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Abstract

This work introduces a novel architecture that allows for easy integration of multiple satellites in a single simulation. The new design
focuses on modularity, expandability, and easy scriptability while maintaining Basilisk’s high-fidelity and speed features. Modularity is
important to make highly specialized simulations, which include parameters related to the environment but also specific to each space-
craft. Expandability and scriptability are also key, as one of the goals is to facilitate the creation of simulations with a large number of
satellites. The architecture is implemented in Basilisk, an open-source, flight-proven physics and flight software engine, although the fun-
damental principles can be applied to any software application. Through an overhauled messaging system, the architecture also allows
for easy addition of homogeneous or heterogeneous satellites with reduced overhead for the user. This paper shows code snippets and
multithreading simulation performance to discuss how the architecture achieves its underlying objectives of simplicity, accessibility, and
performance.
� 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The interest in spacecraft constellations has rapidly
developed over the years, attracting government agencies
to sponsor both science and defense-oriented projects and
private commercial companies in the broadband communi-
cation field. Spacecraft constellations have several when
compared to single-spacecraft missions. They allow for bet-
ter, more continuous Earth coverage, which is helpful for
communications and science missions alike. Moreover, by
spreading the effort among multiple spacecraft, the mission
risk decreases, as a critical failure on one of the satellites
does not necessarily mean the end of the mission.
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The Global Positioning System (GPS), designed initially
by the U.S. Department of Defense in the 1970s, was the
first global navigation satellite system to be operational
and is arguably one the most important constellation of
satellites orbiting Earth (Enge, 1994). The National Aero-
nautics and Space Administration (NASA) has also
invested in projects that take advantage of multiple space-
craft in orbit like CYGNSS (Carreno-Luengo et al., 2021;
Ruf et al., 2017). This project uses eight micro-satellites
to collect the first frequent space-based measurements of
surface wind speeds in the inner core of tropical cyclones.
The European Space Agency (ESA) launched the Swarm
mission in 2013 to study Earth’s magnetic field and electric
currents (Macmillan and Olsen, 2013; Friis-Christensen
et al., 2008; Friis-Christensen et al., 2006). All these pro-
jects are examples of missions that take advantage of the
flexibility of having multiple satellites orbiting Earth,
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whether to take measurements of Earth or to allow for
accurate position determination.

As for private endeavors, the most notable is the Star-
link project (SpaceX, 2022), which focuses on delivering
internet services to remote and under-served locations.
SpaceX finances it and has already launched over two
thousand satellites, with tens of thousands in development.
Amazon’s Project Kuiper (Amazon, 2022) and OneWeb
(OneWeb, 2022), while in an earlier development stage,
aim to tackle a similar problem. The greater coverage
and decreased cost of multiple satellites in lower Earth
orbits (LEO and MEO) have allowed these communication
companies to populate large areas of Earth’s orbit with
smaller satellites, providing cost-effective internet services
to remote populations.

Undoubtedly, large spacecraft constellations will con-
tinue to become a core part of the spacecraft population
in Earth’s orbit, especially with the recent commercializa-
tion of space (Valinia et al., 2019). Their successful imple-
mentation requires sophisticated software that accurately
simulates each spacecraft in orbit. Extensive simulations
are a vital part of any mission, from dynamical and
hardware-in-the-loop validation and verification of mission
requirements to post-launch telemetry analysis. Many soft-
ware tools can simulate a single spacecraft with high fide-
lity and speed. MATLAB/Simulink (MathWorks, 2022)
is widely used in industry for its ease of use and the ability
to auto-generate C code. NASA’s General Mission Analy-
sis Tool (GMAT) (NASA, 2022b) and Analytic Graphic,
Inc.’s Systems Tool Kit (STK) (AGI, 2022) are powerful
software packages that focus on simulating high-fidelity
orbital dynamics, including orbit propagation, common
orbital perturbations, as well as trajectory design and opti-
mization. NASA’s ‘42’ (NASA, 2022a) and Jet Propulsion
Laboratory’s (JPL) Dynamics Algorithms for Real-Time
Simulation (DARTS) are both capable of simulating com-
plex spacecraft behavior, including attitude dynamics and
closed-loop control. While very powerful, all these software
packages have drawbacks. Matlab/Simulink runs slower
than other software packages based on C/C++. At the
same time, there is a C auto-generation feature, but the
resulting code is not human-readable, making it very diffi-
cult to optimize and debug. GMAT and STK are devel-
oped with orbit simulations in mind and currently cannot
simulate complex spacecraft attitude dynamics. NASA’s
‘42’ does not mention being able to run on different
threads, and while DARTS does have that capability, it
is not readily available to the public.

