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This work studies the feasibility of using reinforcement learning for small body science operations subject to

resource constraints. Two mission scenarios are considered. In the first scenario, a spacecraft autonomously

maneuvers between waypoints about a small body while performing science activities, such as mapping and

imaging, and periodically downlinking data and managing on-board resources like battery charge, data buffer

storage, and fuel usage. In the second scenario, the spacecraft periodically performs navigation updates to improve its

state estimate, ensuring that the collected science is within the specified requirements. A Markov decision process

formulation of the mission scenarios is formulated, and reinforcement learning is applied to solve the problem. A

range of noisy observation types are tested, demonstrating that a fully observable formulation of the problem trained

ondirect observations of the state is robust to noisymeasurements or a filtered state estimate.Adecision-makingagent

is then trained to manage the state estimate by choosing when to take measurements, demonstrating that near-

equivalent policies, in comparison to nominal problem formulation, can be trained with an optional navigation

update. Finally, a demonstration is performed in which a ground station outage is simulated. The decision-making

agent is shown to be robust to this outage, rapidly adjusting its plan to continue nominal operations.

Nomenclature

Problem Formulation

j = map index
k = map point index
M = set of map points
Mj;k = kth map point of map j
rw = radius of waypoint w
T = set of surface imaging targets
W = set of waypoints
ΔV = total change in velocity
θ = azimuth angle of waypoint w
λ = set of local solar times of maps
ψ = polar angle of waypoint w

Dynamics

A = semimajor axis of asteroid orbit
Asc = surface area of spacecraft
asrp = acceleration due to solar radiation pressure

d̂ = direction of the sun

E = eccentricity of asteroid orbit
_F = first time derivative of true anomaly

�F = second time derivative of true anomaly

�K1� = proportional gain matrix
�K2� = derivative gain matrix
Msc = mass of spacecraft
Or = position of spacecraft

O = sun–asteroid Hill frame

O _r = velocity of spacecraft

P0 = solar flux at 1 AU
Ug = gravitational potential of asteroid

Us = gravitational potential of sun
u = control acceleration
E = asteroid body frame
μsun = gravitational parameter of the sun
μast = gravitational parameter of the asteroid
ρ = surface reflectivity

State Estimation

Hi = measurement Jacobian at time ti
hi = measurement function at time ti
Ki = Kalman gain at time ti
Pi = state error covariance at time ti
Q = process noise covariance
R = measurement noise covariance
ri = measurement residual vector at time ti
yi = measurement vector at time ti
x̂i = state estimate at time ti
Φ�t; ti−1� = state transition matrix

Markov Decision Processes

A = action space
ai = action at step i
G�s; a� = generative transition function
Qπ�s; a� = state-action value function following policy π
R�s; a� = reward function
ri = reward at step i
S = state space
si = state at step i
Vπ�s� = value function following policy π
π�ajs� = policy
T �s 0js; a� = transition probability

I. Introduction

M ISSIONS to small bodies such as asteroids and comets
present several challenges for planning and scheduling,

which is the process by which the sequence of activities a space-
craft must perform to fulfill its mission objectives is computed.
Epistemic uncertainty regarding the operational environment,
aleatory uncertainty regarding the state of the environment, and
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the round-trip light-time delay are three challenges that planning
and scheduling capabilities for small body operations must
address. Epistemic uncertainty is uncertainty regarding the envi-
ronment that can be reduced with additional information. For
example, the shape of a small body is not known with great fidelity
until the spacecraft arrives at the body and constructs a shape
model. Aleatory uncertainty is uncertainty regarding the state of
the environment that cannot be reduced with additional informa-
tion. For example, the state of the spacecraft is not known with
absolute certainty due to inherent noise in measurements, which
can be used to estimate the state of the spacecraft. The round-trip
light-time delay is the amount of time it takes for a signal to leave
the Earth, reach a spacecraft, and return to Earth. In deep space,
the round-trip light-time delay is tens of minutes, depending on
the distance from the Earth to the spacecraft in question. Spacecraft
cannot rely on input from Earth for unexpected events that occur
during this time, such as unexpected science opportunities.
To make matters even more challenging, a NASA Inspector Gen-
eral report found that the deep space network (DSN), which
is responsible for communication and navigation for 60 NASA
and international space missions, is currently oversubscribed and
will remain oversubscribed as NASA’s Artemis Program, Perse-
verance Rover, and James Webb Space Telescope compete for
DSN access [1]. Therefore, it is desirable to have spacecraft
autonomously continue nominal operations if an unexpected out-
age occurs.
To address these challenges, further development of advanced

autonomous capabilities that can handle uncertainty and operate
with minimal input from the ground is required. Much work has
been done to achieve this goal for several missions that have flown.
In particular, on-board planning and scheduling capabilities have
advanced greatly in the past few decades. The first example of on-
board planning and scheduling is the Remote Agent, which was
deployed on board NASA’s Deep Space One spacecraft to demon-
strate goal-based commanding, on-board planning, robust execu-
tion, and fault protection [2–4]. Other examples include the ASPEN
[5] and CASPER [6] systems, which have flight heritage on a
number of missions, demonstrating autonomous ground-based
planning and on-board replanning to enable opportunistic science.
The Earth-Observing 1 [7,8] and IPEX [9] missions are two exam-
ples. Another example of such a tool is MEXEC, an on-board
planning and execution tool originally developed by NASA for
the Europa Clipper mission [10]. An on-board scheduler is also
planned for the Perseverance Rover to adjust activities to account
for variations in resources or task execution [11]. The development
of such tools demonstrates the need for on-board planning and
scheduling capabilities for future missions. This work investigates
fully autonomous planning and scheduling capabilities, which do
not require ground-based plans that are generated beforehand and
continually monitored by an on-board scheduler or executive.
Autonomous decision-making agents are instead trained on the
ground and uplinked to the spacecraft before the initiation of
proximity operations.
Recently, deep reinforcement learning (DRL) has emerged as

a promising class of solution methods and problem formulations
for a variety of spacecraft decision-making problems. The goal of
reinforcement learning is to solve for a policy that maps states to
actions to maximize a numerical reward function [12]. In contrast to
optimization-based formulations and solution methods like genetic
algorithms [13] or mixed integer programs [14–19], reinforcement
learning is interested in solving for a policy that generalizes across
the state space such that the optimal action is known for every state.
Trained policies are executed in a closed-loop manner, responding
to the observed states of the environment. The domain randomiza-
tion in training also allows reinforcement learning to cope with
model uncertainty [20]. This is extremely advantageous for small
body exploration where epistemic and aleatory uncertainty are
present. Several authors have investigated using reinforcement
learning for a variety of small body operation problems. Chan and
Agha-Mohammadi formulate a small body mapping problem as a
partially observable Markov decision process (POMDP), where the

objective is to improve the quality of a map assembled using stereo-
photoclinometry (SPC) [21]. The authors apply the REINFORCE
(Reward Increment = Nonnegative Factor × Offset Reinforcement
× Characteristic Eligibility) algorithm to generate policies over the
belief space, showing that the trained policies perform better than
heuristic policies. Piccinin et al. formulate a global mapping prob-
lem for SPC as a Markov decision process (MDP) [22]. In this
problem, the spacecraft enters an orbit about the body, and the
decision-making agent determines whether or not to take an image.
The authors compare deep Q-learning and neural fitted Q (NFQ)
learning, showing that these two algorithms outperform random and
heuristic policies. Takahashi and Scheeres formulate a surface
mapping problem about a small body as an MDP where the output
of the policy is a change in elevation and a transfer time, which is fed
into a two-point boundary value solver that generates a fuel-optimal
control solution [23]. An extended Kalman filter (EKF) is imple-
mented to provide a state estimate to the two-point boundary value
problem solver and decision-making agent. The authors apply
proximal policy optimization to train decision-making agents,
showing how autonomous guidance, navigation, and control
(GNC) technologies may be combined with reinforcement learning
for surface imaging.
The small body operations work presented thus far contains

some elements of planning and scheduling (i.e., science collection
while managing resource constraints). However, much of the
literature investigating reinforcement learning for spacecraft
decision-making problems falls within the domain of the GNC
subsystem. GNC-related reinforcement learning (RL) work has
been used for planetary landing [24–27], small body proximity
operations [28–31], and spacecraft rendezvous, proximity opera-
tions, and docking (RPOD) [32–37]. Many of theseworks focus on
using reinforcement learning algorithms that can adapt to off-
nominal conditions on the fly, such as thruster failures, and still
successfully complete the mission and/or use reinforcement learn-
ing to provide end-to-end solutions for some or all aspects of the
guidance, navigation, and control subsystem. A popular approach
is the use of recurrent policies trained with reinforcement learning
algorithms that maintain an internal belief state to handle the
partial observability of the associated problem. The authors of
Refs. [25,27–29,31] integrate the full guidance, navigation, and
control subsystem into a reinforcement learning-only framework
(i.e., they map observations to controls) using this approach. The
authors of Refs. [24,26,34–36] assume full observability over the
state, while the authors of Ref. [23] assume that a state estimate
from a navigation subsystem is provided. While there are many
interesting GNC problems that reinforcement learning can solve,
this work focuses on planning and scheduling. The aforemen-
tioned works may incorporate some aspects of planning and
scheduling (e.g., maneuver sequencing, maneuvering for science
purposes, etc.), but are not planning and scheduling problems due
to the lack of focus on science objectives and the lack of resource
constraints and management. This work treats the GNC subsystem
as an input into the problem formulation as opposed to being the
primary focus of the problem formulation.
Past work has demonstrated how various proximity operations

