
Table 4.
The time history for both θ angles and _θ angle rates is given in

Figs. 7a and 7b. Overall, the angles are driven by the rotational spring
and dampers introduced on each hinge. However, the cross-coupling
between the two angles as the panels rotate is evident, especially
when looking at the angle rates between 0 and 10 s. After that, both
angles and angle rates are in phase with one another.
The time history for the hub’s velocity and angular velocity are

given in Figs. 8a and 8b. Here, two distinct phases are evident. At the
beginning of the simulation, each component experiences a transient
behavior that matches the oscillations shown in Fig. 7. This clearly
shows the gyroscopic coupling between the panels and the rigid hub
that is a direct consequence of the physics captured by the equations
of motion shown before. Then, when the oscillations damp out, both
the velocity and angular velocity stabilize into their steady-state
behavior. Note that both the velocity and angular velocity settle with
an oscillatory behavior, which is expected (even though no forces
are present) because the plot shows _rB∕N and not _rC∕N , the latter of
whichwould not oscillate. As for the angular velocity, the oscillations
are due to the natural gyroscopic terms from Euler’s equation
�I� _ω � −ω × ��I�ω�.
In the second simulation, instead of having two bodies connected

by 1-DoF joints, only one component is connected through a
2-DoF joint. This simulation shares the same equations and
implementation as the first simulation. The only differences lie
in how the module is set up. This configuration, where a single
panel is connected to the rigid hub, is shown in Fig. 9. The panel
consists of a flat diskwith a diameter of 2m and a thickness of 0.1m.
It is attached to the hub through a universal joint (2 degrees of
freedom). The subsystem’s properties are shown in Table 5. Since
the joint has 2 degrees of freedom, the lower body’s mass and inertia
are zero.
The time history for both θ angles and _θ angle rates is given in

Figs. 10a and 10b. The response differs from the one in seven. The
angles and angle rates settle much faster because there is no cross-
coupling between two rigid bodies, although the response still resem-
bles a spring-damper system.
The time history for the hub’s velocity and angular velocity are

given in Figs. 11a and 11b.Again, two distinct phases are evident: the
initial transient and the steady-state behavior. Note that since the
angles dampout quicker in this scenario, the transient behavior is also

Table 3 Simulation parameters for the rigid hub

Parameter Notation Value Units

Hub’s mass mhub 400 kg

Hub’s inertia about the
hub’s center of mass

B�Ihub;Bc
� B 633:�3� 0 0

0 633:�3� 0

0 0 200

kg ⋅m2

Hub’s center-of-mass
location with respect
to B

BrBc∕B
B�0; 0; 0�T m

Fig. 6 Spacecraft with a hub and two panels in a parallel-hinge con-

figuration. The figure shows two possible configurations: the translucent

represents the undeflected state, while the opaque represents the

deflected one.

¶¶Data available online at https://hanspeterschaub.info/basilisk.
***Data available online at https://hanspeterschaub.info/basilisk/examples/

scenarioSpinningBodiesTwoDOF.html.
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shorter than in the two-panel simulation. This is another clear effect
of the coupling between the panel and the hub that is evident in the
equations of motion.

VI. Conclusions

As spacecraft become more complex, there is a need for
robust simulation architectures that can replicate the spacecraft’s
behavior throughout its mission. Creating a general and modular
representation of common categories of spacecraft components saves
time and effort for the engineers while retaining the high fidelity
needed to guarantee that the mission objectives are met. This work
provides an architecture and the corresponding equations of motion
for simulating single and dual-axis rotating rigid components in a
general, modular way.

A dynamics architecture is proposed, where shared component
structures are created to minimize repeating equations of motion
and centralize the verification of common properties attributes.
The equations of motion of the single and dual-axis effectors are
comprehensively derived without making any assumptions on the

a) Angles for each hinged panel

b) Angle rates for each hinged panel
Fig. 7 Time history for component states using two panels.