A simulation with many satellites can become cumber-
some if the software architecture is not built for multi-
spacecraft prototyping. Creating a simulation with multiple
satellites brings new challenges that many software pack-
ages are unprepared to deal with. Usually, the user must
manually include and specify every spacecraft, which for
large constellations gets increasingly time-consuming and
yields cluttered and hard-to-follow scripts. Moreover, if
the architecture is not built with multi-spacecraft simula-
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tions in mind, it likely simulates every spacecraft in series.
This means that the additional time it takes to run the sim-
ulation will roughly increase linearly with the number of
spacecraft, which becomes a problem if the goal is to sim-
ulate tens or hundreds of satellites at a time. Recently, the
industry has taken note of these issues, and there has been
a push to make the simulations of a large number of satel-
lites viable. For example, STK version 12.4 allows users to
easily create a constellation of hundreds or thousands of
satellites by specifying a multi-shelled Walker constella-
tion, a subset of the public space catalog, or by using their
custom orbit elements or ephemerides. The architecture
proposed in this paper aims to tackle the challenges of
multi-satellite simulations to make them simple to set up
and maintain while using an engineering-friendly Python
scripting interface.

While the focus of this paper is to propose a general
architecture framework that supports simulations of multi-
ple spacecraft, the specific software implementation is also
addressed. The Basilisk (https://hanspeterschaub.info/basi
lisk) astrodynamics software tool implements the architec-
ture and creates the example scenarios for this work. Basi-
lisk is a flight-proven modular mission simulation
framework used to set up high-fidelity simulations
(Kenneally et al., 2020). Its modular nature (Allard et al.,
2018a) allows for the simple integration of complex simula-
tion tasks, such as power generation and consumption,
fully-coupled attitude control devices (Alcorn et al., 2018;
Sasaki et al., 2018), complex multi-body dynamics
(Allard et al., 2018b; Panicucci et al., 2018), and orbital
perturbations. Modules are created using C/C++ for rapid
execution, while the user interacts and connects modules
using Python for easy scriptability and rapid prototyping.
While multi-satellite simulations have been developed
using version 1 of Basilisk, the associated messaging system
made creating multiple satellites very cumbersome as each
message had to have a unique message name. (Kenneally
et al., 2020).

This paper explores a new architecture that is able to
create modular and extendable multi-satellite simulations.
Implementing this redefined architecture is made possible
by deploying the new messaging system in Basilisk version
2 (Carnahan et al., 2020). While multi-satellite simulations
had been created using the old messaging system with Basi-
lisk 1, the overhauled messaging system makes the simula-
tion design substantially easier to code and scale to a large
number of satellites. With its peer-to-peer message connec-
tions, Basilisk 2 allows the modules to be easily connected
upon initialization without having the user figure out how
to connect and name modules from a single message pool.

This paper is organized as follows. Section 2 investigates
the underlying principles used to build the proposed archi-
tecture. Section 3 goes into detail about how the architec-
ture is built and what its components are. Section 4
explains the capabilities of the new messaging system and
does a comparison with the previous implementation. Sec-
tion 5 dives into how a simulation runs under the new
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architecture. Section 6 gives some qualitative examples
regarding the implementation of the new architecture.
Finally, Section 7 summarizes the points discussed in this
paper.

2. Architecture design

The proposed redesign aims to create an architecture
that effectively simulates multiple satellites while preserving
computational speed and modular model fidelity. This
novel framework is based on four principles: modularity,
scalability, parallelization, and scriptability.

2.1. Modularity

In this context, modularity is the ability of a software
framework to be divided into smaller pieces that can be
linked together to create the simulation. It means that each
simulation feature or module is detached from another,
and multiple modules must be added and linked to run
the simulation as intended. While this takes a toll on sim-
ulation time, as the modules are run separately, it saves
development time.

