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Abstract

Aerocapture is a method of achieving orbit insertion via a single pass through the atmosphere of the central body. Single-event jet-
tison drag modulation is a simple way of achieving control during atmospheric flight by effecting a discrete change in the aerodynamics of
the vehicle. A novel guidance algorithm, energy reference guidance, is developed and implemented for a reference scenario of a small
satellite aerocapture demonstration at Earth, and is compared to the baseline numerical predictor–corrector solution. The new approach
is shown to achieve equivalent apoapsis targeting performance as the baseline algorithm with significantly lower CPU demand during
atmospheric flight, although more onboard memory is required in exchange. The relationship between targeting performance and
required memory is quantitatively explored for the new algorithm; the selected configuration generates approximately 3.3 MB of data,
which is expected to be well within the capability of relevant avionics systems.
� 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Aerocapture is a technology that could enable shorter
transit times and lower total expended mass for orbit inser-
tion for a variety of interplanetary missions (Cruz, 1979;
Hall et al., 2005; Spilker et al., 2019). To perform aerocap-
ture, the spacecraft executes a single pass through the
atmosphere of a planet or moon, dissipating enough energy
to reach the desired target orbit upon exit from the atmo-
sphere. During the subsequent pass through apoapsis the
spacecraft performs a propulsive maneuver to raise periap-
sis out of the atmosphere, and performs other correction
maneuvers as necessary. For missions to the ice giants Ura-
nus and Neptune, aerocapture can potentially reduce cruise
duration by 2–5 years while reducing mass for orbit inser-
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tion by some 40% (Dutta, 2021; Agrawal et al., 2014).
Aerocapture also offers significant benefit to small satellites
(SmallSats) launched via rideshare with a primary mission,
enabling orbit insertion despite the lack of high-DV systems
at SmallSat scale and reducing sensitivity to primary mis-
sion trajectory design (Austin, 2020; Austin et al., 2019).
Although it has been proposed for a number of missions
(Walberg et al., 1987; Powell, 2012; Cazaux et al., 2004),
aerocapture has never been flown (Spilker et al., 2019).

Variability in the spacecraft state at atmospheric entry,
atmospheric density, aerodynamic properties of the vehicle,
and other day-of-flight dispersions require a spacecraft per-
forming aerocapture to autonomously control its trajectory
through the atmosphere. During this hypersonic flight
phase, control is achieved by judiciously adjusting the aero-
dynamic forces acting on the vehicle, and control
approaches thus fall into two main categories: lift
modulation and drag modulation. Lift modulation
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involves changing the attitude of the vehicle to reorient the
lift vector, typically either by banking about a fixed trim
angle (bank angle modulation) or by independently modu-
lating angle of attack and side-slip angle (direct force con-
trol) (Vinh et al., 2000; Deshmukh et al., 2020). Note that
direct force control also involves changes in the drag and
side force components, but the primary control authority
is obtained by modulating lift, and thus this technique is
categorized with lift modulation for the purposes of this
discussion. Lift modulation, particularly bank angle modu-
lation, is well-studied in the literature (Rousseau et al.,
2012; Lu et al., 2015; Deshmukh et al., 2020; Deshmukh,
2021), and has relevant flight heritage from guided hyper-
sonic entry of blunt-body aeroshells including the Apollo
(Moseley, 1969), Orion (Putnam et al., 2010), Mars Science
Laboratory (Steltzner et al., 2014), and Mars 2020
(Nelessen et al., 2019) missions, all of which relied on some
form of closed-loop lift modulation.

