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Innovative lightweight andmodel-free guidance algorithms are essential to achieve full autonomyof spacecraft and

address future space exploration challenges. In the near future, this type of technology will be essential for cislunar

space proximity operations, such as NASA’s Artemis program and its Lunar Gateway project. In this scenario, a

meta-reinforcement learning algorithm is employed to address the real-time optimal guidance problem of a

spacecraft in the cislunar environment. Non-Keplerian orbits pose complex dynamics, where classic control theory

may be less adaptable and more computationally expensive compared to machine learning approaches. Meta-RL

stands out for its ability to learn how to learn through experience, training on various tasks to enhance efficiency, and

effectiveness in tackling new ones. By modeling a stochastic optimal control problem within the circular restricted

three-body problem framework as a Markov decision process, an LSTM-based network agent is trained using

proximal policy optimization, considering operational constraints and stochastic effects for safety and robustness

evaluation. Additionally, an MLP-based agent and an optimal control pseudo-spectral solution are assessed for

comparison. The resulting tool autonomously guides spacecraft in cislunar proximity operations, approximating the

optimal control solution with a versatile algorithmic framework. This ensures both robustness and computational

efficiency.

Nomenclature

A = action space
At, a = action at time step t
B = spacecraft body reference frame
C = relative synodic reference frame
Gt = discounted return at time step t
Isp = specific impulse

m = mass
q = action-value function
R = reward space
Rt, r = reward at time step t
S = state space
Sr = success rate
St, s = state at time step t
u = control action
V = candidate Lyapunov function
v = state-value function
x = state vector
α = learning rate
β = approach corridor half-angle
γ = discount factor

δx = relative state vector
ε = clip parameter
θ, w = actor and critic neural networks parameters
λ = GAE lambda
μ = mass parameter
π = policy function
ρ = relative position vector between chaser and target
_ρ = relative velocity vector between chaser and target
ρ� = pseudo-relative state vector
ϕ = generative transition function

Superscripts and Subscripts

C = chaser spacecraft
f = terminal state
T = target spacecraft
0 = initial state
1 = first primary
2 = second primary
� = optimal

I. Introduction

R ENDEZVOUS and docking (RVD) maneuvers play a critical
role in various missions in space, including crew transfer, cargo

exchange, repairs, and structural assembly. For more than five dec-
ades, various countries have conducted missions of this nature [1],
and various chaser spacecraft, originating with Gemini and Apollo,
have successfully performed these tasks. Some contemporary exam-
ples, such as the demonstration of autonomous rendezvous technol-
ogy, the automated transfer vehicle (ATV) of the European Space
Agency, and the H-II Transfer Vehicle (HTV) from Japan, are now
unmanned and fully automated. This progress, considerably more
robust and secure than previous manual astronaut maneuvers,
required the adoption of new autonomous guidance, navigation,
and control (GNC) algorithms. In addition, these techniques have
become indispensable for the most intricate spacecraft proximity
operations, including on-orbit servicing, active space debris removal,
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and other missions. This type of problem can be formulated as an
optimal control problem (OCP) and solved with active set or interior
point techniques after transcription [2]. However, these methods are
open-loop, unable to manage unpredictable circumstances without a
controller, and too computationally expensive to be executed on-
board. Autonomous guidance and control (G&C) algorithms require
two fundamental features: robustness, which should be achieved by
satisfying numerous requirements, such as closed-loop control, for
mission safety; and computational efficiency for on-board imple-
mentation. Today, to acquire this capability, the high-level task is
usually transformed into a precalculated reference trajectory (guid-
ance) and then tracked by a controller (control). Several effective
algorithms suitable for implementation on-board have been pro-
posed, as documented by [3]. However, additional criteria can be
introduced. First, to handle more intricate dynamical environments
where engineering modeling would be impractical, these algorithms
should be model-free. Second, they should incorporate an integrated
G&C law, eliminating the need to break down the high-level task into
separate processes for reference computation and tracking.
Reinforcement learning (RL) possesses the aforementioned char-

acteristics [4]. RL agents have the capability to undergo training
using high-fidelity simulators. This training allows them to learn the
optimal closed-loop policy, rather than being explicitly designed.
When the policy is tested on-board, it only needs minimal computa-
tional resources.Additionally, RL can directly optimize the task-level
objective and use domain randomization to handle model uncer-
tainty. This allows the identification of control responses that are
more empirically reliable [5]. Deep-reinforcement learning (Deep-
RL) has demonstrated its effectiveness in cutting-edge applications,
including robotics [6], automotive [7], and aerospace [8]. Employing
agents equipped with artificial neural networks (ANNs), Deep-RL is
adept at addressing sequential decision-making problems, known as
Markov decision processes (MDPs), through interactive engagement
with the environment. Neural networks excel in accurately estimating
functions, whichmakes themwell suited to learn optimal closed-loop
G&C policies by estimating the solution to the Hamilton–Jacobi–
Bellman equations [9]. The development of GNC autonomous sys-
tems presents a major challenge in terms of robustness to uncertain
spacecraft models and environments. RL deep agents, such as feed-
forward ANNs, are usually successful in learning within the training
distributions, but often have difficulty extrapolating beyond them
(i.e., low generalization capability). This can lead to an unstable
guidance law when the spacecraft encounters states that are not part
of the training distribution. Moreover, traditional RL requires a large
amount of experience to even learn basic tasks (i.e., sample ineffi-
ciency). In recent years, numerous papers in the aerospace literature
have explored spacecraft GNC for RVD scenarios using Deep-RL
methods. For instance, [10] examined RL for guidance purposes
only, necessitating a separate controller design. They demonstrated
its effectiveness in autonomously handling docking in the xy plane
with a close-proximity spinning target in low-earth orbit, without
considering control cost in the reward function. Oestreich et al. [11]
conducted a similar study, exploring RL for both guidance and
control tasks in a 6-degree-of-freedom (DOF) scenario over a few
tens of meters for rendezvous, while also attempting to minimize
fuel consumption. However, this study based its reward engineering
on a predesigned LQR controller. Scorsoglio et al. [12] developed an
adaptive ZEM/ZEValgorithm using RL in cislunar space with non-
linear equations, demonstrating the method’s effectiveness with vari-
ous path constraints, from simple cone constraints to obstacle
avoidance. Federici et al. [13] investigated RL for an xy-plane
rendezvous scenario using Clohessy–Wiltshire (CW) equations and
a visibility cone constraint. To date, no research has addressed the use
of RL for spacecraft proximity operations integrating G&C that
simultaneously considers fuel efficiency, three-dimensional motion
in complex nonlinear dynamics, and safety requirements, without
relying on classical optimal control theory or parametric guidance
laws.
Recent advances in Meta-RL have effectively addressed the two

aforementioned main weaknesses of RL. Meta-RL is a machine
learning (ML) technique in which an agent is taught a range of tasks

