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Onboard density models are a key aspect of closed-loop guidance systems for hypersonic flight. Traditional

approaches model density as a deterministic function of altitude, but a recent drive toward stochastic guidance

approaches motivates onboard uncertainty propagation. Existing solutions for efficient uncertainty propagation

generally treat density as an exponential function of altitude, but this approach is limited in its ability to capture

relevant dispersions. This work models density as a Gaussian random field that is approximated by a Karhunen–

Loève expansion, enabling a relatively high-fidelity, finite-dimensional parametric representation. Alternative

models are also developed using a variational autoencoder architecture, resulting in greater dimensionality

reduction at the expense of analytical description. Normalization schemes are presented and compared by their

efficiency in capturing density variability in a limited number of terms, and normalization by reference dynamic

pressure is shown to be the most compact approach. The model alternatives are compared both by their

approximations of density itself and by their predictions of peak heat flux for dispersed direct-entry and

aerocapture trajectories. An extension of this approach for modeling density as a function of multiple independent

variables is also presented and demonstrated. Finally, it is shown that the Karhunen–Loève density model can be

sequentially updated according to noisy density observations by formulating the problem as a Kalmanmeasurement

function.

I. Introduction

T HE density of the atmosphere is a contributing source of uncer-
tainty and day-of-flight dispersions for hypersonic flight

vehicles. Furthermore, the behavior of planetary atmospheres is
complex and difficult to predict. Appropriate modeling of density
is thus key to the analysis of hypersonic trajectories, including in the
context of onboard modeling for closed-loop guidance schemes.
Autonomous guidance algorithms typically treat density as a known
function of altitude, either in analytical form as an exponential
function of altitude or by interpolating from a table [1]. In-flight
estimates of the current density are available by measuring sensed
acceleration, and these observations are then incorporated by multi-
plying the nominal profile by the ratio of observed density to
expected density [2,3]. Recent work contributes more sophisticated
methods of incorporating in-flight observations, such as machine
learning or an ensemble correlation filter [4–6].While these methods
do incorporate in-flight measurements to update a priori knowledge
of atmospheric density, they still ultimately represent density deter-
ministically. That is, density at any given altitude is modeled as a
single value as opposed to a probability distribution reflecting a range
of possible values.
Recent works propose stochastic approaches to closed-loop guid-

ance with the aim of being robust to uncertainties without taking an
overly conservative approach [7,8], and central to these methods is an
onboard prediction of state and environmental uncertainty. Several

non–Monte Carlo uncertainty quantification (UQ) techniques, includ-
ing polynomial chaos expansion and linear covariance analysis [9–11],
potentially enable onboard uncertainty propagation for hypersonic
flight vehicles.However, thesemethods generally require a parametric,
low-dimensional representation of uncertainty [12,13]. Recent studies
have explicitly incorporated a probabilistic atmospheremodel intoUQ
approaches [14–16]; however, these approaches typically assume an
exponential form for density and incorporate uncertainty by dispersing
the atmospheric scale height and surface density, a method that always
results in an exponential profile. The assumption of exponential den-
sity significantly limits the ability of the model to capture more
complex behavior due to its inability to capture short-period perturba-
tions or other deviations of the density profile from the idealized
exponential shape [17]. Semi-empirical models such as the Global
Reference AtmosphericModels (GRAMs) fromNASA providemuch
higher fidelity representations of the atmosphere and its response to
external factors, such as solar weather [18], but lack a convenient low-
dimensional and parametric form. Estimating uncertainty using these
models typically requires generating a large number of density profiles
and then computing statistics of the generated dataset, rather than
estimating variability directly. Thus, GRAMs and similar models are
not feasible for onboard uncertainty propagation purposes.
This motivates the development of a reduced-dimensionality

model that retains the higher-fidelity properties of models like
GRAM and a method for in-flight updates to this model. Previous
work treats density as a Gaussian random field (GRF) with altitude as
the sole independent variable and demonstrates a Karhunen–Loève
expansion (KLE) for density [17]. Ridderhof et al. [10] show that
linear covariance analysis incorporating this model closely matches
Monte Carlo results. This study expands on these results in several
ways. Practical implementation of the KLE is explored in greater
detail, examining alternative methods of constructing the expansion.
The KLE models are also compared against variational autoencoder
(VAE) models, which use deep neural networks to achieve nonlinear
dimensionality reduction as compared to the linear dimensionality
reduction attained by KLE models and which enable representing
non-Gaussian random processes. AVAE is a generativemodel in that
it learns and generates samples from the joint probability density
function of the data. While a VAE is not necessarily appropriate for
incorporation into linear covariance analysis, alternative nonlinear
methods of uncertainty propagation, such as polynomial chaos
expansion, could potentially take advantage of the compact model
provided by a VAE. The efficiency of each approach in capturing
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density variability is compared both directly and through the statistics
of dispersed trajectories generated in Monte Carlo analyses using
each model. Note that the implementation of a forward UQ model
appropriate for onboard use is beyond the scope of this paper; rather,
the focus is on formulating statistically compatible models of density,
andMonteCarlo analysis is used only as a tool formodel comparison.
The aim of this work is not to claim that either the KLE or VAE
modeling approach is better for this application; rather, this study
provides a proof of concept for each model type and discusses the
benefits and drawbacks of each. For an onboard implementation, the
choice of density uncertainty model would strongly depend on both
the forward uncertainty propagation methodology and the availabil-
ity of computational resources. New work outlining and demonstrat-
ing an expansion on the KLE model to treat density as a function of
multiple variables (e.g., altitude, latitude, and longitude) is presented,
and its comparative utility is discussed. Finally, an approach to
updating the KLE based on sequential noisy density measurements
is presented and demonstrated, and the potential for onboard execu-
tion of this method is discussed.

II. Preliminaries

A. Review of Karhunen–Loève Expansion

A random field is a function that maps a random outcome to a
continuous function across a (possibly multidimensional) domain in
space. Somewhat more formally: for some measurable space �Ω;F�
of sample space Ω and σ-field F of subsets of Ω, a random field

fΦ�z�∶z ∈ Z ⊆ Rdg is a collection of random variables with values
that map Ω ↦ R [19]. A GRF Ψ�z� is a random field for which any
finite linear combination of the random variables comprising it
results in a Gaussian random variable; that is, at any point zi in the
domain Z the probability density function of the value of the field
Ψ�zi� is Gaussian [20]. A GRF is fully characterized by its mean
function μ and covariance function Σ,

μ�z� � hΨ�z�i (1)

