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I. Introduction

C ONSTRAINTS in a spacecraft’s orientation often present chal-
lenges in space missions, as they make maneuvering a space-

craft a nontrivial problem. These hard orientation constraints can be
categorized in keep-out constraints and keep-in constraints. Keep-out
constraints describe the problem where a body-fixed direction in the
spacecraft must stay away from a certain inertial direction. This can
be the case for a sensitive instrument, such as a camera or a star
tracker, that must not point at a bright celestial object like the sun.
Often, such instruments have a certain field of view,whichmeans that
the keep-out zone consists of a cone in inertial space around the
direction of the bright celestial object. Keep-in constraints represent
the opposite problem, where the spacecraft is required to maneuver
while maintaining a certain body-fixed direction within a certain
angular distance from an inertial direction. This can be the case for
sun sensors, which must be able to see the sun within their field of
view at all times, or solar panels, for which the sunlight incidence
angle must remain within certain bounds to ensure continuous power
generation.
The solutions to the constrained attitudemaneuvering problem that

are found in literature can be broadly categorized into two groups:
potential-function-based and path-planning-based. Solutions that
rely on potential functions typically consist of an attractive potential,
which causes the output control law to steer the spacecraft toward the
desired attitude, and a repulsive potential, whose output control
component steers the spacecraft away from the keep-out zone or
the boundaries of the keep-in zone [1–4]. Such approaches are
straightforward to implement and computationally cheap, but they
can fail in the presence of complex geometries and/or overlapping
constraints: whenever the resulting potential has local minima other
than the desired target attitude, they can cause the spacecraft to
remain stuck in the wrong configuration. Path-planning-based
approaches, on the other hand, usually rely on some sort of discre-
tization of the attitude space to build a graph of constraint-compliant
nodes, which can be navigated from the initial to the target attitude

[5–7]. In these cases, graph-searching algorithms such as depth-first
[8], breadth-first [9], or A* [10] are applied to navigate such graphs.
In different approaches, the attitude space sampling is not determin-
istic, but rather stochastic: e.g., Probabilistic RoadMaps [11] sacrifice
the completeness of the attitude spacemapping in exchange for faster
execution times. These latter approaches do not suffer from the
problem of local minima. However, all they typically provide is a
sequence of constraint-compliant attitude waypoints, which means
that there is no further information about the attitude as a function of
time or the angular rates required along the maneuver. Some recent
contributions by Tan et al. [12] and Calaon and Schaub [13] provide
solutions based on attitude sampling, combined with some form of
interpolation to obtain a smooth reference trajectory from a sequence
of attitude waypoints. Other approaches, called metaheuristic, start
from a baseline solution, which is further improved upon exploring
the neighboring solution space. Differential evolution algorithms
or particle swarm optimization are examples of such approaches.
Their strength consists in the ability to refine the solution based
on an optimality condition, while at the same time enforcing the
constraints that such solutionmust not violate. Examples are found in
Refs. [14–18].
This work is based on the modified Rodrigues parameters (MRPs)

nonsingular attitude discretization presented in Ref. [13]. The focus
of this newer contribution is on the second part of the problem, which
is how to obtain a smooth reference trajectory from a sequence of
attitude waypoints. Calaon and Schaub [13] use nonuniform rational
basis spline (NURBS) curves to obtain a twice-differentiable refer-
ence trajectory that precisely interpolates all the baseline waypoints
in the path provided by the graph-search algorithm. While effective,
this approach displays some suboptimal behaviors that can be tied to
the nature of the interpolating function: as the grid density N is
increased to obtain a more accurate mapping of the obstacles, the
function presents some parasitic oscillatory behavior to meet the
requirement of interpolating every waypoint. These oscillations,
ultimately, cause the total control effort required by the trajectory
to be suboptimal, as mentioned in Ref. [13], and highlighted by
simulations in Ref. [19]. This Note proposes a different type of
NURBS curve that performs a least-squares (LS) fit of the waypoints
and the desired angular rates, in order to obtain a trajectory that still
meets the requirements, but is desensitized with respect to the grid
points and grid density. The goal is to achieve a smoother reference
trajectory that requires a smaller control effort to be tracked by
reducing the dependence on the chosen waypoints.
In this Note, the new LS approximating NURBS is derived math-

ematically. The two NURBS curves, the interpolating curve and the
LS approximating curve, are then compared to one another in three
different scenarios, to assess their performance with baseline A*
solutions. Finally, the effort-based A* incorporating the twoNURBS
curves is applied to the same three scenarios, in order to benchmark
the performance of the two versus different grid density levels.

