
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Periodic relative orbits of two spacecraft subject to differential
gravity and electrostatic forcing

Drew R. Jones a,n, Hanspeter Schaub b

a Aerospace Engineering and Engineering Mechanics Department, WRW Laboratories, The University of Texas at Austin, 210 E 24th St,
Austin, TX 78712, United States
b Aerospace Engineering Sciences Department, Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder,
CO 80309-0431, United States

a r t i c l e i n f o

Article history:
Received 28 November 2012
Accepted 28 March 2013
Available online 10 April 2013

Keywords:
Coulomb formation flying
Periodic solutions
Relative motion
Nonlinear dynamical systems

a b s t r a c t

Coulomb forces between charged close-flying satellites can be used for formation control,
and constant electric potentials enable static equilibria solutions. In this work, open-loop
time-varying potential functions, which produce periodic, two-craft, Coulomb formation
motions are demonstrated for the first time. This is done in the rotating Hill-Frame, with
linearized gravity, and craft position components assumed in the form of simple harmonic
oscillators. Substitution of the oscillatory functions into the dynamics, further constrains
these functions, and yields necessary potential histories, to produce the periodic flow. The
assumed position functions, however, are not arbitrary, since the dynamical model
restricts what oscillatory trajectories are allowed. Specifically, a Hill-Frame integral of
motion is derived, and this is used to show certain candidate periodic functions to be
inadmissible. The system dynamics are then linearized to expose stability properties of
the solutions, and it is established that asymptotic stability is impossible for all orbit
families. Finally, the degree of instability in the assumed motions, over free parameter
ranges, is determined numerically via the Floquet multipliers of the associated full-cycle
state-transition matrices.

& 2013 IAA Published by Elsevier Ltd. All rights reserved.

1. Introduction

Spacecraft charge control was considered as early as
1966 by Cover, Knauer, and Maurer [1], who propose using
electrostatic forces to inflate and maintain the shape of a
large reflecting mesh. Coulomb formations introduced by
King et al. [2,3], refer to the use of this concept in space-
craft formation flying, where the electric potential (or net
charge) of each vehicle is actively controlled, to yield
desired inter-craft forces. Close-proximity vehicles have
many advantages over a single large spacecraft, including
overall mass reduction, shape-changing ability, and

multiple launches for deployment, assembly, and repair.
Free-flying formations have applications in earth imaging,
surveillance, and separated space-borne interferometry
[2,4]. Initially, electric propulsion (EP) systems were pro-
posed for controlling the relative craft motions; however, EP
suffers from limited throttle-ability and the problem of
thruster-plume impingement, where thruster ejecta may
damage or impede neighboring craft [2]. In contrast, active
charge control avoids thruster-plumes, has fast throttling
(ms transitions), and can sustain a given force using less
power and fuel than EP, yielding specific impulse (ISP)
values as high as 1013 s [1,2]. Furthermore, active control
of spacecraft charge was successfully executed during the
SCATHA [5] and ATS [6] missions, and currently on the
CLUSTER [7] mission. Other applications for electrostatic
thrusting include advanced docking and rendezvous,
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autonomous inspection, contact-less removal of hazardous
material [8], and the deployment/retrieval of instruments [9].

Static Coulomb formation equilibria, in which constant
potentials enable shapes that appear fixed with respect to
their center-of-mass, are derived and analyzed extensively
in the literature. These solutions are often referred to as
‘virtual structures’, since the separation distances (or ratios
of the distances) are constant. Some derived static equili-
brium includes 3-craft shapes in the absence of gravita-
tional forces [10–12], 2-craft shapes under classical
non-linear and circular-restricted 3-body (CRTBP) gravity
[13], and 2- and 3-craft spinning configurations [14,15].
Berryman and Schaub [9,16], among others, have devoted
much attention to those equilibria (up to N-craft) admitted
in the rotating Hill-Frame model, with linearized gravity
[2,17–19]. Berryman and Schaub conclude their work by
stating that future investigations should be directed
towards the derivation of dynamic and periodic Coulomb
formations [9,16]. The first examples of such periodic
Coulomb formation solutions are presented in this paper,
and serve as natural and desired extensions of the static
equilibria. These solutions are defined for two vehicles in
the linearized gravity Hill-Frame model, where time-
dependent charge histories produce assumed periodic
motions in the craft positions. The periodic state functions
cannot be assumed arbitrarily; however, because the set of
admissible periodic flows is restricted by the underlying
dynamics. An integral of motion, specific to the assumed
dynamical model, is also derived in this research and is
used to demonstrate certain candidate periodic functions
as inadmissible. This scalar Hill-Frame integral of motion,
is acquired from the fact that the system inertial angular
momentum vector is conserved, in internally actuated
formations (e.g. Coulomb formations). [20]