Σ�z1; z2� � h�Ψ�z1� − hΨ�z1�i��Ψ�z2� − hΨ�z2�i�i (2)

where hi is the expectation operator.
A Karhunen–Loève (also known as Kosambi–Karhunen–Loève)

expansion represents a random field through an infinite linear com-
bination of orthogonal basis functions (a Fourier expansion) in such a
way that, when truncated to a fixed number of terms, the choice of the
basis functions minimizes the mean-square error [21,22]. This def-
inition is shown by Eq. (3), where Φ is the random field, z is the
independent variable, and λi and ϕi�z� are the eigenvalues and
eigenfunctions of the covariance function of the random field
Σ�z1; z2�, respectively. The definitions of the eigenvalues λi, eigen-
functions ϕi�z�, and random variables Yi for a sample space Ω �
�0; T� are given by Eqs. (4) and (5):

Φ�z� � hΦ�z�i �
∞

i�1

λi ϕi�z�Yi (3)

T

0

Σ�z1; z2�ϕi�z2� dz2 � λiϕi�z1� (4)

Yi �
1

λi
p T

0

Φ�z�ϕi�z� dz (5)

In practice, the eigenvalues and eigenfunctions are sorted by the
descending magnitude of the eigenvalues, and then the sum in
Eq. (3) is truncated after some dK number of sufficient terms.
Determining the required dK is problem-dependent, but in general
it is chosen such that the mean-square norm of the approximation is
within some relative error of the exact mean-square norm. Equa-
tion (6) gives one heuristic method, where k is some sufficiently large
number and α is close to 1 based on the desired level of permissible
error (for a relative mean-square norm error of �1 − α� × 100%).

dK � min j∶
j
i�1 λi
j�k
i�1 λi

≥ α (6)

In the casewhereΦ�z� is aGRFΨ�z�, theYi’s are all independent and
identically distributed (i.i.d.) standard normal random variables:

Y1; Y2; : : : ∼N �0; 1� i:i:d: (7)

Often, the probability density function of a random field is not
known exactly, but some sufficiently large dataset is available.

For N observation vectors x�z� � x ∈ Rk defined on some fixed
set z � �z1; z2; : : : ; zk� and the sample mean vector �x, the sample
covariance matrix is computed as

Q � 1

1 − N

N

i�1

�xi − �x��xi − �x�T (8)

whereQ ∈ Rk×k gives an unbiased estimate of the covariance matrix.
Having computed a covariance matrix, it is straightforward to find the
eigenvalues and eigenvectors of that matrix and sort them according to
the descending order of the eigenvalues, and the results are the fλig and
fϕig inEq. (3), respectively,where eachϕi is nowavector rather than a

function. The discrete KLE form of a GRFΨ ∈ Rk defined on the set
z � �z1; z2; : : : ; zk� is thus summarized below:

Ψ ≈ hΨi �
dK

i�1

λi ϕiYi

Yi; : : : ; Yd ∼N �0; 1� i:i:d: (9)

B. Review of Variational Autoencoder

An autoencoder is a type of latent variable model that provides a
method of nonlinear dimensionality reduction, consisting of an
encoder and a decoder connected sequentially. The encoder takes the
input data and, through one ormore neural network layers, converts the
data into a lower-dimensional encoding vector—i.e., a set of latent
variables—representing some learned features of the data. The
decoder, through a symmetric set of neural network layers, then
attempts to reconstruct the original input from the latent variables.
By forcing the input data through a bottleneck, the autoencoder learns a
latent space that can be used for a compressed representation of the
data. The use of deep neural networks for the encoder and decoder
enables the autoencoder to take advantage of nonlinear relationships in
the input data. In fact, it can be shown that a linear autoencoder (one
that lacks nonlinear activation functions in the neural networks) will
learn the same latent space as a KLE applied to discrete data, com-
monly known as principal component analysis [23].
While autoencoders are useful in applications such as denoising

and anomaly detection, they are limited in their utility as generative
models. Because the latent space constructed by an autoencoder is
not necessarily smooth or continuous, interpolation or randomly
sampling from the latent space with the goal of generating new
synthetic data can produce unrealistic results. AVAE addresses this
limitation by describing the encoder, decoder, and the latent variables
in terms of probability distributions rather than individual determin-
istic entities [24]. More specifically, a type of distribution is assumed
a priori, and then, given an input vector that is not necessarily
Gaussian, the encoder outputs encoding vectors for the parameters
describing that distribution; often, a Gaussian distribution is
assumed, and the encoder thus outputs the mean vector and covari-
ance matrix. During the reconstruction process, latent variables are
drawn as samples from these (potentially correlated) probability
distributions before being passed through the decoder.
This probabilistic description encourages local smoothness in the

latent space, but without additional constraints, the distributions can
become narrow and sparse, resulting in overfitting. To compensate,
VAEs incorporate Kullback–Leibler (KL) divergence as a regulari-
zation term. KL divergence is a measure of the difference between

138 ALBERT, DOOSTAN, AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

M
ar

ch
 1

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
83

9 



two probability distributions [25]. By penalizing divergence between
the learned latent variable distributions and a target distribution (often
the standard normal), the encodings are attracted toward the center of
the latent space, and sufficient variance is encouraged. In summary, a
VAE is a probabilistic method of nonlinear dimensionality reduction
that is a popular choice for generative modeling.
A brief mathematical description of the VAE is given here, closely

following [26]. A properly trained VAE obtains a reduced-order
model of the data x by introducing latent variables z drawn from a
prior distribution p�z�. This parameterizes a probabilistic decoder
pθ�xjz� with parameters θ and the joint pdf pθ�x; z�. The posterior
distribution to be estimated is then given by Bayes’ rule as

pθ�zjx� �
p�z�pθ�xjz�
pθ�x; z� dz

(10)

Computing themarginal distributionpθ�zjx�would require evaluation
over all combinations of the latent variables and is thus generally
intractable. Instead, variational inference is used to approximate the
posterior pθ�zjx�with a new pdf, qϕ�zjx�, which is parameterized by

ϕ. The log-likelihood of x is then given as

log�pθ�x�� � KL�qϕ�zjx�jjpθ�zjx��� � Eqϕ log
pθ�x; z�
qϕ�zjx�

ELBO

(11)

where KL�⋅k⋅� is KL divergence and Eqϕ is the expectation over

qϕ�zjx�. The goal is to find the parameters ϕ that minimize the first

term of Eq. (11), theKLdivergence between the true posteriorpθ�zjx�
and variational posterior qϕ�zjx�, but this again is intractable to

compute due topθ�zjx�. The second term of Eq. (11) is a lower bound
of the log-likelihood because KL divergence is guaranteed to be non-
negative, and it is thus called the evidence lower-bound (ELBO).
Variational inference maximizes ELBO instead of the log-likelihood
because it is tractable.
The objective function for the VAE is therefore defined to be the

ELBO and can be further decomposed as follows:

ELBO�ϕ; θ� � Eqϕ log
pθ�x; z�
qϕ�zjx�

(12)

�−βKLKL�qϕ�zjx�kp�z��
regularization term

�Eqϕ log�pθ�xjz��
reconstructionterm

(13)

The first term is the KL divergence between the prior p�z� and the
variational posterior qϕ�zjx�; this acts as a regularization term. The

second term is the conditional log-likelihood of x that is averaged
over the variational posterior z ∼ qϕ, and this acts as the negative of
reconstruction error. The first term is premultiplied by βKL, a tuning
parameter that allows the user to adjust the relative weighting of
regularization and reconstruction. See [27,28] for further details on
VAE derivation, including the reparameterization trick required to
estimate the stochastic gradient ∇ϕELBO for optimization.