problems about small bodies may be formulated as (PO)MDPs and
solved with reinforcement learning algorithms. However, these
problem formulations typically do not account for resource con-
straints such as on-board storage and power. Because on-board
storage is not modeled, communication with the ground is typically
left out of the problem formulations as well. Attitude guidance and
control and its relation to the aforementioned resource constraints,
particularly power, is not considered. The addition of these aspects
of the problem is important because they have strong implications
for the learned policies. Furthermore, while many of these problem
formulations add partial observability, the impact of partial observ-
ability on performance, particularly the quality of scientific obser-
vations, is not explored. It should also not be assumed that the
navigation architecture supports continuous measurement updates.
Instead, one should assume that the measurement update either
requires communication with the ground or dedicated imaging
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for optical navigation, which means that the estimation error
covariance should grow between navigation updates. To address
these gaps in the literature, this work makes the following novel
contributions to the field of planning and scheduling for small body
operations:
1) The formulation of a novel small body science operations

problem with power consumption and generation, on-board data
storage, data downlink, attitude guidance and control, and transla-
tional guidance and control.
2) The training of RL policies that are robust to noisy or filtered

measurements of the state.
3) The addition of navigation updates to the problem formu-

lation and the training of RL policies that can manage the state
estimate of the spacecraft to ensure science is collected within
requirements.
This paper is organized as follows: The small body science

operations problem with the aforementioned features is first for-
mulated and presented. An overview of past small body missions
and their associated mission phases is presented in Sec. II.A to
ground the problem formulation in a degree of realism. The general
formulation of the problem is described in Sec. II.B. The dynamics,
translational guidance and control solution, and relative navigation
solution are then described in detail in Secs. II.C–II.E. The MDP
formulation of the problem is presented in Sec. II.F, and the high-
fidelity astrodynamics simulation used to represent the generative
transition function of the MDP is given in Sec. II.K. Then, the
methods used to solve the problem are presented in Sec. III. More
precisely, proximal policy optimization (PPO), the selected solu-
tion method, is presented alongside the training pipeline. Finally,
the results are presented and discussed in Sec. IV. Conclusions are
drawn and recommendations for future work are provided
in Sec. V.

II. Problem Formulation

A. Small Body Proximity Operations Phases

Small body proximity operations may be described in several
phases, each with its own objectives and data products. Each of these
phases may be thought of as separate operations problems where the
science and data products from one phase are utilized in the next.
Past work in spacecraft autonomy for small body exploration has
defined these mission phases in various ways [38,39]. This section
will provide its own summary for clarity. Because these phases are
defined using concepts of operations from several different missions
with target asteroids of different sizes and shapes, the boundaries
between them are fluid. Ashman et al. provide a detailed summary of
the Rosetta operations phases [40], and Lauretta et al. provide a
summary of the OSIRIS-REx operations phases [41]. The phases
this work defines are A) approach, B) characterization, C) science
operations, and D) landing. The characteristics of each phase and the
corresponding mission phases for OSIRIS-REx and Rosetta are
summarized in the rows of Table 1.
The first phase is the approach phase. During the approach

phase, the spacecraft performs trajectory correction maneuvers to

rendezvous with the asteroid. During this phase, a low-fidelity
shape model is constructed, a refined estimate of the spin state is
gathered, and the ephemeris of the body is improved [39]. This
phase is analogous to Rosetta’s far approach trajectory (FAT) phase
and OSIRIS-REx’s approach phase. The second phase is typically a

characterization phase. During this phase, the spacecraft enters the
body’s sphere of influence, performing hyperbolic flybys about the
body. The shape model is improved, preliminary science data is
gathered, and an estimate of the body’s gravitational parameter is
generated. This phase is analogous to Rosetta’s close approach
trajectory (CAT) and characterization phase and OSIRIS-REx’s
preliminary survey phase. Finally, the spacecraft enters the science
operations phase, which may be decomposed further into more
specific operations phases depending on the mission. This is when
the detailed science campaign about the body begins, which is
highly dependent on the mission. During this phase, the spacecraft

either enters into a stable orbit about the body, transfers between or
holds a position at an inertial waypoint(s), or performs low-altitude
fly-bys about the body. This alsomarks the transition from centroid-
based optical navigation to feature-tracking optical navigation due
to the spacecraft’s proximity to the body. This phase typically
includes some sort of mapping to build temperature maps, reflec-
tance maps, and identify candidate landing sites. In the case of
Rosetta, the global mapping and close observation phases fall into
this category. In the case of OSIRIS-REx, the detailed survey,
orbital B, and reconnaissance phases fall into this category. The
final phase of proximity operations is often some sort of landing

phase. In the case of Rosetta, this includes the landing of the Philae
lander, and in the case of OSIRIS-REx, this includes the touch-and-
go phase.
This work focuses on formulating and solving a science operations

phase for the exploration of a small near-Earth asteroid. It is assumed
that the spacecraft has a GNC solution for state estimation and
maneuvering relative to the body. It is also assumed that the gravity
about the body is weak enough to allow for waypoint-to-waypoint
locomotion of the spacecraft without expending an inordinate
amount of fuel or time to complete themission. Furthermore, because
the approach and characterization phases have passed, low epistemic
uncertainty (i.e., shape model and gravity model) is assumed. As a
result, the primary objective of this operational phase is the collection
of scientific data. This work focuses on two science objectives:
spectroscopy mapping and high-resolution imagery of candidate

landing sites.

B. Problem Description

In this work, a spacecraft operates in the vicinity of a small body
to maximize the amount of spectroscopy map and surface imaging
targets collected and downlinked while avoiding collision with
the body and managing on-board resources such as power, on-
board data storage, and ΔV. The spacecraft maneuvers between
a set of waypointsW defined in the sun–asteroid Hill frame. The set

of 10 surface imaging targets is referred to as T, and the set of
all spectroscopy maps is referred to as M. The spacecraft has an

Table 1 Small body mission phases

Approach Characterization Science operations Landing

Families of proximity operations phases

Data products Body ephemeris, spin state,
preliminary shape model

Preliminary science, gravity estimate,
improved shape model

Science maps, landing site images,
detailed shape model

Surface science

Optical navigation Centroid based Centroid based Feature tracking Feature tracking

Dynamics Approach trajectory Hyperbolic fly-bys Orbital motion, inertial waypoints,
low-altitude fly-bys

Descent and ascent
trajectory

Associated phases for Rosetta and OSIRIS-REx

Rosetta Far approach trajectory Close approach trajectory and
characterization

Global mapping, close observation Philae

OSIRIS-REx Approach Preliminary survey Detailed survey, orbital B,
reconnaissance

Touch-and-go
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attitude control system, a power system, and a data system on board.
The spacecraft completes its mission by entering into a series of
operational modes. Each operational mode creates high-level
abstractions of the low-level behavior of the spacecraft. The low-
level behavior of the spacecraft is dictated by the attitude reference,
the current waypoint reference of the guidance and control subsys-
tem,whether the navigation system is collectingmeasurements, and
the ON/OFF states of various instruments and transmitters. A con-
cept of operations, including each of the operational modes, is
included in Fig. 1. The problem is simulated using the Basilisk
astrodynamics software architecture,‡ which provides high-fidelity
astrodynamics simulation capabilities for dynamics, resources, and
flight software modeling [42].
The spacecraft has various resources on board, such as power,

data storage capacity, and limited fuel. In the charging mode, the
spacecraft holds its position at the targeted waypoint and uses its
attitude control system to point its solar panels at the sun, which
charges its batteries. Both the instrument and transmitter are turned
off in this mode. While this mode is a dedicated charging mode, the
spacecraft may end up charging its batteries in the other operational
modes as well, depending on the orientation of the spacecraft’s solar
panels with respect to the sun. In the mapping mode, the attitude
control system points the mapping instrument in the direction of the
small body, and the spacecraft turns on its mapping instrument to
begin collecting map data. The map data is stored within the data
buffer but is only counted as collected if the data meets the specified
requirements. Similarly, in the imaging mode, the spacecraft points
its imaging instrument at the nearest surface imaging target and
collects an image if the target meets the requirements. In the down-
link mode, the spacecraft turns off all instruments and points an
antenna towards the Earth, sending data to the DSN and emptying
its data buffer if the temporal and physical access constraints of the
DSN are met.
The remaining operational modes deal with navigation updates

andwaypoint maneuvers. In the navigation update mode, the space-
craft points its imager at the body and begins collecting simulated
measurements of the state to improve its estimate of the state. This is
done with an EKF, which is configured to operate with or without
measurements, with the latter configuration resulting in a decrease
of the quality of the state estimate and an increase in the state error
covariance. The last set of operational modes deals with waypoint
maneuvers. The waypoints are defined in the sun–asteroid Hill
frame, fO∶ô1; ô2; ô3g. The sun–asteroid Hill frame is centered at

the origin of the small body. The first component, ô1, is in the radial
direction from the sun to the small body. The third component, ô3, is
in the orbit normal direction. Finally, the second component com-
pletes the right-handed coordinate system. A diagram of the Hill