(that is, randomized environment parameters) instead of just one,
allowing it to create a meta-policy that can quickly adjust to new and
unseen tasks with minimal experience [14]. This transfer learning
ability has been referred to as learn to learn by [15]. There are
numerous approaches to implementing these characteristics in prac-
tice, such as model-agnostic meta-learning, task-agnostic meta-
learning, REPTILE, Meta-SGD, and many more [16]. One of the
most popular approaches, as proposed by [17], is to employ long
short-term memory (LSTM) networks within a RL agent trained
through gradient-basedmethods, referred to as meta-recurrent neural
networks (Meta-RNNs). In the aerospace literature, Meta-RNN has
been more successful than traditional RL in handling unmodeled
dynamics and actuator failures [18], multitask scenarios with uncer-
tain initial conditions [19], and partially observable dynamics [20].
Moreover, Meta-RNN has shown effectiveness in various spacecraft
GNC applications, integrating not only guidance and control tasks
but also navigation, where the policy directly maps observations to
control actions. These applications include planetary landing [21,22],
underactuated CubeSats [23], trajectory design [19], rendezvous
missions [24], and asteroid proximity operations [25–27]. All of
these studies employ the same actor–critic gradient-based training
algorithm, proximal policy optimization (PPO), which has proven
highly effective for continuous control applications and is currently
state-of-the-art [28]. The strength of Meta-RNN lies in the hidden
states of LSTM networks, which act as internal memory for storing
temporal data. This allows LSTMs tomaintain internal dynamics that
is continuously updated by new observations along the trajectory.
This capability improves learning in high-uncertainty environments
during training, as the memory enhances sample efficiency by facili-
tating the transfer of learning between training episodes. It also
enables an adaptive policy during testing. Consequently, the resulting
policy demonstrates greater overall robustness from a spacecraft
operations perspective, especially after on-board deployment. Unlike
multilayer perceptrons (MLPs), which are fundamental units in
typical feedforward ANNs, LSTMs can dynamically modify their
hidden state and adjust in real time to capture unmodeled data along
the controlled trajectory, depending on the observations from the
environment. This capability allows LSTMs to account for external
factors not considered during trainingwhile testing. Thismakes them
ideal for scenarios involving complex, time-varying dynamics,
uncertain models, and the possibility of failure. The hidden state
can store information and learn during training how to adjust the
internal dynamics of the LSTMs, generating the most suitable output
for the task-level goal during testing.
This study will address, through the proposed Meta-RL solution,

the challenge of autonomous relative G&C in cislunar space. This is
especially pertinent in the context of NASA’s ARTEMIS project,
which intends to establish a LunarGateway, a cislunar space station,
in the next decade [29]. Positioned at the Southern 9:2 Resonant L2

near-rectilinear halo orbit (NRHO) of the Earth–Moon system, the
station’s construction and operations necessitate rendezvous and
docking missions. Autonomous rendezvous, proximity operations,
and docking capabilities in cislunar space have the potential to
significantly improve the deployment and functionality of the
Lunar Gateway. The dynamics within non-Keplerian environments,
characterized by high nonlinearity and chaoticity, still demand a
thorough examination [30]. Traditional protocols employed in the
Apollo and Shuttle programs and automated ISS operations ofATV/
HTV, which were originally designed for central gravitational
fields, prove inadequate for the complexity of cislunar space. Con-
sequently, to overcome these challenges, there is a pressing need for
the design of innovative RVD algorithms and procedures. Recent
research [30,31] has partially addressed this need by formalizing the
various safety constraints that should be applied in this scenario
(e.g., keep-out sphere, approach corridors, etc.). Researchers also
analyzed the effectiveness of different equations of motion, high-
lighting that nonlinear equations of motion are necessary for
designing accurate G&C solutions. The works of [32,33] intro-
duced a combination of stable and unstable manifold exploitation
with impulsive control for passive safety during far-range rendez-
vous. In addition, they used traditional G&C algorithms, such as
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PID, SDRE, etc., with continuous control for active safety in close-
range rendezvous and docking procedures. Despite these contribu-
tions, there is still a notable scarcity of research on GNC algorithms
specifically designed for relative multibody dynamics. This work
aims to address this gap as well.
In summary, this study explores the potential of using a specific

Meta-RL method, known as Meta-RNN, as an autonomous space-
craft G&C algorithm to manage relative motion within the chaotic
cislunar dynamical environment. In this context, comprehensive
analysis from a controlled motion perspective is lacking, and
previous methods may either falter or become computationally
intensive. The study evaluates whether this Meta-RL algorithm
meets safety requirements, such as terminal phase accuracy and
approach corridor collision avoidance, while maintaining robust-
ness and computational efficiency for on-board implementation.
Additionally, it investigates the benefits of using LSTM networks
over basic MLP networks in RL agents for spacecraft G&C appli-
cations, thereby assessing the advantages of adaptive policies in
environments with high parameter randomization. This paper aims
to build on the existing Meta-RL literature for spacecraft GNC by
presenting new results, such as a new stability analysis, enhanced
robustness evaluation of the policy considering failures and sig-
nificant parameter uncertainty, and a comparison with classical RL
based on feedforward networks. These are among the most inter-
esting and innovative features of this paper and warrant thorough
discussion.

II. Cislunar Space Relative Dynamics

This section presents a summary of the equations of motion and
the reference frame employed in this study to model the relative
motion between a target and a chaser spacecraft in the cislunar space
environment.

A. Relative Circular Restricted Three-Body Problem

The motion of a massless particle influenced by two massive
bodies is described by the restricted three-body problem (R3BP).
This model considers the mass of the particlemB and the masses of
massive bodies m1 and m2, assuming mB ≪ m1; m2 and m1 > m2.
The problem is simplified by representing the equations in a rotating
reference frame, also known as the synodic reference frame, which
is described in the following section for clarity. Additionally,
assuming circular motion of the primary bodies further simplifies
the problem, leading to the circular restricted three-body problem
(CR3BP) [34]. This problem is typically studied in its normalized
form; for more details on the scaling parameters, refer to [35].
The CR3BP is an autonomous system of equations, where the
only parameter defining the three-body system is the mass param-
eter μ. In the Earth–Moon case, this parameter is denoted as μ �
0:012150584269542.
The equations of motion for the relative circular restricted three-

body problem (RCR3BP) [12] are obtained by subtracting the abso-
luteCR3BP equations ofmotion of the chaser and the target, resulting
in δx � xC − xT . In the context of the relative synodic Earth–Moon
frame (refer to Fig. 1), these nonautonomous equations are presented
in Eq. (3). Here, ρ represents the vector �δx; δy; δz�, whereas r1T and

r2T are defined as �xT � μ; yT; zT � and �xT � μ − 1; yT; zT �, respec-
tively. The RCR3BP is also known as the nonlinear relative (NLR)
equations in the relative synodic reference frame. However, it is
referred to as RCR3BP here to avoid ambiguity, given the multiple
NLR formulations. Various types of relative equations of motion for
NRHOs have been explored in the literature. Lizy-Destrez et al. [30]
explored the CW equations and linearized relative equations, in
addition to theNLRequations in the relative synodic reference frame.
Meanwhile, [36] proposed a set of NLR equations in the local-
vertical/local-horizon (LVLH) frame, necessitating the computation
of the target’s angular velocity and acceleration vectors during its
orbit around the Moon. However, the RCR3BP equations stand out
for their generalization and simplicity:

δ �x � 2δ _y� δx� �1 − μ� xT � μ

kr1Tk3
−
xT � δx� μ

kr1T � ρk3

� μ
xT − μ − 1

kr2Tk3
−
xT � δx� μ − 1

kr2T � ρk3

δ �y � −2δ _x� δy� �1 − μ� yT

kr1Tk3
−

yT � δy

kr1T � ρk3

� μ
yT

kr2Tk3
−

yT � δy

kr2T � ρk3

δ�z � �1 − μ� zT

kr1Tk3
−

zT � δz

kr1T � ρk3 � μ
zT

kr2Tk3
−

zT � δz

kr2T � ρk3

(1)

B. Relative Synodic Reference Frame

TheCR3BP can be described using a rotating reference frame, also
known as the synodic reference frame, that is centered on the bary-
center of two massive bodies. This frame rotates with a constant
angular velocity ωs and has a right-handed coordinate system with
the x̂ axis pointing from the larger body to the smaller one, the ẑ axis
aligned with the system’s angular momentum, and the ŷ axis com-
pleting the right-handed coordinate system. As seen in Fig. 1 (from
[37]), this establishes CO∶fx̂; ŷ; ẑg.
The relative motion between a target and a chaser spacecraft

in the CR3BP can be expressed in this frame, with masses mT and
mC. The assumed origin of the three axes, taking into account δx, is
now positioned at the opening of the target’s docking port. This
yields CT∶fx̂; ŷ; ẑg. The target’s body-frame is denoted as

BT∶ft̂1; t̂2; t̂3g, and, similarly, the chaser’s body-frame is repre-
sented by BC∶fĉ1; ĉ2; ĉ3g.

III. Reinforcement Learning

This section reviews RL with a focus on the MDP as the modeling
framework. The discussion then highlights PPO as a key gradient-
based RL technique.

Fig. 1 Synodic reference frame centered on the barycenter of the
primary bodies in the CR3BP. Source: [37].
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A. Markov Decision Process

Reinforcement learning (RL) is a form of learning that associates

actions with situations in order to maximize a reward signal. It is
formulated on the basis of the principles of dynamical systems,
particularly using MDPs to model sequential decision-making. An
agent interacts with an environment over discrete time steps
(t � 0; 1; 2; 3; : : : ). The agent receives a state representation
St ∈ S, selects an action At ∈ A�s�, and obtains a numerical reward
Rt�1 ∈ R. This interaction creates a trajectory starting with S0, A0,

R1, S1, A1, R2, etc. (Fig. 2, from [9]).
To employ this modeling framework, the foundational assump-

tions encompass the complete observability of the state, finite sets of

states S and actions A, and rewards R, along with the Markov
property. The latter asserts that the probability of each possible value
for St and Rt is only influenced by St−1 and Rt−1, and not by any
previous states and actions. The MDP environment is described by a
discrete probability distribution p∶S ×R × S ×A → �0; 1�, which
determines the dynamics of the system as

p�s 0; rjs; a� ≐ Pr�St � s 0; Rt � rjSt−1 � s; At−1 � a� (2)

For all s 0 ∈ S, s ∈ S, r ∈ R, and a ∈ A�s�. In this paper,AjB is used
to denote the conditional dependence of event A given event B, so
P�AjB� represents a conditional probability. This notation is essential
in MDPs as it captures the probabilistic dependency of any required
random variable, such as future states and rewards, on current states

and actions. The agent’s objective is to maximize the long-term
cumulative reward rather than the immediate rewards Rt ∈ R. Typ-
ically, the interaction between an agent and its environment is divided
into sequences known as episodes. At the conclusion of each episode,
a specific state called the terminal state is reached, which signifies the
completion or noncompletion of the task. Following this, the system
is restored to either a default initial state or a randomly chosen initial

state from a standard distribution. To avoid excessive cumulative
rewards and promote convergence, the agent usually employs the
idea of discounting to determine which actions will maximize
the total benefits it will receive in the future. Specifically, it selects
the action At to maximize the discounted return, represented asGt in
Eq. (5):

Gt ≐ Rt�1 � γRt�2 � γ2Rt�3 � : : : � Rt�1 � γGt�1

�
T

k�t�1

γk−t−1Rk (3)

where γ ∈ �0; 1� is the discount rate. The discount rate determines the
current value of a future reward. A policy π can be formally expressed
as a mapping of states to the likelihood of selecting each potential
action; specifically, π�ajs� is the probability that At � a when
St � s. The expected discounted return when starting in a state s ∈
S and following policy π is known as the state-value function vπ . This
is defined as follows:

vπ�s� ≐ Eπ �GtjSt � s� (4)

The expected value of a random variable is denoted asEπ �⋅�when the
agent follows the policy π. The expected discounted return when

beginning in a state s ∈ S and taking an actiona ∈ A�s� according to
policy π is denoted by the action-value function qπ:

qπ�s; a� ≐ Eπ �GtjSt � s; At � a� (5)

The primary objective in reinforcement learning is to find a policy
that maximizes the expected discounted return. A policy π is con-
sidered better than or equal to another policy π 0 if vπ�s� ≥ vπ 0 �s� for
all states s ∈ S. Themost favorable policy is referred to as the optimal
policy denoted by π�. Its optimal state-value function v� is defined as

v��s� � max
π

vπ�s� (6)

B. Proximal Policy Optimization

Policy gradient methods, including PPO, are a type of approxi-
matedmethod solution that are commonly used to solveRLproblems
in large state spaces. These methods are preferred because they offer
greater stability and the assurance of convergence [4]. They achieve
this by using parameterized functions, such asANNs, to approximate
functions, which makes them well suited for dealing with high-
dimensional, continuous-state, and continuous-action spaces. Unlike
traditional value-based methods, such as Q-learning, policy gradient
methods calculate the policy directly without requiring a model.
However, they are generally less data-efficient. An actor–critic
framework, which PPO also uses, can be applied to solve this issue.
This approach helps reduce the variance in the estimated policy
gradient, making it suitable for online applications. These methods
acquire a parameterized policy§ and make action selections without
the need to compute a value function. The parameter vector is
expressed as θ ∈ Rd and the policy as πθ�ajs�. The algorithms to
solve the policy parameters are based on the gradient of a scalar
performance measure J�θ�. They are designed to maximize perfor-
mance, so the update of the parameters in the training step k follows
the gradient ascent of J:

θk�1 � θk � α∇J�θk� (7)

where ∇J�θk� is an estimate of the gradient of the performance met-
ric with respect to the current policy parameters θk, and the step size
is determined by the learning rate α. PPO is renowned as a state-of-
the-art algorithm for continuous control in reinforcement learning
[28]. It is a first-order approximation of the thrust region policy
optimization (TRPO) method. As an actor–critic method, PPO intro-
duces bias through a bootstrapping critic and uses a learned weight
vector w ∈ Rm to estimate the state-value function v̂w. In PPO, a
clipped surrogate objective function is used to produce a pessimistic
and conservative approximation of policy performance. The corre-
sponding figure of merit is displayed subsequently:

max
θ

Êπ �min�rt�θ�Ât; clip�rt�θ�; 1 − ε; 1� ε�Ât�� (8)

The probability ratio rt is expressed as

rt�θ� �
πθ�AtjSt�

πθ;old�AtjSt�
(9)

The advantage function, denoted as At�s; a� � qπ�St; At� − vw�St�,
serves as an indicator of the additional reward that the agent can take
when returning a specific action from a given state. In practical PPO
implementations, it is crucial to estimate both the advantage function

Ât (dependent on the unknown environment) and the expectation

operator Êπ.

Fig. 2 Agent–environment interaction at each discrete time step in a
Markov decision process (MDP). Source: [9].

§The policy πθ�ajs� is typically designed to be stochastic for exploration
purposes. In the context of continuous action spaces, the policy can be
formulated as a normal Probability Density Function (PDF). As learning
progresses, the focus shifts from exploration to exploitation, resulting in the
standard deviation of the PDF converging to zero.
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IV. Meta-Reinforcement Learning

Meta-Reinforcement Learning (Meta-RL), as implemented in the

Meta-Recurrent Network (Meta-RNN) [17], integrates LSTM [38]

into the RL agent. LSTM networks, a type of RNN, use gates to

prevent gradients from vanishing or becoming too large, enabling

selective updating and control of information flow. For detailed

information on LSTM structure and mathematics, refer to [38].

Unlike MLPs, all RNNs, including LSTMs, have feedback loops in

their layer interactions, forming directed graphs.
The LSTM-agent undergoes training using gradient-based tech-

niques such as PPO, making it well-suited for models with numerous

free parameters and enhancing the framework’s simplicity compared

to other meta-learning algorithms. The Meta-RNN approach excels

in handling highly nonstationary time-series and has demonstrated its

applicability to learning and autonomous systems.

A. Training Algorithm

The PPO algorithm, which is a model-free method, has been

previously discussed, and it has been noted that it requires the

estimation of the advantage function in order to operate. To address

this, the generalized advantage estimate (GAE) [39] is used and can

be adjusted using the coefficient λ to strike a balance between bias

and variance. The GAE formula, as shown in Eq. (12), is truncated at

the end of each episode (t � T) to accommodate LSTM-based net-

works [40]:

ÂGAE
t �

∞

k�0

�γλ�kδvt�k (10)

The definition of the residual temporal-difference [41] for the dis-

counted value function can be expressed as δvt � Rt � γvπ�St�1�−
vπ�St�. To estimate ÂGAE

t , it is necessary to estimate the state-value

function. When a nonlinear function approximator is used to

represent the state-value function, a commonly employed approach

involves solving a nonlinear regression problem by minimizing the

mean square error (MSE) in the following manner:

JMSE�w� � Êπ vw�St� −
T

k�t

γk−tRt

2

(11)

Batch learning is a machine learning technique used to estimate

expectancy operators. It works by generating a batch of trajectories

(or roll-outs) before each training cycle, with the number of tra-

jectories controlled by the hyperparameter called batch size. After

processing the entire training dataset, the model is updated in a

single iteration, adjusting all parameters at once. For a more

detailed explanation of the algorithm’s architecture, see Fig. 3

(from [4]).

Gradient ascent is subsequently applied to both unrolled LSTM-

based actor and critic networks, and backpropagation through time

(BPTT) is used to compute the gradients of the parameters θ andw. In

each epoch k of the gradient-based optimizer, such as the adaptive

moment (ADAM) estimation method [42], the update equations

[similar to Eq. (9)] are implemented as follows:

θk�1 � θk � βθ∇J�θk� (12)

wk�1 � wk − βw∇J�wk� (13)

The difference in the sign of the update arises because JPPO is

maximized when optimizing for θ, whereas JMSE is minimized when

optimizing for w. For each set of roll-out data, the update step is

applied a certain number of times, called epochs. The algorithm stops

when the maximum number of predetermined learning steps is

reached. Theweights in the networks are initialized using an orthogo-

nal approach. An incorrect initialization can lead to issues, such as all

layers learning the same feature or vanishing and exploding gra-

dients. Thismethodmitigates the issue of ill-conditioned gradients by

initializing ANNs using matrices with eigenvalues having absolute

unitary values.
The algorithm described previously, due to the specific version of

GAE implemented and the use of BPTT, produces a version of PPO

that is suitable for use with LSTM networks, called recurrent proxi-

mal policy optimization (Recurrent PPO) [43]. The algorithm is

detailed in Algorithm 1. The implementation of Recurrent PPO,

and PPO in general, involves a number of complex optimizations

that are not discussed in depth or even mentioned by [28]. However,

these optimizations have been found to have a significant effect on the

efficacy of PPO [44]. To ensure robustness, consistency, and high

Fig. 3 Meta-reinforcement learning (Meta-RL) training architecture for recurrent proximal policy optimization (Recurrent PPO) algorithm. Source: [4].

Algorithm 1: Recurrent PPO

1. Initialization of neural network parameters θ and w

2. for step � 1; 2; : : : , learning steps do

3. Reset environment
4. for episode � 1; 2; : : : , batch size do

5. Run policy πold in environment until done

6. Compute advantage estimate ÂGAE
t

7. Store trajectory into batch roll-out
8. end for
9. for iteration � 1; 2; : : : , epochs do

10. Unroll agent LSTMs
11. Optimize Actor JPPO wrt θ and Critic JMSE wrt w

12. θold ← θ, wold ← w

13. end for
14. end for
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flexibility, this work uses the Stable-Baselines3 (SB3)¶

library in Python, an open-source machine learning library created
by the Facebook AI Research (FAIR) Laboratory.