III. Methodology

A. Simulation Description

This section briefly describes the methodology for trajectory
simulation used in this study and summarizes relevant vehicle param-
eters. Trajectories are simulated by numerically propagating the three
degree-of-freedom equations of motion for atmospheric flight about
a rotating ellipsoidal planet via explicit Runge-Kutta integration of
order 4(5). Density is modeled using MarsGRAM 2010 [18], inter-
polating from a resulting table of density versus altitude unless stated
otherwise. Mars is assumed to have a gravitational parameter μ �
4.305 × 104 km3 s−2, equatorial radius R � 3397.2 km, oblateness
spherical harmonic coefficient J2 � 0.001964, and a planetary rota-
tion period ofωp � 1.02595675 days [29]. Mach number is defined

as the ratio of vehicle speed to the speed of sound M � v∕a, where

sound speed a for the Martian atmosphere is interpolated from a
nominal tabular model [30]. Heat flux is modeled by computing
convective heat flux _q at the stagnation point assuming a fully
catalytic surface using the Sutton–Graves expression shown in

Eq. (14), where ρ is density and a value of the heating coefficient k �
1.904 × 10−4 kg0.5m−1 is used based on nominal atmospheric com-
position at Mars [31]. Dynamic pressure q is defined by Eq. (15).

_q � k
ρ

Rn

v3 (14)

q � 1

2
ρv2 (15)

There are two types of trajectories used as representative examples in
this study, described below and summarized in Table 1. The first is a
steep direct entry trajectory atMars for the Small High Impact Energy
Landing Device, or SHIELD, a small, mostly passive probe under
development at NASA JPL intended for low-cost access to the
Martian surface [32]. Once reaching subsonic conditions, SHIELD
deploys a drag skirt, then jettisons the heatshield shortly thereafter.
The drag coefficient CD during each configuration varies with the
Mach number and is linearly interpolated from tabular data provided
by the JPL SHIELD team. The ballistic coefficient β � m∕�CDA�
describes the ratio of inertial forces to aerodynamic forces,wherem is
vehicle mass and A is reference area; the ballistic coefficient for

SHIELD ranges from about 20 kgm−2 shortly after entry to around

5 kgm−2 near the surface after drag skirt deployment and heatshield
jettison. SHIELDhas a lift-to-drag ratio ofL∕D � 0, and an assumed
nose radius ofRn � 0.85m. The trajectory considered in this study is
defined by an initial state with a velocity of 6 km/s and a flight-path
angle of−18° at an altitude of 125 km, entering due-east at 0° latitude
and 0° longitude, where flight-path angle is defined as the angle
between the air-relative velocity of the vehicle and the local horizon-
tal. The reference SHIELDdirect-entry trajectory is shown in Fig. 1a.
The other trajectory considered here is aerocapture at Mars by a

vehicle similar to the Mars Science Laboratory (MSL) aeroshell. A
ballistic coefficient of β � 130 kgm−2 and lift-to-drag ratio of
L∕D � 0.24 are assumed [33], and the vehicle flies full-lift-up for
the duration of the trajectory. The entry is again due-east at 0° latitude
and longitude, in this case with an initial velocity of 5.8 km/s and a
flight-path angle of −11°. A nose radius of Rn � 1 m is assumed,
which conveniently normalizes the value of _q for rescaling to other
vehicles. The reference aerocapture trajectory is shown in Fig. 1b.

B. VAE Architecture and Training

This section summarizes the architecture of the deep neural net-
works used to construct the VAE models in this work and describes
the approach taken to training. It is not a claim of this work that this
particular architecture or training methodology is optimally suited to
representing atmospheric density; rather, confronted with a large
number of tunable parameters, this is an approach that was found
toworkwell over the course of trial-and-error experimentation, and it
is detailed here for reproducibility.
The encoder is built from a six-layer deep neural network with the

following numbers of nodes: 256, 256, 128, 128, 64, and 64; the
decoder is also six layers such that the order of dimensions is reversed,
going from 64 to 256. The latent space is limited to only dV � 4
dimensions; this is the dimensionality that directly corresponds to the

Table 1 Reference trajectory parameters

Parameter SHIELD Aerocapture

β, kg∕m2 5–20 130

L∕D 0 0.24

Rn, m 0.85 1

v0, km/s 6 5.8

γ0, deg −18 −11

ALBERT, DOOSTAN, AND SCHAUB 139
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number of terms in the KLE models. All neural networks in this work
use theGaussian error linear unit (GELU)nonlinear activation function
[34] and are implemented using the open-source tool PyTorch [26,35].
The models are trained with a batch size of 1024 for 100,000

epochs, long enough that the loss curve was observed to plateau. A
weighting parameter of βKL � 0.15 is selected, and the loss function
is normalized by the batch size. The learning rate is initially set to

1 × 10−3, and a learning rate scheduler is implemented to reduce the
learning rate after a period of time once the loss is observed to plateau.
Specifically, the learning rate is reduced by a factor of 0.9 if no
improvements are observed after 500 consecutive epochs, with a

threshold for improvement of 1 × 10−5. Moreover, a cool-down
period of 2500 epochs is required to pass before resuming normal
operations after each time the learning rate is reduced.§ The VAE
models are trained on the sameMars-GRAM2010 density data as the
KLE models; the input data are scaled using multiple approaches.