II. Path Smoothing: LS Approximating NURBS

In path-planning applications a sequence of constraint-compliant
waypoints is often not enough to provide an accurate reference,
because it gives no insight on the required position, velocity, and
acceleration as a function of time. For this reason, path-planning
algorithms are often combined with some kind of smoothing tech-
niques [20].Moreover, Ref. [19] shows that a full reference trajectory
can be tracked accurately by a spacecraft equipped with a set of
reaction wheels, where the commanded torque obeys a Lyapunov-
based feedback control law. The same cannot be said when the
reference is only provided in terms of a series of attitude waypoints,
in which case the tracking error between the reference and the actual
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attitude becomes significant. On the other hand, Calaon et al. [19]
highlighted how the reference trajectory obtained from NURBS
interpolation of the waypoints can require a global control effort that
is suboptimal. This happens partially due to the constraint imposed
on the interpolating NURBS curve: being forced to meet all the
waypoints precisely, the interpolating curve presents wiggles
between the waypoints that cause parasitic torques to appear when
not needed. This phenomenon becomes more significant as the
density of the waypoints increases, as it was initially highlighted
in Ref. [13].
Thiswork is built on the same premises discussed in Secs. II and III

of Ref. [13]: the unit MRP sphere is sampled with uniformly spaced
points, each corresponding to an attitude with respect to the inertial
frame. Constraint-incompliant attitude waypoints are removed from
the grid, whereas the constraint-compliant attitude waypoints are
connected to one another based on proximity considerations in order
to build an undirected graph. Attention is paid to the fact that there is a
discontinuity between points at opposite ends of the unit sphere,
which describe the same attitude, but have a different MRP repre-
sentation. Restricting the domain to the unit sphere introduces a
discontinuity in the formulation, but removes the singularities and
the problem of attitude unwinding [21]. Sampling the attitude space
with a finer grid allows for a better representation of the obstacles, but
it also increases the dimension of the graph that is to be searched. The
assumption in thiswork is that themaneuver happens fast enough that
the obstacles can be considered fixed. For a more detailed analysis of
the attitude sampling and obstacle representation, the reader is
directed to Ref. [13].
This section develops a new type of LS approximating NURBS

curve, for which the condition of precise passage through the way-
points is not strictly enforced. The result is a curve that has the same
properties of the interpolating NURBS curve, but has a smoother
look, as it uses the waypoints as a baseline without being constrained
to pass through them precisely.
Moreover, Ref. [13] presents the requirement of obtaining a refer-

ence trajectory where the angular rate norm kωk remains constant
during the slewmaneuver, in order to ensure that none of the limits on
the individual angular rate components are violated [22]. This section
aims to explore how to use the LS approximating NURBS not only to
match the waypoints, but also to match a desired angular rate profile
during the maneuver. Achieving the required angular rate norm
profile by means of the NURBS curve only, instead of performing
additional numerical manipulation as in Ref. [13], removes a step in
the effort-based A* algorithm, ultimately improving its computa-
tional speed.

A. Properties of NURBS Curves

A NURBS curve is a parametric, piecewise-polynomial function
that is characterized by a high level of smoothness. The piecewise-
polynomial nature makes NURBS curves a good choice to fit large
sets of data, because they do not suffer from Runge’s phenomenon,
which arises when trying to fit such large sets of data with a single,
high-order polynomial [23,24]. The degree of a NURBS curve is
chosen by the user, and it does not depend on the number of data that
needs to be fitted.Moreover, aNURBS curve of degreep is Cp−1 in its
entire domain; i.e., it is continuous and differentiablep − 1 times. For
the present application, the desire is to obtain a NURBS curve that is

at least C3, such that both the first- and second-order derivatives are
continuous and differentiable. This leads to a choice of a polynomial
order p � 4. The general expression of a NURBS curve is

σ�u� �
n

i�0

Ni;p�u�Pi (1)

where u ∈ �0; 1� is the dimensionless time parameter of the curve, Pi

are the n� 1 control points, and Ni;p�u� are the basis functions of
polynomial order p that are linearly combined to obtain the final
piecewise-polynomial expression of σ�u�. To define the basis func-
tion, it is necessary, first of all, to define a knot vector U containing
the m� 1 scalar terms:

U � 0; : : : ; 0

p�1

; up�1; : : : ; um−p−1; 1; : : : ; 1

p�1

(2)

Thep� 1 knots equal to 0 and 1 at the beginning and end of the knot
vector are required to ensure that the curve passes exactly through the
control points P0 and Pn. The intermediate knots correspond to the
value of the parameter u, from now on defined as the dimensionless
time, at which two different polynomial segments of the curve are
joined. The basis functions are defined using the De Boor recursive
formula [25]:

Ni;0�u� �
1 if ui ≤ u < ui�1

0 otherwise

Ni;p�u� �
u − ui

ui�p − ui
Ni;p−1�u� �

ui�p�1 − u

ui�p�1 − ui�1

Ni�1;p−1�u� (3)

The derivative of a NURBS curve is obtained as

σ 0�u� �
n

i�0

N 0
i;p�u�Pi (4)

where σ 0�u� � �dσ∕du� denotes the derivative with respect to the
dimensionless time u. The derivatives of the basis functions Ni;p�u�
are computed using the formula [23]