Various techniques are used to study stability properties
associated with static Coulomb equilibria [14,15,19], and
similar analyses are extended in this work, to periodic
Coulomb formations. Specifically, the Lyapunov stability of
the periodic solutions is studied using Floquet theory [21,22],
and asymptotic stability is demonstrated to be impossible in
the linearized systems. Moreover, the degree of instability is
assessed via the maximum modulus Floquet multiplier
(Monodramy matrix eigenvalue), for the parameterized orbit
families. The Monodramy matrix is shown to share many
analytical properties with those corresponding to periodic
orbits, about libration points, in the CRTBP [23]. Feedback
control and maneuvering of static equilibria cases are given
much attention in the literature, and various authors exploit
marginal modal stabilities to reduce station-keeping control
effort [10,12,24–26]. Furthermore, Inampudi [13], and Jones
and Schaub [27,28] develop methods to optimally transfer
between certain static configurations, and each utilize zero-
input stability properties inherent to those systems. The num-
erical stability analyses of periodic Coulomb motions estab-
lished here, should prove useful in the eventual design of
controllers, to maintain and maneuver these open-loop orbits.

2. Background and dynamical model

A conductive craft surface naturally exchanges ions and
electrons with the plasma of space, and as a result assumes

a non-zero electric potential ϕ (in Volts). When immersed
in a plasma, an ideal vacuum potential is limited (or
shielded) due to interactions with free particles and
photons. The Debye length λd approximates this shielding,
such that a charged particle at a distance r4λd is unaf-
fected by ϕ. Debye length is a measure of the time-
dependent local plasma temperature and density, and
experimental data are available in various regimes. For
nominal conditions λd is on the order of 0.01 m at LEO,
200 m at GEO, and 10 m at Interplanetary [29,30]. How-
ever, the effective Debye length can be many times greater
for ϕ much greater than the plasma energy [29,30], and in
GEO λd can be larger for substantial periods of time [31].
A naturally resulting potential can be altered artificially,
simply by ejecting electrons/ions into the surrounding
plasma, using an electron-gun type device, and this has
been demonstrated on multiple missions [5–7]. To do so,
the device must have sufficient power to supply the
desired voltage ϕ, while continuously emitting particles
at a current (rate) greater than the incoming environmen-
tal current (which tends to drive ϕ to natural equilibrium).

In this work, all spacecraft are assumed spherical
(radius Rsc), with perfectly conductive, outer surfaces of
uniform charge density. Formations are considered in the
GEO regime, such that Rsc⋖λd, making plasma shielding
negligible over Rsc, and it is assumed that the capacitance
of one craft is not impacted by its neighbors. These
simplifications allow craft i net surface charge qi to be
accurately related to the potential ϕi, analytically via
Eq. (1), where kc is the Coulomb constant [30,17]:

ϕi ¼ kc
qi
Rsc

ð1Þ

Using Eq. (1), the qi are considered as controls in this
research, in substitution for the truly measurable/control-
lable parameters ϕi. Moreover, for the 2-craft system being
addressed here, the product of the two charges Q12 ¼ q1q2,
is also regarded as a fully controllable parameter.

2.1. General dynamical model

An Earth-centered inertial frame is denoted N : fı̂; ĵ; k̂g,
and H : fêR; êT ; êNg denotes the rotating Hill-Frame, which
is centered at and rotates with a nominal center-of-mass
(CM) orbit (assumed circular with semi-major-axis a0).
The axes correspond to êR for radial, êT for transverse
(along-track), and êN for normal (orbit-normal). Formation
dynamics are considered in the Hill-Frame, as depicted in
Fig. 1, where Ri is the craft i location in the N frame, Rcm is
the formation CM in the N frame, and ri denotes craft i
position relative to Rcm (origin of the H frame). Eq. (2)
shows how these position vectors are written in terms of
each other, and Eq. (3) constraint on the ri vectors is a
consequence of the H frame definition. The linearized
Clohessy–Wiltshire–Hill gravitational model [32], and a
net Coulomb acceleration defined using the Debye–Hückel
approximation [33] are assumed. Therefore, the Hill-Frame
acceleration of craft i is defined by Eq. (4), where mi and qi
denote craft i mass and net charge, respectively:

Ri ¼ Rcm þ ri ð2Þ
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∑
i
miri ¼ 0 ri ¼ ½xi yi zi�T ð3Þ

€r i ¼
2ω _yi þ 3ω2xi

−2ω _xi
−ω2zi

2
64

3
75þ kcqi

mi
∑
j
j≠i

qj 1þ rij
λd

� �
rij

r3ij exp½rij=λd�
ð4Þ

Also, ω is the rotational rate of the reference (CM) orbit
(and the H frame), rij ¼ ∥ri−rj∥ is a separation distance
between crafts i and j, and x, y, and z denote components
along the axes êR, êT , and êN , respectively. The adopted
Coulomb force model provides conservative accounting of
plasma shielding, and is demonstrated to be highly accu-
rate in GEO, both experimentally and numerically, for
rij410Rsc [30,17]. Therefore, formations in the GEO
regime with rij bounded from below, and a constant and
nominal λd value are assumed.