frame is provided in Fig. 2. The d̂ vector denotes the direction of the
sun. Each waypoint w ∈ W is defined with a set of spherical
coordinates w � �rw; θ;ψ�. The waypoints are evenly distributed
across six azimuth and polar angles, as shown in Fig. 3, numbering
36 in total. The waypoint radii rw are set to three body radii, i.e.,
rw � 3Rast. In waypoint maneuvering mode, the spacecraft points
its solar panels at the sun to remain power positive, and control
forces are computed to take the spacecraft from its current position
to the desired position. The spacecraft can only target neighboring
waypoints, which results in eight different waypoint maneuvering
modes at each decision interval. Thrusters are not simulated, and it
is assumed that the requested control forces can be fulfilled while
pointing the solar panels at the sun.
For the spectroscopy mapping, there are j � 3 separate maps that

must be collected, one at each of the following local solar times:
λ �{6: 00 PM, 2: 00 PM, 10: 00 AM}. Each map is represented by a
set of k � 500 points, Mj, evenly distributed on the surface of the

body, where j is the map number. These points are generated using a
Fibonacci lattice to ensure equal coverage of the body. In Fig. 3a, the
dotted lines represent the local solar times where spectroscopy map-
ping may take place. In Fig. 3b, the various polar angles of the
waypoints are displayed. Mapping may occur at any of these polar
angles if the spacecraft is at an azimuth within one degree of the
azimuth associated with the local solar time for a particular map.
During theDetailed SurveyPhase,OSIRIS-REx had seven equatorial
stations, each at its own local solar time. At each equatorial station,
data was collected to construct maps of the surface of Bennu, such as
global mineral and chemical maps. Furthermore, the mapping took
place at a relatively narrow range of polar angles. This work selects
three specific local solar times for mapping and removes the narrow
polar angle requirement to maintain minimal simulation time. A
single map is collected at each of these three local solar times. This
work assumes that the small body is spherical. This work could also
be applied to oblate spheroids, but more complicated shapes would
require more sophisticated mapping point generation and represen-
tation. This work also assumes that the rotation pole of the asteroid is
aligned with the orbit normal of the asteroid.

C. Dynamics

The position and velocity of the spacecraft relative to the small
body, Or and O _r, are expressed in the sun–asteroid Hill frame, which
is a convenient coordinate frame for this problem due to the illumi-
nation requirements for mapping. The derivation of the relative
dynamics may be found in work from Takahashi and Scheeres [23]
and Scheeres [43]. The dynamics described in this section are utilized
within the EKF and continuous feedback control law used for trans-
lational control about the body. The dynamics treat the gravity of the
small body as a point mass and the gravity of the sun as a third-body
perturbation. A cannonball solar radiation pressure (SRP) model is
utilized to model SRP. The equations of motion for the spacecraft in

Target Imaging 
Mode

Communications 
Mode Earth

Mapping 
Mode

Charging 
Mode

Nav Mode

Maneuver

Fig. 1 Concept of operations for the small body science operations

problem.

Fig. 2 Sun–asteroid Hill frame.

‡Data available online at https://hanspeterschaub.info/basilisk/index.html.
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proximity to the small body are given in Eq. (1), where ~̂o3 is the skew-
symmetric cross-product matrix of ô3.

�r � − �F ~̂o3r − 2 _F ~̂o3 _r − _F2 ~̂o3
~̂o3r�

∂Ug

∂r
� ∂Us

∂r
� asrp (1)

The first time derivative of the true anomaly is provided in Eq. (2),

and the second time derivative of the true anomaly is provided in

Eq. (3).

_F � μsun∕�A�1 − E�2�3�1� E cosF�2 (2)

�F � −2E μsun∕�A�1 − E�2�3 sinF�1� E cosF� _F (3)

The gravitational parameter of the sun is given by μsun, the

semimajor axis of the asteroid is given by A, and the eccentricity

of the asteroid’s orbit is E. A point-mass gravity model is utilized

for the asteroid, with the derivative of the gravitational potential

given as

∂Ug

∂r
� −

μast
r3

r (4)

where μast is the gravitational parameter of the asteroid. The gravity

of the sun is modeled as a third-body perturbation, with the

derivative of the gravitational potential given as

∂Us

∂r
� μsun�3d̂d̂T − �I3×3��

d3
r (5)

where d̂ is the direction of the sun. The acceleration due to SRP is

given as

asrp � −
P0�1� ρ�Asc�1AU�2

Mscd
2

d̂ (6)

where ρ is the surface reflectivity, Asc is the surface area of the

spacecraft,Msc is the mass of the spacecraft, andP0 is the solar flux

at 1 AU. The values for ρ (0.4) and P0 (4.56 × 10−6 N⋅m−2) are

taken from Takahashi and Scheeres [23].

D. Waypoint Maneuvering

A continuous feedback control law is implemented to maneuver

the spacecraft between the various waypoints using the methodology

described in Chapter 14 of Schaub and Junkins [44]. The control

acceleration is computed with the following equation:

u � −�f�x� − f�xref�� − �K1�Δx1 − �K2�Δx2 (7)

where f�x� is given in Eq. (1), Δx1 � Or − Orref and Δx2 �
O _r − O _rref . In the case where noisy measurements of the spacecraft
position and velocity are utilized, a dead band is placed around the state
vectors such that the control law does not expend all of its ΔV budget,
correcting for small errors due to noise. The dead band is not required in
the event that the state is known perfectly or if the measurements are
filtered. The controller gains aremanually tuned to ensure the spacecraft

can maneuver to the waypoints in about 2 h. The gains are given in
Eq. (8).

�K1� � �5 × 10−4��I3x3� s−2; �K2� � �I3x3� s−1 (8)

E. State Estimation

Next, the mission simulation fidelity is enhanced with the inclu-
sion of an EKF to estimate the state of the spacecraft x � �Or; O _r�.
An EKF produces a state estimate for a dynamic system by predict-
ing the state of the system through integrating equations of motion
and updating this prediction with measurements from the environ-
ment [45]. Navigation solutions for small body missions typically
use some combination of radiometric ground tracking measure-
ments from Earth-based sensors like the DSN and optical measure-

ments in proximity about the small body that are matched with
landmarkmaps of the surface of the body, which are used to provide
the relative navigation solution. A batch filtering process is utilized,
which is the state-of-the-art for small body missions [46–49]. An
iterative process between the orbit determination (OD) and optical
navigation (OPNAV) teams occurs where the OD team updates the
spacecraft trajectory and the OPNAV team updates the landmark
maps. This is an intensive ground-based process, and the navigation
solution for the next epoch is sent back up to the spacecraft for the
next epoch of operations. Filters like extended or unscented Kalman
filters are popular in the literature for autonomous spacecraft oper-
ations as they can continually produce a state estimate on board the
spacecraft [30,50,51]. A benefit of such filters is that they do not

require multiple iterations to converge to a solution, which a batch
filter does.
The algorithm for the EKF is provided in Algorithm 1. The initial

state of the EKF is initialized with a small amount of error added to
the truth state sampled from uniform distributions of U�−5; 5�m and

U�−0.01; 0.01� m/s for position and velocity, respectively. The first
step of the algorithm is to propagate the dynamics of the system
forward in time. The dynamics are propagated using a fourth-order

330 deg

270 deg

150 deg

30 deg

90 deg

210 deg

ô3
d̂

(10 AM LST) (2 PM LST)

(6 PM LST)

ô1

ô2

a) Azimuth angles for waypoints (θ)

165 deg

135 deg

105 deg

75 deg

45 deg

15 deg

ô3

b) Polar angles for waypoints (ψ)

Fig. 3 Spherical coordinates of waypoints. Dotted lines represent the local solar time of the three maps.
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Runge-Kutta (RK4) integrator. The state transition matrix,Φ�t; ti−1�,
is computed by integrating the linearized dynamics of the system,
which are computed using the Jacobian of the dynamics, A�t� �
df

dx x̂
. The state transition matrix is then used to propagate the

covariance forward in time. The covariance is propagated using the
following equation:

P−
i � Φ�ti; ti−1�P�

i−1ΦT�ti; ti−1� �Q�ti; ti−1� (9)

where Q�ti; ti−1� is the process noise covariance. The process
noise covariance is computed using the state noise compensation
(SNC) algorithm [52]. The process noise covariance at any time ti
is given as

Q�ti; ti−1� � σ2u

Δt3

3
�I3×3�

Δt2

2
�I3×3�

Δt2

2
�I3×3� Δt�I3×3�

(10)

The diffusion coefficient σ2u was experimentally tuned and is set

to 10−11 m∕s2.
After the propagation step, the algorithm checks to see if there are

any new measurements. If there are new measurements, the meas-
urement update step is performed. The measurement residuals are
computed as

ri � yi − h�x̂−i ; ti� (11)

where yi is the measurement vector and h�x̂−i ; ti� is the measurement
model. Basilisk’s simpleNav module is used to provide measure-
ments to the EKF. This module utilizes a second-order Gauss–
Markov error model to provide realistic measurement error. While
simpleNav does not capture several of the intricacies of small body
navigation measurements (i.e., scale invariance or a dependency on
lighting conditions), it provides a reasonable approximation of meas-
urement error beyond additive white Gaussian noise. The standard
deviations for the white noise component of the measurement error
model and the walk bounds of the Gauss–Markov process are pro-
vided in Table 2. Because themeasurementmodel is simply the states
of the spacecraft with noise and random walk added, the Jacobian of

the measurement model is simply the identity matrix. After the

measurement residuals are computed, the Kalman gain is computed

as

Ki � P−
i H

T
i �HiP

−
i H

T
i � R�−1 (12)

The measurement update step is then completed with the following

two equations, where the updated state is computed as

x̂�i � x̂−i � Kiri (13)

and the covariance is updated as

P�
i � �I − KiHi�P−

i �I − KiHi�T � KiRK
T
i (14)

where R is the measurement noise covariance matrix.
The entire process repeats until the end of the simulation. If no

measurements are provided after the propagation step, the algo-

rithm simply propagates the state and covariance forward in time

and writes these out as messages, which are read by the decision-

making agent.