N 0
i;p�u� �

p

ui�p − ui
Ni;p−1�u�−

p

ui�p�1 − ui�1

Ni�1;p−1�u� (5)

B. Improved Time Spacing

To build a NURBS curve, whether it is an interpolating curve or an
LS approximating curve, it is necessary to define the time tags �uk for
k � 0; : : : ; q, which correspond to the values of the dimensionless
time u for which the curve passes through the k-th waypoint, with
q� 1 being the total number of waypoints. This is strictly true for an
interpolating NURBS curve, where σ� �uk� � σk, whereas for the LS
approximating curve, this does not happen in general. In a generic
application, Piegl and Tiller [23] suggest to compute the �uk’s propor-
tionally to a valid distance metric between two consecutive way-
points, defined in the space where such waypoints exist. In this Note,
such metric is defined as

θ̂�σ1; σ2� � minfθ�σ1; σ2�; θ�σ1; σS2�g

θ�σ1; σ2� � 4 arctan
�1 − jσ2j2�σ1 − �1 − jσ1j2�σ2 � 2σ1 × σ2

1� jσ1j2jσ2j2 � 2σ1 ⋅ σ2
(6)

which, effectively, consists in the principal rotation angle of a rotation
from σ1 to σ2, assuming that the shortest rotation is always performed
[26]. This distance metric is defined in order to account for the non-
linear relation between principal rotation angle and distance between
attitude points in MRP space. Alternatively, this nonlinearity could be
mitigated using higher-order, more-linear Rodrigues parameters
[27,28]. Such representation, however, would present multiple singu-
larities and introduce additional layers of complexities to the problem.
A better sampling of the �uk’s time tags can be obtained when the

desired properties of the NURBS curve are incorporated into the
appropriate formulation. In this implementation, one of the goals is to
obtain a reference trajectory with a constant angular rate norm. With
respect to the final trajectory, the total angular distance swept by the
spacecraft in its rotational motion is given by

S�t� �
t

0

kωk dτ (7)

A second-order Taylor series expansion of S�t� can be performed
around the generic time instant tk, giving
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Sk�1 � Sk � _Sk�tk�1 − tk� �
1

2
�Sk�tk�1 − tk�2

_Sk�1 � _Sk � �Sk�tk�1 − tk�
(8)

where Sk � S�tk�. Eliminating �Sk from Eq. (8) yields the expression

Sk�1 − Sk �
_Sk�1 � _Sk

2
�tk�1 − tk� (9)

According to the fundamental theorem of calculus, it is _Sk �
kω�tk�k � ωk. The difference Sk�1 − Sk can be approximated,

assuming that the waypoints σk and σk�1 are close enough together,

with Sk�1 − Sk ≈ θ̂�σk; σk�1�. This gives the improved algorithm to

calculate the time spacing between the waypoints:

tk�1 � tk � k
θ̂�σk; σk�1�
ωk � ωk�1

(10)

with k � 2. The constant k � 2 is a direct consequence of assuming

that S�t� is a second-order polynomial, as Eq. (8) implicitly states;

i.e., the angular rate norm kωk is a piecewise-linear function. This

approximation holds quite well for the intervals between internal

waypoints, where the angular rate norm nominally does not vary.

However, when the NURBS curve is required to quickly ramp up and

down from/to zero at the endpoints, a better result is obtained

assuming a polynomial of higher-order p for S�t� in the first and last
interval. With zero endpoint angular rates, this gives k � p∕�p − 1�.
Using a fourth-order NURBS for σ�t� suggests the choice for fourth-
order polynomial for the endpoint time intervals, which gives

k � 4∕3. With zero endpoint rates, and constant central angular rate

norm kωk � ω�, the improved algorithm to calculate the time spac-

ing between the waypoints is

t0 � 0

t1 � t0�
4

3

θ̂�σ0;σ1�
ω�

tk�1 � tk�
θ̂�σk;σk�1�

ω� for k� 2;: : : ;q−2

tq� tq−1�
4

3

θ̂�σq−1;σq�
ω� (11)

The dimensionless time tags �uk’s can be obtaining normalizing the

tk’s by tq, i.e., the time tag corresponding to the final waypoint:

�uk �
tk
tq

(12)

The linear relation between dimensional time t and dimensionless

time u allows to define a mapping between the derivatives of σ with

respect to one or the other:

dσ
du

� dt

du
⋅
dσ
dt

� tq
dσ
dt

d2σ

du2
� d2t

du2
⋅
dσ
dt

� dt

du

2

⋅
d2σ

dt2
� t2q

d2σ

dt2

(13)

C. LS Waypoint Approximation

This subsection outlines the procedure to obtain an LS approxi-

mating NURBS curve from a set of q� 1 attitude waypoints. As

previously mentioned, the idea that motivated the use of an LS fit of

the waypoints, instead of a precise interpolation, is to reduce the

dependence from the waypoints. The waypoints provide guidance in

the attitude space to avoid the keep-out zones, but other than that, they

are artificial constructs and, therefore, there is no real need to track

them precisely.