2.2. Hill-frame constant of motion

Consider a Coulomb formation of N craft, using the
Fig. 1 notation, and Eq. (4) dynamics. Norman and Peck
[34] demonstrate that mechanical energy and total angular
momentum are conserved, in systems acted on by central
body gravity and conservative internal forces. Coulomb
forces are not generally conservative, but those considered
in this work are because, although time-varying, they
depend only on generalized coordinates (i.e. time-varying
craft positions). Nevertheless, Hussein and Schaub [14,10]
and Schaub and Kim [20] show, in general, that Coulomb
forces cannot alter a system's inertial angular momentum
vector, denoted H0, and defined by

H0 ¼∑
i
mi Ri �

Nd
dt

Ri

� �
ð5Þ

The H0 vector can alternatively be written as the sum of
two angular momentum terms, as in Eqs. (6a) and (6b).
The terms being the momentum Hcm associated with a
total mass M¼∑imi on the CM orbit, and the angular
momentum HG of the particles moving with respect to the
CM. It is important to note that no dynamical simplifica-
tions have been made, thus far:

H0 ¼M Rcm �
Nd
dt

Rcm

� �
þ∑

i
mi ri �

Nd
dt

ri

� �
ð6aÞ

H0 ¼Hcm þHG ð6bÞ

Inherent to the Hill-Frame definition is the assumption
that Hcm is constant. With this assumption, Eqs. (6a) and
(6b) imply that HG is constant. Also, the reference orbit
êR−êT is assumed coplanar to the ı̂−ĵ plane (an arbitrary
choice). Therefore, H is obtained by rotating N , about
k̂ ¼ êN , at the constant rate ω (also inherent to the Hill-
Frame definition). The angular velocity vector of the H
frame is then: ω¼ωk̂ ¼ωêN . Next, the HG vector, trans-
formed to the rotating Hill-Frame, is denoted hG. The time-
derivative of hG taken with respect to the H frame, is
computed in Eq. (7a), via the transport theorem. Also, hG is
defined component-wise (in the H basis) by Eq. (7b):

Hd
dt

hG ¼
Nd
dt

HG−ðω� hGÞ ¼
0
0
0

2
64
3
75−

−ωhy

ωhx
0

2
64

3
75 ð7aÞ

HhG ¼ ½hx hy hz�T ð7bÞ
Since HG is a constant vector, it is concluded that hz is a
scalar constant of motion, for Hill-Frame formations hav-
ing internal forces (e.g. Coulomb force). This result is
summarized in Eqs. (8a) and (8b), with hz written in terms
of spacecraft coordinates, and its time-derivative taken
with respect to the H frame:

hz ¼∑
i
miðxi _yi−yi _xiÞ ð8aÞ

_hz ¼
Hd
dt

hz ¼∑
i
miðxi €yi−yi €xiÞ ¼ 0 ð8bÞ

Position vector time-derivatives _r i, taken with respect
to the H frame, are related to the inertial time-derivatives,
via the transport theorem, as

_r i ¼
Hd
dt

ri ¼
Nd
dt

ri−ðω� riÞ ¼
_xi
_yi

_zi

2
64

3
75 ð9Þ

2.3. Two-craft Hill-Frame constant of motion

For the special case of two vehicles, Eq. (3) constraint
can be used to eliminate one craft's state variables from
Eqs. (8a) and (8b). In Eq. (10), the craft 2 state is written in
terms of craft 1, with the subscripts on r1 components
omitted, for simplicity:

r2 ¼
−m1

m2
r1 ¼

−m1

m2

x

y

z

2
64
3
75 _r2 ¼

−m1

m2

_x
_y
_z

2
64

3
75 ð10Þ

Upon substitution, the 2-craft integral of motion (and its H
frame derivative) is given by

hz ¼
m2

1 þm1m2

m2
ðx _y−y _xÞ ð11aÞ

0¼ x €y−y €x ð11bÞ

2.4. Reduced and normalized two-craft dynamics

Eq. (10) is substituted into Eq. (4), to explicitly remove
r2 terms from the craft 1 acceleration. Then a scaled charge

Fig. 1. Rotating Hill-Frame showing relative position vector ri
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product ~Q 12, given by Eq. (12), is substituted into the
resulting expression. The scaled charge product substitu-
tion introduces a time transformation into the equations of
motion. This transform to the non-dimensional time-like
variable τ, is defined by Eq. (13):

~Q 12 ¼
kcQ12

ω2 ð12Þ

dτ¼ωdt ðζÞ′¼ dζ
dτ

¼ 1
ω

dζ
dt

ð13Þ

This yields Eq. (14a), an expression for the scaled craft 1
acceleration (in the variable τ), as a function of its own
position vector r1, its own scaled velocity vector v1 ¼
r′1 ¼ _r1=ω, and the scaled charge product ~Q 12. Eq. (14a)
then provides reduced and normalized equations of
motion for the system (craft 2 can be explicitly determined
using Eq. (3)). The craft 1 subscript is omitted for simpli-
city (i.e. r¼ r1), and the terms Ψ and Mr1 are defined in
Eq. (14b):