This is particularly important in the context of complex
spacecraft simulation. For example, different missions may
require different attitude control systems. Some may use
reaction wheels for their precise pointing characteristics,
while others may use control moment gyroscopes (CMGs)
for their larger torque needs. While physically different in
generating requested torques, both systems have the same
objective of generating a requested torque from an attitude
control law. By modularizing the software framework, the
developer can quickly switch between each attitude control
device, implemented as distinct modules, without overhaul-
ing the entire attitude control system. Basilisk has been
built from the ground up as a modular system, and this
work takes advantage of this structure.

However, for the simulation to run, the individual mod-
ules must communicate and share information. The
requested torque from the attitude control module must
be passed onto the attitude control device module (reaction
wheels or CMGs) for the attitude control system. In Basi-
lisk, the information is shared through a messaging system,
which is discussed in-depth in Section 4.

2.2. Scalability/expandability

Scalability, or expandability, represents the ability to
increase the number of satellites in a single simulation. This
is critical for scenarios with a large number of satellites,
which sets this architecture apart from usual software
designs.

For this work, scalability is achieved by standardizing
the class creation that sets up the simulation environment
and the classes responsible for simulating each spacecraft’s
dynamics and flight software (FSW) routines. Adding a
new spacecraft is implemented through a loop that creates
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and connects every module necessary for every spacecraft.
This way, the user can add and customize as many space-
craft as needed with no major changes to the framework.

2.3. Parallelization

Parallelization allows the software to exploit the archi-
tecture of modern CPUs. Nowadays, most processing units
contain multiple cores, with some cores consisting of mul-
tiple threads. Different processes can be run simultaneously
using different threads.

The importance of parallelization for multi-spacecraft
simulation is clear. Running each spacecraft’s process in
parallel lessens the otherwise steep linear increase in simu-
lation time for an increasing number of satellites. Simulat-
ing each spacecraft in parallel decreases the simulation time
associated with more satellites, although the number of
available threads limits this improvement .

This parallelization allows for multithreading when mul-
tiple threads are used simultaneously for different pro-
cesses. Multithreading has implementation challenges,
such as when two threads read and modify the same data
simultaneously or when two threads are not properly coor-
dinated in time. Making a program multithread-safe is
non-trivial. For this work, the proposed architecture allows
for multithreading of spacecraft constellations, not space-
craft formations. The difference relies on the fact that
spacecraft in a constellation do not depend on each other.
In contrast, their trajectory or flight modes in a formation
can depend on other spacecraft.

It should be noted that it is impossible to parallelize a
single spacecraft’s dynamics, as it contains strongly cou-
pled nonlinear differential equations. However, it is possi-
ble to run the dynamics of each spacecraft in separate
threads. Thus, with the presented multi-threaded approach,
the simulation speed of individual spacecraft is not
increased. Rather, the numerical speed-up is achieved by
simulating many spacecraft simultaneously.

2.4. Scriptability

Scriptability relates to the ease of simulation setup and
development. Performing a simulation with multiple space-
craft usually implies code repetition, inefficient routines,
and hard-to-follow scripts. Since this architecture is
focused on allowing the implementation of multi-satellite
simulations in a user-friendly way, the effort of creating
multiple satellites (whether homogeneous or heteroge-
neous) is greatly simplified. This allows the user to focus
on adding the necessary modules to create the intended
simulation. Another advantage is that a user can create dif-
ferent classes that, if implemented correctly, can be chan-
ged between each other in a plug-and-play fashion. For
example, two different environment classes, one around
Earth and another around Mars, can be created and
swapped as easily as changing a single line of code in the
main script. It also means that debugging is vastly simpli-



J. Vaz Carneiro, H. Schaub Advances in Space Research 73 (2024) 5416–5425
fied, as the scripts are organized per spacecraft, and bugs
are easier to track.

In addition, no recompiling is necessary to create and
modify the simulation scripts. The user can add, connect,
and change all simulation modules in Python without hav-
ing to go through the lengthy process of recompiling the C
and C++ Basilisk files.

3. Architecture framework

Guided by the goals and constraints expressed in the
previous section, the multi-satellite architecture is now pre-
sented. The architecture diagram is shown in Fig. 1.