F. Markov Decision Process Formulation

The small body science operations problem is formulated as an

MDP. This section describes each of the components of the MDP

formulation for the small body science operations problem. An

MDP is a sequential decision-making problem in which a

decision-making agent takes an action ai ∈ A in some state si ∈
S following a policy π�si� that maps states to actions, π∶S → A
[12,53]. The decision-making interval is denoted by i, and the state
and action spaces are referred to as S and A, respectively. After

taking the step in the environment with the selected action, the agent

receives a reward ri � R�si; ai� based on the reward function and

transitions to a new state si�1 according to the transition function

T�si�1jsi; ai�. The transition function must adhere to the Markov

assumption, which states that the next state is dependent only on the

current state and action: T�si�1jsi; ai� � T�si�1jsi; ai; :::; s0; a0�.
The goal of the agent is to maximize the expected sum of discounted

rewards,R � ∞
i�0 γ

iri, where γ ∈ �0; 1� is the discount factor. The
discount factor weighs the relative importance of short-term versus

long-term rewards and ensures that the sum of returns does not grow

to infinity.

G. State Space

The state space of the small body science operations problem is

designed to capture all relevant information for the purposes of

adhering to the Markov assumption. The state space of the small

body science scheduling problem is given as

S � Ssc × Sasteroid × Smaps × Stargets × SDSN (15)

whereSsc is the state space of the spacecraft,Sasteroid is the state space

of the asteroid, Smaps is the state space of the spectroscopy maps,

Stargets is the state space of the imaging targets, and SDSN is the state

space of the DSN.
The state returned to the decision-making agent at decision interval

i is defined as si ∈ S:

Table 2 SimpleNav parameters

Parameter Position, m Velocity, m/s

σ 5 0.001

Walk bounds 1 0.001

Algorithm 1: Extended Kalman filter for small body

navigation

1: Initialize i � 1, ti−1 � t0, x̂
�
i−1 � x̂0, P

−
i−1 � P0

2: for iteration 1∶N
3: Propagate dynamics:
4: _x�t� � f�x̂�i−1; ui−1; t�
5: A�t� � df

dx x̂
6: _Φ�t; ti−1� � A�t�Φ�t; ti−1�
7: Compute x̂−i and Φ�ti; ti−1� using RK4 integration
8: Update covariance:
9: P−

i � Φ�ti; ti−1�P�
i−1ΦT�ti; ti−1� �Q�ti; t−1�

10: if new measurements
11: Read measurements, yi
12: Compute measurement residuals and Kalman gain
13: ri � yi − h�x̂−i ; ti�
14: Ki � P−

i H
T
i �HiP

−
i H

T
i � R�−1, where Hi �

dh

dx x̂−i15: Perform measurement update
16: x̂�i � x̂−i � Kiri
17: P�

i � �I − KiHi�P−
i �I − KiHi�T � KiRK

T
i

18: else

19: x̂�i � x̂−i
20: P�

i � P−
i

21: i � i� 1
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si � Orsc;
Ovsc;

Ortnearest ;
Orwref

; Orwprev
; : : :

num: imaged targets; num: downlinked targets;map regions; battery; : : :

eclipse; buffer; ΔV consumed; ground station indicator (16)

Geometric information is included in the state space to capture the
spatial relationship between the science objectives and the spacecraft. It
can also provide information on resource management states and the
riskof collision.These states include the spacecraft positionandvelocity

(Orsc and
Ovsc), position of the nearest imaging target (Ortnearest ), position

of the current waypoint (Orwref
), and position of the previous waypoint

(Orwprev
). These states are all expressed in the sun–asteroid Hill frame,

O, a convenient expression for this problem given that one of the
primary science objectives is mapping at specific local solar times.
Several observations are also included to provide a measure of

science objective completion. The number of imaged and downlinked
targets inT is included in the state space. For eachmapMj, themapping

points are partitioned into three equally sized groups based on the value
of the z-component of the body-fixed position of the mapping points.

The body frame of the asteroid is defined as E∶fê1; ê2; ê3g. The three
regions are displayed in Fig. 4. This state provides the agent information
onwhich regions still need to bemapped. For each region, themap state
is equal to the total number of mapped points divided by the total

number of points in the region. Because this work assumes the rotation
pole of thebody is alignedwith theorbit normal, this state representation
is sufficient. However, varying the rotation pole of the bodymay require
a more sophisticated state representation.
Finally, several states are included to retain information on resource

constraints and safety. The data stored in the buffer and ground station
indicator provide state information for the on-board data system. The

ground station indicator contains information on how close the next
downlink opportunity is. If a DSN station is available, the indicator is
equal to one. Otherwise, the indicator is computed by subtracting from
1 the amount of time to the next downlinkwindowdividedby 24 h. The

battery charge and eclipse indicator are binary indicators that provide
information for the purposes of power management. The availableΔV
state indicates how much fuel the spacecraft has available to use.
Each state is normalized to a range of approximately [−1, 1]. The

spacecraft position, position of the nearest imaging target, and posi-
tion of the current and previous waypoint are all normalized by the
radius of the body. The number of imaged and downlinked targets, the

mapped regions, and resource states are all normalized by their
respective max values such that they are within a range of [0, 1].
In the event that the navigationmode is added to the action space and

the agent acts using the belief state produced by the EKF, the estimate

of the position and velocity of the spacecraft in the sun–asteroid Hill
frame are used instead of direct observations of the state. Additionally,
the log of the diagonal of the covariancematrix divided by five is added
and provided as an observation: log10�diag�P��∕5. This provides
information on the quality of the navigation solution that is normalized

to a range of [−1, 1] for 10−5 ≤ P ≤ 105.

H. Action Space

A mode-based planning approach is taken in the action space. A
spacecraft mode turns certain models on or off and sets the attitude
reference for a prescribed amount of time, abstracting continuous
low-level behavior into higher-level abstractions of spacecraft behav-
ior. An action space A is constructed for the small body science
scheduling problem that allows the decision-making agent to collect
and downlink science data, manage its resources, and transition
between waypoints:

A � fCharge; Waypoint 1; :::;Waypoint 8; Map; Image;

Downlink; Nav Updateg (17)

Eachmode lasts for 2000 s,with the exceptionof themappingmode and
optional navigationmode. Themappingmode lasts for 4000 s,which is
approximately one quarter of a full revolution of the body about its
rotation pole. The navigation mode only lasts for 1000 s. A detailed
description of the action space is provided by the bulleted list below:
1)Charge:The spacecraft points its solar panels at the sun, turning

off all instruments and transmitters to recharge the batteries.
2) Waypoint actions: The spacecraft targets one of the eight

neighboring waypoints, turning off all instruments and transmitters
during the duration of the maneuver mode. The eight neighboring
waypoints are defined as follows:

a) ψ ref � ψ ref � 30°, θref � θref
b) ψ ref � ψ ref � 30°, θref � θref � 60°
c) ψ ref � ψ ref , θref � θref � 60°
d) ψ ref � ψ ref − 30°, θref � θref � 60°
e) ψ ref � ψ ref − 30°, θref � θref
f) ψ ref � ψ ref − 30°, θref � θref − 60°
g) ψ ref � ψ ref , θref � θref − 60°
h) ψ ref � ψ ref � 30°, θref � θref − 60°

3)Map:The spacecraft turns on its mapping instrument, collecting
the map of whichever map region it is currently in.
4) Image: The spacecraft turns on its imaging instrument, collect-

ing an image of the nearest target.
5) Downlink: The spacecraft turns on its transmitter, downlinking

the data in the buffer to the DSN.
6) Navigation update: Only used in some experiments, the space-

craft begins collecting measurements to improve the state estimate.
In the chargingmode, the spacecraft turns off all instruments and the

transmitter and points the solar panels at the sun to charge the battery.
The action space also includes eight separate waypoint reference
change actions. When a waypoint reference change action is taken,

the current waypoint reference wref � fψ ref ; θrefg changes to the
selected adjacent waypoint reference. If one of thesemodes is selected,
the last time the waypoint was changed is checked to see if a new
waypoint can be selected.The currentwaypoint doesnot changeunless
8000 s have passed since the last switch to ensure convergence to the
current waypoint. After each change, the new waypoint azimuth and
polar angle are checked to ensure it is wrapped within the appropriate
domains, θ ∈ �0; 360� deg and ψ ∈ �0; 180� deg. An example of this

is provided in Fig. 5. The nominal transitions are shown in the dotted
green line. Wrapped transitions are shown with the solid red line.