IV. Columnar Atmosphere Model Comparison

In this section, atmospheric density is approximated as a random
field as a function of only altitude. In reality, atmospheres vary across
3D position and time and are affected by external factors such as space
weather. However, for applications like entry and aerocapture, which
traverse tens of vertical kilometers within the atmosphere, the domi-
nant factor in density change is altitude. Thus, a columnar atmosphere
model is assumed in this section, such that ρ�h;ϕ; θ; t� ≈ ρ�h�, where
ρ is density, h altitude, ϕ latitude, θ longitude, and t elapsed time. See
Sec. V for a discussion of density variationwith latitude and longitude.
While a random field is a theoretically appropriate choice for

modeling density [17,36,37], it is an infinite-dimensional object. In
contrast, the non–Monte Carlo methods for onboard uncertainty
propagation discussed earlier require a parametric, finite-dimensional
representation of density variability [12,13]. Thus, some form of
dimensionality reduction is required to go from either raw data or a
more complex model to a parametric, low-dimensional model appro-
priate for onboard use. In this section, KLE and VAE approaches are
both applied to construct density models, and the results are compared
for accuracy in their generative modeling as well as, crucially, their
accuracy in predicting quantities of interest such as peak heat flux.
The Mars-GRAM 2010 density data used in this study exhibits

approximately Gaussian probability with correlation structure across
a spatial domain; see Ref. [17] for detailed justification of this
assumption. Thus, a KLE can be constructed under the assumption
that density is a GRF, then truncated after an appropriate number of
terms. The sample covariance matrix is formed from any sufficiently

large dataset of density values versus altitude; typically, it is conven-
ient to use simulated data from a relevant model such as a GRAM.
Note that, to avoid a nonzero probability of producing a negative
value, the density random field should in fact be treated as a truncated
Gaussian. It is worth emphasizing that this Gaussian assumptionmay
or may not hold for other sources of input data. It is therefore
important to reevaluate the Gaussian assumption before applying
the KLE to other data sources; the VAE, on the other hand, does not
assume Gaussian probability, which is one of its advantages over
the KLE.
Figure 2 shows the result of constructing a KLE from a dataset of

5000 density profiles output by MarsGRAM, denoted KLE-ρ for
shorthand. For the sake of later comparison, a fixed number of dK �
15 terms are used for this and all subsequent KLE models in this
section, unless noted otherwise. In some cases, 15 terms is not
enough for the KLE to achieve good convergence, but the number
of terms is nonetheless kept low in order to make visual comparison
easier. The horizontal axis of this plot shows normalized density
perturbation δρ, as defined in Eq. (16), rather than density itself
because this captures variability better even as the value of density
changes by orders of magnitude across this altitude range:

δρ � ρ∕�ρ − 1 (16)

The thick dashed lines show the�3σ bounds, where σ is the standard
deviation. In the case of MarsGRAM, these bounds are computed

a) SHIELD direct-entry b) Aerocapture
Fig. 1 Dynamic pressure and velocity magnitude vs altitude for reference trajectories. Note identical y axis scaling, different x axis scaling.

Fig. 2 Performance of model trained on density values with dK � 15
dimensions.

§ReduceLROnPlateau via PyTorch, https://pytorch.org/docs/stable/generated/
torch.optim.lr_scheduler.ReduceLROnPlateau.html.
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directly from the sample profiles; for the KLE, 5000 separate real-
izations are generated and evaluated, and then the standard deviation
is computed from this generated dataset. In addition, three sample
profiles from each model are shown in the thin solid lines. Sub-
sequent plots of this type, sometimes called “tornado plots” after their
characteristic shape, should be similarly interpreted.
Notably, the KLE 3σ bounds only align with the MarsGRAM

bounds up to about 35 km, badly underestimating variability at higher
altitudes. This occurs because the value of density is much greater at

low altitudes: forMars, about 1 × 10−2 kg∕m3 at the surface, order of

1 × 10−5 kg∕m3 at 50 km, and order of 1 × 10−10–1 × 10−9 kg∕m3

at the atmospheric interface altitude of 125 km. The KLE is truncated
based on eigenvalue magnitude, and the variability at low altitudes
where density is high is prioritized as a result, even though as a

percentage of nominal density varies more at high altitudes. For this
reason, a KLE based on density values is an inefficient way to capture
normalized density perturbations at high altitudes. A VAE model
trained directly on density data suffers evenmore from essentially the
same issues; because of thewidely varyingmagnitudes of the training
data, the VAE fails to meaningfully learn density behavior at all
except for at very low altitudes.
This shortcoming can be addressed by constructing the models

differently. While columnar density remains the quantity of interest,
the data can be preprocessed for model construction in a variety of
ways, with a converse postprocessing step recovering density values.
For example, a model can be constructed from normalized density
perturbation values in the following way. First, compute δρ values
corresponding to each value in the dataset. In the case of a VAE, then
train the model on this δρ data directly. In the case of a KLE, form a
mean vector and covariance matrix for these δρ data and construct a
KLE using these summary statistics. Finally, treat the outputs of this
model as δρ values and rearrange Eq. (16) to recover density values.
The results of constructing KLE and VAE models in this way are
shown in Fig. 3, denoted KLE-δρ and VAE-δρ, respectively.
Figure 3 shows a clear improvement in terms of capturing overall

density variability, and the sample profiles now look similar to the
GRAM output. However, both models significantly underestimate
variability below 50 km in altitude. The specific case of the KLE-δρ
model, shown in Fig. 3a, does an especially poor job at capturing
variability at low altitudes and also moderately underestimates vari-
ability at altitudes above 50 km. These models in some ways suffer
from the opposite problem as the KLE-ρmodel: because normalized
density perturbations are smaller near the surface, this region is
poorly captured, whereas the model performs relatively well at high
altitudes. That said, the KLE/VAE-δρ models are more compact,
meaning that for a given dimensionality they each give a better
approximation of density variability with altitude than an equivalent

model trained directly on density values. Recall that in this study the

KLE dimensionality is deliberately held low in order to easily com-

pare compactness; this is the cause of the KLE approximation error

above 50 km, which steadily improves with additional terms.
However, it is important to keep the application of interest inmind.

The goal of these approximations is not to model the atmosphere as

well as possible; the real goal is to provide a compact atmosphere

model that results in accurate trajectory predictions when compared

to trajectories predicted usingMarsGRAM directly. Recall that aero-

dynamic force scales with dynamic pressure q. As seen in Fig. 1a, for
a planetary entry trajectory dynamic pressure peaks at mid to low

altitudes, with the particular altitude depending on the vehicle and

trajectory. Above this altitude, density is too low for significant

dynamic pressure, and below this altitude, the vehicle has slowed

down to the point that dynamic pressure greatly reduces. A similar

phenomenon occurs in reverse for launch vehicles. Therefore, it

would be of interest for the model to prioritize density variation

where it matters most for a given trajectory of interest; that is, where

dynamic pressure is highest.
To that end, a scaling vector kq is constructed based on dynamic

pressure along the reference SHIELD entry trajectory, with a value

corresponding to each altitude step in the discretization of the original

density data. In order for the resulting training data to have consistent

magnitudes, the actual dynamic pressure in pascals is divided by 100,

and the vector is further modified to have a minimum of 1:

kq � max�q∕100; 1� (17)

The training data are then generated by elementwise multiplying the

vector of δρ values by the scaling vectorkq, and the output of themodel

is then correspondingly divided by kq before converting the normal-

ized perturbations back to density values. In effect, this informs the

reduced-dimensionality model which altitudes are most important to

capture.
Figure 4 shows results for KLE and VAE models built from

normalized density perturbations that have been scaled based on

reference dynamic pressure, denoted KLE-q and VAE-q, respec-
tively. As seen in Fig. 4a, the 3σ bounds computed by this KLE-q
closely match GRAM from about 60 km down to about 20 km,

corresponding closely to the dynamicpressure pulse shown inFig. 1a.

