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In the early stages of spacecraft missions, emerging performance requirements must be rapidly verified through

extensive simulation and subsequent analysis. With missions employing complex time-varying spacecraft

structures, there is a marked need for flexible, scalable, and modular simulation software tools to model the

effects of diverse types of multibody spacecraft dynamics. Prior work using the spacecraft dynamics

backsubstitution method is expanded to consider a spacecraft consisting of a rigid hub and N six-degree-of-

freedom rigid subcomponents following hub-relative prescribed motion. Unlike the original backsubstitution

formulation, the kinematics of the subcomponents are prescribed, thus reducing the number of differential

equations that must be solved from 6�N� 1� to 6. Further, the new formulation permits branching and both

open and closed chains in the spacecraft configuration space that were not feasible before. The solution is modular

in that the dynamic impact of the subcomponents is solved generally, enabling both hub-relative translation and

rotation without constraints. The Basilisk astrodynamics simulation framework is used to demonstrate an efficient,

modular implementation and verify the derived dynamics. A prescribed motion solar array deployment scenario

demonstrating the scalability of the derived dynamics is simulated, and the sensitivity of the hub dynamics to the

deployment is investigated.

Nomenclature

Bc; Fc = rigid hub and prescribed body center of mass
location, respectively

fb̂1; b̂2; b̂3g = hub body frame basis vectors

c = vector from point B to center of mass of the
spacecraft C, m

Fext = vector sum of external forces on spacecraft, N

ff̂1; f̂2; f̂3g = prescribed body frame basis vectors

�Isc;B�; �Ip;F� = inertia tensor of spacecraft about point B and

of prescribed body about point F, kg ⋅m2

LB = vector sum of external torques of spacecraft
about point B, N ⋅m

msc; mhub; mP = mass of spacecraft, hub, and prescribed body,
respectively, kg

N;B; F = inertial frame origin, body frame origin, and
prescribed body frame origin, respectively

N ;B;F = reference frame of inertial, hub body, and
prescribed body, respectively

fn̂1; n̂2; n̂3g = inertial frame basis vectors
rB∕N = position vector of point B with respect to point

N, m
ωB∕N = angular velocity vector of B frame with respect

to N frame, deg/s

I. Introduction

E FFECTIVE modeling and simulation of complex spacecraft
concepts is crucial for the success of space missions. Particu-

larly in the early phases of mission design, the ability to rapidly
simulate a wide range of spacecraft configurations is paramount for
analyzing and verifying mission requirements. Moreover, as mis-
sion concepts evolve and their objectives become more ambitious,
the spacecraft designs required to fulfill the goals of such missions
also grow in complexity. Among these advancements are deploy-
ment concepts and in-flight reconfigurable structures. For example,
the desire to send humans into space for extended periods of time
drove advancements required for space orbiters, including the Space
Shuttle orbiter and the International Space Station, where multi-link
robotic arms such as the Canadarm [1,2] were developed to aid in
complex orbital servicing and docking operations. The latest mis-
sions to the farthest edges of our solar system have required critical
component advancements in order to navigate spacecraft through
deep space efficiently. The Lucy mission to the Trojan asteroids, the
Emirates Mission to the Asteroid Belt (EMA), and the Double
Asteroid Redirection Test (DART) binary asteroid impact mission
all feature extensive solar-powered advancements to meet higher
power needs. The Lucy and EMA missions use two large circular
flexible-substrate solar arrays that deploy using a rotational motor-
driven lanyard and articulate to track the sun [3–6]. The DART
spacecraft’s two rectangular Roll-Out Solar Arrays (ROSA) were
the first to deploy using a roll-out method [3]. Further, in order to
meet thrust vector alignment requirements for deep-space missions
such as EMA, Deep Space 1 [7], Dawn [8], and Psyche [9], space-
craft ionic thruster designs advanced from hub-fixed configurations
to being mounted on gimbaled platforms [6,10–12].
The field of multibody dynamics has been widely studied for

several decades [13–18]. Simulating complex multibody spacecraft
systems requires deriving and implementing the system’s equations
of motion in software. This process becomes especially challenging
during mission planning when the spacecraft consists of numerous
actuating components and its design is not finalized. The most
effective simulation capability is achieved using a generalized
dynamics formulation in software, enabling the simulation of vari-
ous spacecraft configurations using a general set of motion equa-
tions. Development of these equations typically requires knowledge
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of the spacecraft hub dynamics. The hub is the central, rigid core
component of the spacecraft onto which solar panels, antenna, etc.,
are attached. The hub is usually the primary body of interest when
the entire spacecraft system is simulated in a mission scenario, as it
contains the science sensors, rate gyro and star trackers. Using the
hub as a base of reference, the states of the other spacecraft compo-
nents are described relative to the spacecraft hub-fixed frame for a
consistent dynamics analysis [19,20]. The states of the spacecraft
hub are tracked in simulation software and are used to evaluate
attitude control and other performance requirements. Additional
equations of motion for each degree of freedom contributed by
the other spacecraft components must also be derived and inte-
grated. As more components are added to the spacecraft, the com-
putational load for numerical integration increases and the software
implementation becomes cumbersome and difficult to organize.
The backsubstitution method [21–23] is a spacecraft dynamics

formulation that has been recently developed to address the issues of
spacecraft simulation computational efficiency, modularity, and
scalability. By exploiting hub-centric spacecraft configurations
and considering all dynamic components (solar panels, reaction
wheels, etc.) in the spacecraft system as rigid and connected to the
hub in parallel, significant computational efficiency is achieved
through the unique form of the system mass matrix under these
assumptions. The speed reduction is achieved by analytically
backsolving the component couplings into the hub dynamics. As
a result, rather than inverting the entire system mass matrix that
scales with the cube of the number of states, instead only two 3 × 3
matrix inversions are required [21]. This method drastically
reduces the computational overhead to simulate complex space-
craft systems [23].
In prior work, the backsubstitution method was used to develop

force- and torque-based models of rigid-body or point-mass com-
ponents that actuate in specific manners, such as single-hinged solar
panels [24], spinning reaction wheels [25], control moment gyro-
scopes [26], multi-panel solar arrays with repeated hinge axes, and
linear and spherical fuel mass particles [24]. Previous work by
Carneiro et al. developed the capability to simulate chains of
sequentially rotating or translating rigid bodies attached to the rigid
spacecraft hub [27–29]. The developed formulations enable the
simulation of telescoping and rotatable robotic arms and other
chained structures. However, the nature of the backsubstitution
method does not allow branching, open, or closed chains of space-
craft components. Branching and closed chains are impossible to
simulate using the backsubstitution method due to the cross-
coupling terms between components present in the system mass
matrix. Similarly, open chains cannot be simulated simply by stack-
ing components whose dynamics have already been formulated into
the backsubstitution method. Instead, if the equations of motion for
the entire open chain are developed using the backsubstitution
formulation, the component configuration can be simulated. This
approach captures the cross-coupling terms between subcompo-
nents in the open chain. The performance and modularity benefits
of the backsubstitution method come at the cost of these unallow-
able spacecraft configurations. However, a large range of spacecraft
configurations can be simulated given the required assumptions.
This paper builds on previous multibody dynamics work using

