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Target sequencing is an important aspect of agile Earth-observing satellite scheduling. The objective of

the problem is to find a feasible imaging sequence that maximizes the cumulative value of unique heteroge-

neously valued requests; no expendable resource constraints (power and data storage) are considered. Two

challenges are encountered: transition times between targets are dictated by dynamics of an arbitrary controller,

and the solution space is combinatorial with respect to request count. To find dynamically accurate time-dependent

attitudemaneuver transition times, a neural network is trained on simulated slew data; this allows for the generation

ofmorephysically accurate, and thusbetter performing, schedules thanwhenusing the traditional approachof lower-

order models for slew feasibility. Next, slews between requests are represented by a sparsified graph, and a mixed-

integer linear program is formulated to solve them; the sparse formulation keeps the problem tractable over longer

planning horizons and larger numbers of requests when compared to the standard approach. The solutions are

optimal up to the quality of the transition time estimator and a time discretization. Finally, the solutions are verified in

a high-fidelity simulation, demonstrating validity when deployed on a lifelike system. Time-dependent request values

and multiple satellites are also considered.

Nomenclature

ĉ = instrument boresight direction
E = set of graph edges
e = graph edge
F = set of fulfilled requests
H = horizon length (orbits)
N = number of satellites
O = request opportunities
o = request opportunity with interval �to; tc�
p = partition of vertices
R = set of all requests
r = request location
r = request value
S = sequence of request visitations
t = time
U = set of unfulfilled requests
V = set of graph vertices
v = request visitation or graph vertex corresponding to a

time-request pair
W = set of graph edge weights
w = graph edge weight
x = satellite trajectory
x = vertex visitation decision variable
y = request-fulfillment-decision variable
z = transition-credit-decision variable
Δt = slew duration
δt = time discretization
θ = network parameters
θ = angle between instrument and request directions

ρ = request value-location tuple
σ = satellite attitude
τ = loss skewness parameter
ϕ = elevation angle
ω = body rotation rate

Subscripts

i�; j� = vertex index(es)
n = request index dk

Superscripts

B = body-fixed frame
P = planet-fixed frame
s = satellite index

I. Introduction

T HE agile Earth-observing satellite scheduling problem
(AEOSSP) aims to maximize the quantity and value of requests

fulfilled by an orbiting imaging satellite while managing resources
[1]. As compared to a standard Earth-observing satellite that can
only slew across-track to capture off-track targets, “agile” indicates
that the satellite has three axes of control, giving it a larger field of
regard by allowing requests to be imaged along-track. The transition
time between two targets is thus both target- and time-dependent, as
the satellite’s initial and target attitude depends on what time what
request is being imaged. The reward obtained from imaging can
also be time dependent, if factors such as time of day or squint angle
strongly impact image quality. Particularly in environments with a
high density of requests, finding an optimal request sequence is both
challenging and rewarding from a mission-objective perspective.
Earth-observing satellites are used to collect many types of data,

for example, water and soil composition (NASA’s Earth Observer 1
[2]), wildfire and flood monitoring (European Space Agency’s
Sentinel-2 [3]), and on-demand image requests from commercial,
scientific, and defense customers (Centre National d'Études Spatia-
les’s Pleiades [4] and Planet’s Dove constellation [5]). In all of these
cases, optimally scheduling observations increases the volume of
data delivered by the satellite or constellation. In cases where certain
observations are more critical, such as for a shared resource like
Pleiades or when rare phenomena are observable, scheduling that
optimizes for request priority is important.
Graph-based representations of the AEOSSP, in which imaging

actions are represented by vertices, and feasible slews between
targets are represented by edges, are common in the literature. Gabrel
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et al. [6] offers an early graph-based treatment of the problem that
assumes a simple transition-time model and is computationally lim-
ited to small problem instances; additionally, unlike more recent
work, off-the-shelf optimization frameworks are not used. Augen-
stein [7] leverages the directed acyclic properties of graphs represent-
ing this problem. Augenstein’s formulation treats each imaging event
as a single vertex (as opposed tomultiple vertices, each representing a
different imaging time within an opportunity window). As a result,
Augenstein is able to use a simple dynamic programming algorithm
for optimization. Eddy and Kochenderfer’s [8] exploration of effi-
cient planning for constellations takes a similar approach to single-
point request representation, focusing more on the deconfliction of
requests between satellites than on individual agile imaging optimi-
zation. Peng et al. [9] briefly considers a graph-based method that
uses multiple vertices per observation window, as in this work; this
introduces challenges that prevent the use of simpler dynamic pro-
gramming solutions for path maximization such as those used by
Augenstein and necessitates the use of other combinatorial optimi-
zation methods.
Iterative local search and genetic algorithms are good at quickly

finding near-optimal solutions to highly combinatorial problems
such as the AEOSSP, although they lack the optimality guarantees
of mixed-integer programs (MIPs). Lemaître et al. [10] offers one
of the first local search approaches to an alternate formulation of
the problem that considers strip imaging instead of point imaging,
in comparison with other methods. Dilkina and Havens [11] com-
pare a variety of early approaches, including iterative local search
(ILS) and genetic methods, to the problem for a single satellite
over small (6 h, ∼1000 request) test cases. Mao et al. [12] gives
another genetic-algorithm-based method for multi-objective opti-
mization but does not report on specific-scenario performance.
More recently, Verbeeck et al.’s [13] advances in local search for
time-dependent orienteering problems (a class that includes the
AEOSSP) have led directly to the development of performant ILS-
based AEOS solvers by Liu et al. [14] and Peng et al. [9]. These
two papers consider both time-dependent transition times and time-
dependent rewards, planning in up to medium-sized environments
with hundreds of targets over a day-long period in tens to hundreds
of seconds.
MIP and mixed-integer linear program (MILP) solutions to the