There are four classes: Master, Environment (Env),
Dynamics (Dyn), and Flight Software (FSW). Only one
Master and Environment classes exist, while there exist as
many instantiations of Dynamics and Flight Software
classes as the number of satellites in the simulation. The
connections between class instances are done through mod-
ules taking advantage of the messaging system, which is
used to share information between them.

Each spacecraft’s Dynamics and Flight Software class
instances are independent, so they can be run simultane-
ously, saving computation time in multithreaded scenarios.
This architecture is also easily expandable by attaching
more Dyn and FSW class instantiations according to the
total number of satellites.
Fig. 1. Multi-satellite architecture diagram. Solid arrows represent
information sharing through messages. The dashed arrow below the
Master class corresponds to the functions that initialize and access all
classes. The dashed box encompasses all the simulation classes, which
contain the modules run during the simulation.
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3.1. Master class

The Master class contains the methods that create and
manage all other classes. This class is created in the sce-
nario script, where these methods can be called for initial-
ization and retrieval. To attach the Environment class to
the simulation, see the code snippet in Listing 1. Here,
BSK EnvEarth is a Python script that contains the Envi-
ronment class, with its modules inside.

Similarly, the Dynamics and Flight Software classes are
attached through the function call shown in Listing 2.
Again, BSK MultiSatDyn and BSK MultiSatFsw are
Python scripts that contain the Dynamics and Flight Soft-
ware classes, respectively. The argument of the methods
shown is a list of Dyn or FSW classes. In this case, all
spacecraft are the same, so a list of identical classes is
added as an input. If a heterogeneous set of satellites is
to be implemented, the list would contain different classes
in the proper order, as shown in Listing 3. The user would
have to create each class to suit the simulation
requirements.

The methods that access the Env, Dyn, and FSW classes
are also found in the Master class. Within the scenario
script, the functions in Listing 4 are called to retrieve and
access all classes and their modules.

3.2. Environment class

The environment class contains modules that are not
spacecraft-specific but that instead describe the simulation
environment. The gravity field is modeled within this class,
along with atmospheric perturbations such as the effect of
drag through an atmospheric density model. Ground sta-
tions for communications or imaging are also added to this
class.
Listing 1. Attach an environment model to the simulation.

Listing 2. Attach dynamic and flight software models to the simulation.

Listing 3. Attach heterogeneous Dynamic and Flight Software models to
the simulation.
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Since this class is not spacecraft-specific, it is shared
among all spacecraft classes. This also means the user
can readily change between different environments, such
as the Martian or Cislunar environments, without making
changes to each spacecraft. However, one must be careful
about setting each spacecraft’s initial conditions: a reason-
able orbit around the Moon might not work around Earth.
To solve this, the spacecraft’s initial conditions are set
using orbital elements with a canonical semi-major axis
value, i.e., the semi-major axis depends on the main body’s
radius, with the constraint that the orbit’s periapsis must be
larger than the main body’s radius.
3.3. Dynamics class

The dynamics class contains the modules that recreate
the spacecraft and its components, which means one must
exist for each spacecraft. While in most cases, all spacecraft
are identical, there may be situations where the simulated
spacecraft may have to be different. This might be the case
for a mission where a single mother ship centralizes infor-
mation from several smaller spacecraft. The proposed
architecture allows for both scenarios to be simulated,
and it is up to the user to configure different dynamics
classes if a heterogeneous constellation is required.

Critical subsystems are implemented within the dynam-
ics class. This includes the power system, which contains
solar panels for charging energy and battery storage. Com-
ponents that require energy, such as attitude control
devices, transmitters, or cameras, are also properly inte-
grated into the power system to account for energy con-
sumption and generation. The attitude control system is
also implemented in the dynamics class, and it includes
reaction wheels, control moment gyroscopes, and thrusters.
It should be noted that only the dynamics of these attitude
control devices and the corresponding effect on the space-
craft are simulated within this class. All control law algo-
rithms are part of the flight software class. Finally, the
modules related to the instrument system, which includes
cameras, transmitters, and data buffers, are also included
in the dynamics class.
3.4. Flight software class

The FSW class contains the logic to go into the space-
craft’s onboard computer. While the environment and
dynamics classes simulate physical phenomena, the flight
software class includes the modules that make decisions
based on the spacecraft’s position, velocity, attitude, etc.
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It contains the instructions and logic to make the space-
craft meet its mission objectives.