Region 1

Region 2

Region 3

Fig. 4 Map regions.
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In the mapping mode, the spacecraft points the mapping instru-

ment at the asteroid. Data is collected in the on-board storage unit,

and only the portion of the map collected within the requirements is

considered mapped.Mapping requirements are provided in Table 3.

Note that the requirement regarding the azimuth is 1 deg. At the

nominal waypoint radius of 750 m, this translates to roughly 6.5 m

of positional tolerance on either side of the nominal azimuth band.

This is a very tight requirement. If the navigationmode is utilized in

the action space, the spacecraft must periodically improve its state

estimate with measurements to reduce the state error below this

threshold. In the fully observable version of this problem, the

decision-making agent has access to the map data and receives

information on whether or not it has collected a mapping point. In

the partially observable problem, the agent does not have access to

the truth state directly, so the mapping states are not provided in the

state space.

In the imagingmode, the spacecraft points the imager at the nearest

target and attempts to take an image of the target. The image is

collected if the spacecraft is within the elevation and range require-

ments of the target image. In the downlink mode, the spacecraft

points the transmitter in the direction of the Earth. Data is downlinked

once the spacecraft is within the elevation and range requirements of

the DSN and the prescribed downlink time occurs.
Finally, the navigation mode is utilized in some experiments to

provide a more realistic navigation update. In this mode, the space-

craft points an imager at the asteroid to simulate the use of feature-

tracking optical navigation. The state estimate is improved, and the
state-error covariance decreases.

I. Reward Function

The reward function R�si; ai; si�1� is a piecewise function of the

current state, action, and next state. The reward function builds off the
reward functions designed for Earth-observing science scheduling

problems [54,55], but adds mapping and additional failure conditions.

The constant F scales the failure penalty, the constant A scales the

imagingbonus, the constantB scales themappingbonus, the constantC
scales the image target downlink component, and the constantD scales

the mapping downlink component. The reward at state i is given by

ri �

−F if failure

A

jTjH�cj� if ¬ failure ∧ ai is image

B

3jMj
3
j

jMjj
k H�mj;k� if ¬ failure ∧ ai is map

C

jTj
jTj
j H�dj� �

D

3jMj
3
j

jMjj
k H�fj;k� if ¬ failure ∧ ai is downlink

0 otherwise

(18)

If the agent fails, a failure penalty of −F is returned, and the episode

terminates. The failure condition is true if the spacecraft expends all

charge in the battery, overfills the databuffer, exceeds theΔV budget, or

collides with the body. Mathematically, this is represented as with

Eq. (19), where z is the normalized charge of the battery and b is the

normalized data buffer level.

failure��z�� 0 ∨ b≥ 1 ∨ any�jjHrs=cjj≤ rast� ∨ΔV ≥ΔVbudget�
(19)

The following function, H�xj�, is used to check if the state variable x
is false at step i and true at step i� 1, returning 1 if these conditions

are met.

Fig. 5 Waypoint reference transitions.

Table 3 Science requirements

Parameter Value

Imaging

Minimum elevation 60°

Attitude error norm 0.1 rad

Mapping

Minimum elevation 45°

Instrument half-FOV 22.5°

Azimuth tolerance 1°
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H�xj� � 1 if¬ xji ∧ xji�1
(20)

The variable cj represents whether target j has been imaged. If the

imaging mode is initiated and a failure does not occur, target j is

checked to determine if it was imaged for the first time. This reward

component is normalized by the total number of targets and scaled by

the constant A.
The variable mj;k represents whether mapping point k for map

number j has been mapped. If the mapping mode is initiated and a

failure does not occur, all map points are checked to determine if they

were collected for the first time or not. The summation of this reward

is normalized by 3jMj so the total possible reward for this component

totals to the constant B.
The variable dj represents whether or not target j has

been downlinked, and the variable fj;k represents whether or not
mapping point k for map number j has been downlinked. Both the
set of targets and all map points are looped through to determine if

they have been downlinked for the first time or not. Both the

imaging and mapping components are multiplied by the constants

C and D and divided by the total number of targets or mapping

points.

J. Transition Function

Due to the continuous dynamics of the small body proximity

operations science problem, it is difficult to construct a transition

function with conditional probabilities that accurately captures state

transitions. The transition function is instead represented by a gen-

erative model G�si; ai� given in Eq. (21). The generative model

returns a new state si�1 and reward ri by integrating equations of

motion forwards in time.

si�1; ri � G�si; ai� (21)

The Basilisk astrodynamics software architecture is used to con-

struct the simulation, which models the complex behavior of the

spacecraft and environment. The Basilisk simulation is wrapped

within a Gymnasium environment. The Gymnasium environment

provides a standard interface for the agent to interact with the

Basilisk simulation. The details of this simulation are provided in

the next section.

K. Simulation Architecture

Basilisk models the dynamics of the spacecraft as fully coupled

multibody dynamics, making no simplifying assumptions regarding

the relative motion of the spacecraft, the asteroid, and the sun.

However, both Basilisk and the dynamics described in this section

utilize a cannonball SRPmodel. Furthermore, bothmodel the gravity

of the asteroid using a point-mass gravity model.

L. Basilisk Simulation Overview

A Basilisk simulation is implemented to serve as the generative

transition function for the MDP. In Fig. 6, the task groupings and

modules in the Basilisk simulation are provided. Each module

contains either flight software or simulation code. The modules

represent self-contained and modularized blocks of code that

perform specific functions. For instance, the simpleSolarPa-
nel() module contains the logic and the math to compute the

amount of charge generated by a solar panel. The modules are

grouped together as tasks, which organize the modules into similar

blocks of code. Tasks are most useful when grouping flight soft-

ware modules, as all modules on a task can be disabled, thus

turning off the modules that belong to that task. Several flight

software tasks are implemented. These include a sun-pointing task,

an Earth-pointing task, a target-pointing task, a map-pointing

task, an MRP control task, and a waypoint feedback control task.

Depending on the flight mode, these tasks are turned on or off,

primarily to determine which attitude reference should be used. A

summary of each task’s status in each flight mode is provided in

Table 4. The sun-pointing, earth-pointing, target-pointing, and

map-pointing tasks all use Basilisk’s locationPointing()

Fig. 6 Basilisk simulation diagram.
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module and output an attitude guidance message that includes the
MRP attitude error σB∕R. The attitude guidance message is ingested
by the mrpFeedback() module, which outputs a commanded
torque. This commanded torque is utilized by the rwMotorTor-
que()module to compute reaction wheel motor torques and send
a motor command message to the three reaction wheel state effec-
tors in the dynamics task.
The waypoint feedback control task utilizes a feedback control

law to regulate the state of the spacecraft to the desired Hill frame
waypoint. The feedback control law outputs a force command, which
theexternalForceTorque() dynamicsmodule utilizes to pass
the commanded force to the spacecraft.
In addition to several flight software tasks, a dynamics task is

also implemented, which holds the majority of the modules in the
simulation. Gravity effectors for the asteroid, the sun, and the Earth
are implemented. A planetNav() module is also implemented
for the asteroid, which creates an ephemeris message utilized by
the relevant flight software modules. Likewise, a simpleNav()
module performs the same function, but for the spacecraft state.
TheplanetNav() and thesimpleNav()modules can option-
ally add noise to the states to imitate a navigation system.
Several dynamics modules are connected to the spacecraft. As

previously stated, the commanded force is passed to the spacecraft
with the extForceTorque() module. Additionally, a solar-
RadiationPressure() module is implemented. A cannonball
SRP module is utilized. Finally, each reaction wheel state effector is
connected to the spacecraft for the purposes of attitude control.
Lastly, the eclipse() module utilizes the state of the asteroid
and the spacecraft to indicate whether or not the spacecraft is in an
eclipse.
A representative power system is modeled on board the space-

craft. At the center of the power system is a simpleBattery()
module. The battery receives power generation and consumption
messages from each other power module to compute the storage
level at each time step. Solar panels are modeled using the sim-
pleSolarPanel()module, which computes power generation
based on the area of the panels, the efficiency of the panels, and
the solar incidence angle. Instrument and transmitter power
models are also implemented with the simplePowerSink()
module.
An on-board data system is also modeled. This system is modeled

using two tasks: the dynamics task and the mapping task. The
dynamics task is always on, but the mapping pass is disabled for
all modes except for the mapping mode. This is done to minimize
required computation. In the mapping task, three groundMap()
modules are connected to a mappingInstrument(). The
groundMap() module loops through each mapping point and
checks for three things: a) the spacecraft is within the elevation
requirements of the point, b) the point is within the instrument’s
field-of-view, and c) the spacecraft is within the required azimuth
angle band. A vector of access messages is then passed to the

mappingInstrument(), which passes the data on to a parti-
tionedStorageUnit(). This partitionedStorageU-
nit() in the mapping task keeps track of the points that have
been imaged and those that have not.
In the dynamics task, two simpleInstrument() modules

are implemented. One simpleInstrument() module is used
in conjunction with the simpleInstrumentController()
to image the ground targets if the imaging mode is entered.
The other simpleInstrument()module is used to keep track
of the amount of data generated by mapping. This module provides
a scalar value for the data generated and does not keep track of
the specific points. Both of these instruments pass the data to the
partitionedStorageUnit() in the dynamics task.
Not shown in Fig. 6 is the addition of a smallBodyNavEKF()

and an additional simpleNav() module. The smallBodyNa-
vEKF() is a Basiliskmodule that implements anEKF for small body
navigation. The simpleNav()module is the Basilisk module that
implements a second-order Gauss–Markov error model for transla-
tional navigation measurements. The smallBodyNavEKF() is
only utilized in some experiments.