r″¼ €r
ω2 ¼

2y′þ 3x
−2x′
−z

2
64

3
75þ ~Q 12 Ψ ðrÞ

x
y

z

2
64
3
75 ð14aÞ

Ψ ðrÞ ¼
M2

r1 1þ r
Mr1λd

� �

m1 r3 exp
r

Mr1λd

� � Mr1 ¼
m2

m1 þm2
ð14bÞ

The scaled charge product ~Q 12 and scaled dynamics (in the
variable τ), simplify the subsequent analysis and numerical
integration of periodic Coulomb formations. However, the
dimensional electric potential ϕ (in Volts) is often more
informative than ~Q 12. The dimensional net charge q1 and
potential ϕ1 are therefore computed from ~Q 12 (where
necessary) using

q1 ¼ ω

ffiffiffiffiffiffiffiffiffiffiffi
j ~Q 12j
kc

s
ϕ1 ¼

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kcj ~Q 12j

q
Rsc

ð15Þ

where Eq. (1) relates q1 to ϕ1, equal charge magnitudes
(jq1j ¼ jq2j) are assumed, and a positive q1 convention is
adopted.

2.5. Stability determination of periodic motions

Eqs. (14a) and (14b) are written in Eq. (16) state-space
form, with XðτÞ denoting the full-state vector, and its
derivative taken with respect to the rotating Hill-Frame
denoted F¼X′ðτÞ:

XðτÞ ¼ r
v

� �
X′ðτÞ ¼ F¼ v

r″

� �
ð16Þ

This 1st order ODE system can be linearized about a
periodic solution XnðτÞ, with non-dimensional time period
τp. Doing so yields Eq. (17), a linear ODE system in which
the state-propagation matrix AðτÞ governs the dynamics of
small state perturbations δXðτÞ, from XnðτÞ. A state-
transition matrix Φðτ;0Þ may be found, which maps δX
from 0-τ, as defined in Eq. (18). Also, the state-transition
matrix (STM) satisfies the same ODE as δX, and thereby

has the same state-propagation matrix:

δX′ðτÞ ¼ ∂F
∂X

� �� ����
X ¼ Xn

�
δXðτÞ ¼AðτÞ δXðτÞ ð17Þ

δXðτÞ ¼Φðτ;0Þ δXð0Þ Φ′¼ AðτÞ Φ ð18Þ
The state-propagation matrix AðτÞ associated with Eqs.
(14a) and (14b) dynamics is derived in Eqs. (19a)–(19c),
where 0 and I denote 3x3 zero and identity matrices,
respectively:

AðτÞ ¼
0 I
∂r″
∂r

∂r″
∂v

" #
¼ 0 I

G H

� �
ð19aÞ

H¼
0 2 0
−2 0 0
0 0 0

2
64

3
75 ð19bÞ

GðτÞ ¼ ~Q 12 Ψ ðrÞ I−
3rrT

r2

� �
−

rrT

Mr1λd r þMr1λdð Þ

� �
ð19cÞ

This AðτÞmatrix has the same form, and the same resulting
properties as associated with periodic orbits about libration
points in the CRTBP [23]. In particular, ΦT is symplectic
according to Eq. (20), for the skew-symmetric matrix J:

JFT ¼ −FJ ΦJΦT ¼ J J¼ 0 I
−I G

� �
ð20Þ

The STM propagated for τp is called the full-cycle Mono-
dramy matrix. The Floquet multipliers s, correspond to the
eigenvalues of the Monodramy matrix, and are used to
access Lyapunov stability of XnðτÞ. Specifically, the orbit is
unstable if any jsij41 (and/or if any repeated jsij ¼ 1 is not
semisimple) [21,22]. Also, since Φðτp;0Þ satisfies Eq. (20),
it exhibits the following properties [22]:

1. detðΦÞ ¼ jΦj ¼ 71
2. At least one Floquet multiplier has modulus of unity:

jsij ¼ 1
3. The si appear in reciprocal pairs (i.e. if si is eigenvalue,

then so is sj ¼ 1=si)

The latter property entails that a si inside the unit circle,
has its pair outside (an unstable mode). The maximum
modulus Floquet multiplier, denoted jsjmax, is then used as
a measure for how strongly unstable a particular XnðτÞ
solution is, and all stability categories, based on the si, are
defined in Table 1. These categories imply that asymptotic
stability is impossible for all 2-craft periodic Coulomb
formations, and at best such solutions will exhibit bound-
edness (uniform stability).

Table 1
Stability categories based on periodic Coulomb formation Floquet
multipliers.