AEOSSP offer an alternative method that quantifies solution sub-
optimality and, with enough time, finds and certifies optimality. As
such, they can both be used practically as a planning algorithm or for
benchmarking the performance of other methods relative to opti-
mality. Peng [9] formulates the single satellite problem as a MIP to
have an optimal comparison for their local search algorithm that
considers time-dependent transitions and rewards but finds that the
formulation is unable to find a solution in a reasonable amount of
time or without running out ofmemory for anything but the smallest
instances. Their MILP formulation is comparable to the MILP-D
formulation described in this paper. Cho et al. [15], Chen et al. [16],
Kim et al. [17], and Wang et al. [18] use MILP formulations for
constellation-wide image and downlink scheduling under various
constraints, each using heuristics to initialize the solver for
improved speed, as multisatellite problems can quickly become
intractably large. Cho et al. include continuous models for power
and data, and models up to 12 satellites for up to 2 days’ planning
with up to 700 tasks; reasonable, but suboptimal, solutions are
found within 10,000 s but are not evaluated in a secondary simu-
lation environment. Chen et al. introduce continuous variables to
more effectively schedule overlapping requests, considering up to
1000. Kim et al. only consider up to 100 tasks, although include
complex task specifications such as stereoscopic imaging. Wang
et al. introduces cloud uncertainty and optimizes over reward and
riskiness for up to 300 requests. In general, the literature tends to
consider at most a few hundred to a thousand targets over a few
orbits to a day.
The treatment of transition times in existing literature tends to be

simplified compared to the realities of spacecraft dynamics when
transitioning from tracking one target to another. The most accurate
(but most expensive) approach is to execute a dynamics model to

test each transition, as proposed by [7]. Another approach is to use a
low-order linear model that considers only the difference in roll
angle [15,17] or the total angle change [9,14], or other unspecified
abstract transition constraints [16,17]; although these methods are
convenient for planning problems, they do not fully capture the
nonlinear nature of attitude transitions. An ablation study in this
paper demonstrates how lower-order models fall short. Nag et al.
[19] use a discretized model of transitions among various attitudes;
this captures more of the dimensions that impact transition dynam-
ics but is still a lower-order and lower-dimensional model.
Ultimately, preplanning approaches such as MIP and ILS solvers

suffer from two major limitations: 1) high computational require-
ments and, as a result, slow solution times, especially as the problem
size increases; and 2) being open loop, brittleness to a changing,
uncertain, or mismodeled environment (in the case of MIP, the
linearization of resources guarantees some degree of mismodeling
if included). If the plan is unsuccessfully executed or more desirable
objectives are added, either a new plan must be computed on the
ground and reuploaded to the satellite or, computation capacity
permitting, the satellite may locally repair a short horizon of the
upcoming plan [20]. Parjan and Chien [21] address this with a
decentralized approach that combines individual heuristic search
with broadcasting to iteratively deconflict tasks. In the case of a
sufficiently large constellation, Xu et al. [22] demonstrate that the
optimization problem becomes one of achieving the best possible
continuous coverage rather than considering individual target
scheduling.
A newer approach is reinforcement learning (RL), which is a

broadly applicable framework for autonomy that provides three
primary benefits: low computational cost, closed-loop planning,
and the ability to include any constraints that can be modeled [23].
Nazari et al. demonstrates that RL is effective at solving general
waypoint routing problems [24]. Applied directly to spacecraft task-
ing, Harris et al. [25], Hadj-Salah et al. [26], Eddy and Kochenderfer
[27], and other recent work [28] formulate various Markov decision
processes (MDPs) for the AEOSSP. References [25,26] use simpli-
fied probabilistic models for the spacecraft dynamics. In [25] and
later [29–31], Harris et al. and Herrmann and Schaub develop the
problem with a full-fidelity simulation and utilize shields to ensure
operational safety. Zhao et al. consider target scheduling using two
phases of RL, the first selecting observation windows and the second
picking observation times within the windows [32]. MDP represen-
tations of other spacecraft- tasking problems, such as small-body
imaging, have also been formulated and solved with RL [33,34].
These methods represent an emerging alternative to preplanning
methods but are still maturing and are less directly comparable to
the other classes of approaches.
In this paper, novel developments are made toward accurately

representing and efficiently solving the target sequencing portion of
the AEOSSP (i.e., without resource management). First, time-
dependent transition times between requests are modeled using a
neural-network function approximator, a significant improvement
in accurately expressing dynamics over the low-order models for
transition times. This improvement in transition-time estimation
translates to better-performing plans than when using common
lower-order models because neither is time wasted due to an over-
conservative estimator nor are requests missed due to an overly
aggressive estimator. The structure of the problem is represented as
a sparse graph that accounts for different imaging times for each
request, and an efficient MILP formulation is developed for the
sparsified graph that maintains optimality guarantees. Compared to
the standard dense graph formulation, the sparse formulation is
faster, more memory-efficient, and more scalable to larger prob-
lems, remaining tractable for thousands of requests. Formulations
for time-independent and -dependent rewards are given, allowing
for the best performance on a specific problem type. Solutions to the
planning problem are evaluated in a full-fidelity spacecraft simu-
lator, demonstrating end-to-end performance of the proposed
method, as opposed to only analyzing the solution quality in the
abstract planning space.

794 STEPHENSON AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

A
ug

us
t 1

2,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
36

09
7 



II. Problem Formulation

A. Optimization Objective

The objective of the agile multisatellite target sequencing prob-
lem is to determine a feasible sequence of request visitations Ss �
vs1; v

s
2; : : : for each fixed-orbit satellite that maximizes the sum

of imaging values of the requests satisfied. A request visitation vsi �
�tsi ; ρsi � for satellite s is a tuple of a visitation time and request, and
a request ρsi � �rsi ; rsi �s; t�� consists of a ground location and value
function:

arg max
fS1; : : : ;SNg

N

s�1

jSsj

i�1

rsi �s; tsi � (1)

subject to Δts�vsi ; rsi�1� ≤ tsi�1 − tsi ∀ vsi ; v
s
i�1 (2)

ρni ≠ ρmj ∀ i ≠ j ∨ n ≠ m (3)

That is, find the sequences that maximize the sum of values at
imaging time for each imaged target [Eq. (1)] while ensuring that
there is sufficient time for each satellite to transition between
requests [Eq. (2)] and while only imaging each target at most once
[Eq. (3)].