the backsubstitution method and expands its capabilities by devel-
oping a generalized, reconfigurable, and scalable method of describ-
ing prescribed motion spacecraft dynamics. An immediate benefit is
that this solution enables more general spacecraft configurations to
be modeled that can include branching and both open and closed
chains through prescribed or servoed component motion models.
Specifically, prescribed motion refers to spacecraft components
whose actuation dynamics are one-way coupled with the other
spacecraft components, meaning that their motion impacts the
dynamics of the spacecraft system but not vice versa. Precise
body-relative pointing of these components can be achieved using
spacecraft servo subsystems such as stepper motors. Moreover, it is
not necessary to completely derive the equations of motion of such
components if their motion is instead prescribed through a com-
manded reference trajectory. As a result, some degrees of freedom of

the system equations of motion may be eliminated for these pre-
scribed components [30]. This appropriately reduces the computa-
tional overhead for complex spacecraft simulations. Several
prescribed components are an integral part of NASA’s Cassini
spacecraft, including the articulated main engine, one-degree-of-
freedom (1-DOF) probe relay antenna, and high-precision 2-DOF
scan platform [30]. Other common examples of prescribed space-
craft elements include robotic systems, actuated motor platforms,
gimbal thrusters, and servoed sensors.
Previous work in multibody prescribed motion dynamics has

investigated a wide variety of applications. The motion of the
Canadarm is one example of prescribed motion, where either the
robotic arm can be commanded to follow preprogrammed pre-
scribed trajectories, or its links can be directed to move through
individual prescribed angles [30,31]. Ardakani and Bridges studied
the dynamic coupling between a rigid vehicle following prescribed
planar motion containing fluid and the fluid motion using Lagran-
gian mechanics [32]. Gerrits and Veldman studied the same problem
using Newtonian and Eulerian mechanics [33,34]. Jain and Rodri-
guez develop a recursive algorithm to model the dynamics of a serial
chain of hinges undergoing optional prescribed motion [30]. The
formulated dynamics algorithm is applied to NASA’s Cassini space-
craft, where it is used to model the articulated components aboard
the spacecraft. The formulation is used in real-time aboard Cassini
as part of its flexible multibody dynamics simulation software
package.
In this study, a spacecraft consisting of a rigid hub and N

prescribed motion rigid subcomponents is considered for the
dynamics formulation. The 6-DOF of each subcomponent are
assumed to be prescribed relative to the spacecraft hub. For exam-
ple, consider a spacecraft that is deploying an N-element solar panel
with servo motors. The motion of the panel is prescribed by the
motors, and hence there are no free degrees of freedom associated
with this motion. To simulate any type of spacecraft component
actuation generally, the component can be considered as a collection
of N connected rigid subcomponents. Each subcomponent can be
considered a prescribed motion body whose motion contributes to
the overall three-dimensional motion of the actuated spacecraft
component. The prescribed motion dynamics in this work are
derived with the assumption that the hub-relative states of each
subcomponent can be identified relative to a reference frame that
is fixed to the spacecraft hub. Each subcomponent may be com-
manded to translate and rotate generally in three-dimensional space
with respect to the spacecraft hub, enabling the simulation of any
type of actuated spacecraft component motion. Thus, this paper
develops a general spacecraft dynamics model describing how N-
element rigid bodies can undergo 6-DOF prescribed hub-relative
motion. Although the derived dynamics do not capture the coupling
effect of other system bodies on the prescribed component motion,
this approach is reasonable for modeling the bulk motion of actuated
spacecraft components that are tightly controlled and less suscep-
tible to flexing behavior. Additionally, this approach assumes no
sensing or actuation problems occur when commanding or actuating
these prescribed components. If their true motion deviates from the
assumed prescribed trajectory, this approach is not effective.
To meet the needs of these evolving spacecraft concepts, signifi-

cant software advancements are required to expand the existing
simulation space and capture these complex spacecraft systems.
The dynamics of multibody systems are challenging to verify and
implement in software in a generalized, modular manner due to the
wide range of complex spacecraft configurations or simulation
environmental factors that are desired. Open-source multibody
dynamics software packages such as Project CHRONO,§ Moby,¶

Bullet,** POEMS [35], and the Rigid Body Dynamics Library†† all
excel at simulating very large multibody spacecraft structures; how-
ever, the ability to incorporate relevant simulation environmental

§Data available online at http://projectchrono.org.
¶Data available online at http://physsim.sourceforge.net/index.html.
**Data available online at http://bulletphysics.org/wordpress/.
††Data available online at https://rbdl.github.io/.
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factors or mission-specific flight software algorithms is not readily
available with these packages. Moreover, while commercial soft-
ware packages such as COMSOL,‡‡ Adams,§§ MathWork’s Sim-
scape Multibody,¶¶ and the symbolic software MotionGenesis*** are
proficient at computing and providing the equations of motion for
specific multibody dynamic systems, but they are unable to provide
generalized equations of motion that are widely applicable to
multiple different types of complex dynamic systems. Spacecraft-
specific software packages such as the Jet Propulsion Laboratory’s
Dynamics Algorithms for Real-Time Simulation (DARTS),††† STK
SOLIS,‡‡‡ NASA’s open-source package 42,§§§ and the Basilisk
astrodynamics simulation framework¶¶¶ are advantageous choices
for addressing specific spacecraft-centric simulation challenges
such as the implementation of environmental disturbances or flight
software algorithms into the simulation. For these reasons, Basilisk
is the simulation software architecture chosen in this work to imple-
ment and verify the derived multibody prescribed motion dynamics.
This open-source software framework leverages the backsubstitu-
tion method and has been widely used for mission analysis. While
Basilisk offers similar advantages to other simulation tools, its
unique combination of capabilities sets it apart from all others
[21,22]. Its highly modular architecture, combined with its dynamic
generality, computational efficiency, scalability, and intuitive
Python scripting interface, makes it an ideal software choice for
this work.
The organization of this paper is as follows: First, the problem

statement for the spacecraft system containing prescribed motion
subcomponents is given, and the required parameters and reference
frame definitions for the dynamics derivation are established
(Sec. II). Next, Sec. III provides an overview of the backsubstitution
method that serves as the foundation for this work. Section IV
derives the spacecraft hub equations of motion using Newtonian
and Eulerian mechanics, although it should be noted that an abun-
dance of other methods could be chosen to develop the spacecraft
dynamics [36,37]. The final equations are manipulated into the form
of the backsubstitution method to facilitate a modular software
implementation. Section V provides a prescribed solar array deploy-
ment simulation scenario, demonstrating the scalability of the
dynamics formulation, and the concluding remarks are offered in
Sec. VI. The kinematic profiler modules developed to prescribe the
subcomponent motion are discussed, and the complete mathematics
are given in Appendix A. Finally, the verification of the derived
dynamics is given in Appendix B.