The attitude modes are set within the FSW class, which
dictates where the spacecraft should point. These may
include pointing the solar panels at the Sun for battery
charging (Sun pointing), pointing the antenna at the Earth
for downlinking data (nadir pointing), or pointing a sensor
at a target on the planet’s surface for imaging (target point-
ing). This class also contains the logic for the attitude con-
trol system. Given a reference attitude and attitude rate, a
required torque is computed and mapped onto the attitude
control devices (reaction wheels, control moment gyro-
scopes, thrusters), which drives the spacecraft’s attitude
to the reference attitude.

Beyond attitude control, relative orbit control is also
implemented, calculating the necessary burns to enable
specific formation flying maneuvers. The attitude and rela-
tive orbit control laws are derived in Schaub and Junkins
(2018).

4. Messaging system

Due to its modular nature, a messaging system is neces-
sary for this architecture. Its purpose is to transfer informa-
tion from one module to the other so that all modules have
the most up-to-date data at run time. For the simulation to
work correctly, the messaging system must be fast while
still retaining accuracy in the information it delivers
between modules. Another important aspect is its user-
friendliness: the more intuitive the system, the quicker the
user can connect modules without making mistakes.

Basilisk’s messaging system uses messages, which, at
their core, consist of C/C++ structures. This architecture
would not have been possible without substantial modifica-
tions to the messaging system in the release of Basilisk 2.0.
The new messaging system is explained in Carnahan et al.
(2020).

The prior version 1 Basilisk messaging system relied on
a message pool. All messages were stored in a container
and were available to all modules. A particular module
would grab the correct message by searching the container
for the message by its name. The name was auto-generated,
which meant that the message connections were implicit:
the user did not have to set a name for every message,
and the modules were developed in such a way that they
would search for the message with an expected predefined
name. For example, the attitude control device module
would expect an input message with the same name as
the output message of the attitude control law module. A
diagram showing the structure of the old messaging is
shown in Fig. 2. The advantages of the old messaging sys-
tem included the speed of the connections, simplicity, and
readability of message identifiers to users, and implicit mes-
sage connections, where the user did not need to worry
about connecting the correct messages between modules
(Carnahan et al., 2020). Another feature was the ability
to recreate the module connections from the single messag-



Fig. 2. Old messaging system diagram. Modules read and write messages
in a universal message pool, which is categorized by message name.
Carnahan et al. (2020).

Fig. 3. New messaging system diagram. Messages are subscribed to a
specific module in a peer-to-peer system.

Listing 5. Message subscriptions.
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ing pool, which allowed the user to reconstruct the simula-
tion structure from the message graph.

However, the system had fundamental challenges, par-
ticularly evident in multi-spacecraft simulations. First,
because multiple instances of the same module were cre-
ated, the user had to manually change the name of each
affected message for the connections to be set appropri-
ately. Take a simulation of 3 spacecraft, each with an atti-
tude feedback controller and a set of three reaction wheels.
The user would have to manually assign a name for each
output message of the three attitude feedback controller
modules so that the required torque is passed onto the cor-
rect set of reaction wheels. It is easy to imagine how cum-
bersome this would become to simulate tens of satellites.
Moreover, typos in message names made modules unable
to access the proper data, requiring the user to go through
a complicated troubleshooting process. The system also
had no way to verify that the appropriate message type
was being connected, leading to the simulation running
with incorrect information if it was not correctly config-
ured. The false configuration issues become stronger as
the number of satellites increases. Therefore, an overhaul
of this system was implemented.

Instead of a message storage container, the new system
uses message classes. Messages are now explicitly con-
nected between modules by the user, which tackles most
of the drawbacks of the old system. There is no need to
name the messages anymore, which takes care of the old
system’s naming problem. Moreover, connecting messages
between modules allows for strong type checking, as the
message identifier is now a class instance instead of a string.
When the simulation is initialized, each module verifies that
the input messages correspond to the expected type; if not,
an error flag is thrown, and the user can quickly trou-
bleshoot the problem.

A diagram for the new messaging system structure is
shown in Fig. 3. Here, modules 1 and 2 each have an out-
put message, which connects to two input messages to
module 3. Module 3 has two output messages, which are
both connected to module 4. Finally, module 5 also takes
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in the second output message of module 3 as an input mes-
sage. To set up all module connections, each input message
needs to be subscribed to the incoming output message of
the other module. A code snippet is provided as an example
in Listing 5. Further information can be found in https://
hanspeterschaub.info/basilisk/Learn/bskPrinciples/bskPri
nciples-3.html.