B. Request-Value Model

Earth-observation models can be broadly classified into two
categories: continuous imaging, in which the satellite scans a
strip of the planet’s surface; and point-based imaging, in which
the satellite aims at a point target and collects a single, near-
instantaneous image. Request models can be similarly classified:
area requests, for which the operator specifies a region of inter-
est; and point requests, for which individual point targets are
identified. Eddy and Kochenderfer [8] describe that area requests
can be decomposed into point targets, making the latter distinc-
tion less consequential. In this work, point-based observation
and request models are considered.
Requests ρn ∈ R take the form of a location-value tuple ρn �

�rn; rn�s; t��. For each satellite, each request has a set of opportunities
o ∈ Os

n, where o is an interval for which all imaging requirements
are satisfied; these may include constraints on range, elevation,
time of day, or other factors. Opportunities are known a priori due
to the fixed nature of the satellite’s orbit. For requests with time-
independent value, the value is a constant rconstn during opportunity
and zero otherwise:

rn�s; t� �
rconstn if t ∈ o ∈ Os

n

0 else
(4)

If value is time-dependent,

rn�s; t� ≡
rt:d:n �s; t� if t ∈ o ∈ Os

n

0 else
(5)

where rt:d:n may be a function of any time-dependent values, such asϕ
or illumination angle.
In many applications, it is undesirable to repeatedly fulfill

the same request. Thus, requests are categorized as unfulfilled U
or fulfilled F. All requests start in the unfulfilled set, R � U.
If ρn is fulfilled, ρn is moved from U to F. The no-reimaging
constraint [Eq. (3)] can be alternatively expressed using an alter-
native request-value function in the underlying model of the
environment:

runiquen �s; t� �
rn�s; t� if ρn ∈ U

0 if ρn ∈ F
(6)

C. Fulfillment Dynamics

To fulfill ρn, the satellite must satisfy collect requirements for ρn
at t. For the target to be collected, the sensor boresight direction ĉ
must point in the target direction

ĉref�t; s; n� � rn − xs�t�
jrn − xs�t�j (7)

within a threshold

∠�ĉ; ĉref� < δθmax (8)

This geometry is shown in Fig. 1. The satellite must be settled such
that the angular rate of the boresight relative to the target is minimal;
the reference angular velocity between the spacecraft frame B and
planet frame P for tracking the target is

ωref
B∕P�t; s; n� �

�Pd∕dt�xs�t� × ĉref�t; s; n�
jrn − xs�t�j (9)

assuming zero about-boresight rotation. To collect the image, the
body rate must be within a threshold of the reference

ωB∕P − ωref
B∕P < δωmax (10)

If Eqs. (8) and (10) are satisfied at t for some s and n, the request may
be fulfilled and yield value rn.

D. Transition Dynamics

To execute vj, the satellite must be able to transition from its state
at ti to a state that satisfies the collect requirements for ρj at tj. The
slew transition time must be less than the time until the planned
request visitation:

Δts�σi;ωB∕P;i; x
s�t�; rj� ≤ tj − ti (11)

It is reasonably assumed that a satellite is always capable of tracking
the target once it has settled on the target; if thresholds are met before
the desired collect time, the satellite can track the target in a settled
state until the chosen time is met.
The function Δts is challenging, if not impossible, to find analyti-

cally, due to the time-varying tracking reference and is highly depen-
dent on the attitude control law implemented on the satellite. By
imposing a few assumptions, the function gains properties that are
useful when applied to the planning task:
1) The attitude controller is deterministic.
2) The controller performs identically, regardless of rotation about

the boresight axis (e.g., an inertia-compensated controller that slews
in an axis-agnostic manner) or the controller maintains a fixed about-
boresight rotation relative to the trajectory (e.g., a controller that
maintains zero yaw in the Hill frame).
3) As previously stated, the satellite’s position trajectory is a

known fixed orbit.

Fig. 1 Pointing directions, references, and thresholds.
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With these assumptions, Eq. (11) reduces to

Δts�ĉi;ωB∕P;i; ti; rj� ≤ tj − ti (12)

Additionally, there is a bijective mapping between an imaging action
and upcoming target tuple �vi; rj� and the arguments to the transition
time function inEq. (12) via Eqs. (7) and (9).As a result, the transition
feasibility constraint can be expressed directly between two request
visitations:

Δts�vi; vj� ≤ tj − ti (13)

III. Slew Estimation

The introduction of Eq. (13) hints at methods employed in Sec. IV,
namely, checking whether transitions among many vi and vj are
feasible in order to generate a search space of feasible sequences to
find the optimal sequence. However, evenwith intelligent choices for
vi and vj, many evaluations ofΔts are required.Whereas this is trivial
for a toy problem that assumes constant or linear transition times,
transitions for flightlike systems in general lack an analytical solution
for Δts; as shown in the results, approximating transitions with a
simplified model leads to a loss of optimality on the true system, as
underestimates of Δts may incorrectly classify infeasible transitions
as feasible, whereas overestimates of Δts may lead to idle time.
Running a dynamics simulation of every tested transition is pro-

hibitively expensive. As an alternative, a neural network (NN) is
trained to estimate Δts. This approach allows for a computationally
low-cost evaluation of Δts for many slews.