Category Lyapunov stability

jsjmax ¼ 1
All repeated jsij ¼ 1 are semi-simple Bounded
Any repeated jsij ¼ 1 is not semi-simple Unstable

jsjmax41 Unstable

D.R. Jones, H. Schaub / Acta Astronautica 89 (2013) 21–3024
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3. Periodic Coulomb formation motions via assumed
solutions

The coupling of x and y in Eqs. (14a) and (14b) excludes
periodic solutions having only x, y, x and z, or y and z
components. Therefore, there are three possible periodic
orbit types: êR−êT planar motions (in-orbit-plane), êN axis
only (normal to orbit-plane), and 3-dimensional motions. In
this research, the spacecraft position components are
assumed to take the form of simple harmonic oscillators.
Therefore, the presented analyses are specific to these
periodic flows, which happen to conserve total mechanical
energy. Other periodic motions, having assumed functions
described by different finite Fourier series, may exist, but are
outside the scope of this work. However, the assumed
periodic functions are not arbitrary, because the set of
allowed motions is restricted, and some examples of inad-
missible candidate functions are shown in Section 3.4.
Coulomb forces are not generally conservative since active
charge control, at the expense of power consumption, can
provide arbitrary potential modulation. The open-loop
potential functions considered here are explicitly dependent
on spacecraft coordinates, and therefore nonconservative
Coulomb forcing is also outside of the current scope.

3.1. In-orbit-plane periodic motions

Dynamic Coulomb formations are derived here using
Eqs. (14a) and (14b) êR−êT planar equations of motion. It is
assumed that xðτÞ and yðτÞ are simple harmonic oscillators,
defined by

xðτÞ ¼ Ax cosðθτÞ yðτÞ ¼ Ay sinðθτÞ ð21Þ
Therefore, oscillations occur about x¼ y¼ 0, with the
initial conditions: xð0Þ ¼ Ax and yð0Þ ¼ 0. The amplitudes
of oscillation are denoted Ax and Ay, and θ is the oscillation
frequency, related to the relative orbit period tp (and non-
dimensional period τp) via

θ¼ 2π
τp

� �
¼ 2π

ωtp

� �
ð22Þ

The time derivatives of x and y are then also periodic and
given explicitly by

x′τÞ ¼−θAx sin ðθτÞ x″ðτÞ ¼−θ2xðτÞ ð23aÞ

y′ðτÞ ¼ θAy cos ðθτÞ y″ðτÞ ¼−θ2yðτÞ ð23bÞ
Eq. (21) and Eqs. (23a) and (23b) are then substituted into
Eqs. (14a) and (14b), and the resulting êR and êT accelera-
tion terms are divided by xðτÞ and yðτÞ, respectively.
Rearranging these expressions such that the Coulomb
acceleration terms are on the left hand side, results in
Eqs. (24a) and (24b), where Ψ ðrÞ is defined in Eq. (14b):

~Q 12ðτÞΨ ðrÞ ¼ −θ2−3−2θ
Ay

Ax

� �
ð24aÞ

~Q 12ðτÞΨ ðrÞ ¼ −θ2−2θ
Ax

Ay

� �
ð24bÞ

Note that the right hand sides of Eqs. (24a) and (24b), must
be equal, independent of ~Q 12ðτÞ. Equating these leads to

Eq. (25) quadratic equation:

Ay

Ax

� �
¼ −37

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16θ2

p
4θ

ð25Þ

This quadratic has two real solutions for all τp40, sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16θ2

p
is always real, and also insists that Ax≠Ay,

meaning that the resulting trajectory is an ellipse about
the CM. By choosing the initial condition Ax40, the two
roots of the quadratic may be categorized as follows:

� Case A (The + root): Ellipse semi-major axis is Ax, and
semi-minor axis is Ay (jAxj4 jAyj).� Case B (The − root): Ellipse semi-major axis is −Ay, and
semi-minor axis is Ax (jAxjo jAyj).

The necessary ~Q 12ðτÞ function is derived from either Eq.
(24a) or (24b), with the substitution of Eq. (25). This yields
Eq. (26), where ~Q 12ðτÞ is an explicit function of xðτÞ and
yðτÞ, since r2ðτÞ ¼ x2ðτÞ þ y2ðτÞ:

~Q 12ðrðτÞÞ ¼
−1
Ψ ðrÞ θ2 þ 3þ −37

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16θ2

p
2

 !" #
ð26Þ

This ~Q 12ðτÞ history produces the assumed periodic motion,
and is itself a simple oscillator. However, the oscillations are
offset from zero, and with period of τp=2. Additionally, when
τp ¼ 2π, tp is equal to the CM orbital period (≈1 day), and the
relative orbit has semi-major axis twice that of semi-minor
axis. For case B, τp ¼ 2π yields a trivial solution of ~Q 12ðτÞ ¼ 0.
The full set of these periodic Coulomb formation motions, in
the êR-êT plane, can be generated as follows:

1. Choose Ax, and either Case A or Case B of Eq. (25)
2. Solve Ay via Eq. (25)
3. Propagate the controlled system with ~Q 12ðτÞ defined by

Eq. (26)

3.2. Normal to orbit-plane periodic motions

Here, êN axis oscillations only are considered (the
êR−êT dynamics are ignored, since they decouple to 1st
order). The zðτÞ motion of craft 1 is assumed to oscillate
with amplitude Az about a non-zero offset of z0, as defined
by Eq. (27). Also, it is assumed that z04Az to avoid
collisions of the two craft:

zðτÞ ¼ z0 þ Az sin ðθτÞ ð27Þ
Unlike the in-orbit plane motions, Az and z0 are unrest-
ricted, with the exception that z04Az. The necessary
charge history to enable this motion, derived similarly to
what was done in Section 3.1, is given by