Most importantly, the new explicit connections allow
for much easier expandability for this architecture. There
is no need to name messages for instances of the same mod-
ule anymore. Moreover, it is possible to automatically con-
nect messages between modules in a loop for every
spacecraft instance, which makes creating simulations of
hundreds of satellites as easy as simulations of a single one.

An important consideration is that while the same mes-
sage can be used to input multiple modules, multiple mes-
sages cannot be funneled into the same module input. This
problem mainly arises when multiple modules output the
same message type, which is processed by a single module.
For example, it is common to have multiple modules that
output reference attitude messages but only a single mod-
ule that processes the information and computes the atti-
tude error. The solution is to create a stand-alone
message, connect the multiple output messages to it, and
subscribe the input message to the stand-alone message.
See more in https://hanspeterschaub.info/basilisk/Learn/b
skPrinciples/bskPrinciples-7.html.
5. Process and module design

Knowing the process and module design is essential to
understanding the simulation flow. The process architec-
ture for Basilisk is explained in depth in Kenneally et al.
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(2020). A simplified diagram of this process architecture is
shown in Fig. 4.

Basilisk processes (called ‘processes’ moving forward)
correspond to the top-level structures in Basilisk. They
can contain one or more tasks, which have individual mod-
ules. Modules within a task run at the same integration
rate. This allows the user to group modules that require
similar timestep fidelity with each other. For example, atti-
tude control devices should be updated more frequently
due to their dynamics, while orbit propagation usually
needs to be updated less regularly to capture the dynamics
accurately. To stop running the modules within a task, a
task can be disabled. Further information on process and
module implementation can be found in https://hanspeter
schaub.info/basilisk/Learn/bskPrinciples/bskPrinciples-1.h
tml and https://hanspeterschaub.info/basilisk/Learn/bskP
rinciples/bskPrinciples-2b.html.

For this work, each class contains its process. The envi-
ronment and dynamics processes only contain one task, as
all modules can be updated at the same rate and will never
be disabled. However, each FSW process has multiple tasks
associated with each flight mode. This happens because
when a flight mode is active, all others should be disabled.
Each process is assigned to a single thread when running
the scenario using multithreading. It is impossible to sepa-
rate and assign different tasks within a process to other
threads. Nonetheless, more than one process can run
within each available thread.

For the simulation to run as intended, the order of ini-
tialization and execution is significant. Wrong initialization
of the simulation class instances can lead to modules trying
to connect messages to other modules that do not exist, as
they have not been created yet. Poor execution order leads
to mismatched modules and potentially outdated informa-
tion, impacting the guidance and control algorithms.

For this architecture, the initialization and execution
orders are identical. This is because the flow of information
dictates how the modules are created and how they are
Fig. 4. Basilisk process architecture. Kenneally et al. (2020).
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updated at each time step. The modules that do not depend
on others to run are created/updated first, and the ones
with the most dependencies are last in line.

Following this hierarchy, the environment class is the
first to be initialized and updated. It contains modules that
compute the position and velocity of the gravitational bod-
ies, the density of the atmosphere, or even the position of
ground stations. All these modules do not depend on the
spacecraft and, therefore, have no external dependencies.
The gravitational bodies’ information is drawn from a cat-
alog, the atmosphere’s density follows a statistical model,
and the position of ground locations can be calculated
from initial conditions and the planet’s rotation.

The dynamics class is updated next. Some modules are
self-contained and do not need information from the envi-
ronment class. For example, the attitude is propagated
using the spacecraft’s previous attitude, its inertia, and
the dynamics from attitude control devices such as reaction
wheels. However, the environment modules do influence
some of the dynamics modules. Orbit propagation is done
in the dynamics class, and it depends on where the gravita-
tional bodies are located and their properties. Therefore,
this class directly depends on the environment class
modules.