A. Network Architecture

The slew estimation network is of the form

Δt̂s � Δts�ĉ0;ωB∕P;0; x
s�t0�;

Pd

dt
xs�t0�; rn; θ� (14)

with all quantities expressed in the P frame. The initial position and
velocity of the satellite are given rather than t0, allowing the estimator
to generalize to any satellite with the same attitude control dynamics,
assuming orbit evolves the same in theP frame overΔts for all t. This
holds for two-body dynamics with J2 and altitude-based atmospheric
drag perturbations; practically, other perturbations are negligible
over the short timescales of Δts.
The estimator is a feedforward multilayer perceptron (MLP)

shown in Fig. 2. To improve the performance of training, domain
knowledge is leveraged: the attitude and rate errors [i.e., the left-hand
side (LHS) of the inequalities in Eqs. (8) and (10)] are computed from

and concatenatedwith the inputs passed to theMLP. This information
is useful for the network becauseΔt tends to be highly correlatedwith
the attitude and rate errors. The other inputs to the network are still
necessary to resolve more subtle nonlinearities, such as those due to
planetary rotation or controller saturation.

B. Training Procedure

To generate training data, slews to random targets nearby are
executed in the simulation environment, ignoring opportunity-
window limitations. Satellite states that are inputs to the NN are
recorded at various points along each slew, including the initial and
final states. The remaining duration of the slew from each point is
calculated at the end of each slew for use in regression.
A feedforwardMLP is trained over the state-time remaining tuples

using the Adam optimizer [35]. An asymmetric loss function [36]
combining the properties of root mean squared error and “pinball”
losses is used:

L�t; t̂; τ� � �1 − τ��t̂ − t�2 if t̂ ≥ t

τ�t̂ − t�2 if t̂ < t
(15)

The parameter τ ∈ �0; 1� can be adjusted to tend toward over-
estimation ofΔts (if τ > 0:5), which is desirable for this application.
An ablation study over τ is presented in Sec. V.B.

IV. Optimal Agile Satellite Scheduling

A two-step approach is taken to solve the AEOSSP. First, a graph
is constructed for each satellite that represents the feasible transi-
tions between requests. The solution space satisfying Eq. (2) is
abstracted as an edge-weighted directed acyclic graph. Vertices v ∈
Vs represent time-request visitation tuples. Visitations with a fea-
sible transition between them are connected by edges esi;j � �vsi →
vsj� ∈ Es, where each edge has a scalar weight ws

i;j representing the
value of fulfilling the request at vj if it has not yet been fulfilled.
Then, a MILP is formulated to find the value-optimal sequence of

requests [Eqs. (1) and (3)] inspired by formulations of the traveling
salesman problem [37]. For each edge between vertices vsi and vsj ,
a binary variable xsi;j represents the inclusion or exclusion of the
transition in the sequence Ss. Vertices are partitioned by request

pn � fvsi jρsi � ρng (16)

which allows for the formulation of nonrepetition constraints.
Three variations of the process are presented. A naïve approach,

MILP-D(ense), for generating and solving a dense graph of feasible
slews using the NN-based Δts estimator, is introduced. A modifica-
tion to reduce the size of the graph, MILP-S(parse), by removing
redundant edges, is presented. Finally, a method to account for time-
dependent values, MILP-T(ime)D(ependent), is introduced. These
methods are summarized in Table 1.

A. MILP-D: Dense

1. Graph Construction

Algorithm 1 describes the process of recursively constructing a
graph of all feasible slews for a satellite under the assumption of time-
independent request values, shown in Fig. 3. The algorithm begins
with a single vertex vs0 representing the satellite’s initial state as
parameterized by the network inputs in Eq. (14). The transition time

Multilayer

Perceptron

(MLP) 

Loss

x

r

F
ea

tu
re

s

Error Calc.

Slew Time

t

, 

Fig. 2 Slew transition-time estimation network.

Table 1 Comparison of MILP formulation complexities

Graph jVj Graph jEj Binary variables Time-dep. rewards

MILP-D O�NHjRj∕δt� O�HjRjjVj� jEj ∈ O�NH2jRj2∕δt� ——

MILP-S O�NHjRj∕δt� O�jRjjVj� jRj � jEj ∈ O�NHjRj2∕δt� ——

MILP-TD O�NHjRj∕δt� O�jRjjVj∕δt� 2jEj ∈ O�NHjRj2∕δt2� ✓
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Δts�vs0; ⋅� is evaluated for all requests with opportunities in the
upcoming planning horizon (if possible, leveraging efficient batch-
wise evaluation offered by most NN frameworks). If the estimated
transition time indicates that the target is reachable before or during
an opportunity window, a new vertex is added to the graph at the
arrival time, clamped within the opportunity window. Note that only
the earliest arrival from some v to some o must be included while
preserving the optimality of the solution space for fixed-value targets,
because opportunities reachable from ρn at ti are a superset of
opportunities reachable from ρn at tj > ti, with earlier departure
times yielding the same or earlier arrival times. An edge with weight
equal to the incoming target’s value is added between the new vertex
and the initial vertex. Any new vertices added this way are marked
active A. The process is repeated for each active vertex until no new
vertices are added. The maximum-weight path starting at vs0 that
avoids target duplication is the optimal sequence of requests to fulfill.
The design of the NN (i.e., such that there exists a bijection

between the network inputs and time-request tuples recorded at each

vertex) keeps the dimensionality of the graph low while retaining as
much information about the dynamics as possible. If one were to
include about-boresight rotation or other time-evolving quantities
in the vertex information and network inputs, the dimensionality of
the graph would increase exponentially with the planning horizon,
making the problem intractable. Furthermore, visitation times are
discretized to some δt so that edges are formed between existing
vertices, allowing the graph to “reconnect” to itself. Without this
discretization, jVj would grow exponentially with the planning
horizon.