~Q 12ðzðτÞÞ ¼
1

Ψ ðrÞ 1−θ2 þ θ2
z0
zðτÞ

� �
ð28Þ

3.3. Three-dimensional periodic motions

If x, y, and z are assumed to be, τp periodic, simple
oscillators, the only possible solution is the trivial case of
~Q 12ðτÞ ¼ 0. However, if xðτÞ and yðτÞ are defined as in Eq.
(21), and zðτÞ is defined as in Eq. (29), non-trivial 3D

D.R. Jones, H. Schaub / Acta Astronautica 89 (2013) 21–30 25
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periodic motions are admitted:

zðτÞ ¼ Az sin ðBzθτÞ Bz ¼…1
8
;
1
4
;
1
2
;2;4;8… ð29Þ

For fractional Bz, the relative orbits are τp=Bz periodic (with
1=Bz planar oscillations in a full period). Whereas for
integer Bz, the relative orbits are τp periodic (with Bz
z-oscillations in a period). Substituting the assumed solu-
tions (and their derivatives) into Eqs. (14a) and (14b), and
rearranging, leads to Eq. (30), which provides constraints
on the assumed solution parameters. Eq. (31) follows from
Eq. (30), upon the substitution of Eq. (25) for the ratio
Ax=Ay:

~Q 12ðτÞΨ ðrÞ ¼ ð1−B2
z θ

2Þ ¼−θ2−3−2θ
Ay

Ax

� �
ð30Þ

ð1−B2
z θ

2Þ ¼−θ2−2θ
4θ

−37
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16θ2

p
 !

ð31Þ

For these 3D solutions, τp is no longer free, but rather must
satisfy Eq. (31), for a given Bz. Furthermore, Eq. (31) can be
written in the form of Eq. (32), a nonlinear root-finding
function, in the variable θ. For integer Bz, there is a unique
real-valued θ which satisfies Eq. (32), for each of the two
cases, corresponding to Eq. (25). For fractional Bz, Eq. (32)
admits no real-valued θ solutions:

8θ2 þ ð−37
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16θ2

p
Þ½θ2ð1−B2

z Þ þ 1� ¼ 0 ð32Þ
Fig. 2(a) plots Eq. (32) versus θ and integer Bz values, for

case B (− root in Eq. (25)), and illustrates the existence of
unique θ solutions (similar for case A). In contrast, Fig. 2(b)
shows that real θ solutions are not permitted for fractional
Bz values (true to both cases A and B). Therefore, 3D

periodic Coulomb formations with z-axis oscillations of
longer period than planar oscillations, cannot exist. Solu-
tions are limited to the subset of even integer Bz, having êN
oscillations that occur Bz times in τp. Also, the amplitudes
Ax and Az are free, and so is Bz (in the subset of even
integers). This leads to families of 3D, dynamic and
periodic, orbits for each case (two roots in Eq. (25)). Orbits
within these families can be generated as follows:

1. Choose Ax, Az, and Bz (even integer)
2. Choose either Case A or Case B of Eq. (25)
3. Solve θ (and τp) numerically from Eq. (32)
4. With θ known, solve Ay via Eq. (25)
5. Propagate the controlled system with ~Q 12ðτÞ defined by

Eq. (26)

3.4. Restrictions on assumed periodic trajectories

Admissible periodic solutions within this model must
satisfy Eq. (33), which is the derivative of Eq. (11a) Hill-
Frame constant of motion, in terms of the non-dimensional
time-variable τ:

xðτÞy″ðτÞ−yðτÞx″ðτÞ ¼ 0 ð33Þ
This restriction means that xðτÞ and yðτÞ periodic functions
cannot be assumed arbitrarily. The following are demon-
strable examples of simple periodic functions, which cannot
satisfy this condition, and therefore such motions cannot
occur.

� Simple planar harmonic oscillators about the origin:

xðτÞ ¼ Ax cosðθxτÞ yðτÞ ¼ Ay sinðθyτÞ ð34Þ
Substituting into Eq. (33) yields θ2y ¼ θ2x , then since
θ40, we find that θx ¼ θy. Therefore, Eq. (34) periodic
flows having θx≠θy cannot exist. Hence θx ¼ θy ¼ θ is
used in the previous examples.

� General rotary motion (periodic polar curve):

rðτÞ ¼ A1 þ A2 sin ðnθτÞ ð35aÞ

xðτÞ ¼ rðτÞ cosðnθτÞ ð35bÞ

yðτÞ ¼ rðτÞ sin ðnθτÞ ð35cÞ
where n is a positive integer and A2≠0. Subbing Eqs.
(35a)–(35c) into Eq. (33), yields Eq. (36)

2nA2 cosðnθτÞ½A2 sinðnθτÞ þ A1� ¼ 0 ð36Þ
This expression is not true for all τ, and by contra-
diction, such motions are impossible.