The final class to be updated is the Flight Software class.
FSW contains the modules most dependent on other
classes: ground locations for tracking and spacecraft atti-
tude for the control law are examples of this. However,
the FSW class can have some effect on dynamics modules.
For example, given the current and reference attitudes, one
FSW module uses a control law to request a desired torque.
This torque is mapped onto the attitude control devices,
which impacts their dynamics. However, these devices are
simulated within the dynamics class. This can create prob-
lems, as the dynamics have already been updated once the
FSW modules are run. Ultimately, this is not a problem
because the information passed from FSW to the dynamics
class only needs to affect the simulation at the next time
step, when the Environment-Dynamics-FSW loop is rerun.

With multiple spacecraft, this execution order becomes
even more critical. All dynamics class instantiations are ini-
tialized and run before any FSW class instances are
updated. This ensures all FSW class instances have the
most up-to-date information about the spacecraft’s proper-
ties. While most FSW modules concern their spacecraft,
there are times when information regarding other space-
craft is used. Suppose a formation of satellites is set to
do science on Earth. Depending on the current scientific
objective, the satellite formation might take different
shapes, such as a string of pearls or a double echelon.
Assuming that there is a chief satellite, the other spacecraft
must receive information about its position and velocity to
maintain or change from one formation shape to the other.
Therefore, it is critical that the FSW class instantiations of
each deputy satellite have updated information regarding
the dynamics of the chief and potentially others in the con-
stellation. Unfortunately, while this scenario can be simu-



Fig. 5. Orbits for a three-spacecraft simulation around Earth.
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lated with the current implementation, it is incompatible
with the current multithreading implementation.

6. Numerical simulations

Some qualitative and quantitative examples of the soft-
ware package in practice are shown in this section. The
intention is to illustrate how the topics explained in previ-
ous chapters can be used in simulations with any number of
satellites. In particular, for this paper, the ease of use of this
architecture is demonstrated through an example scenario
where the environment and the number of spacecraft are
changed by modifying only one or two lines of code. The
goal is to show how, by generalizing the architecture, it is
possible to readily change the number of spacecraft or
the simulation environment without significantly changing
the code. The example scenario consists of three satellites
orbiting Earth. Then, the environment is changed to Mer-
cury, showcasing the plug-and-play attributes of the multi-
satellite framework. Then, the environment is changed
back to Earth, while the number of satellites increases to
twenty. All these changes are done through minimal code
change, which underlines the benefits of the proposed
architecture.

Many examples that use the proposed architecture can
be found online. The Basic Orbit Scenario (https://hanspe
terschaub.info/basilisk/examples/MultiSatBskSim/scenar
iosMultiSat/scenario_BasicOrbitMultiSat.html) creates a
constellation of satellites around Earth or Mercury. The
Attitude Guidance Scenario (https://hanspeterschaub.info/
basilisk/examples/MultiSatBskSim/scenariosMultiSat/sce
nario_AttGuidMultiSat.html) expands on the previous sce-
nario and adds attitude control devices and their corre-
sponding algorithms. Finally, the Station Keeping

Scenario (https://hanspeterschaub.info/basilisk/examples/
MultiSatBskSim/scenariosMultiSat/scenario_StationKee
pingMultiSat.html) also adds algorithms that can change
the orbit of each spacecraft through DV-burn scheduling
based on orbital element errors. The underlying files can
be found in the MultiSatBskSim directory (https://han
speterschaub.info/basilisk/examples/MultiSatBskSim/inde
x.html).

Moreover, a qualitative analysis of the multithreading
performance is also shown to underline the importance of
parallelization in a simulation with multiple satellites.
The objective is to convey that parallelizing Basilisk’s pro-
cesses into different threads decreases the cost of simulating
additional satellites, particularly for more satellites. An
example of a multithreading implementation can be found
in Multithreaded Basic Orbit Scenario (https://hanspeter
schaub.info/basilisk/examples/MultiSatBskSim/scenarios
MultiSat/scenario_BasicOrbitMultiSat_MT.html).

6.1. Example scenario

As an illustrative example of the proposed architecture’s
capabilities, a three-spacecraft simulation around low-
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Earth orbit is created in Basilisk. Since the focus is on
the simulation setup, no flight software modules are
included. Each spacecraft is treated as a singular rigid body
in orbit. The inertial orbits of all spacecraft are shown in
Fig. 5.