M. Initial Conditions

The parameters of the spacecraft may be found in Table 5. The
modeled spacecraft is a small spacecraft used in past work [54,55].
These parameters are balanced to create a scenario in which the
spacecraft mustmake tradeoffs between resource constraints, science
collection, and downlink. The initial conditions for the asteroid’s
orbit, size, and rotationmay be found inTable 6. These parameters are
based on those of Bennu [56,57]. During training, each of these
values is kept constant, but the initial position of the spacecraft in
the asteroid’s Hill frame is randomized.

Table 5 Spacecraft parameters

Parameter Value

General spacecraft parameter

Mass 330 kg
Dimensions 1.38 m × 1.04 m × 1.58 m
Max ΔV 40 m/s

Power system

Solar panel area 1:0 m2

Solar panel efficiency 0.20
Instrument power draw 30 W
Transmitter power draw 15 W
Battery capacity 100 W·h

Data and communications system

Data buffer storage capacity 125 GB
Transmitter Baud rate 120 Mbps
Instrument Baud rate 8 Mbps
Map instrument Baud rate 8 Mbps

Table 4 Basilisk model and task status in different modes

Modes

Basilisk tasks and models Charge Waypoint change Map Image Downlink

Sun-pointing task Enabled Enabled Disabled Disabled Disabled
Earth-pointing task Disabled Disabled Disable Disabled Enabled
Location-pointing task Disabled Disabled Disabled Enabled Disabled
Map-pointing task Disabled Disabled Enabled Disabled Disabled
MRP control task Enabled Enabled Enabled Enabled Enabled
Waypoint control task Enabled Enabled Enabled Enabled Enabled
Mapping task Disabled Disabled Enabled Disabled Disabled
Imager power model Off Off Off On Off
Imager data model Off Off On On Off
Mapping power model Off On Off Off Off
Mapping data model Off On Off Off Off
Transmitter power model Off Off Off Off On
Transmitter data model Off Off Off Off On
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III. Methods

A. Reinforcement Learning

1. Introduction to Reinforcement Learning

The objective of reinforcement learning is to learn a policy that

maps states to actions to maximize the expected value of all future

rewards. The expected return is also referred to as the value function

V�s�. The value function associatedwith some policy πwhen starting
in some state si is given in Eq. (22), where E is the expected value

operator. The value function can be thought of as a measure of how

“good” a particular state is.

Vπ�s� � Eπ

∞

k�0

γkri�k si � s (22)

A state-action value function may also be defined, which is the

expected return when starting in some state si, taking some action

ai, and following some policy π thereafter. This is given in Eq. (23).

This is useful when evaluating the value associated with a particular

state-action pair. Similar to the value function, the state-action value

function can be thought of as a measure of how “good” a particular

state-action pair is.

Qπ�s; a� � Eπ

∞

k�0

γkri�k si � s; ai � a (23)

The optimal value function is the value function associated with

following the optimal policy, and it is referred to as V��s�. The
optimal value function can be defined recursively using the Bellman

optimality equation, given in Eqs. (24) and (25).

V��s� � max
a

si�1∈S
T�si�1jsi; a��R�si; a� � γV��si�1�� (24)

Q��s; a� �
si�1∈S

T�si�1jsi; a� R�si; a� � γmax
ai�1

Q��si�1; ai�1�

(25)

If the optimal value function has been solved for, the optimal

policy can be extracted from the optimal value function by using

the expression in Eq. (26).

π��s� � arg max
a si�1∈S

T�si�1jsi; a��R�si; a� � γV��si�1�� (26)

Tabular solution methods solve for the optimal policy or

value function for discrete state and action spaces or discretized

continuous state and action spaces. A review of these methods may
be found in Chapter 4 of Ref. [53]. If the transition probabilities and
reward function are known, value or policy iteration can be used to
iteratively solve for the optimal policy. These algorithms are
known as dynamic programming algorithms. However, for many
real-world problems, the use of these algorithms is not possible
because the transition function cannot be represented using condi-
tional probabilities. Another family of tabular RL methods are
online RL methods, which restrict computation to states that are
reachable from the current state and only require a generative
transition function, which samples from some underlying distribu-
tion and/or integrates equations of motion. Many of these methods
rely on constructing a search tree over the states and actions.
Examples include a forward search or a Monte Carlo tree search.
While these algorithms are useful for many problems, they can be
very computationally expensive and must be rerun if the initial
condition changes.

2. Deep Reinforcement Learning

Approximate solutionmethods remedy these issueswith the use of
a universal function approximation. Function approximation is used
to generalize over the state space by learning from only a subset of the
state space. Universal function approximators parameterize the value
function or policy using a set of parameters θ. This work refers to
parameterized value functions asVθ�s� and parameterized policies as
πθ�s�. The most popular type of universal function approximator in
reinforcement learning is the artificial neural network (ANN). An
ANN is a nonlinear function approximator made up of a series of
interconnected layers that model the neurons in a nervous system.
Each node in theANN represents an activation function, and the lines
represent the edges, or outputs, from one node to another. Each edge
has its own weight and bias that determines the strength of the signal
from the corresponding node.
Many algorithms exist that leverage deep neural networks to

approximate the value function or policy for reinforcement learn-
ing. Deep Q-learning learns a parameterized state-action value
function Qθ�s; a� referred to as a deep Q-network (DQN) [58].
Deep Q-learning interacts with the environment, storing transi-
tions in a replay buffer and periodically updating a target state-
actionvalue function. Policy gradient reinforcement learning algo-
rithms learn a parameterized policy πθ�ajs�, which is a probability
distribution conditioned on the state. For certain problems, it is
easier to learn a policy directly than it is to learn a value function. It
may be easier to learn to take an action as opposed to the precise
numerical value associated with that action. For value-basedmeth-
ods, small errors in the learned value function may lead to large
errors in the extracted policy. REINFORCE is an example of a
policy gradient algorithm [12]. Finally, actor–critic methods learn
both a parameterized policy and a parameterized value function.
Actor–critic methods use the value function to estimate the value
of the current state and the value of the next state in the update
step, which reduces variance in the policy update. An example
of such an algorithm is asynchronous advantage actor–critic
(A3C) [59].

3. Proximal Policy Optimization

DQN, REINFORCE, A3C, and many other methods have
advanced the state-of-the-art of reinforcement learning and dem-
onstrated excellent performance on a number of tasks. However,
these methods are not very data efficient. Each sample generated
through interaction with the environment is used only once for
training, with the exception of DQN, which uses a replay buffer.
Furthermore, these algorithms are not particularly robust or stable.
Each requires careful hyperparameter tuning for different tasks.
PPO is an actor–critic reinforcement learning algorithm that
addresses these issues [60]. To improve sample efficiency, PPO
trains on the sampled data for multiple epochs. To improve stability,
PPO uses a clipped objective function that ensures the size of the
policy update isn’t too large. The loss function for PPO is provided
in Eq. (27).

Table 6 Asteroid parameters

Parameter Value

Orbital parameters

Semimajor axis, a 1.1259 AU

Eccentricity, e 0.016975

Inclination, i 0.0027666 deg

Longitude of ascending node, Ω 177.42 deg

Argument of periapsis, ω 284.26 deg

True anomaly, f 357.30 deg

Size and rotation

Shape Spherical
Rotation period 4.297461 h
Rotation pole Orbit normal
Mean radius 250 m
Gravitational constant 4:892m3∕s2
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LCLIP�VF�S
i �θ� � Êi�LCLIP

i �θ� − c1L
VF
i �θ� � c2S�πθ��si�� (27)

The loss components are provided in Eqs. (28) and (29).

LCLIP�θ� � Êi min ri�θ�Âi; clip�ri�θ�; 1 − ϵ; 1� ϵ�Âi (28)

LVF�θ� � Êi��Vθ�si� − V�2� (29)

S�πθ� is an entropy bonus, and ri�θ� is the probability ratio:

ri�θ� �
πθ�aijsi�
πθ−�aijsi�

(30)

θ− represents the parameters of the policy before the update.
The algorithm for PPO is provided inAlgorithm 2. The parameters

for the policy and value function are shared. The algorithm is run for

N iterations. Each iteration consists of M actors, which each collect

jIj samples. I is the set of decision-making intervals for one full
episode. The samples are stored, and the advantage estimates are then

computed. The policy and value function are then updated for K
epochs. The policy and value function are updated using a batch size

of ≤ jIj.

B. Training Pipeline

This section describes the training pipeline for the small body
science operations problem. The training pipeline consists of three

important software packages. The Basilisk astrodynamics software

architecture models the problem as described in Sec. II.K. This

section describes the remaining two software packages: the

Gymnasium package§ used to wrap the simulation to provide a

standard interface for reinforcement learning and the Stable-Base-

lines3 (SB3) software package¶ that implements the PPO algo-

rithm. The environment and training scripts may be found in the

bsk_rl GitHub repository.**

The Gymnasium environment interface provides a standardized

interface for interacting with reinforcement learning algorithms.