The approach followed in this subsection only interpolates the first
and last attitude waypoints σ0 and σq, since the initial and final
attitudes are two known pieces of information that the reference
trajectory must match exactly. Moreover, it is also desired to obtain
a reference trajectory that matches the required angular rates at the
beginning and at the end of the maneuver. This translates into
endpoint constraints also on the derivatives _σ0 and _σq, which are

computed from the angular rates ω0 and ωq according to the MRP

kinematic equation:

_σ � 1

4
�B�σ��ω (14)

As opposed to the interpolatingNURBS, in the LS approximation the
number of control points Pi for i � 0; : : : ; n can arbitrarily be
chosen by the user.
The first two control points, P0 and P1, and the last two, Pn−1 and

Pn, are determined imposing the endpoint coordinates and deriva-
tives mentioned above. This gives the linear, 4 × 4 system:

N0;p�0� 0 0 0

N 0
0;p�0� N 0

1;p�0� 0 0

0 0 N 0
n−1;p�1� N 0

n;p�1�
0 0 0 Nn;p�1�

P0

P1

Pn−1

Pn

�

σ0

σ 0
0

σ 0
q

σq

(15)

Note that it is possible to define also the endpoint accelerations of the
NURBS curve, by adding two additional control points. In such case,
Eq. (15) becomes a 6 × 6 linear system. This approach often proves
not beneficial, because in order to match the multiple endpoint
constraints, the resulting NURBS often presents significant oscilla-
tions. The remainingPi for i � 2; : : : ; n − 2 are determined using an
LS approach. Before getting into the actual LS fit, the following
quantities are defined:

ρk � σk−N0;p� �uk�P0−N1;p� �uk�P1−Nn−1;p� �uk�Pn−1−Nn;p� �uk�Pn

for k� 1;: : : ;q−1 (16)

The ρk terms are used to remove the dependence of the waypoints
from the four control points that have already been precomputed.
Defining with σk the waypoints to be fitted and with σ� �uk� the output
of the NURBS curve according to Eq. (1), it is possible to set up an
error function that is the sum of the quadratic errors and only depends
on the remaining Pi for i � 2; : : : ; n − 2:

f �
q−1

k�1

kσk − σ� �uk�k2 �
q−1

k�1

ρk −
n−2

i�2

Ni;p� �uk�Pi

2

(17)

To minimize f, its derivative with respect to the control points is
equated to zero: �df∕dPl� � 0 for l � 2; : : : ; n − 2. This gives

n−2

i�2

q−1

k�1

Nl;p� �uk�Ni;p� �uk� Pi �
q−1

k�1

Nl;p� �uk�ρk

for l � 2; : : : ; n − 2 (18)

For more details on this derivation the reader is referred to Ref. [23].
Defining �N� the �q − 1� × �n − 3� matrix of scalars,

�N� �
N2;p� �u1� : : : Nn−2;p� �u1�

..

. . .
. ..

.

N2;p� �uq−1� : : : Nn−2;p� �uq−1�
(19)

it is possible to rewrite Eq. (18) in the matrix form:
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��N�T �N��P � �N�Tρ with P �
P2

..

.

Pn−2

and

ρ �
ρ1

..

.

ρq−1

(20)

Equation (20) represents three underdetermined systems, because the

control points Pi and the terms ρk are three-dimensional. The system

can be solved choosing theminimumnorm solution, which yields the

vector P for which the NURBS curve gives the LS approximation of

the q − 1 intermediate waypoints:

P � ��N�T �W ��N��−1 �W ��N�Tρ (21)

where �W � is a square, diagonal, positive semidefinite matrix of size

�q − 1� containing theweights associated with each waypoint. If �W �
is the identity, all the waypoints are weighed equally. Equation (21)

only works if the matrix ��N�T �W��N�� is full rank. It is important to

note that the elements that compose the matrix �N� are strongly

dependent from the knot vectorU defined in Eq. (2). DeBoor showed

that when every knot span in U contains at least one �uk, the matrix

��N�T �W��N�� is positive definite and well-defined [29]. The follow-

ing algorithm for choosing the internal knots ensures that this is true

[23]:

d � q� 1

n − p� 1
i � int�jd� α � jd − i

up�j � �1 − α� �ui−1 � α �ui for j � 1; : : : ; n − p (22)

In this Note, the algorithm presented in Eq. (22) is slightly modi-

fied such that if up�1 < �u1, then up�1 is set equal to �u1, and if

un > �uq−1, then un is set equal to �uq−1, to ensure that the first and

last polynomial arcs cover at least the distance between the first

two and last two waypoints, respectively. This has been observed

to stabilize the NURBS function in those intervals, and avoiding

overshoots.
Figure 1 shows the performance of the LS approximating NURBS

for a set of constraint-compliant MRP waypoints, where an angular

rate norm of ω� � 0.03 rad∕s is required. The left plot shows differ-
ent LS solutions obtained for varying numbers of control points n, for
eachMRP component σj. It can be observed that for a smaller number

of control points the approximation fits the waypoints more loosely.