2. Mixed-Integer Linear Program

The MILP used to solve the dense graph is straightforward. To
enforce nonrepetition, each request partition may only be visited by
one satellite at most once. Formally,

maximize
N

s�1 i;j

ws
i;jx

s
i;j (17)

subject to
h

xsh;i � bsi ≥
j

xsi;j ∀ i (18)

N

s�1 vsj∈pn i

xsi;j ≤ 1 ∀ n (19)

where

bsi �
1 if i � istart

0 else
(20)

The objective function, Eq. (17), aims to maximize the sum of
values for traveled edges, recalling that the weight ws

i;j of edge
�vsi → vsj� is equal to the reward for visiting vsj. The first constraint,
Eq. (18), is the in–out constraint. For each vertex, the number of
outgoing connections must be less than (at the end of the sequence)
or equal to (at all other points) the number of incoming connec-
tions. The one exception is at each satellite’s initial vertex, where bsi
is set to 1 to seed the graph. Because the graph is acyclic, the
summation on the LHS must be 0, reducing the constraint to

1 �
j

xsistart ;j (21)

As a consequence, all other vertices are restricted to one incoming
and one outgoing edge selected, producing a feasible sequence. The
second constraint, Eq. (19), enforces at most one visitation of each
partition, preventing duplicate credit for a single request by ensur-
ing that each request is in U when visited.
Although it would be possible to account time dependence with

this formulation by applying the aforementioned method to the
graph, this would lead to optimization problems of an unacceptable
size. Peng et al. [9] uses an even denser method as an optimal
benchmark for time-dependent instances with small target sets, but
notes that it becomes too large for the computer’s memory in larger
instances.

B. MILP-S: Sparse

1. Graph Construction

Many of the edges in Algorithm 1 are redundant, as the feasibility
of vi → vk can be inferred from the existence of vi → vj → vk
through the composition of edges. Figure 4 demonstrates the remov-
ability of edges from the standpoint of transition feasibility.
Practically, generating the dense graph and deleting removable

edges is computationally expensive. The generation of the sparse
graph can be approximated if an upper bound onmaximum transition
time Δtsmax is known by modifying Algorithm 1 with Algorithm 2.
For potential vertices J extending from vi, only the vertices with tj
between the minimum tj;min and one Δtsmax later need to be added to

Algorithm 1 Dense Slew Graph Construction for Satellite s

1: Vs; As ← fvs0g
2: Es;Ws ← fg
3: for vi ∈ As do

4: J � fg
5: for ρn ∈ R where ∃o ∈ Os

n s.t. oclose > ti and Δts�vi; rn� ≤
oclose − ti do

6: tj ← clamp�ceil�ti � Δts�vi; rn�; δt��; oopen; oclose�
7: J ← J ∪ fvj � �tj; ρn�g
8: end for
9: if sparse graph then execute Algorithm 2 end if
10: for vj ∈ J do

11: if vj ∈= V then

12: Vs ← Vs ∪ fvjg; As ← As ∪ fvjg
13: end if
14: Es ← Es ∪ f�vi → vj�g;Ws ← Ws ∪ frjg
15: end for
16: if time-dependent value then execute Algorithm 3 end if
17: As ← As \ fvig
18: end for

time

initial state v

opportunitiesa)

feasible slews

active vertex

new verticesb)

inactive vertex

d)

slews to far 

points

c)

Fig. 3 Dense slew feasibility graph construction using Algorithm 1.
a) setup, b) 1 iteration, c) 2 iterations, and d) many iterations.

STEPHENSON AND SCHAUB 797

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

A
ug

us
t 1

2,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.A
36

09
7 



the graph; any subsequent vertices are guaranteed to be reachable
from those in the interval. Although this does not produce the sparsest
possible graph, it reduces jEj by a factor of O�jRj� at low computa-
tional cost.

2. Mixed-Integer Linear Program

Unlike the preceding formulation, the optimization problem over
the sparse graph is not a constrained path maximization problem, as
solutions may pass through an already-visited partition without
receiving to access other regions of the graph. To handle this, an
additional binary optimization “slack” variable yn is added for each
partition pn, representing fulfillness of rn across all satellites:

maximize
n

rnyn (22)

subject to
h

xsh;i � bsi ≥
j

xsi;j ∀i (23)

yn ≤
N

s�1 vsj∈pn i

xi;j ∀n (24)

Theobjective function, Eq. (22),maximizes the sumof request values
for each partition visited. The first constraint, Eq. (23), is the same
in–out constraint as in the preceding formulation. Equation (24)
enforces that the fulfillment variable yn can only be 1 if the partition
pn is visited at least once by any satellite. Solutions produced by
this method are equivalent to those from the naïve method but result
from a smaller MILP formulation, as listed in Table 1.

C. MILP-TD: Time-Dependent Value

1. Graph Construction

In cases where request values are time-dependent, only including
the earliest arrival time for each request in the graph is insufficient,
as vertices may not be added or reachable for high-value request
times. For each vertex, an additional vertex is created if a higher-
value fulfillment time follows in the opportunity window (up to
discretization δt), as illustrated in Fig. 5; candidate vertices that do
not increase reward are ignored. Algorithm 3 describes the modi-
fication to Algorithm 1 to account for time-dependent rewards. This
method is compatible with both the dense and sparse graph con-
struction methods, but only the latter combination is considered so
that the problem remains tractable.

2. Mixed-Integer Linear Program

In addition to the sequence decision variable x (and instead of
y from the preceding section), a binary optimization variable zsi;j
is added for each xsi;j, representing receiving credit for visiting vsj .
The problem is constrained to only allow credit to be assigned for a
single visitation of each partition:

maximize
N

s�1 i;j

ws
i;jz

s
i;j (25)

subject to
h

xsh;i � bsi ≥
j

xsi;j ∀ i (26)

zsi;j ≤ xsi;j ∀ i; j (27)

N

s�1 vsj∈pn i

ysi;j ≤ 1 ∀ n (28)

The objective function, Eq. (25), maximizes the sum of credited
request visitations. Equation (26) is the familiar in–out constraint.
Equation (27) restricts credit assignment to edges that are visited.
Finally, the constraint in Eq. (28) only allows for credit to be assigned
once per partition for any satellite.