V. Problem Formulation

This project focuses on developing an autonomous G&C algo-
rithm for these final approaches and docking of a spacecraft in
cislunar space, with emphasis on continuous control and active
collision avoidance. The chaser spacecraft initiates the maneuver
from a holding point at the edge of the target keep-out-sphere
(KOS) with a radius of 200 m. It is also assumed that the chaser
spacecraft is already situated at the apolune of the Southern L2 9:2
Resonant NRHO. The choice of this location for the final rendezvous
stages is based on its favorable slower dynamics, ensuring passive
safety and fuel efficiency [30]. Figure 4 illustrates this scenario,
showing the initial absolute and relative conditions of the NRHO,
togetherwith the naturalmotion along one orbit. These specific initial
conditions can also serve as a holding point until the chaser spacecraft
receives theGO Final Approach. Using this strategy ensures passive
avoidance of collisions with the target, thanks to the relative periodic
central manifold. Furthermore, in this study, the Lunar Gateway is
assumed to be the target, and the chaser is the Orion spacecraft. As a
result, the main characteristics of the Orion spacecraft, including
m � 21000 kg, umax � 29:3 kN, and Isp � 310 s, are incorporated.

The spacecraft is modeled with 3DOF, focusing solely on the guid-
ance and control of the center of mass. The feasibility of the control
action profile should be further examined with respect to the throt-
tling capabilities of the thrusters and analyzed in a 6DOF environ-
ment for attitude control suitability. However, these investigations are
currently outside the scope of this paper. Here, it is assumed that
maximum thrust is available in all directions simultaneously, achiev-
able with six thrusters of equal capacity oriented in opposite
directions.
To ensure the safety of the approach and proper docking, the RVD

maneuver must meet specific requirements. Therefore, the algorithm
must take into account the following list of constraints:
1)Docking Port: the final relative position and velocity shall be ρf <
1 m and _ρf < 0:1 m∕s, respectively;
2) Approach Corridor: the chaser spacecraft shall remain within a
truncated cone (Fig. 5) with a half angle of β � 20° for safety and
vision-based navigation purposes. Assuming that the target docking

port is located in its positive t̂2 direction, the requirement for a
truncated cone is expressed as follows:

ρ��t� ⋅ t̂2 − ρ��t� cos�β� > 0 ∀δy ≥ 0; ∀t (14)

ρ��t� � ρ�t� � 0;
ρf;max

tan β
; 0

T

(15)

Using a truncated cone, also known as a frustum [29], provides a
more realistic representation of the docking port [1]. Moreover, this
model avoids singularities, which improves the convergence proper-
ties of the algorithm. The constraint involves an alternative relative

position ρ� from a point in the −t̂2 direction.
The ρ� vector is designed to meet the docking port requirements at the
small frustum base, considering an angular distance from the approach
axis of β. Additionally, because this requirement is defined in the
target’s body frame and is attitude-dependent, it is assumed that the
target remains cooperative and aligned with the Earth–Moon synodic

frame, with t̂2 ≡ ŷ. The attitude of the chaser should be adjusted in
accordance with its docking port’s position in its body frame.
3)Maximum Time-Of-Flight: the maneuver shall be accomplished
within a restricted time of flight; therefore t < ToFmax � 100 smust
be satisfied;
4) Thrusters’ Performance: the maximum thrust value specified in
the data sheet shall be followed to formulate a feasible control action
profile, ensuring that u < umax � 23:9 kN.

A. Optimal Control Problem Formulation

Taking into account the requirements mentioned previously, it is

simple to design anOCP: find the control action profile that minimizes

a) Absolute synodic reference frame b) Relative synodic reference frame

Fig. 4 Chaser and target spacecraft on the Southern 9:2 ResonantNear-RectilinearHaloOrbit (NRHO) of the Earth–Moon system apolune at a relative
distance of 200 m, keep-out-sphere (KOS) edge, during one orbital motion.

Fig. 5 The approach corridor is represented by a truncated cone with a
maximum semiangle of β and a small frustum base designed to satisfy the
docking port requirements.

¶Data available online at https://stable-baselines3.readthedocs.io/en/master/
index.html
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control effort and such that dynamics, initial conditions, maximum
control action, maximum time of flight, approach corridor, and final
docking port requirements are respected. It can be expressed math-
ematically as follows:

min
u

J � tf
t0 ku�t�k dt

s:t: _x�t� � f�x�t�; u�t�� ∀t
x�t0� � x0

u�t� < umax ∀t

t < ToFmax

ρ��t� ⋅ t̂2 − ρ��t� cos�β� > 0 ∀δy ≥ 0; ∀t

ρ�tf� − ρf;max < 0

_ρ�tf� − _ρf;max < 0

(16)

The system’s equations of motion, represented by f, encompass the
absolute target state, the relative chaser state, and its associated mass.
To address this OCP usingMeta-RL, it is essential to transform it into
an MDP, as explained in the following subsection.

B. Markov Decision Process Formulation

The agent’s goal in a MDP is find the control policy π� that
maximizes the discounted expected return of rewards received along
a trajectory and such that the policy, the environment’s dynamics,
and the initial conditions are respected. TheMDP is mathematically
expressed as follows:

max
π

J � Eπ �GtjSt�
s:t: At � π�St�

St�1 � ϕ�St;At�
S0 ∼N �Ŝ0;C�

(17)

The second constraint considers the dynamics of the MDP environ-
ment, resulting in the update of its state St at each time step t. In
contrast to the straightforward OCP formulation, the MDP can
leverage domain randomization to improve the robustness of the
algorithm [5]. In this scenario, the dynamics of the spacecraft will
be modified to include random processes and stochastic effects.
Additionally, uncertainty will be introduced in the initial state by
sampling it fromanormal distribution, just as in the final restriction of
Eq. (19). Moreover, it is crucial to note that operational constraints
will be translated through the definition of the reward function.
MDPs face challenges in handling constraints compared to OCPs.
In MDPs, constraints should be represented as significant positive or
negative rewards or as the conclusion of an episode.

1. State and Action Spaces

The agent’s neural networks use the state space as input to generate
the action (actor) or predict the state-value function (critic). In space-
craft RVD problems, it is advantageous to incorporate both the
absolute target and relative chaser states. The inclusion of the chaser’s
mass becomes necessary for optimizing fuel consumption in the
reward function. To learn to comply with time constraints, the
remaining flight time ΔTt � ToFmax − t is also taken into account.
Moreover, observations include the action and reward from the
previous time step, enabling LSTMs to update their dynamics [17].

Consequently, the state space S ∈ R18 encompasses

St � xTt ; δxt; mt;ΔTt; ut−1; Rt−1 (18)

For actual deployment, using a state space of this kind means
assuming, in particular, that the chaser knows its relative position
to the target and the target’s absolute position. This is a reasonable
assumption because the chaser would perform relative navigation
on-board while approaching the target and can obtain the target’s

absolute position through its absolute navigation or via an intersa-

tellite link.
Normalizing the inputs of neural networks is essential to bring all

input features to a comparable scale and improve numerical stability.