Conversely, as the number of control points is increased, the approxi-

mation fits the waypoints almost perfectly. The right-hand-side plot

shows the angular rate norm associated with the LS approximating

solutions, also displayed for different numbers of control points. It is

observed that, while the angular rate norm is on average close to the

desired value, it still oscillates noticeably. This is not surprising,

because the required angular rate norm is not accounted for in this

LS approximation.

D. LS Waypoint and Angular Rates Approximation

This subsection elaborates on the results of the previous one,

enhancing the LS approximatingNURBS curve tomatch the require-

ment on the angular rate norm. Because Eq. (20) is an underdeter-

mined system, it is possible to compute aminimumnorm, LS solution

that incorporates in its error function not only the error with respect to

the waypoints, but also to the desired angular velocities at such

waypoints. The requirement for the reference trajectory is to have a

constant angular rate norm kωk � ω�. While this requirement can-

not be enforced at the trajectory endpoints, it can be enforced in the

intermediate waypoints.
Ideally, one should set up an error function for theMRP derivatives

like

g �
q−1

k�1

�kσ 0
kk2 − kσ 0� �uk�k2�2

�
q−1

k�1

kσ 0
kk2 −

3

j�1

n−2

i�2

N 0
i;p� �uk�Pi;j

2 2

(23)

However, solving for the control points Pi that minimize the error

function in Eq. (23) is nontrivial, because, due to the quadratic

dependence of the terms in square brackets from the Pi, computing

the solution would require nonlinear programming. A nonlinear

program could be set up and solved. However, the LS fitting NURBS

is supposed to run fast, because it is performed at every step of the

effort-based A* algorithm [13], so, ideally, the solution sought

should not feature iterative methods that could significantly affect

the computational time. Instead, an estimate of the desired MRP

derivatives σ 0
k is provided as follows. As a first step, such derivatives

are computed using central finite differences:

σ̂ 0
k �

�uk�1 − �uk
�uk�1 − �uk−1

⋅
σk − σk−1
�uk − �uk−1

� �uk − �uk−1
�uk�1 − �uk−1

⋅
σk�1 − σk
�uk�1 − �uk

for k � 1; : : : ; q − 1 (24)

From Eq. (14) it is possible to derive the following relation between

the angular rate norm and the MRP derivative norm:

k _σk � 1� σ2

4
kωk (25)

Knowing the desired angular rate norm ω�, it is possible to scale the
estimated MRP derivatives obtained via finite differences, to make

them correspond to an angular rate vectorwith the desiredmagnitude:

σ 0
k �

σ̂ 0
k

kσ̂ 0
kk

⋅
1� kσkk2

4
ω� ⋅ tq for k � 1; : : : ; q − 1 (26)

Fig. 1 LS approximating NURBS, attitude-based, for varying numbers of control points n.
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Having estimated the desired MRP rates, it is possible to proceed

setting up an LS problem that is analogous to that introduced in the

previous subsection. Let us define

ρ 0k � σ 0
k−N 0

0;p� �uk�P0−N 0
1;p� �uk�P1−N 0

n−1;p� �uk�Pn−1−N 0
n;p� �uk�Pn

for k� 1;: : : ;q−1 (27)

where the four control points are computed with the same procedure

outlined in the previous subsection. It is possible to set up an error

function that incorporates the squared errors with respect to theMRP

waypoints and associated MRP rates:

f�
q−1

k�1

�kσk−σ� �uk�k2�kσ 0
k−σ� �uk�0k2�

�
q−1

k�1

ρk−
n−2

i�2

Ni;p� �uk�Pi

2

� ρ 0
k−

n−2

i�2

N 0
i;p� �uk�Pi

2

(28)

Applying the same procedure to minimize f with respect to Pi gives

the same minimum norm solution as in Eq. (21), only in this case the

matrices that appear in the equation take the form:

�N� �

N2;p� �u1� : : : Nn−2;p� �u1�
..
. . .

. ..
.

N2;p� �uq−1� : : : Nn−2;p� �uq−1�
N 0

2;p� �u1� : : : N 0
n−2;p� �u1�

..

. . .
. ..

.

N 0
2;p� �uq−1� : : : N 0

n−2;p� �uq−1�

;

P �
P2

..

.

Pn−2

; ρ �

ρ1

..

.

ρq−1

ρ 0
1

..

.