V. Results

A. Simulation Environment

The scenario described in the problem formulation is modeled
using Basilisk‡ [38], a high-performance modular spacecraft simu-
lation framework written in C++ and Python. The low Earth orbit
environment and satellite flight software and dynamics are integrated
at 2 Hz. The environment uses a SPICE-based model of planetary
motion and gravitation for orbital dynamics propagation. Of particu-
lar relevance to this work, attitude dynamics are modeled to a high
fidelity: rigid-body dynamics models of the spacecraft bus and four
reaction wheels are computed using the back-substitution method
[39]. The wheels are driven by flight-proven control software that
feeds torque commands to the reaction wheels [40]. The complete

Dense Graph Sparse Graph

alternate path

redundant edge

Fig. 4 Comparison between the dense graph with one removable edge
highlighted and the sparse graph.

Algorithm 2 Sparse Graph Modification for Algorithm 1.

1: tj;min ← min�tj for �tj; ρ� ∈ J�
2: for vj ∈ J do

3: if tj > tj;min � Δtsmax then

4: J ← J \ fvjg
5: end if
6: end for

time

re
q
u
es

t 
v
al

u
e

in time-indep. graph 

candidate

new vertex

Fig. 5 Additional vertices added for time-dependent rewards.

Algorithm 3 Time-Dependent Request-Value Modification for
Algorithm 1.

1: for t ∈ �ti∶δt∶oclose� do
2: if ri�t� > ri�ti� then
3: vj ← �ρi; t�
4: if vj ∈= V then

5: V ← V ∪ fvjg
6: A ← A ∪ fvjg
7: end if
8: E ← E ∪ f�vi → vj�g
9: W ← W ∪ fri�t�g
10: break from iteration
11: end if
12: end for

‡hanspeterschaub.info/basilisk
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simulation environment is available in the BSK-RL (Basilisk
Reinforcement Learning) repository.§

1. Satellite Configuration

In this paper, the satellite is modeled as having an instrument with
a boresight pointed in a body-fixed ĉ direction. The satellite must be
pointing the boresight at the target within some angle threshold δθ
and have a body rate relative to the target less than some δω before
imaging. Four reaction wheels are used for attitude control, pro-
ducing relatively high umax to meet the agility requirements of the
mission. An exponentially stable controller as defined in [40] that
generates and tracks an attitude trajectory in modified Rodrigues
parameter space is executed by the satellites in this paper. Addition-
ally, the control torque is clipped by the maximum torque of reaction
wheels when performing maneuvers in the simulation. Even with
this combination of factors, the nonlinear controller satisfies the
two requirements of the method: maneuvers are deterministic and
are kinematically identical for any about-boresight rotation; thus, the
resulting slew transition times can be fully learned by the network.
Request fulfillment is considered to be instantaneous once the satel-
lite is settled; however, if a non-zero image processing time was
included in the simulation used to estimate slew times, the network
could learn to account for it.
The satellite’s orbit is circular, set with a fixed inclination and

altitude and randomized true anomaly and ascending node. At most,
1 day of planning (15 orbits) is considered, as it is typically consid-
ered to be the practical limit for nonadaptive preplanning. This work
could be applied to all orbits about a given body as long as the slew
estimator is trained over the entire domain of orbits. In practice, most
satellites will only operate over a subset of orbits, as implemented
here. Important satellite parameters are given in Table 2. Other
satellite parameters are the defaults used by SteeringImagerSat in
BSK-RL; the specific Basilisk modules used by SteeringImagerSat
can also be found in the repository.

2. Request Distributions

Representative sets of target requests are generated for experi-
ments. Two distributions of target locations across various total
request counts are considered, as shown in Fig. 6: a uniform distri-
bution around the globe, and a clustered distribution in which city
locations¶ serve as a proxy for image request frequency, inspired
by Eddy and Kochenderfer [8]. In the latter case, the satellite can
travel for half an orbit without encountering any request, then have
hundreds available in a few minutes over very populous areas. A
lower maximum target count is considered for cities to keep the
maximum local request density similar. In both cases, each initial-
ization of the environment at a given density randomizes the
locations of uniform points or the subset of cities selected.
For this study, imaging requests are created with relatively simple

constraints for visibility. Only a minimum elevation angle constraint
ϕmin between the target and satellite must be satisfied, meaning that

imaging windows are determined by a view cone about the satellite
nadir. Because request limitations only impact the preprocessing
step of window generation, more exotic a priori constraints could
be applied without impacting the performance of this work.
Request rewards are randomized over a uniform distribution

r ∈ �0; 1�. When time-dependent rewards are considered, the value
is penalized as a function of elevation angle:

rn�ϕ� � rn
ϕ

π∕2
(29)

A complete listing of request parameters is given in Table 3.

B. Slew Estimation

A data set consisting of state information at 10-s intervals along
1:8 × 105 slews to randomly selected nearby targets is generated, with
a subset shown in a lower-dimensional space in Fig. 7. The network
is trained on this data set with varying-loss skewness τ. Figure 8
shows the percent of predictions for the validation data set that falls
within a certain error threshold as a function of τ. As expected,
higher values of τ lead to a tendency to overestimate slew durations.
To evaluate the proper tuning of τ, a challenging (i.e., high request

density, jRj � 10;000) simulation environment is instantiated and a
“greedy” policy is implemented. In this policy, the satellite is always
tasked to image the soonest request that is predicted to be accessible
by the estimator. This is a worst-case stress test for the estimator,
as the MILP solutions will often favor higher-value requests over
sooner ones. The number of successful slews and the total number
of requests attempted are recorded over 800 orbits per τ.
Figure 9 shows expected behavior: as the skewness parameter τ

increases, the predictor becomes more conservative, attempting
fewer requests but succeeding at a higher rate. The τ � 0:75 is
selected for the remainder of the experiments, as it does not show a
drop in requests satisfied compared to 0.5 while having a success
rate >99%.