II. Problem Statement

This work develops the equations of motion for a multibody
spacecraft system consisting of a rigid hub and N kinematically
prescribed rigid subcomponents with complete generality. Provided
that each body is rigid in the derivation, no other assumptions are
made regarding the mass properties of each body. All reference
frames are located and oriented generally with respect to each other.
Accordingly, these choices enable a wide range of spacecraft con-
figurations to be readily integrated into a software simulation with-
out the need for future rederivation of the equations of motion. The
spacecraft system problem statement for this derivation is illustrated
in Fig. 1. Although only one prescribed subcomponent (green) is
shown, the formulation assumes N subcomponents are contained in
the spacecraft system.

Four reference frames are used to define the spacecraft system
given by Fig. 1. First, the dynamics are developed with respect to an
inertial reference frame indicated by N ∶fN; n̂1; n̂2; n̂3g. The hub

body frame B∶fB; b̂1; b̂2; b̂3g describes the motion of the rigid
spacecraft hub of mass mhub. The origin of this frame is located at
the hub-fixed point B. The point Bc defines the center of mass of the
hub, which is also body-fixed as a result of the rigid-body
assumption, i.e., r 0Bc∕B � 0. The right 0 superscript indicates a hub
B frame-relative time derivative. Although points B and Bc are often
assumed to coincide for a simpler equations of motion formulation,
they are kept distinct in order to improve the ease of technical
exchanges between spacecraft mission teams. For example, a struc-
ture frame is often defined by the structural engineering team that is
used to define the location of all the spacecraft components relative
to a single fixed location on the spacecraft hub.
The mass of the subcomponents is given by mPi

, and their body

frames are designated by F i∶fFi; f̂ i;1; f̂ i;2; f̂ i;3g. The origin points

Fi of each frame and the center of mass points Fci of each sub-

component are fixed to the subcomponents, i.e., �F id∕dt�rFci
∕Fi

� 0.

These frames describe the motion of each subcomponent relative
to a hub-fixed mount interface indicated by the frame
Mi∶fMi; m̂i;1; m̂i;2; m̂i;3g. Introduced as a matter of kinematic

convenience, the locations and orientations of the mount frames
are fixed with respect to the hub, i.e., r 0Mi∕B � ωMi∕B � 0. Further,

the vector c describes the system center of mass location relative to
point B , where C denotes the system center of mass point. Note
that for a completely general equations of motion formulation, the
points B;Bc; Fi; Fci ;Mi, and C are assumed not to be necessarily

coincident.
The translational and rotational states required to explicitly pro-

file the hub-relative prescribed subcomponent 6-DOF motion
are given by rFi∕Mi

; r 0Fi∕Mi
; r′′Fi∕Mi

; σF i∕Mi
;ωF i∕Mi

, and ω 0
F i∕Mi

.
Although they are implicitly contained in the equations of motion
derived in Sec. IV, these terms are explicitly exposed throughout the
intermediate steps of the derivation process. Finally, note that
modified Rodriguez parameter attitude coordinates [36] are selected
to express the relative orientations between reference frames, facili-
tating integration with the Basilisk software. However, note that
alternative representations, such as quaternions or direction cosine
matrices, can also be used.

III. Backsubstitution Method

For multibody spacecraft systems, the spacecraft dynamics are

often derived in the form �M� _X � f�X; t�, where �M� is the system
mass matrix, X is the system state vector, _X is the time derivative of
the state vector, and f�X; t� is a function of the state vector and time.
It is clear that the size of the system mass matrix grows significantly
as the number of rigid bodies in the spacecraft system increases,

Fig. 1 Spacecraft system problem statement.

‡‡Data available online at https://www.comsol.com/multibody-dynamics-
module.

§§Data available online at http://www.mscsoftware.com/product/adams.
¶¶Data available online at https://www.mathworks.com/products/sim

mechanics.html.
***Data available online at https://www.motiongenesis.com/.
†††Data available online at https://dartslab.jpl.nasa.gov/DARTS/index.php.
‡‡‡Data available online at https://help.agi.com/stk/Subsystems/solis/solis.

htm.
§§§Data available online at https://software.nasa.gov/software/GSC-16720-1.
¶¶¶Data available online at https://avslab.github.io/basilisk.
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thus making inversion of the mass matrix to obtain the desired form

for numerical integration, _X � g�X; t�, more computationally
expensive. Moreover, the software implementation, organization,
and testing framework of the resulting equations of motion become
particularly difficult when considering large, complex spacecraft
structures.
The backsubstitution method [21–23] was recently developed to

address these concerns, where a modular dynamics formulation
enables the rapid creation, execution, and testing of complex multi-
body spacecraft simulations. Fundamental to the backsubstitution
method is the requirement of a hub-centric spacecraft configuration,
where articulating components or effectors are attached in parallel to
the spacecraft hub. Components whose dynamics have already been
formulated into the backsubstitution method cannot be chained
together under this assumption. Instead, the equations of motion
for the entire chained structure must be formulated as a single
effector into the backsubstitution method in order to simulate these
configurations. The computational speed and modularity of the
backsubstitution method are achieved through exploiting the unique
structure of the system mass matrix resulting from this requirement.
Allard et al. present a generalized system mass matrix form for N

dual-hinged panels connected to a central rigid hub to illustrate the
coupling between the system components under the requirements of
the backsubstitution method [21]. A simplified version forM single-
hinged chained panels connected in parallel is presented in Eq. (2) to
illustrate this concept, where �rB∕N is the hub inertial translational

acceleration and _ωB∕N is the hub inertial angular acceleration. The

relative angular acceleration of each panel i about its 1-DOF hinge

axis is denoted �θi.

�⋅�3×3 �⋅�3×3 �⋅�3×1 �⋅�3×1 · · · �⋅�3×1
�⋅�3×3 �⋅�3×3 �⋅�3×1 �⋅�3×1 · · · �⋅�3×1
�⋅�1×3 �⋅�1×3 �⋅�1×1 �0�1×1 · · · �0�1×1
�⋅�1×3 �⋅�1×3 �0�1×1 �⋅�1×1 · · · �0�1×1
· · · · · · · · · · · · · · · · · ·

�⋅�1×3 �⋅�1×3 �0�1×1 �0�1×1 · · · �⋅�1×1

�rB∕N

_ωB∕N

�θ1
�θ2

· · ·

�θM

�

�⋅�3×1
�⋅�3×1
�⋅�1×1
�⋅�1×1
· · ·

�⋅�1×1
(1)