Given the fixed number of terms in the expansion, this comes at the

expense of accuracy outside of that altitude range, where this expan-

sion underestimates variability. The corresponding VAE-q model,

shown in Fig. 4b, exhibits similar results except that, for altitudes

outside of the prioritized range, themodel overestimates variability in

some altitude regions and underestimates it in others.

a) KLE with = 15 dimensions b) VAE with = 4 dimensions
Fig. 3 Performance of models trained on normalized density perturbations.
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In order to take a closer look at model performance at a specific

altitude of interest, Fig. 5 shows histograms of the normalized density

perturbation value predicted at 40 km altitude by the KLE/VAE-q
models compared with the value given by GRAM. There are two key

takeaways from this visualization. First, theKLE-q andVAE-qbothdo
excellent jobs of recreating the empirical distribution of the training

data. Second, the training data are, by inspection, well-approximated

by a Gaussian distribution at this altitude. The highly Gaussian nature

of the training data explains why the KLE, which assumes an under-

lying GRF, does just as well as the VAE at this altitude.

As previously mentioned, the true quality test for these density

models is how well they predict dispersed trajectories compared to

GRAM. To that end, a 1000-trial Monte Carlo analysis is performed

for each of these models and for GRAM, where the only dispersed

parameter in each analysis is density. A violin plot¶ comparing the

statistics of peak heat flux for each case is shown in Fig. 6, alongwith

a) KLE with = 15 dimensions b) VAE with = 4 dimensions
Fig. 5 Histograms of density at 40 km altitude, generated by models trained on normalized density perturbations scaled by SHIELD dynamic pressure
profile.

a) KLE with = 15 dimensions b) VAE with = 4 dimensions
Fig. 4 Performance of models trained on normalized density perturbations scaled by SHIELD dynamic pressure profile.

Fig. 6 Peak heat flux statistics for SHIELD trajectories.

¶seaborn.violinplot description, https://seaborn.pydata.org/tutorial/
categorical.html#violinplots.

142 ALBERT, DOOSTAN, AND SCHAUB

D
ow

nl
oa

de
d 

by
 U

ni
v 

of
 C

ol
or

ad
o 

L
ib

ra
ri

es
 -

 B
ou

ld
er

 o
n 

M
ar

ch
 1

, 2
02

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.A

35
83

9 

https://seaborn.pydata.org/tutorial/categorical.html#violinplots
https://seaborn.pydata.org/tutorial/categorical.html#violinplots


the mean and standard deviation values in Table 2. Violin plots are
similar to box-and-whisker plots; here, the white dots denote the
median, the black box is the interquartile range, the white tails
extend a further 1.5× the interquartile range from the upper/lower
quartile, and, finally, the shaded region represents a kernel density
estimate of the sample distribution. The KLE-ρ, KLE-δρ, and VAE-
δρmodels underestimate variability to varying degrees. The KLE-q
and VAE-q models have comparably good results, and both match
well with the statistics predicted by GRAM directly. These results
demonstrate that scaling normalized density perturbations based on
reference dynamic pressure is the most compact of the modeling
approaches considered here. For both theKLE andVAEmodels, the
best approach to input data scaling depends on the intended use of
the resulting model.
A similar scaling approach can be applied based on the reference

aerocapture trajectory. This process is slightly more involved because,
during aerocapture, the vehicle passes through each relevant altitude
twice, with differing dynamic pressures, and has a minimum altitude
well above the surface, as seen in Fig. 1b. Recall, however, that the
reference dynamic pressure is simply useful for rescaling and does not
need to be dynamically valid. Thus, the following approach is taken in
this study to form the referencedynamic pressure.Above theminimum
altitude of the reference trajectory, the dynamic pressure during the
descending portion of the trajectory is used for scaling. For another
10 km below the minimum altitude, a constant value equal to the
dynamic pressure at the minimum altitude is used; this segment exists
because some dispersed trajectories will fly below the minimum
altitude of the reference. Finally, a small but nonzero value (0.01 in
this case) is used for scaling at more than 10 km below the minimum
altitude of the reference trajectory. These values for q are then further
modified according to Eq. (17) to obtain the kq scaling vector for

aerocapture. The density profiles predicted by the resultingmodels are
summarized in Fig. 7, and the corresponding peak heat flux results for
Monte Carlo analyses of the aerocapture trajectory are shown in Fig. 8,
along with tabulated statistics in Table 3.

Overall, these results are similar to the corresponding results for
SHIELD direct entry in that the models capture density variation
most efficiently near the altitude of peak dynamic pressure, and the

KLE/VAE-q models perform best when predicting peak heat flux
statistics. The altitude range where the models accurately match the
GRAM 3σ bounds is shifted up by about 10 km compared to the
SHIELD case due to peak dynamic pressure occurring at a higher

altitude for the aerocapture trajectory.
These results demonstrate that themodels scaled based on reference

dynamic pressure are the most compact representations of the pos-
sibilities considered here, asmeasured by the ability to predict statistics
of peakheat flux.A relatively small number of terms (dK � 15) is used
for each KLE in order to highlight these differences and illustrate that

Table 2 Peak heat flux statistics
for SHIELD trajectories,W∕cm2

Model Mean 3σ

GRAM 44.7 2.31
KLE-ρ 44.3 0.84

KLE-δρ 44.3 0.38

KLE-q 44.4 2.25

VAE-δρ 44.4 1.47

VAE-q 44.8 2.73

a) KLE with = 15 dimensions b) VAE with = 4 dimensions
Fig. 7 Performance of models trained on normalized density perturbations scaled by aerocapture dynamic pressure profile.

Fig. 8 Peak heat flux statistics for aerocapture trajectories.