Therefore, a simple min–max normalization is applied. The state is

normalized to be within S�
t ∈ �−1;�1� using the following method:

S�t;i � 2
St;i − Smin;i

Smax;i − Smin;i

− 1 (19)

Once the problem is defined, the extremal components of St are

identified. The actor network generates a set of all possible actions

that the agent can perform in the environment, termed the action

space. In this specific study, which focuses on a 3DOF spacecraft

model, the action space is intended to depict thrust control. The

suitable representation for this research case [45] includes an action

space At ∈ R3 and its unscaled control action ut, defined as

At � � ~ux;t; ~uy;t; ~uz;t� ut � σ ~ut (20)

The control action ut serves as input to the spacecraft equations of

motion. To maintain adherence to the maximum thrust value, the

scaling coefficient is σ � umax∕k13k, because the output of the ANN
is limited to the range of �−1; 1�.

2. Reward Function

The reward signal’s purpose is to convey the desired outcome to the

agent, rather than specifying how it should be achieved. In scenarios

where rewards are inherently sparse, such as the one described, RL

tends to exhibit subpar performance. To improve them, it is recom-

mended to employ reward shaping techniques [46]. In such cases, one

can make use of nonlinear functions, such as logarithmic and expo-

nential functions, leveraging their characteristic of increasing the first

derivative near attractive or repulsive states. This contributes to a

smoother appearance of the reward landscape. Additionally, squaring

is used to enhance convergence performance [47]. The specific reward

function employed is described** subsequently:

Rt � α ln
kδxt ⊘ δxmaxk

k16k
2

− λ exp
arccos�ρ̂�t ⋅ t̂2�

π

2

− γ exp
ut
umax

2

� �ρt < ρf;max ∧ _ρt < _ρf;max ⇒�ζ

− �ρ�t ⋅ t̂2 − ρ�t cos�β� < 0 ⇒�κ (21)

The reward function consists of two main parts:
1) The dense rewards provide ongoing feedback within each episode,
featuring a primary bonus component for approaching the goal state
δx � 0, a penalty for the distance from the approach corridor as the
second component, and a penalty for the control effort as the third. All
inputs to these nonlinear functions are normalized to be within �0; 1�.
Particular attention has been paid during reward engineering to the
first logarithmic component. The incorporation of the Hadamard
operator, L2-norm, and division by k16k aims to generate a scalar
value that ensures equal importance for each state component and
offers no reward for the greatest distances and high velocities.
2) Episodic rewards deliver feedback at the conclusion of a task,
featuring a primary bonus component when the docking port require-
ments are satisfied and a secondary penalty component when a
collision with the approach corridor occurs. These components also
signal the completion of the episode to the environment.
The reward shaping logic, using logarithmic and exponential functions

(with numerical values provided solely for demonstration), is summa-

rized and illustrated in Fig. 6. Through an iterative process, the values

used in this work are determined to be α � 0:02, λ � 0:1, γ � 0:01,

**In the reward function, the right arrow (⇒) denotes implication. For
example, condition ⇒ rewardmeans “if condition is satisfied, then this is the
reward.”
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ζ � 100, and κ � 30. For future work, an extensive hyperparameter
search should be conducted, potentially using state-of-the-art methods
such as Bayesian optimization.

3. Environment’s Dynamics

In the realm of an RVD problem, given its continuous nature, it is
more appropriate to represent the transition function using a gener-
ative model, expressed as St�1 � ϕ�St;At�. This model facilitates
updates for both the absolute target and the relative chaser state by
integrating the CR3BP and the RCR3BP. The equations of motion,
denoted by f, undergo discretization into discrete steps through
integration, taking into account a constant control action. Addition-
ally, themodel includes updates for the residual flight time, as well as
the action and reward from the preceding time step. At the beginning
of each MDP episode, a random initial state S0 is selected. This
randomness specifically influences the initial conditions of the rela-
tive chaser dynamics δx0 � �ρ; _ρ� and its initial mass m0, derived
from three as broad normal distributions as possible. Standard devia-
tions are configured as follows: σρ0 � 0:1ρ0, σ _ρ0 � 0:5 m∕s, and
σm0

� 100 kg. Furthermore, the environment sends out a donewhen

the flight time exceeds its highest value (ToFmax). Process noise is
included in the chaser spacecraft dynamics to account for unmodeled
accelerations (e.g., SRP, the gravity of other celestial bodies, thrust
uncertainty, etc.). Hence, the equations of motion for the chaser,
taking into account h as the nonautonomous RCR3BP, can be
expressed as

δ _x�t� � h�δx�t�;u�t�; xT�t�� �w�t� w�t� ∼N �0; diag�03; 10−83 ��
(22)

N represents a Gaussian white noise, featuring a covariance that

matches the nondimensional magnitude (σ � 10−4) of typical
NRHO disturbances. The robustness of the algorithm is further
enhanced by taking into account and modeling the possibility of a
random failure in the control action.At the beginningof each episode,
the environment randomly selects a control direction in which to
reduce the magnitude of the thrust by 50% or have no failure. Each
scenario has an equal probability of 25%, as illustrated in Table 1.

C. Artificial Neural Networks Architecture and Hyperparameters

The architecture of themodel is inspiredbyStable-Baseline3
(SB3) Recurrent PPO, featuring layers of LSTM followed by
layers of MLP extractor, as shown in the Table 2. The use of a
combination of LSTM networks and MLP extractor layers is a
common approach in RL [48]. This is because LSTMs are particularly

adept at capturing sequential dependencies, but may not be able to
provide a suitable final representation. AnMLP-layer at the end can be
used to condense the variable-length sequence of LSTMoutputs into a
fixed-size representation, making it easier to make decisions or take
actions. This combination of sequencemodeling (handled by LSTMs)
and representation learning (handled by MLPs) allows the model to
effectively use sequential information in RL tasks. In this study, the
size of the neural network is determined through experimentation to
guarantee a high level of generalization and to accurately fit the optimal
solution. The hyperparameters used in this study are described in
Table 3. These selected hyperparameters closely align with the default
settings [9] and required only minor adjustments determined by trial
and error. It is crucial to note that gradient clipping is a significant
hyperparameter for LSTM networks, given their susceptibility to
catastrophic forgetting [49].

VI. Numerical Results

RL encompasses two primary phases: training and testing. In the
context of spacecraft G&C applications, ground-based high-fidelity
simulators should be used for training, with testing of the policy
occurring directly on-board during operations. The equations of
motion are solved in the MDP environment with the scipy.in-
tegrate library in Python, using the nonstiff Adam predictor-
corrector, called LSODA, method with relative and absolute toler-
ances of 2:22 ⋅ 10−14. The integration time step to convert continuous
dynamics to an MDP is set to dt � 0:5 s. The device used for this
work is a Laptop PC with an Intel(R) Core(TM) i7-8565U CPU
1.99 GHz and 16.0 GB of RAM.