Viewing Eq. (2), it is clear that the hub second-order state variables
are coupled with all of the subcomponent second-order states and
vice versa; however, the second-order states of the subcomponents
are not coupled together. This results in a block-diagonal for all
effector-on-effector associations. Similarly, for spacecraft with mul-
tibody effectors derived in the form of the backsubstitution method,
there are no cross-couplings between effectors; however, there are
coupling terms within each effector. This results in a near block-
diagonal form for the effector-on-effector mass matrix associations.
As a result of this matrix structure, instead of inverting the entire
system mass matrix, only two 3 × 3 matrix inversions are required.
This becomes clear when expressing the subcomponent equations
above in the matrix form

��θ� � �Aθ� �rB∕N � �Bθ� _ωB∕N � �Cθ� (2)

where the �Aθ� and �Bθ� matrices contain the coupling terms
between the subcomponents and the hub and the �Cθ� matrix con-
tains the remaining terms. It is in this form that the subcomponent
equation can be “backsubstituted” into the hub equations of motion,
yielding the condensed result

�A� �B�
�C� �D�

�rB∕N

_ωB∕N
�

vtrans

vrot
(3)

Modularizing the hub equations of motion in this manner enables
extensive scalability of spacecraft simulations, where the effector

contributions can be iteratively aggregated in parallel. The hub
accelerations can be directly solved using Eq. (3), where only two
3 × 3 matrix inversions are required [21]:

_ωB∕N � �D� − �C��A�−1�B� −1
vrot − �C��A�−1vtrans (4)

�rB∕N � �A�−1 vtrans − �B� _ωB∕N (5)

Finally, the remaining subcomponent accelerations can be solved by
substituting the hub accelerations back into Eq. (2). The system can
be numerically integrated using these results.
Note that for the spacecraft system in this work, there are

6�N � 1� total system degrees of freedom, where 6N are known
(prescribed), and the remaining six are the hub translational and
rotational degrees of freedom. Therefore, only six differential equa-
tions for the six hub degrees of freedom need to be derived, and
Eq. (2) is not needed.

IV. Derivation of Hub Equations of Motion with
Prescribed Subcomponent Kinematics

This section derives the equations of motion for the spacecraft
system of interest in the form of the backsubstitution method,
requiring the rigid hub dynamics to be developed rather than the
spacecraft system center-of-mass dynamics. Using Newtonian and
Eulerian mechanics, the spacecraft hub translational and rotational
equations of motion are first developed with complete generality.
The resulting equations are compact and frame-independent. The
hub equations of motion are finally manipulated into the form of the
backsubstitution method contributions given by Eq. (3), enabling a
modular software implementation.

A. Translational Equations of Motion

The spacecraft hub translational equations of motion define the
first three system degrees of freedom. These equations are derived
starting from Newton’s Second Law for the spacecraft center of
mass [36]:

msc �rC∕N � msc �c�msc �rB∕N � Fext (6)

where msc is the total mass of the spacecraft system,

msc � mhub � N
i�1 mPi

, and Fext is the sum of all external forces

acting on the system. Note that because the hub equations of motion
are of interest for this formulation, the acceleration of the hub frame
origin point B must be defined. First, the transport theorem [36] is
used to relate the hub-relative derivative of the center of mass vector
to its inertial time derivative:

_c � c 0 � ωB∕N × c (7)

�c � c′′ � 2ωB∕N × c 0 � _ωB∕N × c� ωB∕N × ωB∕N × c (8)

The system center of mass vector is defined using the mass
contributions from the hub and N prescribed subcomponents:

c �
mhubrBc∕B � N

i�1 mPi
rFci

∕B

msc

(9)

The hub-relative velocity of the center of mass vector is

c 0 �
N
i�1 mPi

r 0Fci
∕B

msc

(10)

where using the transport theorem yields

r 0Fci
∕B � r 0Fci

∕Fi
� r 0Fi∕Mi

� r 0Mi∕B � ωF i∕M × rFci
∕Fi

� r 0Fi∕Mi

(11)
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Similarly, the hub-relative acceleration of the center of mass

vector is

c′′ �
N
i�1 mPi

r′′Fci
∕B

msc

(12)

where

r′′Fci
∕B � ω 0

F i∕M × rFci
∕Fi

� ωF i∕M × r 0Fci
∕Fi

� r′′Fi∕Mi

� � ~ω 0
F i∕M� � � ~ωF i∕M�2 rFci

∕Fi
� r′′Fi∕Mi

(13)

Equation (13) introduces the matrix cross-product operator,

where for an arbitrary vector v � �v1; v2; v3�T, the corresponding

matrix cross-product operator is given by � ~v�

� ~v� �
0 −v3 v2

v3 0 −v1
−v2 v1 0

(14)

Substituting Eqs. (8) and (12) into Eq. (6) and arranging the terms

in the form of the backsubstitution method yields the system trans-

lational equations of motion:

msc �rB∕N �msc� _~ωB∕N �c � Fext − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �2c

−
N

i�1

mPi
r′′Fci

∕B (15)

B. Rotational Equations of Motion

The spacecraft hub rotational equations of motion describe the

three remaining hub degrees of freedom. The equations are devel-

oped by separating the kinematic and kinetic differential equations.

This enables convenient use of the angular velocity vector ωB∕N in

the kinetic rotational equations of motion while not limiting the

choice of attitude coordinates used to describe the hub kinematic

orientation. The derivation begins by applying Euler’s equation to

the case where the spacecraft angular momentum is expressed about

a hub-fixed point not coincident with the system center of mass [36]:

_Hsc;B � LB �msc �rB∕N × c (16)

where Hsc;B is the inertial angular momentum of the spacecraft

system about point B and LB is the total external torque acting on

the system about point B. First, the system’s angular momentum

about point B is

Hsc;B � Hhub;B �
N

i�1

HPi;B

� �Ihub;B�ωB∕N �
N

i�1

HPi;Fci
�mPi

rFci
∕B × _rFci

∕B

� �Ihub;B�ωB∕N �
N

i�1

�IPi;B�ωB∕N � �IPi;Fci
�ωF i∕Mi

�mPi
� ~rFci

∕B�r 0Fci
∕B

�17�

where �Ihub;B� is the hub inertia tensor about point B, �IPi;Fci
� are the

subcomponent inertia tensors about their centers of mass, and �IPi;B�
are the subcomponent inertia tensors about point B. Combining all

inertia tensors about point B yields the total spacecraft inertia about

point B:

�Isc;B� � �Ihub;B� �
N

i�1

�IPi;B� (18)

Equation (17) becomes

Hsc;B � �Isc;B�ωB∕N �
N

i�1

�IPi;Fci
�ωF i∕Mi

�mPi
� ~rFci

∕B�r 0Fci
∕B

(19)

Next, the inertial time derivative of the total spacecraft angular

momentum is expressed using the transport theorem as

_Hsc;B � H 0
sc;B � ωB∕N ×Hsc;B

� H 0
sc;B � � ~ωB∕N ��Isc;B�ωB∕N

�
N

i�1

� ~ωB∕N ��IPi;Fci
�ωF i∕Mi

�mPi
� ~ωB∕N �� ~rFci

∕B�r 0Fci
∕B

(20)