Fig. 6 (Left) Uniformly distributed requests. (Right) Requests distrib-
uted over the world’s 43,000 most populous cities.

Table 3 Target parameters

Parameter Value, s

ϕmin 58 deg Minimum elevation angle
rFOR 500 km Field of regard radius (from ϕmin)
r �0; 1� Request value
Distribution funiform; citiesg ——

jRj �100; 10000� Number of requests (uniform)
jRj �300; 3000� Number of requests (cities)

Table 2 Top: Satellite and orbit
parameters. Bottom: Control gains [40]

Parameter Value, s

Horizon H ≤ 1 day (15 orbits)
Inclination 45 deg
Altitude 800 km
δθmax 0.01 MRP norm (2.29 deg)
δωmax 0.01 rad/s (0.57 deg/s)
umax 0:4 N ⋅m (per axis)

m; I 330 kg; �82:1; 98:4; 121:0� kg ⋅m2

K1, K3 0.25, 3.0
ωmax 5 rad/s

§github.com/AVSLab/bsk_rl
¶City location data from simplemaps.com, CC BY 4.0.
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C. Optimal Target Sequencing

Having demonstrated the performance of the slew estimator, the
MILP formulations can be evaluated. An ablation study over δt is
performed and the performance of MILP-S over the naïve MILP-D
and a linear transition model are compared (Sec. V.C.1). Finally,
benchmarks are performed over a range of target densities, distri-
butions, and horizons for single-satellite, time-dependent value,
and multisatellite cases. All MILPs are solved using the Gurobi
solver [41].

1. Ablation Studies

a. Ablation Study on Time Discretization. Figure 10 shows the impact
of the time discretization δt on the cumulative value of the optimal

sequence of requests over one-orbit horizons, uniform request
distribution. The value of the sequence decreases as δt increases,
especially in high request-density scenarios. The discretization
δt � 10 s is selected for further studies, balancing the tradeoff
between compute time and solution quality. In the densest cases
(jRj � 10;000), this leads to a discretization error of <10%,
whereas there is effectively no discretization error in sparse
cases (jRj ≤ 2000).

b. MILP Formulation Comparison. The relative sizes and compute
times of the naïve MILP-D formulation and the condensed MILP-S
formulation are compared in Fig. 11 over a small range of uniform
request densities and horizons. The order of the number of edges in
the graph is reduced by a factor of H (see Table 1) and some large
constant in the sparse formulation, corresponding to a reduction in
compute times. Extrapolating the trends indicates that MILP-D
becomes intractable significantly more quickly than MILP-S.
Beyond the time benefits of MILP-S, the relatively low memory
requirement also allows for greater scalability.

Fig. 8 Prediction errors across 198k validation points as a function of
loss skewness τ by percentile of points within error threshold.

Fig. 10 Ablation study over δt using MILP-S, showing a decrease in

cumulative value as δt increases.

Fig. 9 Mean success rates of a greedy policy using the prediction net-
work with varied τ; jRj � 10;000; 95% confidence intervals are shown.

Fig. 11 Comparison between graph sizes and compute time between
MILP-D and MILP-S. When varying H, jRj � 1000 requests; when
varying jRj, H � 1 orbit.

Fig. 7 A subset of 88 of the 1:8 × 105 slews used in training, plotted in
lower-dimensional space.
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c. Comparison to Linear Transition Model. A primary claim of this
work is that the use of an NN to estimate transition times is more
effective than a lower-order model. To evaluate this, the NN is
replaced with a linear model of the form

Δts � kδθ (30)

This model is evaluated over a range of k and jRj and compared to
the NN-based solution for one-orbit horizons. Figure 12 gives the
results of this study. Varying k shows expected behavior: too low of
a k leads to many failed slews (i.e., a large gap between planned and
fulfilled requests), whereas too high of a k leads to significant idle
time; in both cases, the overall reward is depressed. Because the
transitions are nonlinear with respect to δθ and other variables,
even the best value of k achieves a lower cumulative value than
the NN-based solution, as never are all slews accurately predicted;
also, different values of k are best for different request densities.
This effect is especially prominent as the request density grows and
correct planning becomes more important. NN evaluation only
accounts for a small portion of the graph construction time, so
using it instead of a linear model does not significantly impact the
overall compute time.

2. Single-Satellite Performance

MILP-S is benchmarked over uniform and city-distributed
requests, varying jRj and H with multiple trials at each point, for a
total of 15 orbits worth of trials completed at each density. The results
are collected in Figs. 13 and 14. The horizon-normalized cumulative
value of the sequenceΣr∕H gives the value of the bestMILP solution
found and, in cases where the solver did not converge to optimality
within 1000 s of solve time, an upper boundon the true solutionvalue.
Cases where the solver could not find any solution within 1000 s are
excluded; practically, however, these cases tend to be those with the
longest horizons and highest request densities so additional solve
time could be allocated. The cumulative value tends to be lower for
longer horizons, as the solutions are effectively less greedy; the
satellite is competing with its future self for a limited number of
requests. The average request value shows that as the number of
requests increases, the satellite is able to be more selective about
picking higher-value requests. The overall size of the problem is
given in the requests and opportunities plot, showing the number
that the counts of each along-track over the horizon, giving insight
into the size of the problem. The fulfillment rate F% gives the ratio
of requests fulfilled to the number of possible requests along-
track; longer horizons and fewer requests give the satellite more

opportunities to fulfill all requests. Finally, the success rate (plotted
as its additive compliment, the failure rate) measures how effectively
the MILP solutions can be executed in the high-fidelity simulation
environment. It is given as the percent of requests successfully
fulfilled in simulation out of the total planned requests by the MILP
solver. The generally high success rates indicate that the solution
pipeline is effective. Some depression in success rate is observed in

10,000

Fig. 12 Performancewith a linear transitionmodel with varying k vs an
NN transition estimator.