A. Training

The algorithm is trained for 7 million time steps, which corre-
sponds to 40.5 days in the simulated environment. This training
duration spans 3.2 days in real time, and the resulting training curve,
which illustrates the mean discounted cumulative reward of trajec-
tory roll-outs in relation to the learning step, is shown in Fig. 7. A
standard PPO is also used to train a simple fully connected MLP-
agent, serving as a benchmark for the LSTM-agent in Meta-RL
performance. The MLP-agent in this comparison shares the same
environmental setup, network architecture (number of layers and
layer widths), and hyperparameters as the LSTM-agent. This ensures
a fair comparison. Having the same architecture also means that both
models have the same number of cells overall. AlthoughLSTMshave
more parameters due to their different internal cell architecture,
comparingmodelswith the same number of cells ismoremeaningful.

Fig. 6 Graphic illustration of the reward shaping employing logarith-
mic and exponential functions. The bonus and penalty axes represent
their input arguments.

Table 1 Multinomial discrete distribution
modeling a breakdown in 6DOF control

Failure type 0:5 ⋅ ux 0:5 ⋅ uy 0:5 ⋅ uz No failure

Probability 0.25 0.25 0.25 0.25

Table 2 Architecture of the artificial
neural network implemented in the actor
(A) and critic (C) networks of the agent

Layer Neurons (A/C) Activation Type

Hidden 1 256/256 Tanh LSTM
Hidden 2 256/256 Tanh LSTM
Hidden 3 64/64 Tanh MLP
Hidden 4 64/64 Tanh MLP

Table 3 Hyperparameters for actor’s
training using proximal policy optimization and

critic’s training through MSE algorithms

Actor PPO Critic MSE

Batch size 64 64
Number epochs 10 10
GAE lambda (λ) 1

Discount factor (γ) 0.99

Clip parameter (ε) 0.1

Learning rate (α) 0.00005 0.00005

Entropy coefficient 0.0001
Clip gradient 0.1 0.1
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The Meta-RL capability of LSTM-agents is attributed to the internal

structure of their cells (composed of gates, closed loops, etc.) rather

than the number of parameters alone.

Both learning curves exhibit a plateau, indicating the effectiveness

of the training. The LSTM-agent, which has six times the parameters

of theMLP-agent, clearly requires more training steps andwall-time.

However, it achieves higher cumulative rewards.Meta-RL employs a

recurrent agent, which allows the policy to adapt its actionswithin the

same episode based on the given inputs. Consequently, during train-

ing, an MLP-policy acquires a generally effective strategy, whereas

an LSTM-policy also learns to dynamically adjust itself to optimize

performance for each task in a specific way.

B. Testing

The trained LSTM-policy is evaluated in the environment taking

into account the same uncertainty regarding the initial conditions of

the MDP. The deployment results, depicted in Figs. 8 and 9, are

derived from a single episode.

Figure 8 shows that the chaser spacecraft, originating from a

random initial condition, effectively reaches the target (δxf �
�0:612 m; 0:085 m∕s�), fulfilling safety requirements. The confirma-

tion of adherence to the maximum flight-time constraint is visible in

Figs. 9a and 9b. Figure 9c specifically displays the mass profile over

time, and, according to Tsiolkovsky’s equation, aΔV � 13:113 m∕s
is required. Furthermore, Fig. 9d shows compliance with the restric-

tion on maximum control action. It is essential to emphasize that the

policy is adept at handling unforeseen thrust failures by learning to
use half of the maximum thrust.
A Monte Carlo analysis is performed on the trained LSTM-policy

and MLP-policy, generating 500 trajectories, each with a different
initial state due to the randomness of the MDP. This Monte Carlo
campaign aims to evaluate the robustness and computational effi-
ciency of Meta-RL as an autonomous G&C algorithm for on-board
deployment. A performance comparison with the nonrecurrent pol-
icy is also performed.Asummaryof the results is presented inTable 4,
whereas the trajectories are shown in Fig. 10. To evaluate the fuel
optimality of the Meta-RL approach in this study, a state-of-the-art
OCP direct pseudospectral method [50] is used as a reference. The
results of the Monte Carlo campaign with the OCP method, consid-
ering the same initial condition uncertainties as the MDP but not
accounting for process noise and actuator malfunctions, are pre-
sented in the same table. Additionally, during the Monte Carlo
campaign, the CPU time for each policy evaluation step is measured
and reported in the same table. For a more detailed discussion of the
computational efficiency results, including a plot and considerations
regarding computational efficiency when running the policy on a real
spacecraft on-board computer (OBC), please refer to Appendix VIII.
The LSTM-policy and the MLP-policy demonstrate success in all

situations, obtaining a Sr � 100%, where Sr is the proportion of
trajectories that meet all requirements. Despite the numerous uncer-
tainties and the potential for failure, the policies have effectively
guided the spacecraft to the intended final state with minimal
deviation in every case. However, the MLP-policy has much higher
fuel consumption, whereas the LSTM-policy is near-optimal. Recur-
rent layers generate an adaptive policy that can more effectively
optimize the trajectory of each episode. Therefore, the LSTM policy
showed robustness, achieving the highest possible success rate, near-
optimality, and computational efficiency (dtCPU � 2:33 ms, as illus-
trated more clearly in the figure in Appendix VIII) in Monte Carlo
simulations. This makes it well-suited for real-time on-board appli-
cations. RL methods are highly computationally efficient for on-line
operations because, after on-ground training, the on-board policy
evaluation requires only a fewmatrix multiplications, as the policy is
merely a function approximator.
The trained LSTM-policy is now subjected to an additional testing

phase, encompassing a set of 500 trajectories in an enhanced envi-
ronment similar to the one described. The enhanced environment
eliminates process noise and introduces into the chaser dynamics the
following elements: the Sun’s fourth-body gravitational effect, con-
sidering the bicircular restricted four-body problem [51], and the
solar radiation pressure (SRP), modeled with the cannonball method
[52]. The objective is to show that the deployed policy can withstand
unmodeled accelerations by introducing noise during training. The
results are in Fig. 11 and Table 5, which demonstrate that the LSTM-
policy is effective in handling unmodeled accelerations.

VII. Stability Analysis

A G&C algorithm should ensure the asymptotic stability, as per
Lyapunov’s definition [53], of the controlled system to achieve
mission success, avoiding any erratic behavior and guaranteeing
predictable vehicle performance, while also avoiding potential acci-
dents or deviations from the intended trajectory. In the literature, there
are a few analytical methods [41] that address the convergence of RL
algorithms with function approximators. RL methods involve opti-
mizing a criterion, inherently constraining states along the optimal
trajectory, and stabilizing the system. However, in this section,
Lyapunov’s direct method [34] is employed to highlight system
stability from the standpoint of nonlinear equations of motion. This
approach, based on Lyapunov’s second stability theorem [53], is
advantageous because it enables the assessment of the stability of
the controlled system without the need for linearization around an
equilibrium solution.
In this setting, the RCR3BP is assumed to be an autonomous

dynamical system. This assumption holds provided that the target’s
absolute state xT remains constant during the maneuver. This fea-
sibility arises from the chaser’s time of flight being considered

Fig. 7 Mean discounted cumulative rewards of the trajectory roll-outs
during the training phases.