Table 4 Simulation parameters for the two-panel simulation

Parameter Notation Value Units

Panel 1’s mass mS1 20 kg

Panel 2’s mass mS2 20 kg

Panel 1’s inertia about its center of mass S1 �IS1 ;Sc1 � S1 26.7�3� 0 0

0 6.7�3� 0

0 0 33:�3�

kg ⋅m2

Panel 2’s inertia about its center of mass S2 �IS2 ;Sc2 � S2 26.7�3� 0 0

0 6.7�3� 0

0 0 33:�3�

kg ⋅m2

Panel 1’s center-of-mass location with respect to S1 S1rSc1 ∕S1
S1 �0; 2; 0�T m

Panel 2’s center-of-mass location with respect to S2 S2rSc2 ∕S2
S2 �0; 2; 0�T m

Position of the origin of the S1 frame relative to B BrS1∕B
B�0; 1; 0.95�T m

Position of the origin of the S2 frame relative to S1 S1rS2∕S1
S1 �−1; 2; 0�T m

DCM of the S1 equilibrium frame with respect to the B frame B�S01B� B 1 0 0

0 1 0

0 0 1

——

DCM of the S2 equilibrium frame with respect to the S1 frame S1 �S02S1� S1 1 0 0

0 1 0

0 0 1

——

Rotation axis for S1 Bŝ1
B�1; 0; 0�T ——

Rotation axis for S2 S1 ŝ2
S1 �0; 1; 0�T ——

Torsional linear spring constant for ŝ1 k1 50 N ⋅m∕rad
Torsional linear spring constant for ŝ2 k2 50 N ⋅m∕rad
Torsional linear damper constant for ŝ1 c1 30 N ⋅m∕rad
Torsional linear damper constant for ŝ2 c2 30 N ⋅m∕rad

a) Velocity of the hub

b) Angular velocity of the hub

Fig. 8 Time history for the hub’s states using two panels.

Fig. 9 Spacecraft with a hub and a panel connected through a universal

joint.
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frame, spin axis, or the location of the center of mass. The outcome is
a universal formulation of the equations that describe these compo-
nents. Verification is completed for both formulations by verifying
energy and angular momentum conservation, which is shown in the
Appendix. It is shown that both models agree to these fundamental
physical conservation laws when only conservative forces are
present.

Appendix: Verification of the Equations of Motion in
Software

Verification is a crucial step in implementing the equations of
motion. It is impossible to guarantee that the equations are correct
and implemented appropriately without verifying the approach. In

addition, the verifiedmethod verifies that some conservation laws are

respected by checking whether some physical quantities remain

constant throughout the simulation. While this alone does not guar-

antee that the equations are correct, it gives high confidence that they
have been correctly derived and implemented.
The quantities being verified are the orbital energy, the orbital

angular momentum, the rotational energy, and the rotational angular

momentum. In the presence of gravity, a conservative force, energy

should be constant. Moreover, since gravity is a radial force, the
orbital angular momentum is also constant throughout the simula-

tion. The rotational quantities should also remain constant without

torques and nonconservative forces. The complete derivation and

explanation of why these quantities must be conserved are given

in Ref. [6].

Table 5 Simulation parameters for the single-panel simulation

Parameter Notation Value Units

Panel 1’s mass mS1 0 kg

Panel 2’s mass mS2 50 kg

Panel 1’s inertia about its center of mass S1 �IS1 ;Sc1 � S1 0 0 0

0 0 0

0 0 0

kg ⋅m2

Panel 2’s inertia about its center of mass S2 �IS2 ;Sc2 � S2 50.041�6� 0 0

0 50.041�6� 0

0 0 100

kg ⋅m2

Panel 1’s center-of-mass location with respect to S1 S1rSc1 ∕S1
S1 �0; 0; 0�T m

Panel 2’s center-of-mass location with respect to S2 S2rSc2 ∕S2
S2 �0; 2; 0�T m

Position of the origin of the S1 frame relative to B BrS1∕B
B�0; 1; 0.95�T m

Position of the origin of the S2 frame relative to S1 S1rS2∕S1
S1 �0; 0; 0�T m

DCM of the S1 equilibrium frame with respect to the B frame B�S01B� B 1 0 0

0 1 0

0 0 1

——

DCM of the S2 equilibrium frame with respect to the S1 frame S1 �S02S1� S1 1 0 0

0 1 0

0 0 1

——

Rotation axis for S1 B ŝ1
B�1; 0; 0�T ——

Rotation axis for S2 S1 ŝ2
S1 �0; 1; 0�T ——

Torsional linear spring constant for ŝ1 k1 100 N ⋅m∕rad
Torsional linear spring constant for ŝ2 k2 100 N ⋅m∕rad
Torsional linear damper constant for ŝ1 c1 50 N ⋅m∕rad
Torsional linear damper constant for ŝ2 c2 50 N ⋅m∕rad

a) Angles for each hinge

b) Angle rates for each hinge
Fig. 10 Time history for component states using one panel.

a) Velocity of the hub

b) Angular velocity of the hub

Fig. 11 Time history for the hub’s states using two panels.
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A. Single-Axis Rotating Rigid Body

The verification results are given in Figs. A1a–A1d. It should be
noted that while the plots do not immediately look constant, the scale
on the vertical axis is on the order of 10−15 to 10−14. This is very close
to machine precision, which means numerical errors slightly corrupt
the data.Moreover, the randomwalk in these plots is very common in
fixed-step integrators like the fourth-orderRunge–Kutta used in these
simulations.

B. Dual-Axis Rotating Rigid-Body Dynamics

The same verification tests are performed for the dual-axis rotating
rigid-body system, shown in Figs. B1a–B1d. As before, the angular
momentum and energy quantities are conserved throughout the
simulation, as only conservative forces and torques are acting on
the spacecraft. This implies a high confidence level that both the
mathematical derivation and the software implementation are correct
and follow fundamental physical principles.
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