� Simple planar harmonic oscillators, offset from origin:

xðτÞ ¼ x0 þ Ax cos ðθxτÞ ð37aÞ

yðτÞ ¼ y0 þ Ay sin ðθyτÞ ð37bÞ
If x0 or y0 are zero, then Eq. (33) insists that yðτÞ or xðτÞ of
Eqs. (37a) and (37b) are constant, both of which are
contradictions. For x0≠0, y0≠0, and θx ¼ θy Eq. (33)
momenta condition is satisfied. However, it can be readily

Fig. 2. Three-dimensional periodic solutions: functional relationship
between Bz and θ. (a) Case B: Eq. (32) function for integer Bz. (b) Case
B: Eq. (32) function for fractional Bz.
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shown from the dynamics that no real Q ðτÞ history can
enable the motion. This shows that Eq. (33) is a necessary
(but not sufficient) condition for Coulomb formation
periodic orbits, because the assumed trajectory can satisfy
Eq. (33), but not the dynamics.

4. Numerical simulations of periodic Coulomb
formations

The following results are generated by propagating the
dynamical system in Eqs. (14a) and (14b) numerically.
The two vehicles are assumed to be of equal radius
Rsc ¼ 1 m. Additional parameter values are listed in
Table 2, where a mean λd value at GEO is adopted [13].

4.1. In-orbit-plane periodic motions

Example of craft 1 position histories in Figs. 3(a) and (b),
and corresponding potential histories in Figs. 4(a) and (b), are
shown for Ax¼20 m and τp ¼ π. These provide a comparison
of rðτÞ and ϕ1ðτÞ between the two cases (A and B).1

Note that the ϕ1 amplitude of oscillation is greater in
case A, despite the case B example having a larger energy
ellipse. In either case, the ϕ1 amplitude increases in
proportion to Ax, and in inverse proportion to τp.

4.2. In-orbit-plane periodic motion stability

Perturbations normal to the orbit-plane decouple from
the in-plane dynamics (to 1st order), and the two Floquet
multipliers associated with out-of-plane perturbations,
have modulus of unity. Values of the remaining four
multipliers, or Monodramy matrix eigenvalues, are func-
tions of Ax, τp, and case A/B selection. Trends in the
magnitude of jsjmax, and the real or complex nature of
the eigenvalues are summarized as follows:

1. jsjmax ↑ as τp ↑ and as Ax ↑ (weakly for Case A)
2. Case A planar si: 1 purely real pair and 1 complex pair

for τpo2π (2 purely real pairs otherwise)
3. Case B planar si: 2 complex pairs for τpo2π (1 purely

real pair and 1 complex pair otherwise)

In both cases, jsjmax≈1 for τp⪡2π, and therefore quickly
oscillating formations are weakly unstable. In Fig. 5(a) and (b),

Table 2
Numerical test cases: input parameters.

Parameter Value Units

a0 4:227� 107 m

Rsc 1 m
λd 180 m
m1 ¼m2 150 kg
ω 7:2593� 10−5 rad/s

kc 8:99� 109 Nm2 / C2

Fig. 3. Planar periodic solution S/C 1 position histories: Ax ¼ 20 m, and
τp ¼ π. (a) Case A: Ax4Ay . (b) Case B: AxoAy .

Fig. 4. Planar periodic solution S/C 1 potential histories: Ax¼20 m, and
τp ¼ π. (a) Case A: Ax4Ay . (b) Case B: AxoAy .

1 In Fig. 3(a) and 4(b) and subsequent figures, S/C is used as a
shorthand for spacecraft.
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Monodramy matrix eigenvalues associated with a case B
formation are shown in the complex plane, for varying
Ax and τp. The parameter dependent stability is clear, and it
is also evident that two of the si (those associated with
êN modes) remain on the unit circle, moving along it as a
function of τp. These plots demonstrate very near marginal
stability for case B formations, having periods on the order
of 1 h, and separation distance on the order of tens of
meters.

4.3. Normal to orbit-plane periodic motions

An example of orbit-normal oscillatory solution is
shown in Figs. 6(a) and (b), propagated for two periods,
with z0 ¼ 15 m, Az¼5 m, and τp ¼ π. Unlike in the planar
solutions, ϕ1ðτÞ is not a simple harmonic oscillator func-
tion. At the maximum separation distance (40 m), the
potential goes to zero, and near the minimum separation
distance the potential has a dip. This dip is due to the
increased Coulomb interaction there, and as the ratio of
z0=Az increases this dip tends to smooth out.

4.4. Normal to orbit-plane periodic motion stability

Perturbations along the êN-axis are marginally stable,
but perturbations in the reference orbit plane exhibit
unstable and stable modes. The maximum modulus eigen-
value of the Monodramy matrix is a function of z0, τp, and

the ratio Az=z0 (ratio is between 0 and 1). These functional
trends are summarized as follows:

1. jsjmax ↑ as Az=z0 ↑ (and weakly as z0 ↑)
2. jsjmax ↑ as τp ↑ (for 0 oτpo ≈1 h)
3. jsjmax ↓ as τp ↑ (for τp4 ≈1 h)
4. Depending on parameters, si may be all complex, all

real, or 2 complex pairs and 2 real.