The B frame time derivative of the system angular momentum is

H 0
sc;B��I 0sc;B�ωB∕N ��Isc;B� _ωB∕N

�
N

i�1

�I 0Pi;Fci
�ωF i∕Mi

��IPi;Fci
�ω0

F i∕Mi
�mPi

� ~rFci
∕B�r′′Fci

∕B

(21)

Using the rigid-body assumption for the hub and the parallel axis

theorem to express the subcomponent inertias about point B yields

the B frame derivative of the spacecraft inertia tensor:

�I 0sc;B� �
N

i�1

�I 0Pi;B
�

�
N

i�1

�I 0Pi;Fci
� �mPi

� ~r 0Fci
∕B�� ~rFci

∕B�T � � ~rFci
∕B�� ~r 0Fci

∕B�T

(22)

The inertia transport theorem [38] is used to express the subcom-

ponent inertias about their centers of mass:

�I 0Pi;Fci
� � � ~ωF i∕Mi

��IPi;Fci
� − �IPi;Fci

�� ~ωF i∕Mi
� (23)

Equation (22) becomes

�I 0sc;B� �
N

i�1

� ~ωF i∕Mi
��IPi;Fci

� − �IPi;Fci
�� ~ωF i∕Mi

�

�mPi
� ~r 0Fci

∕B�� ~rFci
∕B�T � � ~rFci

∕B�� ~r 0Fci
∕B�T (24)

Combining these results and arranging the terms in the form of

the backsubstitution method yields the system rotational equations

of motion:

msc� ~c� �rB∕N � �Isc;B� _ωB∕N � LB − �I 0sc;B� � � ~ωB∕N ��Isc;B� ωB∕N

−
N

i�1

mPi
� ~rFci

∕B�r′′Fci
∕B − �IPi;Fci

�ω 0
F i∕Mi

−mPi
� ~ωB∕N �� ~rFci

∕B�r 0Fci
∕B − �I 0Pi;Fci

� � � ~ωB∕N ��IPi;Fci
� ωF i∕Mi

(25)
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C. Backsubstitution Formulation

Recall that the equations of motion given in Eqs. (15) and (25)
fully define the hub translational and rotational degrees of freedom.
Accordingly, no additional equations of motion need to be devel-
oped to resolve the remaining 6N prescribed subcomponent degrees
of freedom. The developed equations of motion are therefore
already written in the final form of the backsubstitution method
and yield a modular simulation capability. The �A�; �B�; �C�, and �D�
matrices seen in Eq. (3) are obtained by collecting all left-hand
terms from the equations

�A� � msc�I3×3� (26)

�B� � −msc� ~c� (27)

�C� � msc� ~c� (28)

�D� � �Isc;B� (29)

The vtrans and vrot vector components contain the remaining right-
hand side terms:

vtrans � Fext − 2msc� ~ωB∕N �c 0 −msc� ~ωB∕N �2c −
N

i�1

mPi
r′′Fci

∕B

(30)

vrot �LB− �I 0sc;B�� � ~ωB∕N ��Isc;B� ωB∕N

−
N

i�1

mPi
� ~rFci

∕B�r′′Fci
∕B− �IPi;Fci

�ω 0
F i∕Mi

−mPi
� ~ωB∕N �� ~rFci

∕B�r 0Fci
∕B− �I 0Pi;Fci

�� � ~ωB∕N ��IPi;Fci
� ωF i∕Mi

(31)

The backsubstitution contributions above highlight the one-way
coupling present between the prescribed subcomponents and the
spacecraft hub. Recall that the �A�; �B�; �C�, and �D� matrices contain
all terms coupled with the hub accelerations. Equations (26–29)
contain only mass properties of the spacecraft system and do not
include mass and inertia contributions associated with the subcom-
ponent accelerations, indicating that the hub accelerations do not
impact the subcomponent dynamics. Further, note that the subcom-
ponent prescribed states appear in both Eqs. (30) and (31). The
subcomponent translational and rotational accelerations appear
implicitly and explicitly in these equations, respectively, demon-
strating that the hub accelerations are indeed impacted by the
subcomponent accelerations.

V. Numerical Simulation

The prescribed motion dynamics derived in this work are valid for
any number of subcomponents whose motion can be prescribed
relative to a rigid spacecraft hub. To illustrate the complex simu-
lation capability and scalability that is enabled with this body of
work, this section presents a multibody rotational solar array
deployment scenario inspired by the NASA Lucy mission ultra-
flex lanyard-driven solar array deployment. The required spacecraft
model, frame definitions, and parameters required to simulate the
array deployment scenario are first presented, followed by a brief
discussion of the kinematic profiler modules developed to prescribe
the subcomponent hub-relative motion during the deployment. The
complete mathematics used to profile the subcomponent motion is
given in Appendix A. The simulation results are lastly presented,
and the hub response to the array deployment is evaluated. The
complete source code developed in this work is available in the
open-source Basilisk**** repository.

A. Simulation Setup

The relevant simulation parameters chosen for this scenario are
presented in Table 1. The spacecraft system consists of a central
rigid hub with two symmetrically attached circular solar arrays.
Each solar array is modeled as a collection of N rigid element
subcomponents. The arrays are deployed individually rather than
simultaneously to reflect a single mission design choice. The
deployment scenario is seen in Fig. 2. The array element subcom-
ponents are initially oriented in the stowed configuration shown in
Fig. 2a, where they are stacked together into a wedge-like shape.
Further, each array deploys in two stages. The first stage is the initial
deployment phase, where the stacked elements rotate together from
the stowed configuration away from the spacecraft hub into the
initial deployment configuration. The initial array 1 deployment
configuration is illustrated in Fig. 2b. The initial deployment con-
figuration for array 2 is shown in Fig. 2d. The second stage is the
main deployment stage, where the elements begin to unfurl to their
deployed locations. The configuration with both arrays fully
deployed is illustrated in Fig. 2e.
The spacecraft geometry and required frame definitions for the

deployment scenario are illustrated in Fig. 3. Figure 3a illustrates the
stowed frame orientations, and Fig. 3b presents both array initial
deployment configurations for clarity. Both arrays are included in
the latter figure for the purpose of compactness. The rigid hub body
frame is denoted B∶fB; b̂1; b̂2; b̂3g and is located at the hub center of
mass point Bc. The solar arrays are symmetrically mounted to the
hub at the hub-fixed points M1 and M2. Solar array 1 is designated

as the array mounted along the positive b̂1 axis. Each individual array
element’s kinematic motion is profiled relative to a hub-fixed mount
frame denoted as Mi∶fMi; m̂i1 ; m̂i2 ; m̂i3g, where i � 1;2. The

mount frames in the scenario have the same orientation as the space-
craft body frame, as seen in Fig. 3. Therefore, the angular velocity of
each mount frame with respect to the hub frame ωMi∕B is fixed at

zero for the deployment scenario. The body frame of each rigid

element is denoted F ij∶fFij; f̂ ij1 ; f̂ ij2 ; f̂ ij3g, where j � 1 · · · N
denotes the jth array element and i � 1;2 for each solar array.
Accordingly, the translational and rotational motion of each array
element is profiled using the array element body frames F ij relative

to their respective mount frame Mi.