Here, an environment class with Earth as the main grav-
ity body is added to the simulation. All spacecraft are
homogeneous, which means they have the same dynamics
and FSW classes. The code for the class setup is shown
in Listing 6, where the number of spacecraft is set to
numberSpacecraft ¼ 3.

The main gravity body is now changed to Mercury.
Assuming an environment class with Mercury as the main
body exists and is appropriately set up, changing the envi-
ronment requires little effort. The setup in the scenario
script is almost identical to the one with the Earth environ-
ment, as shown in Listing 7. The inertial orbits for this sce-
nario are shown in Fig. 6. The scale of this plot is purposely
the same as the one Fig. 5 to show the different sizes of
Mercury and the satellite’s orbits. This happens because
the spacecraft’s initial conditions are set through orbital
elements, with the major axis being proportional to the
main body’s equatorial radius. This allows the user to
freely change the gravity body without worrying about
the orbits intersecting the planet, keeping them in the low
orbit regime (see third line of Listing 8).

For the final example, the environment class is set back
to Earth as the main body. The number of spacecraft is
increased to twenty, which is done through setting
numberSpacecraft ¼ 20. With no other change, a
twenty-satellite simulation is created, together with dynam-
ics and FSW modules for each spacecraft instance. This
includes an attitude control system, power system, etc.
The orbits for this scenario are shown in Figs. 7. Since



Listing 6. Setup for a simulation around Earth.

Listing 7. Setup for a simulation around Mercury.

Fig. 6. Orbits for a three-spacecraft simulation around Mercury.

Listing 8. Initial conditions loop.

Fig. 7. Orbits for a twenty-spacecraft simulation around Earth.
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the initial conditions are set in a loop for all spacecraft, the
software can adapt to any number of spacecraft that the
user intends to simulate. This loop is shown in Listing 8.
Fig. 8. Multithreading performance in terms of simulation time. N þ 1
threads are used for each simulation, where N is the total number of
spacecraft. The time is averaged over ten runs on a CPU with 16 threads.
6.2. Multithreading performance

To show how parallelization impacts performance, sim-
ulations using single and multiple threads are run with an
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increasing number of spacecraft. Performance is measured
through simulation time, including all initialization routi-
nes and the simulation itself. A decrease in simulation time
implies better performance. The results are shown in Fig. 8.

As expected, the multithreading application consistently
delivers faster simulation times when compared to the
single-threaded scenario. More importantly, the simulation
time slope with the number of satellites for the multithread-
ing curve is lower than for the single thread. This means the
additional simulation time incurred from adding more
satellites is lower, which is critical for running simulations
of tens or hundreds of satellites in a reasonable time frame.
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It should be noted that for this scenario, a constellation
of satellites is used instead of a formation of satellites. The
difference between these two options is that there is no
communication between spacecraft and no active relative
formation control in a constellation. This means that all
spacecraft dynamics are independent from each other.
There is one environment class shared between all space-
craft and one dynamics class instance for each satellite,
with no FSW modules present. Therefore, a total of
N þ 1 processes are running concurrently: 1 for each N

spacecraft and the environment class shared with all
satellites.

While data-sharing is possible using multithreading,
enabling a formation of spacecraft, it is harder to imple-
ment because all processes must be up to date across all
threads before updating the modules that need that infor-
mation. Failure to do so means that modules (mainly
within the respective FSW classes) might run with incorrect
or out-of-date information. Therefore, the current imple-
mentation is not multithread safe, although there are plans
to implement that feature.

7. Conclusion

In this work, the underlying principles of the architec-
ture design (modularity, scalability, parallelization, and
scriptability) are presented to justify the design choices
made. The architecture framework is presented, aiming to
solve the drawbacks of a multi-satellite simulation. While
the architecture is implemented using the Basilisk software
tool, it is framed in a general enough way to be applied to
any other software application. The challenge of sharing
information between different modules is tackled using
the new messaging system, which is based on peer-to-peer
message connections. Combined with the proposed process
and module design, this system guarantees that each mod-
ule has the most up-to-date data at each iteration. The
example scenarios show the ease of changing the simula-
tion parameters after the architecture is implemented. This
ease of scriptability is important when different simulation
parameters are to be evaluated, as it speeds up the process
of changing the environment or the spacecraft itself.
Although still in development, the multithreading capabil-
ities show promising speed increases, with the most notable
changes when the number of simulated satellites is greatest.
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