Fig. 8 Trained LSTM-policy deployed in the environment and tested
for a single episode. Trajectory inside the approach corridor starting
from a randomized initial condition.
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a) Relative position in time b) Relative velocity in time

c) Total mass in time d) Control action in time

Fig. 9 Trained LSTM-policy deployed in the environment and tested for a single episode. Relative position, relative velocity, mass, and control action
along the trajectory of Fig. 8.

Table 4 Monte Carlo performance of the trained LSTM-policy and trained MLP-
policy tested in the environment, alongside the OCP pseudospectral solution

LSTM-policy: μ 	 3σ MLP-policy: μ 	 3σ OCP: μ 	 3σ

Success rate: Sr �%� 100 100

Final position ρf �m� 0:561 	 0:288 0:719 	 0:153

Final velocity _ρf �m∕s� 0:082 	 0:012 0:088 	 0:009

Fuel consumption ΔV �m∕s� 11:981 	 1:485 18:669 	 1:611 11:153 	 2:316

Time of flight ToF �s� 82:571 	 4:713 61:571 	 3:822 76:619 	 6:345

CPU-time step dtCPU �ms� 2:334 	 0:414

Fig. 10 Trained LSTM-policy deployed in the environment and tested
for a batch of episodes. Trajectories inside the approach corridor start
from a randomized initial condition.

Fig. 11 TrainedLSTM-policy deployed in an environmentwith unmod-
eled accelerations and tested for a batch of episodes. Trajectories inside
the approach corridor start from a randomized initial condition.
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negligible in comparison to the orbital target period. With these
assumptions, a positive-definite quadratic, energy-error-like, candi-

date Lyapunov function in R6 can be employed as follows:

V�δx� � δxTPδx (23)

The diagonal weight matrix considered is P � diag�0:56�, and the
equilibrium point is δx� � 0, representing the desired outcome of the
RVDmaneuver. This equilibrium point would result in h�δx�; u� � 0
in theRCR3BPequations.The stability assessment uses aMonteCarlo
technique by randomly selecting the chaser’s initial conditions, as
defined for the MDP. A set of 500 trajectories is simulated using the
trained LSTM-policy deployed in the environment. The numerical

values ofV�δx� and _V�δx� are determined along these trajectories. The
former is calculated using the formula inEq. (25),whereas the latter, its
time derivative, is obtained numerically using a simple forward Euler
finite difference method. The results are shown in Fig. 12, where the
L2-normof the relative statevector serves as the abscissa in eachgraph.
The developed LSTM-policy demonstrates asymptotic stability, as
indicated by the identification of a candidate Lyapunov function that
meets the criteria outlined in Lyapunov’s second stability theorem.

VIII. Conclusions

This work demonstrates the efficacy of Meta-RL in effectively
handling the formulated MDP. More specifically, it is applied to
address the final approach and docking scenario of a spacecraft
within a Southern L2 9:2 Resonant NRHO in the Earth–Moon
system. Despite a great deal of uncertainty in initial conditions,
process noise, and actuator malfunctions, all objectives have been
achieved. The learning curve shows that the LSTM-agent training
phase was successful, as it reached the expected plateau. During the
testing phase, the LSTM-agent is evaluated through a Monte Carlo
campaign. The results demonstrate that the trained policy consis-
tently meets all the requirements imposed on the entire set of gen-
erated trajectories. As a result, the Meta-RL algorithm has proven its
ability to effectively learn a G&C policy tailored for RVDmaneuvers
within the cislunar space. Furthermore, the reliability of the method
has been confirmed through Monte Carlo simulations conducted not

only in the training environment, but also in an enhanced setting that
incorporates unmodeled dynamics not present during the learn-
ing phase.
The computational efficiency for on-board execution of the

LSTM-policy has been demonstrated, its fuel optimality has been
verified through a comparison with a state-of-the-art OCP pseudo-
spectral direct solution, and the asymptotical stability of the con-
trolled system has been established from a nonlinear equations of
motion perspective. Consequently, it can be considered a promising
solution for autonomous G&C applications.
For the sake of comparison, a fullyMLP-agent has also been trained.

It successfully learns the proposedMDP, reaching the expected plateau
during training, and achieving the highest possible success rate in the
Monte Carlo testing campaign. However, the LSTM-policy outper-
forms theMLP-policy by acquiring greater cumulative rewards during
training and demonstrating significantly higher fuel efficiency during
testing.The internalmemoryof theLSTM-policy enables it to generate
an adaptive G&C policy better suited to the optimal solution of the
problem. This highlights the evident success of recurrent policies over
nonrecurrent ones when addressing tasks characterized by significant
parameter randomization.

Appendix : Computational Efficiency

During the Monte Carlo simulation illustrated in Fig. 10, the com-
putational efficiency of the policy was evaluated at each step and is
presented in Fig. A1. The policy evaluation had an average CPU time

Table 5 Monte Carlo performance of the
trained LSTM-policy tested with unmodeled

accelerations

Success rate: Sr � 100% Results MC: μ 	 3σ

Final position ρf �m� 0:497 	 0:252

Final velocity _ρf �m∕s� 0:094 	 0:003

Fuel consumption ΔV �m∕s� 12:263 	 1:572

Time of flight ToF �s� 81:713 	 2:865

a) Candidate Lyapunov function b) Candidate Lyapunov function time-derivative

Fig. 12 TrainedLSTM-policy deployed in the environment and tested for a batch of episodes. Candidate Lyapunov function and its time-derivative with
regard to the distance from the equilibrium point.

Fig. A1 Trained LSTM-policy deployed in the environment and tested
for a batch of episodes. CPU-Time for each policy evaluation step during
testing.
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per step of 2.334 ms. A very simplified formula for estimating CPU
time between two different machines is detailed by [54]: CPUtime �
CPI ⋅ I∕R � I∕FLOPScore, where CPI represents cycles per instruc-
tion, I is the total number of instructions, andR denotes the clock rate.
However, in real operations, CPU time is highly dependent on the
implementation of the flight software and the specific hardware char-
acteristics of the OBC. Nevertheless, this formula can provide a rough
estimate. In this paper, for the conversion, it is assumed that the number
of instructions remains constant between the two machines and that
single-thread usage is applied. The Intel(R) Core(TM) i7-8565U
processor used in this work achieves 3.26 GFLOPS per core. When
considering a clock rate of 250 MHz and a floating-point operations
per second (FLOPS)per core of 100MFLOPSon aLEON3FTSPARC
V8 [55] on-board spacecraft processor, this translates to 76.088 ms
(equivalent to 13.142 Hz). The method’s computational efficiency is
due to the fact that, once the agent has completed the learning phase on
a high-fidelity ground simulator, the on-board execution of the policy
for guidance and control during flight requires only a small number of
matrix multiplications.
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