ρ 0
q−1

(29)

with �N� being a �2q − 2� × �n − 3� matrix and ρ being a �2q − 2�
vector, whileP remains an �n − 3� vector. Theweight matrix �W� has
size �2q − 2� × �2q − 2� and it can be used to give more weight,

within the LS approximation, to the MRP waypoints or the MRP

derivatives. It should be noted that, according to this formulation, the

angular rateω is a function of both σ and _σ: thismeans that if the error

on σ is large, the desiredω� will not be achieved even if the error on _σ
is small. For this reason, it is conceptually wrong to attribute a higher

weight to the MRP derivative elements than the MRP waypoints,
since it is the latter that need to be approximated well enough for the
rest of the approximation to hold.
Figure 2 shows the LS solutions, for varying numbers of control

points, obtained using the formulation that accounts for waypoints
and angular rates, with equal weight. In the left-hand-side plot, the
approximation yields curves that approximate the waypoints less
tightly, compared to Fig. 1, but still recover the distribution of the
waypoints faithfully. The reduced accuracy in tracking thewaypoints
is due to the fact that the minimum norm solution is trying, in this
case, to optimize not only the waypoints, but also the angular rates.
More interestingly, it can be observed from the right-hand-side plot
that the angular rate norm, in this case, is much closer to the desired
target ω� � 0.03 rad∕s, and the approximation is better for a higher
number of control points.
The LS approach allows to also model the accelerations at each

intermediate waypoint and add them to the error function analo-
gously. However, in such case the resulting function attempts at
satisfying three different requirements, on attitude, angular rates,
and accelerations, therefore losing tracking accuracy on all three. If
the desire is to reduce the angular accelerations, especially in the on-
ramping and off-ramping phases, the best choice is to reduce the
nominal angular rate ω�, which ultimately results in a longer total
maneuver time.

III. Performance Study of NURBS Interpolation Versus
LS Approximation

Once the mathematical formulation for the LS approximating
NURBS has been laid out, the next step is to compare its performance
to the interpolating NURBS. The motivation for using the LS
approximating NURBS is to relax the dependence of the trajectory
from the waypoints, which serve as a guidance for the trajectory but
are, ultimately, an “artificial” constraint. Removing the constraint of
precisely hitting the waypoints would allow the trajectory to have a
smoother profile, which would ultimately lead to a smaller control
effort. In fact, the interpolating NURBS causes the trajectory to
wiggle more between the waypoints, which causes some “parasitic”
torques to appear and ultimately increase the required control effort.
This section compares the performances of the twoNURBS curves in
three different scenarios with different sets of constraints. Moreover,
the comparison is performed, for each scenario, for a varying level of
grid density N. For the LS approximating NURBS, n� 1 control
points are used, where n � q� 2, i.e., one control point per way-
point plus two control points for the endpoint derivatives constraints.
This is the same number of control points required by the interpolat-
ing NURBS. The trajectories are based, for each scenario, on the
sequence of waypoints obtained applying a basic implementation of
the A* algorithm, using the metric presented in Eq. (6) as the
algorithm’s cost function: such trajectories are, therefore, not
effort-optimal, but this is not relevant for the comparisons that this
sections aims to make. Lastly, the computational cost of the two
NURBS is also compared.
The following inertia tensor is used for the spacecraft, which is

modeled after a three-unit CubeSat:

Fig. 2 LS approximating NURBS, attitude- and angular rate-based, for varying numbers of control points n.
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B�I� �
6.67 0 0

0 41.87 0

0 0 41.87

⋅ 10−3 kg ⋅m2 (30)

The control effort is estimated, like in Ref. [13], as the integral over
the trajectory of the norm of the instantaneous control torque:

U �
T

0

kLk dt with L � B�I�B _ωBN � BωBN × B�I�BωBN

(31)

The control effort in Eq. (31) relies on the assumption that the whole

spacecraft can be treated as a rigid body. This is an approximation,
because the reaction wheels that actuate the spacecraft contribute to

the inertia and angular momentum of the system, and introduce
gyroscopic effects that also contribute to the control effort. A more
refined, although more computationally demanding, path-planning

algorithms is presented in Ref. [30], where the dynamics of the
reaction wheels is factored into the cost function. All the scenarios
presented in this section feature rest-to-rest maneuvers with a target

angular rate norm ω� � 0.03 rad∕s.

A. Scenario 1: Eigenaxis Rotation

The first scenario is very simple, as it features an eigenaxis rotation

about the b̂3 axis. Only one sensitive instrument with a field of view

of 20 deg is oriented along the b̂1 axis, and one keep-out zone is

present along the inertial direction N ŝ � �−1; 0; 0�. The initial and
final attitudes are, respectively, σ0 � �0; 0; 0.1� and σq � �0; 0;
−0.75�. Figure 3 shows the trajectory of the sensitive boresight in