B. Kinematic Profiler Development for Prescribed Subcomponent

Hub-Relative States

Recall that because the hub-relative states of the subcomponents
are assumed to be explicitly known and prescribed at all instances in
time, no equations of motion are needed for these spacecraft com-
ponents. Therefore, in order to simulate the motion of these com-
ponents and integrate their dynamics into the hub equations of
motion, a time history of the subcomponent hub-relative transla-
tional and rotational states must be available during all phases of the
spacecraft mission. To achieve this functionality, modular transla-
tional and rotational kinematic profiler modules are developed to
specify the subcomponent states at each instant in time while
simultaneously incorporating these states into the subcomponent
terms on the right-hand side of Eq. (3).
Generally, it is clear that an unlimited number of profilers could

be written to capture any conceivable type of subcomponent motion.
Note that the subcomponent’s hub-relative translational states can
be profiled separately from its rotational states, although strict
discretion must be used to ensure that the profiled motion is realistic
such that no fundamental laws of physics are violated. In this work,
two basic profiler modules are developed to prescribe the subcom-
ponents’ hub-relative motion for the solar array deployment sce-
nario. The first module prescribes linear translational motion
relative to the spacecraft hub, and the second prescribes 1-DOF
rotational motion relative to the hub. Cubic splines are used to
implement a smoothed bang-coast-bang acceleration profile for
both types of motion.
The value that these simple profiler modules contribute to this

body of work cannot be understated. A wide plethora of subcom-
ponent motion and simulation capability is unlocked using these****Data available online at https://github.com/AVSLab/basilisk.
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simple profilers. For example, multibody actuated spacecraft com-
ponents such as robotic arms or deploying solar arrays can be
broken down into prescribed subcomponents moving relative to
the spacecraft hub. Both the telescoping and rotational motion of

these multibody spacecraft components can be simulated with these

simple profiler modules. Further, these profiler modules can be used

for verification of the developed hub equations of motion. This

verification is provided in Appendix B of this work.
Table 2 lists the inputs required to profile the rotational subcom-

ponent motion. Mŝ is the subcomponent axis of rotation expressed

as a unit vector in mount frame components; θ0 and θref are the

initial and final subcomponent rotation angles relative to the hub,

respectively; �θmax is the maximum angular acceleration used during

the bang segments of the rotation. Δtbang is the duration the maxi-

mum acceleration is applied during each bang segment, while
Δtsmooth is the time the acceleration is smoothed before and after

each bang segment to ensure that the acceleration profile is con-
tinuous across the entire rotation. Using these inputs, the subcom-

ponent’s hub-relative scalar states θ�t�; _θ�t�, and �θ�t� are determined

as a function of time.
Table 3 lists the inputs required to profile the translational sub-

component motion. Mρ̂ is the subcomponent axis of translation
expressed as a unit vector in mount frame components; ρ0 and
ρref are the initial and final subcomponent displacements relative

Table 1 Numerical simulation parameters

Parameter Notation Value Unit

Number of elements per solar array N 10 N/A

Total spacecraft mass msc 900.0 kg

Hub mass mhub 800.0 kg

Array element mass mP 5.0 kg

Hub inertia matrix about hub center of mass B�Ihub;Bc
�

1333.33 0.0 0.0

0.0 1333.33 0.0

0.0 0.0 533.33
kg ⋅m2

Array element inertia matrix about element center of mass F �IP;Fc
�

6.67 0.0 0.0

0.0 9.21 0.0

0.0 0.0 2.55
kg ⋅m2

Hub center of mass location w.r.t. point B BrBc∕B [0.0, 0.0, 0.0] m

Array 1 mount frame location w.r.t. point B BrM1∕B [2.0, 0.0, 0.0] m

Array 2 mount frame location w.r.t. point B BrM2∕B �−2.0; 0.0; 0.0� m

Array radius R 4.0 m

Element ij frame location w.r.t. point Mi (init. dep.)
MirFij∕Mi

[0.0, 0.0, 0.0] m

Element ij frame location w.r.t. point Mi (main dep.) MirFij∕Mi
�−1�i�1 [4.0, 0.0, 0.0] m

a) Stowed b) Array 1 initial deployed c) Array 1 final deployed

d) Array 2 initial deployed e) Array 2 final deployed
Fig. 2 Solar array configurations for the rotational deployment scenarios.
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to the hub, respectively; �ρmax is the maximum linear acceleration
used during the bang segments of the translation. Similar to the
rotational motion profiler module, Δtbang is the duration the maxi-

mum acceleration is applied during each bang segment, while
Δtsmooth is the time the acceleration is smoothed before and after
each bang segment to ensure the acceleration profile is continuous

across the entire translation. Using these inputs, the subcomponent’s
hub-relative scalar states ρ�t�; _ρ�t�, and �ρ�t� are determined as a
function of time.
The mathematics used to develop the kinematic profiler modules

is discussed in Appendix A. The equations required to profile both

types of motion are identical, so only the equations used to profile
the rotational motion are provided in the Appendix. Note that these
profiler modules do not implicitly consider constraints such as the
actuator displacement, rate, or jerk; however, the user can select
input parameters to comply with such constraints without difficulty.
Moreover, these modules can be readily augmented or entirely
replaced by other formulations in order to address these constraints.
For the deployment-specific scenario studied in this work, it

should be noted that only the array elements’ rotational motion

must be specifically profiled during each phase of array deployment.

Each element’s translational motion can be considered fixed relative

to the hub during each phase of the deployment if the array element

translational positions are adjusted upon completion of the initial

deployment phase, as seen in Table 1. By shifting the array element

displacements relative to the hub before the main deployment phase,

only the rotational motion of the array elements must be profiled.

The initial and final displacements for the translational profilers are

accordingly set to be identical for each phase of the array deploy-

ment such that the translational states are fixed throughout each

phase of deployment. The deployment-specific rotational profiler

parameters are given in Table 4.

C. Results

The results for this simulated scenario can be seen in Figs. 4 and

5. The profiled array element states throughout the deployment

simulation are presented in Fig. 4, while the hub inertial response

to the array deployment is provided in Fig. 5.
Viewing Fig. 4a, array 1 is first seen to rotate by �108 deg

during the initial deployment phase to bring the array elements from

the stowed configuration to the initially deployed configuration.

After this initial rotation, all array 1 elements are seen to begin

a) Stowed configuration b) Initial deployed configuration

Fig. 3 Rotational deployment scenario frame definitions.