Fig. 13 Benchmark of MILP-S on uniformly distributed, constant-

valued requests. Shaded region corresponds to one standard error of
the mean over trials.

Fig. 14 Benchmark of MILP-S on city-distributed, constant-valued
requests. Shaded region as in Fig. 13.
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high-density city-distributed cases, as certain regions have extremely
high local request densities, leading to an especially difficult prob-
lem instance.

3. Time-Dependent Reward Performance

Solutions for a single satellite with requests with time-dependent
rewards are benchmarked in Fig. 15. Unsurprisingly, compute times
tend to be worse than the fixed-value counterpart experiments due to
the larger size of the graph; however, they are still tractable over
a wide range of problem sizes. Despite many solutions having a
sizeable gap between the timed-out MILP solution and time upper
bound, comparison to the constant-valued requests implies that the
computed solution is likely close to the true optimum. The average
request value is likewise lower because the satellite can only fulfill
a request for maximum value if it is perfectly on-track. Still, the
depression is minimal, indicating that the best possible imaging
times are being chosen.

4. Multisatellite

The performance of multisatellite cases is examined in Fig. 16.
Two constellations are compared: “String,” which has N � 12 sat-
ellites separated by 5-deg true anomaly, and “Walker,” which has
N � 12 satellites in four planes of three satellites with 0 phase factor.
For both, a 45-deg inclination is maintained. The former is a case
where satellites are frequently sharing opportunities (see the high
number of opportunities and low number of on-track requests),
whereas the latter has less overlap between satellites. As expected,
both constellations are undersubscribed, given the high number of
overlapping requests and relatively high request-fulfillment rate of a
single satellite. Examining the compute times, the graph construction
time scales by N; however, each satellite’s graph construction is
independent so it could be parallelized. A more interesting trend is
observed in theMILP solution time (which is still capped at 1000 s for
these experiments, hence the differing number of requests evaluated
for each constellation): although the “Walker” constellation takes

longer than the single satellite to solve as jRj increases, the “String”
cases become easier to solve than the single satellite as jRj increases.

VI. Conclusions

Two contributions are made toward solving the Earth-observing
satellite scheduling problem (AEOSSP) under realistic conditions:
a framework for estimating slew durations based on the true per-
formance of the satellite is introduced, and an improved formulation
of the mixed-integer linear program (MILP) is designed to handle
larger instances of the problem. The solutions are executed in a full-
fidelity simulation of a spacecraft, validating the effectiveness of
the solution pipeline; in doing so, optimality can be claimed with
respect to the true system and not a simplified abstraction of the
system; this is a unique evaluation of the “sim-to-real" gap not found
elsewhere in the literature. Learning the transition time function, as
opposed to using a lower-order heuristic, ensures that this gap is
minimized when the plan is executed. Benchmarks performed over a
variety of request densities, planning horizons, satellite counts, and
request-value types demonstrate the broad applicability of the meth-
ods; the upper request densities considered are the highest found
in the literature, and still demonstrate acceptable performance.
Demonstrating success on high global (10,000 uniform targets)
and local (3000 city-distributed targets) density cases using the
sparse formulation (MILP-S) when the more typical formulation
MILP-D is intractable shows that this method is able to handle large
problem instances that no other MILP formulation in the literature
can. Furthermore, the method performs competitively in time with
iterative local search (ILS) and other iterative methods over small
and medium problem instances while providing the additional
benefit of optimality quantification and certification; although the
scalability of the alternatives to the largest instances is not known,
the given method conclusively does scale.
Insights into the difficulty of different scenarios are gained from

the benchmarks, providing trends that are generally applicable to the
problem. Distributions matter: locally high densities are the primary
driver of difficulty in the problem, hence the 10,000 uniform targets

10,000

10,000

Fig. 15 Benchmark of MILP-TD on uniformly distributed, time-
dependent requests. Shaded region as in Fig. 13.

10,000

10,000

15,000

Fig. 16 Benchmark of MILP-S on uniformly distributed, constant-
value requests compared to a “String” constellation and a “Walker”
constellation; H � 3 orbits.
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being similarly challenging to 3000 city-distributed targets. How-
ever, the planning horizon’s impact on planning times can be mini-
mizedwith a good solver formulation.When consideringmulti-agent
cases, the interaction between satellite density and request density
becomes relevant, with a cluster of satellites being able to trivialize
the problem through an exhaustion of possible conflicting requests.
As with other efficiently designed ground-based planners, this

method is practical and performant for offline planning but too
computationally expensive for onboard planning. The high quality
of the plans produced because of accurate dynamics learned from a
model of the systemmeans that replanning on-the-fly necessitated by
plan infeasibility is close to zero, even when generating very aggres-
sive plans. The learning of transition times could be leveraged by
other types of solvers to grant them the samebenefit. Thiswork is also
useful as an optimal benchmark for other methods, such as MILPs
that make simplifying assumptions to satellite dynamics or
approaches that lack optimality guarantees like ILS and reinforce-
ment learning, because the optimality of this method’s solutions are
with respect to a high-fidelity simulation of the system.
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Appendix: Compute Resources

Networks were trained on an M2 Pro Macintosh. Benchmarks
were performed on an Intel i9 13900 KF CPU (24 cores) with 64 GB
of RAM running Ubuntu 20.04.
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