inertial space, projected onto a 2D plane. All the trajectories obtained
for different grid densitiesN overlap along the same projection on the
2D plot. More interesting are the results shown in Fig. 4, which also
shows that the trajectories match. This happens because of the simple
nature of the eigenaxis rotation, for which all the guidancewaypoints
lie along the σ3 axis. For all values of N the angular rate norm is
approximated verywell, as it stays very close to the target value. It can
be noticed that the on-ramping at the beginning of the maneuver is
milder than the off-ramping. This can happen due to two main
reasons: the first is that the sampling is uniform in MRP space, but
not in attitude space, due to the nonlinearity in theMRP formulation.
As a result, neighboring points farther away from the origin describe
tighter maneuvers in terms of principal rotation angle. As a result, the
NURBS curve at the end of the maneuver has less time to off-ramp
from the average angular rateω�. The second reason is that initial and
final attitude points do not, in general, belong to the uniformly spaced
grid, and could therefore be located closer or farther to the next node
than the average node distance. This can further emphasize the first
phenomenon, if this happens when one of the endpoints is far away
from the origin. As a result of these combined effects, the fast off-
ramping can cause oscillations in the curve near the point where the
velocity starts to decrease. Figure 5 shows the comparison between
the two types of NURBS: as far as control effort, the LS approximat-
ing curve performs better across all grid densities, yielding in some
cases a significant reduction. The computational cost of the LS
approximating curve is, on the other hand, higher. Despite that, it
scales comparably to the interpolating curve as the grid density (and
therefore the number of waypoints q) increases.

B. Scenario 2: Multiple Keep-Out Zones

The second scenario is based off of the previous one, with the
addition of two more keep-out zones along the inertial directions
N ŝ2 � �0;−0.981;−0.196� and N ŝ3 � �0.958; 0; 0.287�. Figure 6
shows the trajectories of the sensitive instrument in inertial space,
as it steers away from the keep-out zones. In this case, different
trajectories are obtained for different grid densities N: this happens
because, for differentN, the attitude space is sampled with different
nodes, and therefore the baseline path computed by A* consists of
different waypoints for each case. Regardless, the different trajec-
tories remain fairly close to one another, although for high grid
densities some brief constraint violations occur. Figure 7 shows
that, even in this case, the angular rate is approximated quite well,
although the plateau around ω� � 0.03 rad∕s is not as flat as for
the previous scenario. This happens because, for scenario 1, all the
baseline waypoints are aligned along a straight line, for which the
approximations made in Eqs. (11) and (26) are muchmore accurate.
It can also be observed that, for higher N, the angular rate norm is
less oscillatory, thanks to a higher number of waypoints that provide
more guidance for the output trajectory. Lastly, Fig. 8 compares the
performances of the two NURBS curves. In this scenario, theFig. 3 Boresight plot: scenario 1.

Fig. 4 Attitude σ and angular rate kωk for varying grid densitiesN: scenario 1.
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interpolating NURBS is associated with a control effort that is

almost twice as high as the LS approximating NURBS. Moreover,

the control effort for the first one has increased significantly with

respect to scenario 1, whereas for the second, the control effort

remains closer to the values computed for the first scenario. For the

computational cost, the same considerations can be made: the LS

approximating NURBS is consistently more costly, but comparable

to the interpolating NURBS, and they display a similar trend with

increasing levels of grid density.

C. Scenario 3: Mixed Keep-In and Keep-Out Zones

The third scenario is the most articulated, as it features multiple

instruments. There is still a sensitive camera aligned along the b̂1
axis, and two sun sensors, along the b̂2 and b̂3 axes, respectively, each
with a field of view of 70 deg. The only celestial object is the sun,

located along the N ŝ3 � �1; 0; 0� inertial direction. The constraints
for this problem consist of maneuvering such that the sun remains
out of the field of view of the camera, but within the field of view
of at least one of the sun sensors. The initial and final attitudes
are, respectively, σ0 � �0;−0.25;−0.25� and σq � �0.4; 0.4; 0.3�.
Figure 9 shows the trajectories of the three boresights in inertial
space: all three are compliant, in all their parts, for all grid densities
N. The sun sensors switch, since at the initial attitude only sun sensor
1 sees the sun, while sun sensor 2 sees the sun once the final pose is
reached. Similar considerations apply for Fig. 10 as to the previous
scenario: the target angular rate norm is approximated fairly well, and
the more so when the grid density is higher. Relative to Fig. 11, the
control effort displays an irregular behavior for both NURBS as N
varies, but again the LS approximation outperforms the interpolation
for each grid density. Regarding computational time, the same con-
siderations apply as in the previous two scenarios.

IV. Performance Study of Effort-Based Graph
Search Algorithm

This last section shows the results computed using the effort-based
A* graph-search algorithm, outlined in Ref. [13]. As this version of
the A* algorithm searches the graph, it uses intermediate paths

Fig. 5 Control effort and computational time of interpolating NURBS vs LS approximating NURBS, for varying grid densities N: scenario 1.

Fig. 6 Boresights plot: scenario 2.