Table 3 Peak heat flux statistics
for aerocapture trajectories,W∕cm2

Model Mean 3σ

GRAM 54.7 2.69
KLE-ρ 54.3 1.43

KLE-δρ 54.3 0.28

KLE-q 54.5 2.70

VAE-δρ 54.4 1.45

VAE-q 54.6 2.86
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some approaches are more compact than others. However, note that
any of the KLEmodels should perform well if the number of included
terms is sufficiently high, because the KLE representation of a GRF is
exact for an infinite number of terms. Note that the patterns that have
been discussed here are somewhat tied to the choice of random
variable; because peak heat flux occurs at mid-altitudes near peak
dynamic pressure, the KLE/VAE-q models will be particularly effi-
cient in capturing those statistics. The most compact modeling
approach and the minimum dimensionality thus somewhat depend
on the particular quantities of interest.
Having showngoodperformance by both theKLEandVAEmodels

of uncertainty in a columnar atmosphere, a direct comparison of the
two modeling approaches merits discussion. The VAE-q models
achieve slightly better performance than the KLE-q models, despite
each VAEmodel having only four dimensions compared to 15 dimen-
sions for each KLE model. The nonlinear generative modeling of the
VAE appears to, in this case, enable a more compact model than the
linear KLE modeling, despite the approximately Gaussian nature of
the training data. However, the setup process for the VAE modeling
approach is significantly more involved. Obtaining good VAE results
depends on careful tuning of neural network training parameters,
which in general is only possible through trial and error, whereas there
only exists one KLE model for a given set of input data and given
expansion length. Moreover, as demonstrated in Sec. VI, updating a
KLE model based on noisy measurements of density is much more
straightforward than an equivalentmeasurement updatewould be for a
VAE model. The benefits of the VAE modeling approach might be
expected to outweigh those of the KLE method if the random field of
interest were significantly non-Gaussian and sufficient samples of that
field were available. For instance, this work uses MarsGRAM 2010
density as the source of training data, but it is possible that other
atmospheric models or real data would be significantly less Gaussian
and thus be better suited to the VAE than the KLE. Although it is still
possible to construct a KLE model for non-Gaussian data, the expan-
sion coefficients can become complex for generative sampling because

the random variables Yi are no longer i.i.d. [38]. In contrast, the VAE
effectively uses the nonlinear transfer function defined by the decoder
to absorb this complexity, keeping the distributions of the latent
variables simple. For data-rich non-Gaussian fields, VAEs may thus
offer advantages over KLEs, such as smaller latent variable dimen-
sionality and a more accurate representation of the quantity of interest.
However, for this particular application, inwhich the randomprocess is
approximatelyGaussian, theKLEmodeling approach has been shown
to perform adequately well and has the appealing quality of a one-to-
one relationship between training data and model. Therefore, only
KLE models are considered in subsequent sections, with equivalent
contributions for VAE models left for future work.

V. Multidimensional KLE Model

Although the columnar assumption is typical for onboard models of
density, as previously discussed, in some cases it may be of interest to
represent density as a random function of multiple independent varia-
bles. The KLE approximation demonstrated in Sec. IV can be straight-
forwardly extended to model longitudinal and latitudinal variations in
density as well as in altitude. Thus, in this section, the necessary steps
for constructing a multidimensional KLE are presented, models are
compared following the approach taken inSec. IV, and, finally, there is a
brief discussion of the potential utility of thesemodels for onboard use.
Recall that the first step in forming a KLE approximation from

some discrete dataset is computing the sample covariance matrix, as
shown in Eq. (8). The datamatrixΨc is formed such that each column
is one observation vector with the sample mean subtracted. In the
columnar KLE model, the observation vectors are ordered such that
they correspondwith a reference altitude vector. For themore general
case, however, the indexing of the data matrix Ψc need not refer to a
single independent variable. Rather, the index corresponds to a
specific variable being observed, whether that be defined as density
at 100 km or as density at 100 km, 20° E, and 40°N. Any arbitrary set
of points in amultidimensional domain can be uniquely identified via
sequential indexing, and then observations at these points can be
reshaped into a column vector following that ordering; this process is
conceptually illustrated in Fig. 9. The process of computing the
covariance matrix and constructing and evaluating the KLE is
unchanged. The original reshaping is then reversed to reshape the
column vectors produced by realizations of the KLE into a set of
values for each point in the multidimensional domain.
As an example, MarsGRAM is used to generate 1000 density

values at each point in an evenly spaced 2D grid going from 0 to
200 km in altitude, from 0 to 10° in longitude, and at 0° latitude.
Figure 10a visualizes the resulting data as a heatmap of the�3σ value
of δρ; in other words, the heatmap values correspond to the right
dashed line in figures like Fig. 2.

Fig. 9 Illustration of reshaping between an arbitrary set of points in a
multidimensional domain and an observation vector.

a) Mars-GRAM b) KLE
Fig. 10 The 3σ values of normalized density perturbation for 2D density models.
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Figure 10b shows the equivalent statistics for a KLE approxima-
tion of the 2D MarsGRAM data; in contrast to Sec. IV, in this case a
value of α � 0.99 is used to truncate the KLE to dK � 884 terms.
From visual inspection, the results shown in Fig. 10 are virtually
indistinguishable from each other.
As before, the real test of the KLE approximation is its ability to

accurately predict trajectory dispersions. To this end, Figs. 11 and 12
show the peak heat flux statistics and a portion of the density profiles,
respectively, resulting from 1000-trial Monte Carlo analyses of the
same SHIELD direct-entry trajectory previously considered. In each
case except GRAM 1D, bivariate spline approximation is used to
compute density at the altitude and longitude of the vehicle based on a
grid of density values. Recall that the reference SHIELD trajectory is
ballistic and enters due-east, so the trajectory remains in the equato-
rial plane, and thus, for this scenario, this approach is equivalent to
computing density based on the 3D position of the vehicle. The
GRAM 2D case interpolates from a set of density samples output
by MarsGRAM directly, whereas the KLE α � 0.99 case interpo-
lates from values produced by a realization of an 884-term KLE
approximation. The KLE dK � 50 case also uses a KLE approxima-
tion, but in this case the expansion is limited to 50 terms. Finally, the
GRAM 1D case interpolates from the same MarsGRAM data but
always assumes a longitude of 0°, corresponding to a columnar
assumption. This case should be exactly equivalent to the GRAM
results shown for SHIELD in Fig. 6, but it is slightly different. This
occurs due to a quirk in how MarsGRAM density perturbations are
computed. Thus, in this section, the full 2D dataset is used but
assuming a constant longitude of 0° in order to create an apples-to-
apples comparison.
From Fig. 11, it is clear that the peak heat flux statistics predicted

by the 2D GRAM and 2D KLE (α � 0.99) models are very similar,
and Fig. 12 shows a characteristic similarity between the density
profiles predicted by these two models. These results and the direct
comparison of density values in Figs. 10a and 10b demonstrate the
successful use of a multidimensional KLE to approximate density as
a function of both altitude and longitude. In contrast, the 50-term
KLE approximation performs very poorly, significantly underpre-
dicting both the mean and uncertainty of peak heat flux. The expan-
sion fails to capture much of the variability in density, as is clear from
Fig. 12. The KLE dK � 50 case performs worse than the KLE α �
0.99 case because it has a much lower number of terms (50 vs 884),
and the expansion is truncated before sufficiently capturing the
modes of variability present in the multivariate data.
These comparisons merit a broader discussion of the columnar

atmosphere approximation for onboard density modeling. Figure 11
shows that the GRAM 1D case, which is equivalent to a columnar
atmosphere assumption, almost exactlymatches the 2DGRAMcase in
predictions of peak heat flux, and from Fig. 12 the sample density
profiles themselves also appear to bevery similar. This is not surprising