Table 2 Rotational profiler input parameters

Parameter Notation Unit

Subcomponent rotation axis Mŝ N/A

Initial subcomponent angle θ0 rad

Reference subcomponent angle θref rad

Maximum angular acceleration �θmax rad∕s2

Duration acceleration segments are applied Δtbang s

Acceleration smoothing duration Δtsmooth s

Table 3 Translational profiler input parameters

Parameter Notation Unit

Subcomponent translational axis Mρ̂ N/A

Initial subcomponent displacement ρ0 m

Reference subcomponent displacement ρref m

Maximum translational acceleration �ρmax m∕s2

Duration acceleration segments are applied Δtbang s

Acceleration smoothing duration Δtsmooth s

Table 4 Deployment scenario-specific rotational profiler input

parameters

Parameter Notation Value Unit

Acceleration segment duration Δtbang 2.0 s

Smoothing segment duration Δtsmooth 2.0 s

Array element rotational axis M ŝ [0.0, 1.0, 0.0] N/A

Element ij initial angle
(init. dep.)

θij;0 0.0 deg

Element ij reference angle
(init. dep.)

θij;ref �−1�i�1 108.0 deg

Element ij max. accel.
(init. dep.)

�θmaxij
0.091 deg ∕s2

Element ij initial angle
(main dep.)

θij;0 �−1�i�1 108.0 deg

Element ij reference angle
(main dep.)

θij;ref 36j + �−1�i�1 108.0 deg

Element ij max. accel.
(main dep.)

�θmaxij
(j-1) 7.519e-3 deg ∕s2
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the main deployment phase and rotate together with different accel-
eration profiles in order to lock into their final deployed configura-
tions simultaneously. Figure 4c illustrates array 2 deploying with
symmetric behavior after array 1 fully completes its deployment.
The acceleration profiles used to prescribe the array deployments
are seen in Figs. 4e and 4f. These smoothed bang-coast-bang accel-
eration profiles produce the angular rate plots seen in Figs. 4c and 4d.
Figure 5a presents the hub inertial angular velocity during the

array deployment. The hub rate about the b̂2 axis varies with a
maximum value occurring after array 1 completes the initial deploy-

ment phase. The hub rates about the b̂1 and b̂3 axes are seen to

remain near zero throughout the entire deployment. During the main

deployment phases, the second hub angular velocity component

compensates for the motion of the array elements by fluctuating

smoothly between roughly�0.02 and�0.01 deg∕s. This behavior
is expected, as the hub must respond to conserve the total spacecraft

angular momentum about its center of mass. Considering Figs. 5b

and 5c, the hub inertial attitude and position are seen to shift

appropriately during each phase of deployment. During the deploy-

ment of array 1 in the X-Z hub frame plane, the hub compensates by

both translating and rotating negatively in the inertial X-Z plane.

During the deployment of array 2 in the X-Z hub plane, the hub

a) Array 1 angle 1 ( ) b) Array 2 angle 2 ( )

c) Array 1 angle rate ˙1 ( ) d) Array 2 angle rate ˙2 ( )

e) Array 1 angular acceleration 1 ( ) f) Array 2 angular acceleration 2 ( )

Fig. 4 Profiled array element states for the deployment scenario.

b) Hub inertial attitudea) Hub inertial angular velocity

c) Hub inertial position

Fig. 5 Hub dynamic response throughout the deployment scenario.

KINER, SCHAUB, AND ALLARD 711

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

A
ug

us
t 6

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
14

91
 



appropriately translates and rotates positively in the inertial X-Z
plane. Note that the initial hub attitude is aligned with the inertial
reference frame.

VI. Conclusions

The ability to extensively simulate complex space vehicles before
mission launch is crucial for mission success. With the growing
complexity of appendages attached to the central spacecraft hub,
such as deploying articulable solar arrays and multilink robotic
manipulator arms, accurately modeling the dynamics of these com-
plex structures and analyzing their impact on the spacecraft hub
dynamics becomes increasingly more valuable to ensure confidence
and reliability in the selected spacecraft design.
This work develops a generalized multibody dynamics for-

mulation to simulate a spacecraft consisting of a rigid hub with
N-element prescribed motion components that actuate relative to the
spacecraft hub. The solution yields a modular way to simulate a
spacecraft whose subcomponent motion is kinematically prescribed.
The developed formulation is novel in that the current spacecraft
dynamics software simulation capability is expanded to enable a
modular, reconfigurable, and efficient implementation of any com-
plex spacecraft design containing prescribed motion elements.
The derived dynamics are implemented in the Basilisk astrody-

namics simulation software framework and verified by demonstrat-
ing that the quantities of orbital angular momentum, orbital energy,
and rotational angular momentum are indeed preserved in a
conservative environment. The scalability of the developed dynam-
ics is demonstrated using a prescribed motion solar array deploy-
ment scenario. The dynamic impact of the prescribed solar array
deployment on the overall spacecraft hub motion is studied. The
development of these general software tools enables a more acces-
sible, rapid approach to simulating and analyzing complex time-
varying spacecraft geometries.

Appendix A: Kinematic Profiler Mathematics

This section discusses the mathematics used to develop the
prescribed translational and rotational kinematic profiler modules.
Note that the equations required to profile both types of motion are
identical, so only the equations used to profile the rotational motion
are provided here. The rotational motion is split into seven distinct
segments. The first segment of the rotation smooths the acceleration
from zero to the specified maximum angular acceleration value �θmax

in the given timeΔtsmooth. If the given reference angle is greater than
the initial angle, the acceleration is smoothed positively to the given
maximum acceleration value. If the given reference angle is less
than the initial angle, the acceleration is smoothed from zero to the
negative maximum acceleration value. During this phase, the scalar
hub-relative states of the subcomponent are as follows:
Segment 1: t0 ≤ t ≤ ts1

�θ�t� � ��θmax

3�t − t0�2
Δt2smooth

−
2�t − t0�3
Δt3smooth

(A1a)

_θ�t� � ��θmax

�t − t0�3
Δt2smooth

−
�t − t0�4
2Δt3smooth

(A1b)

θ�t� � ��θmax

�t − t0�4
4Δt2smooth

−
�t − t0�5
10Δt3smooth

� θ0 (A1c)

where

ts1 � t0 � Δtsmooth (A2)

The second segment of the rotation is the first bang segment,
where the maximum acceleration value is applied positively if the
reference angle is greater than the initial angle and negatively if the
reference angle is less than the initial angle. The subcomponent
states during this phase are as follows:

Segment 2: ts1 < t ≤ tb1

�θ�t� � ��θmax (A3a)

_θ�t� � ��θmax�t − ts1� � _θ�ts1� (A3b)

θ�t� � �
�θmax�t − ts1�2

2
� _θ�ts1��t − ts1� � θ�ts1� (A3c)

where

tb1 � ts1 � Δtbang (A4)

During the third segment of the rotation, the acceleration is

smoothed as it returns to zero. The profiled states during this phase

are as follows:
Segment 3: tb1 < t ≤ ts2

�θ�t� � �θmax 1 −
3�t − tb1 �2
Δt2smooth

−
2�t − tb1 �3
Δt3smooth

(A5a)