Fig. 7 Attitude σ and angular rate kωk for varying grid densitiesN: scenario 2.
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consisting of the previously explored nodes �σ0; : : : ; σn−1�, the
current open node �σn�, and the goal node �σq� as a baseline for an
intermediate trajectory computed via NURBS curves. The control
effort integral in Eq. (31), evaluated along these intermediate trajec-
tories, is used as the priority function p�n� to explore the graph, with
the objective of finding the sequence of waypoints that yields the
optimal trajectory in terms of required control effort. Such priority
function is the sum of two terms, the cost to current node g�n� and the
heuristic h�n�. The cost to current node is associated to the control

effort required to track the trajectory from the starting node σ0 to the
current open node σn; the heuristic is an estimate of the cost required
to track the trajectory from the current open node to the goal node σq.
This heuristic is computed assuming that the goal node can be
reached from the open node n through a straight path in MRP space,
without obstacles. This is to ensure that the heuristic is optimistic
[10]; i.e., the cost of the final path to goal is higher or equal to the
priority function p�n�. This gives

p�n� � g�n� � h�n� �
tn

0

kLk dt�
tq

tn

kLk dt �
tq

0

kLk dt

(32)

The effort-based A* is run for the three scenarios presented in the
previous sections, for both the interpolating NURBS and the LS
approximating NURBS.
Figure 12 shows that the control effort of the effort-optimal sol-

utions, for both types ofNURBS,matches the results shown in Fig. 5.
This is expected, because for the eigenaxis rotation in scenario 1 the
control strategy defaults to a bang-bang type with an effortless coast-
ing arc in the middle. Any other trajectory that deviates from that
would likely be more costly in terms of control effort, due to the
insurgence of gyroscopic terms and torque components along the
other two axes.
Figures 13 and 14 show that the effort-based solutions, for both

NURBS curves, provide better trajectory in terms of control effort
than those in the previous section, as expected. While the results
improve for both types of NURBS, the LS approximating curve

Fig. 8 Control effort and computational time of interpolating NURBS vs LS approximating NURBS, for varying grid densities N: scenario 2.

Fig. 9 Boresights plot: scenario 3.

Fig. 10 Attitude σ and angular rate kωk for varying grid densitiesN: scenario 3.
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consistently outperforms the interpolating curve, always yielding

less costly solutions.

The effort-based A* algorithm, whose performance is described in

Figs. 12–14, is implemented in Python and run on a MacBook Pro

with an M1 Pro chip. These plots show how computationally

demanding the effort-based algorithm is, where for high grid den-

sities it can take up to 15–20 min to compute the optimal solution.

However, the code used in this work is not implemented to optimize

for runtime. Future work will address the improvement of runtime an

memory utilization to assess the suitability for onboard utilization.

Fig. 11 Control effort and computational time of interpolating NURBS vs LS approximating NURBS, for varying grid densities N: scenario 3.

Fig. 12 Control effort and computational time of effort-based A*, NURBS comparison: scenario 1.

Fig. 13 Control effort and computational time of effort-based A*, NURBS comparison: scenario 2.
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Interestingly, Figs. 13 and 14 show that the computational times for
the two different NURBS are comparable. This is not intuitive if
looking at the results shown in Figs. 4, 7, and 10, where, when the
path is precomputed by a metric-based version of A*, the LS
approximating NURBS seems to consistently require a larger com-
putational time than the interpolating NURBS. The reason why the
effort-based A*with LS approximation is not consistently more time
consuming is that, in the effort-based implementation, the priority
function p�n� outputs a smaller, more “optimistic” estimate of the
total path cost. This allows the effort-based A* algorithm combined
with theLS approach to converge to the final solutionmore efficiently
[10], i.e., exploring a smaller number of nodes.
This benchmark analysis also showed, as it was expected, that

increasing the grid density N yields longer computational times for
the effort-based A*. However, in the range 10 ≤ N ≤ 15, such
increase is still quite acceptable. The grid density N is, in this
problem, a tradeoff parameter: increasing N gives a better represen-
tation of the attitude space and reduces the chances of violating the
constraints. On the other hand, the computational time increases
significantly, and the computed trajectories, even the effort-optimal
ones, aremore costly in terms of control torque. It is important to state
that these considerations are case specific. In a different scenario,
with the same grid density, but where the obstacles occupy a very
large portion of the attitude space, convergence is accelerated by the
reduced number of compliant sampled waypoints. Ultimately, the
appropriate grid size can be further characterized by exploring node
density in correlation with the size of the constraint-incompliant
attitude space.

V. Conclusions

This Note proposes a new solution to the constrained attitude
maneuvering problem using a newly designed type of NURBS curve.
The new curve matches the endpoint constraints of initial and final
attitude and angular rates, while it usesMRP guidancewaypoints as a
baseline. The difference between the trajectory and the waypoints,
and the velocity along the trajectory and the desired angular rates are
minimized via an LS minimization technique. This contribution
shows how the LS approximating NURBS consistently outperforms
the interpolating NURBS in terms of required control torque, for all
sequences of constraint-compliant waypoints used as baselines. The
LS approximating NURBS, in a standalone run, requires a larger
computational time, due to the larger number of calculations it needs
to perform to invert larger matrices. However, within the effort-
optimal A* graph-search algorithm, which runs multiple NURBS
calculations sequentially, the two NURBS approaches are compa-
rable in terms of computational time. Lastly, this Note shows how the
grid densityN affects the computational time of the algorithm and the
ultimate path cost associated with the computed trajectories.
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