when considering Fig. 10a, which shows no significant horizontal
gradient to indicate changes in density variability with longitude.
Note that, despite this uniformity in longitude, the KLE requires
roughly 10x as many terms to accurately predict dispersed trajecto-
ries when constructed from the 2D density data as opposed to the
columnar atmosphere case. This would require an increase in both
memory and computational expenses for onboard use. Furthermore,
to sample across the entire 2D grid in altitude and longitude requires
8505 data points for the discretization used here, as compared to
405 data points for a columnar profile, further exacerbating the
onboard computational burden. These results suggest that, based
on the dataset used here, a columnar atmosphere model is likely a
good enough approximation for onboard use and is significantly
less demanding of both memory and computational effort than a
multidimensional model. Note that the number of terms required for
the KLE could likely be significantly reduced by constructing the
expansion differently or sampling at fewer longitudes. However, the
natural conclusion of that endeavor would be to return to a columnar
atmosphere entirely.
This is decidedly not to say that regional variations in density can

be neglected. Density gradients occur due to a range of factors,
including gravity waves, time of day, andwinds, and are relevant for
both vehicle performance prediction and trajectory reconstruction
[39–41]. MarsGRAM data is used in this study as an example only
and is not necessarily well-suited to capturing these types of
regional density variation. Any hypersonic vehicle using closed-
loop guidance would need to be simulated in a wide range of
possible atmospheric conditions, regardless of the assumptions
used for the onboard density model. The resulting vehicle perfor-
mance, taken together with the relevant computational limitations,
is ultimately what determines whether or not the onboard density
model meets the requirements.
Note also that, for a scenario where density is expected to change

significantly along the ground track of an entry trajectory, a columnar
model could be constructed using data generated along the reference
trajectory. In other words, the raw data is generated along a 3D
trajectory but is then treated as a function of only altitude in the
KLE approximation. This approach begins to fail if altitude is not
monotonically decreasing, such as in the case of aerocapture. How-
ever, the procedure for onboard measurement updates presented in
the next section would potentially result in different density predic-
tions for the descending and ascending portions of the trajectory, and
this could partly mitigate the limitations of a columnar model.
Finally, note that aVAEmodelmay provide better dimensionality

reduction than a KLE for the case of a density function varying
across multiple dimensions. VAEs are well-suited for applications
to complex, multifaceted data, including images and music [42,43],
and may do a superior job of recognizing the strong correlations
between density profiles at different latitudes/longitudes/times, and
then compressing the data based on these relationships. Applying

Fig. 11 Peak heat flux statistics for SHIELD trajectories in 2D atmos-
phere models.

Fig. 12 Density profiles on SHIELD trajectories for 2D density models.
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multidimensional VAE density modeling in scenarios where varia-
tion across dimensions other than altitude is important to trajectory
prediction remains an interesting topic for future work.

VI. Kalman Measurement Updates

During atmospheric flight, observations of estimated density
ρ	�hk� are typically available by taking estimated sensed acceleration
measurements from an accelerometer or inertial measurement unit
(IMU) and rearranging the equation for aerodynamic acceleration,

a�hk� �
v2�hk�
2β

ρ�hk� → ρ	�hk� �
2βa	�hk�
v2�hk�

(18)

where estimates of the ballistic coefficient β and current velocity
magnitude v�hk� are known. Thus, for any onboard density model
to be useful in practice, it should accommodate some method of
updating the model in real time with noisy measurements. It is well-
demonstrated in literature and in practice that appropriate onboard
density estimation can significantly improve targeting performance [2].
The novel benefit of a KLE density model is the representation of

both a nominal density profile and the associated uncertainty. There-
fore, it is desirable to formulate an approach that updates both themean
and covariance represented by the KLE. Furthermore, this should be
done in a way that respects the correlation structure assumed in
the pre-update model, as opposed to replacing a single diagonal
element of the covariance matrix. As an illustration of how this can
be accomplished for the KLE representation, the rest of this section
implements a Kalman measurement update. Other approaches may
achieve improved computational efficiency in exchange for mild
assumptions about the covariance structure, as is discussed at the
end of this section, but the standard Kalman formulation is used here
for clarity and because it requires minimal additional assumptions. For
the same reason, note that this section returns to the columnar atmos-
phere assumption.
In this work, a Bayesian approach for sequential estimation is

applied, such that themeanandcovarianceofdensity from theprevious
update (or the initial model) form the prior, and these are updated with
the noisy density measurement to form the posterior mean and covari-
ance of density. The density estimates are assumed to be corrupted by
additive white Gaussian noise, based on the assumption that some
preprocessing removes artifacts such as IMU drift; note that this also
implies accurate estimates for ballistic coefficient and velocity magni-
tude. The state uncertainty is also Gaussian based on the earlier
assumption treating density as a Gaussian random process. Finally,
density estimates are assumed to arrive at altitudepoints included in the
original a priori density model, either by judiciously timing measure-
ment updates or by interpolating multiple measurements.
Based on the above assumptions, density can be optimally esti-

mated by the Kalman measurement update via the following formu-
lation [44]. Take the series of density values at each altitude to be the
state vector. The dynamic equation is trivial because the density
profile is assumed not to vary in time, so the state propagation step
from the Kalman filter is unnecessary. The measurement equation is
simply a direct observation of a single state component and is thus
linear. Therefore, the optimal estimate of the vector of atmospheric
density at each altitude ρ̂� ∈ Rn and its covariance P�

k ∈ Rn×n can
be computed according to a scalar noisy density measurement ρ	k ∈
R according to the following equations:

ρ̂� � ρ̂− � K�ρ	k −Hkρ̂−� (19)

P� � P− −KHkP
− (20)

K � P−H⊤
k HkP

−H⊤
k � R −1 (21)