_θ�t� � �θmax �t − tb1� −
�t − tb1�3
Δt2smooth

−
�t − tb1�4
2Δt3smooth

� _θ�tb1 � (A5b)

θ�t� � �θmax

�t − tb1�2
2

−
�t − tb1 �4
4Δt2smooth

−
�t − tb1�5
10Δt3smooth

� _θ�tb1��t − tb1� � θ�tb1� (A5c)

where

ts2 � tb1 � Δtsmooth (A6)

The fourth segment of the rotation is the coast segment, where the

profiled acceleration is held constant at zero. The subcomponent

states are profiled using the following equations:
Segment 4: ts2 < t ≤ tc

�θ�t� � 0 (A7a)

_θ�t� � _θ�ts2� (A7b)

θ�t� � _θ�ts2��t − ts2� � θ�ts2� (A7c)

where

tc � ts2 � Δtcoast (A8)

The duration of the coast segment, Δtcoast is determined using the

parameters Δtbang and Δtsmooth:

Δtcoast �
Δθcoast
_θ�ts2�

(A9)

where

Δθcoast � θref � θ0 − 2θ�ts2� (A10)

The fifth segment smooths the acceleration from zero to the

maximum acceleration value before the second bang segment.

Opposite to the first segment of the rotation, the acceleration is

instead smoothed positively if the reference angle is less than the

initial angle and negatively if the reference angle is greater than
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the initial angle. The rotational states during this phase are as

follows:
Segment 5: tc < t ≤ ts3

�θ�t� � ∓�θmax

3�t − tc�2
Δt2smooth

−
2�t − tc�3
Δt3smooth

(A11a)

_θ�t� � ∓�θmax

�t − tc�3
Δt2smooth

−
�t − tc�4
2Δt3smooth

� _θ�tc� (A11b)

θ�t� � ∓�θmax

�t − tc�4
4Δt2smooth

−
�t − tc�5
10Δt3smooth

� _θ�tc��t − tc� � θ�tc�

(A11c)

where

ts3 � tc � Δtsmooth (A12)

The sixth segment of the rotation is the second bang segment,

where the profiled acceleration is held constant for the duration

Δtbang. Recall that the profiled acceleration is positive in this phase

if the reference angle is less than the initial angle and negative if the

reference angle is greater than the initial angle. The hub-relative

states during this phase are as follows:
Segment 6: ts3 < t ≤ tb2

�θ�t� � ∓�θmax (A13a)

_θ�t� � ∓�θmax�t − ts3� � _θ�ts3� (A13b)

θ�t� � ∓
�θmax�t − ts3�2

2
� _θ�ts3��t − ts3� � θ�ts3� (A13c)

where

tb2 � ts3 � Δtbang (A14)

The seventh segment of the rotation is the fourth and final
smoothing segment, where the acceleration returns to zero. At the
end of this phase, the profiled rotation is complete. The subcompo-
nent rates return to zero, and the hub-relative angle converges to the
reference value θref . The subcomponent states during this phase are
as follows:
Segment 7: tb2 < t ≤ tf

�θ�t� � ∓�θmax

3�tf − t�2
Δt2smooth

−
2�tf − t�3
Δt3smooth

(A15a)

_θ�t� � ��θmax

�tf − t�3
Δt2smooth

−
�tf − t�4
2Δt3smooth

(A15b)

θ�t� � ∓�θmax

�tf − t�4
4Δt2smooth

−
�tf − t�5
10Δt3smooth

� θref (A15c)

where

tf � tb2 � Δtsmooth (A16)

Appendix B: Dynamics Verification

Although numerical simulations may appear to yield appropriate
results for a given dynamics formulation, a verification approach is
necessary in order to draw meaningful conclusions regarding
obtained simulation results. It is difficult to guarantee with certainty
that a numerical simulation is without error; however, using a
respected verification approach greatly increases confidence in con-
clusions drawn from obtained results. In order to verify the derived
multibody prescribed motion dynamics, the quantities of orbital
angular momentum, orbital energy, and spacecraft rotational angular
momentum are checked for conservation. The orbital quantities
describe the movement of the spacecraft’s center of mass in orbit,
and the rotational quantities describe the rotation of the spacecraft
about its center of mass [21]. Note that the spacecraft rotational
energy will not be conserved for the system described in this work
because the prescribed accelerations and decelerations add and
remove energy from the system, respectively. Therefore, this quantity
is checked to ensure it returns to zero at the end of the simulation.

Table B1 Verification scenario parameters

Parameter Notation Value Unit

Total spacecraft mass msc 810 kg

Hub mass mhub 800 kg

Subcomponent mass mP 10 kg

Hub inertia matrix about hub center of mass B�Ihub;Bc
�

400
3

0.0 0.0

0.0 400
3

0.0

0.0 0.0 400
3

kg ⋅m2

Subcomponent inertia matrix F �IP;Fc
�

0.0167 0.0 0.0

0.0 0.0167 0.0

0.0 0.0 0.0167

kg ⋅m2

Hub center of mass location w.r.t. point B BrBc∕B [0.0, 0.0, 0.0] m

Subcomponent center of mass location w.r.t. point F F rFc∕F [0.0, 0.0, 0.0] m

Acceleration segment duration Δtbang 1.0 s

Smoothing segment duration Δtsmooth 1.0 s

Rotational axis Mŝ [1.0, 0.0, 0.0] N/A

Initial angle θ0 0.0 deg

Reference angle θref 10.0 deg

Maximum angular acceleration �θmax
0.5 deg ∕s2

Translational axis Mρ̂ [1.0, 0.0, 0.0] N/A

Initial displacement ρ0 0.0 m

Reference displacement ρref 10 cm

Maximum translational acceleration �ρmax 0.5 cm∕s2

KINER, SCHAUB, AND ALLARD 713

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

A
ug

us
t 6

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.I

01
14

91
 



A rigid hub with a single connected prescribed subcomponent is
simulated for the verification scenario. For 15s, the spacecraft is
simulated in an inertial orbit in a conservative environment where
only gravity is acting on the system. Starting from rest relative to the
hub, the subcomponent motion is prescribed to follow simultaneous
translation and rotation in order to verify both kinematic profiler
modules developed in this work. The subcomponent translates 10
cm along and rotates 10 deg about the hub’s first axis b̂1 during the
simulation. The simulation parameters chosen for the verification
scenario are given in Table B1.
The profiled subcomponent states are shown in Fig. B1. Figure B2

displays the changes in the four quantities of orbital angular momen-
tum, orbital energy, spacecraft rotational angular momentum, and
spacecraft rotational energy. Because no nonconservative external
forces are acting on the system, the orbital angular momentum, orbital

energy, and spacecraft rotational angular momentum are conserved.
Figure B2d confirms the expected results for the spacecraft rotational
energy, where the spacecraft returns to a state of zero rotational
energy at the end of the simulation. The obtained verification results
give further confidence in the presented dynamics formulation.
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