The Gymnasium environment wraps the Basilisk simulation. It

receives actions from the reinforcement learning agent, turning on

or off the Basilisk tasks and models as necessary and running the

simulation for the prescribed amount of time. Once the action has

been taken and the simulation has been run in the desired flight
mode for the specified amount of time, the Gymnasium environ-

ment constructs the observations and reward, which are returned to

the decision-making agent. This process repeats until the end of the

planning horizon or the episode terminates. A diagram of this

interaction is provided in Fig. 7.
SB3’s PPO implementation is utilized to train the decision-making

agent. As described in Algorithm 2, for each iteration of the algo-
rithm, PPO initializes M actors. Each worker spins up its own

instantiation of the Gymnasium environment with its own set of

initial conditions sampled from the distributions regarding initial

battery charge, spacecraft attitude and attitude rate, spacecraft posi-

tion relative to the body, etc. The actors step through the environment
using the current learned policy. If one environment fails part way
through due to a violation of the resource constraints or ends its
episode early, the other actors pause until the terminated environment
resets with a new set of initial conditions. After all actors have
reached the required number of steps, the policy is updated with this
experience, and the process repeats for the specified number of
iterations.

IV. Results

This section presents several experiments for the small body
science scheduling problem, using two versions of the environ-
ment: one without the optional navigation mode and one with it.
The first experiment performed is a hyperparameter search over the
batch size, number of epochs, network widths, and network depths
without the optional navigation mode to determine the sensitivity
of PPO and the environment to these hyperparameters. After the
hyperparameters are optimized, a search over the reward function
in Eq. (18) is performed to determine how image collection, map
collection, image downlink, map downlink, and the failure penalty
should be weighted. Some of these trained policies are also
deployed on the various observation types to determine the impact
of the observation type on the performance of the policy. The
policies trained with the truth state are deployed using noisy
measurements of the state and the EKF belief state to determine
the impact of noise and state estimation error on the performance of
the policy. Then, a demonstration is performed to show that the
trained policies are robust to unexpected events like a DSN outage.
Finally, a set of policies are trained with the dedicated navigation
mode and associated state return. These policies are evaluated and
compared to the policies trained without the dedicated naviga-
tion mode.
The experiments performed in this section are done using the

Alpine high-performance computing resource at the University of
Colorado, Boulder. Each experiment is performed with an x86_64
AMDMilan CPU with 64 cores and 3.75 GB of RAM allocated per
core. No GPU is used in training. Alpine utilizes the RHEL version
8.4 operating system. However, the tools described thus far can be
utilized on almost any Linux or MacOS operating system. Windows
is not recommended.

A. Hyperparameter Searches

To determine which hyperparameters should be selected for
future experiments, two hyperparameter searches are performed
for the small body science scheduling problem. For both experi-
ments, reward is split evenly between collection and downlink for
imaging andmapping, which are also split evenly. The constants of
the reward function in Eq. (18) are A � B � C � D � 0.25, and
the failure penalty is set to F � 1. In the first hyperparameter
search, the batch size and number of epochs are varied. A small
network size is selected for this hyperparameter search. The net-
work width and depth are fixed at 20 and 4, respectively, to ensure
that a relatively large network does not obfuscate issues with the
batch size and number of epochs. The learning rate is fixed at 3e−5.
The results of this hyperparameter search are shown in Fig. 8a. The

Fig. 7 Agent–environment interaction.

Algorithm 2: Proximal policy optimization algorithm

1: Initialize policy πθ�s� and value function Vθ�s� with parameters θ

2: for iteration 1∶N
3: for actor 1∶M
4: for i = 1∶jIj
5: ai ∼ πθ�aijsi�
6: si�1; ri ∼G�si; ai�
7: Store si; ai; ri
8: compute advantage estimates Â1 · · · ÂjIj
9: optimize L�θ� w.r.t. θ, with K epochs and batch size ≤ jIj

§Data available online at https://gymnasium.farama.org/index.html.
¶Data available online at https://stable-baselines3.readthedocs.io/en/

master/.
**Data available online at https://github.com/AVSLab/bsk_rl.
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average reward increases as the batch size decreases and the
number of training epochs increases. The best-performing policy
is trained with a batch size of 2000 and 100 epochs. As the number
of epochs increases, PPO is able to better fit the data in the batch.
The second hyperparameter search varies the network width and
depth. An example plot of reward versus the number of training
steps is provided in Fig. 9. The batch size and number of epochs are
fixed at 2000 and 100, respectively. The learning rate is fixed at 3e
−5. The results of this hyperparameter search are shown in Fig. 8b.
The best-performing policy is trained with a network width of 160
and a network depth of 1. The average reward increases with larger
network widths and depths, with the optimized policies achieving
reward close to 1, meaning that the decision-making agent is
imaging and downlinking nearly all of the science data without
violating a resource constraint. Larger numbers of nodes and
layers can be advantageous because the selected RL algorithm
can extract more complex features from the data. Larger numbers
of layers and nodes also increase execution time, but execution
time is still on the order of milliseconds for the selected hyper-
parameters. More layers and nodes could be explored, but this
would only increase training time for minimal gains.

B. Reward Function Engineering

After the hyperparameters are tuned, a search over the reward
function parameters in Eq. (18) is performed using the optimized
hyperparameters (the networkwidth is increased to 320, however).
The reward is equally split between collection and downlink, but
the weighting towards imaging and mapping is varied from 25 to
75%. The failure penalty is also varied from 0 up to a penalty of
F � 1. The average reward across these hyperparameters after
training is provided in Fig. 10. An imaging component of 0.125
means that A � C � 0.125, so the mapping components are
B � D � 0.375. In terms of average reward, changing the relative
weighting of imaging and mapping does not appear to have a large
impact on the final average reward. However, because the failure
penalty changes the range of reward, more metrics need to be
collected to determine whether or not this is true.
In Fig. 11, the average number of imaged and downlinked sur-

face targets and collected and downlinked maps are presented. A
clear dependency on the relative weight of surface target imaging
versus downlink is present in the results. When surface target
imaging is weighted more, the average number of surface imaging
targets collected and downlinked increases. When mapping is

a) Hyperparameter optimization over batch size
and epochs. Hyperparameters: width = 20,
depth = 4, LR = 3e-5

b) Hyperparameter optimization over policy
width and depth. Hyperparameters: batch
size = 2000, epochs = 100, LR = 3e-5

Fig. 8 PPO hyperparameter searches for the small body science environment. Each bar represents the average of five trials.

Fig. 9 Example curve of average reward vs steps.

Fig. 10 Average reward across the reward function parameters.Hyper-

parameters: batch size = 2000, epochs = 100, LR = 3e−5, width = 320,

depth = 1.
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weighted more, the average number of mapping points collected
and downlinked increases. Equal weighting of surface target imag-
ing and mapping results in decision-making agents that collect and
downlink a high amount of both surface targets and mapping
points. This result makes intuitive sense as both types of scientific
data are prioritized equally. In general, the failure penalty does not
appear to have a large impact on these numbers. If the decision-
making agent fails, it is penalized by not being able to collect and
downlink further science data.
The average length of the simulation and ΔV are also collected.

For brevity, these plots are not shown here. The average length of
the simulation is relatively constant over the reward parameters,
with the average episode length around 7 days. However, a failure
constant of 1 does result in the most stable average simulation
length, whichmeans the decision-making agent eliminates failures
altogether. The ΔV is slightly more variable, with no obvious
dependency on the reward parameters, but all decision-making
agents keep the ΔV around 10 m/s. This is far lower than the
maximum ΔV of 40 m/s. The agents display a tendency to use up
all of the fuel early in training by doing too many unnecessary
maneuvers. However, the agents relatively quickly learn to con-
serve fuel and only maneuver to the waypoints required for
mapping.

C. Policy Evaluation

This section evaluates the trained policies using the following
reward components: A � B � C � D � 0.25, F � 1. The science
components of the reward function are equally weighted, and the
failure penalty is set to the highest value. The first experiment
performed in this section evaluates the policy trained with these

reward parameters under various observation types. The nominal

observation type observes the relative spacecraft state directly. The

Basilisk simpleNav module observation type observes noisy

measurements of the relative spacecraft state. If this observation

type is utilized, a dead band equal to the 1σ values in Table 2 is

added to the control law to ensure extra fuel is not spent trying to

correct for measurement noise. The EKF observation type

observes the EKF belief state, where the EKF continually ingests

measurements to improve the state estimate. No controller dead

band is required here. The results of these experiments for N � 20
trials are presented in Table 7. The nominal state observations

result in the highest average reward, but the confidence intervals

a) Average number of collected images b) Average number of downlinked images

c) Average number of collected mapping points d) Average number of downlinked mapping points

Fig. 11 Average number of landing sites and map points collected and downlinked over the reward components.

Table 7 Trained policy deployed with different observation types:

7-day-long planning horizon

Metric Nominal SimpleNav EKF

Average reward 0.91 	 0.02 0.88 	 0.04 0.86 	 0.05

Average ΔV 9.4 	 0.3 9.5 	 0.4 9.4 	 0.3

Collected images 9.5 	 0.39 9.1 	 0.5 8.5 	 0.7

Downlinked images 9.4 	 0.39 9.0 	 0.5 8.5 	 0.7

Collected map (6 PM LST) 451 	 14 467 	 9 468 	 12

Collected map (2 PM LST) 426 	 30 390 	 46 392 	 47

Collected map (10 AM LST) 443 	 18 430 	 30 455 	 20

Downlinked map (6 PM LST) 451 	 14 467 	 9 468 	 12

Downlinked map (2 PM LST) 408 	 32 387 	 45 381 	 47

Downlinked map (10 AM LST) 439 	 18 424 	 29 454 	 20
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for each metric and each observation type overlap. There is no

appreciable difference in performance between each observation

type. This is a major feature of the problem formulation and

training methodology, as a small amount of noise added to the

state does not significantly impact the performance of the decision-

making agent.