Hk � �δ1k; δ2k; : : : ; δnk� (22)

where K ∈ Rn×1 is the Kalman gain matrix, Hk ∈ R1×n is the

measurement matrix,R ∈ R1×1 is the measurement noise covariance

(generically a matrix, in this case a scalar), δij is the Kronecker delta,
n is the number of discrete altitudes considered, and k is the index
of the altitude at which density is currently being observed. Notably,
because only one density is measured at a time the bracketed term
in Eq. (21) is a scalar, so taking its inverse is computationally
inexpensive.
For notational clarity, consider an examplewhere the discretization

of density values is from 100 to 0 km in altitude steps of 0.5 km, in
descending order, resulting in n � 201. Then ρ̂− and ρ̂� are the prior
and posterior 201 vectors, respectively, containing density values at
each altitude. Assume the scalar density measurement ρ	k is at an

altitude of 80 km, such that k � 41 (indexing from 1 in this notation).
Then, Hk becomes a row matrix with all elements equal to zero
except in the 41st column, which is equal to one.
Equations (19–22) can be applied to sequentially ingest noisy

density measurements and update the onboard model of the density
profile and its covariance. By re-solving for the eigenvalues and
eigenvectors ofP�, the KLE representation can be updated accord-
ingly. This process is demonstrated in Fig. 13. Here, the prior mean
and covariance are formed from a dataset of 3000 density profiles
from MarsGRAM, where density perturbations are normalized by
the sample mean, and thus the normalized prior mean falls exactly
along 0. The true profile to be estimated is also computed by
MarsGRAM but is not included in the prior dataset. Five density
values are observed, corrupted by measurement noise with a stan-

dard deviation of 1 × 10−9 kg∕m3, a value selected purely for
illustrative purposes. In this example, the assumed measurement
noiseR is equal to the true noise value, but note that this can instead
be treated as a tuning parameter in practice and need not be the same
value at each altitude.
Note that the posterior mean passes nearly through each observa-

tion (with one exception), but reverts to the mean for altitudes above
and below the observation altitudes. The posterior uncertainty
bounds are also only weakly affected at these higher and lower
altitudes. This occurs because the correlation structure in the prior
covariance dictates the degree to which new information at one
altitude affects the estimated density at another altitude. Because in
this model density perturbation at 80 km is only weakly correlated
with density perturbation at 50 km, the posterior mean has reverted to
nominal at that lower altitude. This can also be achieved by the
onboard estimation of a corrective scale factor that is then exponen-
tially decayed back to unity for altitudes not near the measurement.
However, the approach presented here has two advantages. First, the
correlation length is inferred from the prior model (MarsGRAM in
this case) rather than defined by the user, and second, the correlation
length is not necessarily constant with altitude.
The reason that the posteriormean passesmore closely through the

lower three measurements than the first two is related to how meas-
urement noise was defined. Measurement noise is applied to the
density values directly and is constant across all altitudes, but the
data are then converted to normalized density perturbations for
estimation and visualization. Thus, at higher altitudes where the
nominal density is significantly lower, the measurement noise has a
more significant effect, and the filter tends to trust the prior. This is
also observable by the much wider posterior uncertainty bounds for
the higher-altitude measurements. At lower altitudes, the samemeas-
urement noise has relatively less effect, and the situation is reversed;
because the actual measurement noise and the value used by the filter
are the same, this also means the lower-altitude measurements fall
closer to the true values. It should be reiterated that the assumption of
a measurement noise constant with altitude is made here for demon-
stration purposes and is not required.
The application of a Kalman measurement update demonstrated

here provides a way of updating the mean and covariance for atmos-
pheric density based on noisy measurements, which could inform
onboard predictions of state uncertainty for the purpose of closed-
loop guidance. A significant drawback of this approach, however, is
the requirement to re-solve the eigenvalues and eigenvectors after each
measurement update in order to obtain the updated KLE representa-
tion. This adds significant computational expense to the update proc-
ess, potentially to the point of infeasibility for onboard computation,
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depending on the resolution of the density profile and the choice of
flight hardware. This motivates an approach that updates the eigen-
vectors and eigenvalues directly in a way that approximates the result
of the Kalmanmeasurement update at a lower computational expense.
Such a method could take advantage of the fact that there is approx-
imately zero covariance between altitudes more than a certain distance
apart. Approaches such as low-rank partial Hessian approximations
or sequential updates to singular value decompositions of a matrix
provide potential pathways to significant computational efficiency
improvement [45,46]. In particular, a recent studybuilds on themethod
introduced here and develops a low-rankKalman filter that operates on
the singular value decomposition of the atmospheric density covari-
ance matrix [47], reducing the dimensionality of the update step.
Alternatively, because density is modeled as constant over time,
onboard measurement updates could instead be posed as a Gaussian
process regression. In general, this involves assuming some formof the
covariance function and then fitting the parameters of that function to
the data [20]. An advantage of this approach is that it enables relaxing
the assumption that density measurements become available at the
same altitudes as the density state vector. Recent work has made
advances in computationally efficient methods for updating Gaussian
processes with new data by representing as a KLE [48]. Other recent
work applies a parametric Gaussian process model to the problem of
representing atmospheric density for onboard use and shows amethod
for updating based on newmeasurements [49]. Finally, another avenue
for future work would be a method for onboard updating of a VAE
density model based on noisy measurements without requiring
onboard retraining of the model. In this case, the model would be
trained on the ground and then conditioned on noisy measurements in
flight, permitting computationally efficient updates to the VAE.

VII. Conclusions

This work presents the mathematical foundation and practical
implementation for modeling density using either a KLE or a VAE.
The value of these contributions is in their ability to enable better
onboard prediction of future state uncertainty, rather than just the
expected value. By maintaining an explicit belief state regarding not

only the value of atmospheric density but also the associated uncer-

tainty based on a combination of prior modeling and in-flight mea-

surements, these methods are inherently stochastic. They therefore

are categorically distinct from previous methods such as the table

look-up atmosphere with low-pass filter that was implemented on

Orion [50]. This approach to compact modeling of an uncertain

environment could have value in a wide range of other applications,

including rocket ascent and drone flight planning.
For the direct-entry and aerocapture scenarios considered here, a

model constructed by scaling normalized density perturbations by

the reference dynamic pressure is shown to be the best predictor of

peak heat flux. Directly forming the model from density or normal-

ized density perturbations is less compact but also gives accurate

predictions and could be the more straightforward approach if the

necessary number of terms is allowable based on computational

limitations. Because the data in this study are approximately Gaus-

sian, theKLEmodeling approach is shown to be adequate and has the

advantage over VAE models of being simple to construct from the

training data.
A KLE formed over a multidimensional domain is demonstrated,

but for the MarsGRAM data considered here, the gains compared to a

columnarmodel are unlikely to outweigh the additional computational

expense. Additionally, a Kalman measurement update is used to

update the density covariance matrix for a KLE model based on new

densitymeasurements, and the example results showpromising behav-

ior. However, further work is necessary to improve the computational

efficiency of this approach for onboard implementation. An alternative

formulation, such as using parametric Gaussian process regression,

may be better suited to conditioning the model on newmeasurements.

Implementing a VAE density model over a multidimensional domain

and developing a method of conditioning a VAE model on noisy

density measurements are both promising avenues for potential future

work. In the case of the former, a VAE may outperform KLE models

for dimensionality reduction of multidimensional density data but

might require a modified network architecture or training approach.

In the case of the latter, retraining of the VAE onboard during

flight would present an infeasible computational burden, so the key

a) Full profile b) Close-up from Fig. 13a
Fig. 13 Mean and 3σ bounds for prior and posterior density profiles, given five sequential noisy observations.
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innovation would be a method of conditioning the VAE on noisy data
without requiring further training.
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