For tp small (order of minutes) and Az=z0o0:1, jsjmax≤
1:0007 (meaning that very fast, small amplitude, oscilla-
tory motions along the êN-axis are weakly unstable).

4.5. Three-dimensional periodic motions

An example of dynamic and periodic Coulomb forma-
tion in 3D, is illustrated in Fig. 7(a) and (b), for Ax4Ay

(case A), Ax¼20 m, Az¼10 m, and Bz¼2. The necessary
oscillation period (solved numerically) is around 0.73 days.
Similar to the êN only oscillatory solution (and unlike the
planar solutions), ϕ1ðτÞ is not a simple harmonic oscillator.
A 3D plot of this trajectory (craft 1) is shown in Fig. 8(a),
and the geometry is that of a saddle. Additionally,
a different example trajectory is presented in Fig. 8(a),
and demonstrates some of the rich geometry found in
these orbit families. This latter orbit is of the case B family,
and generated with the same Ax and Az (as case A
example), but with Bz¼4, and it has a longer period

Fig. 5. Case B Floquet multipliers in the complex plane versus: period τp
and amplitude Ax. (a) Versus τp (Ax¼25 m). (b) Versus Ax (τp ¼ 0:3).

Fig. 6. Normal to orbit-plane solution over two periods: z0 ¼ 15 m,
Az¼5 m, and τp ¼ π. (a) S/C 1 Position History. (b) S/C 1 Potential History.
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(≈4:4 days). Some qualitative differences between cases A
and B include case B having longer period, and a potential
function that exhibits simple harmonic oscillation (unlike
that of case A).

4.6. Three-dimensional periodic motion stability

For these orbit families, jsjmax magnitude is a function
of: Bz, Ax, Az, and case A/B selection. The following trends
are the result of varying 2≤Bz≤8, 10≤Ax≤100 m, and
5≤Az≤80 m.

1. Both cases: jsjmax ↑ as Bz ↑
2. Case A: jsjmax ↑ as jAx−Azj ↑ (although this is often weak

and/or non-monotonic)
3. Case B: jsjmax ↑ as Ax ↑ and as Az ↓ (although the latter is

often weak and/or non-monotonic)

For both cases, the significant driver of orbit instability is
Bz. And generally, case A orbits exhibit jsjmax of much
larger magnitude than those associated with case B.
The smallest value found for case A orbits is jsjmax ¼
3511 (Bz¼2, Ax¼50, Az¼80). Whereas the case B solutions
have 1:8≤jsjmax≤1500, with jsjmax ¼ 1:8 occurring at Bz¼2,
Ax¼10, and Az¼45. Again, all are Lyapunov unstable, but
the case A solutions tend to be more unstable.

5. Conclusions

The existence of dynamic and periodic Coulomb for-
mations is demonstrated for two spacecraft in a linearized
gravity Hill-Frame model. These are the first results of
repeating relative orbital motions, where the charge is
dynamically varied in an open-loop manner. The results
provide a valuable extension to the many works concern-
ing static Coulomb formation solutions (fixed distances
and constant potentials). Some possible applications for
these nearly propellant-less relative orbits include inter-
ferometry with variable separation distance (and the
possibility of an inertially fixed line-of-sight vector),
Earth/Sun imaging applications, and autonomous inspec-
tion of a cooperating or non-cooperating vehicle. There-
fore detailed examinations into utilizing these electro-
statically forced periodic solutions, should be considered
in future research. Also, the derived orbits exhibit varied
relative instability, and the implications of this for feed-
back stabilization should be explored further.

This investigation restricts attention to 2-craft forma-
tions with approximate dynamics, and so future research
should attempt to derive analogous oscillatory flows for
3-craft (or even N-craft) Coulomb formations, within this
dynamical model or otherwise (e.g. nonlinear gravity or
CRTBP). Moreover, the examples given here, represent
assumed solutions, but not an exhaustive presentation of
all possible periodic motions. However, assumed craft
position functions are non-arbitrary and the full set of
solutions will exist as a subset of the infinite Fourier series
representation. Future research should determine the
existence of these hypothesized solutions, and the Hill-
Frame integral of motion, derived in this work, could
facilitate such efforts. Lastly, the sensitivity of all motions
to primary perturbations should be analyzed, along with
the validity of the restrictions imposed on possible orbits,
when considering an increased fidelity force model.

Fig. 8. Three-dimensional periodic solution S/C 1 trajectories: Ax¼20 m
and Az¼10 m. (a) Case A trajectory Bz¼2. (b) Case B Trajectory Bz¼4.

Fig. 7. Three-dimensional (Case A) periodic solution over one period:
Ax¼20 m, Az¼10 m, and Bz¼2. (a) S/C 1 position history. (b) S/C 1
potential history.
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