D. DSN Outage Experiment

A large benefit of using reinforcement learning for planning and

scheduling is that it yields closed-loop planning solutions as opposed

to open-loop solutions, which allows the decision-making agent

to respond to opportunistic science events or ground station outages.

While uncommon, DSN outages can occur and place mission

timelines in jeopardy.OnOctober 11th, 2019, aDSNoutage occurred

at the Madrid station before a “late update” (an update to the space-

craft’s trajectory) for the OSIRIS-RExmission [61]. Engineers had to

scramble and compress this update within a 4 h window. In addition

to trajectory and navigation updates, missed downlink windows can

also have implications on future collection and downlink of science

data. In this experiment, a DSN outage is simulated by simply

removing the third downlink opportunity. The nominal buffer level

and access times, without this removal, are shown in Fig. 12a. The

average policy outputs during the third downlink window are shown

in Fig. 12b. The highest probability action is action 10, which is

downlink.

The buffer level and policy outputs during the removed down-

link window are shown in Figs. 12c and 12d, respectively. During

the removed downlink window, the downlink state is replaced with

zero, meaning that the downlink window is 24 h away. The

decision-making agent responds by continuing the mapping and

imaging campaign, requiring no input from the ground other than

notification that the window has been removed. Theoretically, no

notification from the ground is required at all if the spacecraft does

not receive confirmation that a link has been achieved in the

downlink mode. The downlink action goes from the highest prob-

ability action to one of the lowest probability actions. This is a

major benefit of using reinforcement learning for planning and

scheduling, as the decision-making agent can respond to changes

in the environment with little or no human intervention. No com-

putationally expensive replanning efforts on board the spacecraft

are required either. The entire trajectory of actions does not need to

be re-optimized using an integer program. Furthermore, this also

highlights the utility of using the selected representation of the

downlink state. Past work for Earth-observing satellite scheduling

[54,55] relies on the spacecraft position to help the agent under-

stand when downlink opportunities occur. However, relying on

spacecraft position alone for ground station access doesn’t easily

allow for the use of temporal access constraints or the removal of a

downlink window. Therefore, a temporal representation for

upcoming downlink windows should be utilized.

E. Navigation Mode Policy Evaluation

In Table 8, the policy trainedwith the dedicated navigationmode

is benchmarked over N � 20, 7-day planning horizons. When

compared to Table 7, it is evident that PPO trained with the

navigation mode is capable of producing policies equivalent (in

terms of average reward) to those trained without the navigation

mode and associated state uncertainty. The main differences

regarding the trained policies include a slight increase in ΔV, a
slight increase in the average number of collected and downlinked

images, and a slight decrease in the amount of data collected and

downlinked regarding the map associated with a 10 AM LST for

a) Buffer level and DSN access b) Policy outputs during third downlink window

c) Buffer level and DSN access with removed window d) Policy outputs during removed downlink window

Fig. 12 Buffer level and policy outputs during DSN schedule. Action 10 is the downlink action.
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the policies trained with the optional navigation mode. This is an

impressive result, demonstrating that PPO can not only manage

spacecraft resources, but state uncertainty as well, simply by

monitoring the diagonals of the error covariance matrix. The

1 deg azimuth angle requirement for the mapping modes is very

tight, and it only takes a few decision-making intervals for the

estimation error to cause the control solution to drift out of this

band. When this happens, the map points are no longer collected,

and the agent ceases to receive rewards for mapping. In order to

keep receiving rewards, the decision-making agent has learned to

utilize navigation updates in between science modes to effectively

collect the mapping data. If autonomous guidance and relative

navigation capabilities mature enough for adoption, reinforcement

learning is a viable method for on-board planning and scheduling

small body science missions. Future work should investigate how

state-of-the-art autonomous guidance and relative navigation

methods impact the performance of the decision-making agent

a) 3D view b) ô1 & ô2 plane

c) ô1 & ô3 plane d) ô2 & ô3 plane

Fig. 13 Hill frame trajectory with the navigation mode included in the action space.

Table 8 Benchmarking the policy

trained for the MDP with the dedicated

navigation mode: 7-day-long planning

horizon

Metric Value

Average reward 0.91 	 0.02

Average ΔV 11.9 	 0.5

Collected images 9.7 	 0.3

Downlinked images 9.4 	 0.4

Collected map (6 PM LST) 455 	 12

Collected map (2 PM LST) 452 	 20

Collected map (10 AM LST) 400 	 17

Downlinked map (6 PM LST) 441 	 20

Downlinked map (2 PM LST) 448 	 20

Downlinked map (10 AM LST) 388 	 23
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and how the problem formulation may need to be adjusted to

account for these impacts.

To provide a more complete understanding of the behavior of the

trained decision-making agent, data regarding the actions, space-

craft position and velocity, and spacecraft resources is collected for

a single run of the policy. The trajectory of the spacecraft in the sun–

asteroid Hill frame is displayed in Fig. 13. The decision-making

agent learns to make multiple passes through the mapping way-

points. This is an unintuitive result, but the decision-making agent

has learned to map and then move to the next waypoint instead of

waiting for the other side of the body to become visible. The

position and velocity state error, along with the 2σ covariance

bounds, are displayed in Fig. 14. The decision-making agent peri-

odically updates its state estimatewith newmeasurements, reducing

the state error covariance so that mapping can be conducted. Imag-

ing modes are sprinkled throughout the planning horizon. The data

buffer level, stored power, and ΔV are presented in Fig. 15. The

policy takes advantage of almost every downlink opportunity, keep-

ing the data buffer well within the limits. The stored power also

always stays above 20 W·h. Finally, the trained policy performs

roughly 19 maneuvers over the course of the mission. The decision-

making agent attempts to make more maneuvers, but these maneu-

vers are not actually performed by the spacecraft because the

required amount of time before the next maneuver can be taken

has not passed.

F. Management of the State Estimate

Based on the performance of the trained agents, it appears that
the decision-making agent has learned to manage its state estimate.
However, it is unclear if the agent has learned to assign a fixed
probability to the navigation update mode or if the selection of the
navigation update mode is dependent on the value of the state-error
covariance. To determine this, the policy is run in the environment, the
covariance matrix is collected, and the policy distribution is evaluated
for different values of the diagonal of the covariance matrix. These
results are presented in Fig. 16. For 101 ≤ kdiag�P�k < 102, when
the covariance and state error are the lowest, the lowest probability
action (outside of themaneuvers) is the navigation update. As the state
error covariance grows, the navigation update becomes the most
likely action, as evidencedbyFig. 16d,whereπ�nav updatejs� ≈ 0.55.
The decision-making agent has learned to manage its state estimate
based on the observations provided autonomously, monitoring the
state-error covariance to determine when a measurement mode should
be taken.

V. Conclusions

This work explores the application of DRL to a small body
science operations problem. A representative problem is presented
and formulated as an MDP. A high-fidelity simulation of the prob-
lem is developed, and PPO is applied to the problem. A hyper-
parameter search over the PPO hyperparameters and reward

a) Position error and associated 2σ covariance bounds

b) Velocity error and associated 2σ covariance bounds

Fig. 14 EKF position and velocity error over 7 days of operations utilizing the optional navigation mode. Mapping modes are shown in green. Imaging

modes are shown in red.
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a) 101 diag(P) 102

c) 103 104diag(P)

b) 102 103diag(P)

d) 104 105diag(P)

Fig. 16 Dependency of stochastic policy outputs on the magnitude of the diagonal of the state covariance matrix. Action 12 is the navigation mode.

a) Data buffer level and DSN access b) Stored power with charging modes included

c) Total ∆V consumed with maneuver modes included

Fig. 15 Spacecraft resources over time using optional navigation mode.
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function components is performed. Small batch sizes and larger net-
works are shown to produce the best-performing policies. In terms of
the reward function experiments, equal weighting between surface
target imaging and mapping produces the best policies. The perfor-
mance of the trained policies is evaluated using direct observations of
the state, noisy observations of the state, and filtered observations
produced by anEKF. The decision-making agent is shown to be robust
to noise in the state observations, even when only trained using direct
observations of the state. The decision-making agent is also shown to
be capable of responding to changes in the environment, such as aDSN
outage, with no human intervention outside of notification that the
window is no longer available. Finally, the decision-making agent is
shown to be capable of managing its state estimatewhen an additional
navigation mode is added to the action space. The decision-making
agent is capable of producing policies that are equivalent to those
trained without the navigation mode.
The aforementioned experiments demonstrate that reinforcement

learning is a viable method for planning and scheduling small body
science operations, capable of managing spacecraft resources,
maneuvers, and navigation updates while achieving the science
objectives of the formulated mission. These results are promising,
and futurework should investigate using state-of-the-art autonomous
guidance and relative navigation methods within this planning and
scheduling framework for a real mission study. Furthermore, prob-
lem formulations that either account for all mission phases under the
umbrella of a single MDP or multiple phases as individual MDPs
should be studied.
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