Recent work has studied drag modulation as a poten-
tially simpler method of achieving control for aerocapture
(Roelke, 2021; Putnam and Braun, 2014). Typically, a
drag-modulated vehicle is assumed to be axisymmetric
and to fly at zero angle of attack, thus generating no lift.
The trajectory is influenced by adjusting the ratio of mass
to effective drag area, termed ballistic coefficient; when this
ratio is low, the vehicle rapidly dissipates energy through
drag, and vice versa. This can take a variety of forms,
including devices that achieve continuously-variable drag
(Vinh et al., 1986), release of a trailing inflatable drag
device (Rohrschneider and Braun, 2007), and jettison of
one or more rigid drag skirts (Roelke et al., 2022).
Single-event jettison, defined here as a single discrete
change in ballistic coefficient caused by the jettison of a
rigid drag skirt, is the control architecture that will be the
focus of this work. This represents a limiting case, because
after jettison the vehicle flies passively for the remainder of
atmospheric flight and the vehicle lacks any out-of-plane
control. However, for a sufficiently large change in ballistic
coefficient, single-event jettison can achieve a total control
authority comparable to lift modulation with heritage
blunt-body aeroshells (Heidrich et al., 2020). Compared
to lift modulation, single-event jettison drag modulation
may be less complex because the vehicle can be passively
spin-stabilized, rather than requiring a high-rate reaction
control system that must operate during atmospheric flight
(Powell and Braun, 2012). Moreover, ballast masses are
not required to create an offset center of gravity, as is typ-
ically the case for lift-modulated axisymmetric vehicles
(Steltzner et al., 2014).

A limited number of guidance algorithms for single-
event jettison drag-modulated aerocapture exist in the liter-
ature. The simplest solution in terms of computational
expense is to trigger jettison when the instantaneous value
of a measured state exceeds some threshold, such as a
velocity trigger (Falcone et al., 2019). To reduce error
caused by noisy measurements, the observed state can be
filtered and jettison can be triggered based on some polyno-
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mial function of the state. For example, the algorithm
implemented in Johnson and Lyons (2004) triggers jettison
when the total integrated DV exceeds a polynomial func-
tion of the filtered instantaneous or maximum sensed accel-
eration. The deceleration curve fit algorithm used for Mars
Pathfinder parachute deploy (Braun et al., 1999) and
applied to drag-modulated aerocapture in Werner and
Braun (2019) also triggers based on deceleration measure-
ments. In this case, two measurements are taken a set time
apart, and a pre-computed curve fit between the second
deceleration measurement and time until jettison is con-
sulted to set a jettison timer. All of these approaches
require only minimal onboard computation and memory,
but each is also shown to have poor performance when rel-
evant uncertainties are applied. The predictive trigger
approach applied in Gulick et al. (2003) is more
computationally-intensive; in this case, the energy of the
spacecraft at atmospheric exit is predicted by numerically
propagating the equations of motion, and jettison is com-
manded when the predicted final energy is less than or
equal to the desired final energy. Machine learning-based
guidance schemes have been successfully developed for
entry and aerobraking problems (Cheng et al., 2021;
Wang and Elgohary, 2020; Shi and Wang, 2021; Falcone
and Putnam, 2022), but have yet to be applied to single-
event jettison drag-modulated aerocapture other than for
the purpose of atmospheric estimation (Wagner et al.,
2011; Amato et al., 2020).

While the algorithms summarized above share the ben-
efit of relatively low onboard computational burden, the
current state of the art guidance for drag-modulated aero-
capture is the numerical predictor–corrector (NPC)
approach (Putnam and Braun, 2014). This algorithm also
predicts the final state by numerically propagating the
equations of motion, then takes the additional step of mak-
ing a correction to the jettison time. This two-step proce-
dure is applied iteratively, such that the algorithm should
converge to an optimal jettison time each guidance call.
NPC has two key differences with the predictive trigger.
First, because NPC solves for jettison time rather than
directly commanding jettison, the release timing can oper-
ate at significantly higher resolution; this is under the
assumption that a simple controller releases the drag skirt
when the jettison time is reached, operating at a higher rate
than the guidance algorithm itself. Second, NPC is signifi-
cantly more computationally expensive than the predictive
trigger because multiple numerical propagations may be
required in each step. In summary, NPC guidance is signif-
icantly more accurate in the presence of uncertainties than
the other algorithms discussed here (Putnam and Braun,
2014; Falcone et al., 2019; Werner and Braun, 2019), but
is also much more computationally demanding. A more
detailed description of the NPC algorithm is given in
Section 3.

This work investigates a new guidance algorithm for
single-event jettison drag-modulated aerocapture, with
the goal of achieving the same level of accuracy as the
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NPC but with significantly less computational demand.
The reference mission for this study is an Earth flight test
of aerocapture with a SmallSat using a rigid deployable
drag skirt; that is, the drag skirt is stowed during launch
and deployed during cruise, but does not change its shape
during atmospheric flight. Assumptions regarding model-
ing of dynamics and uncertainties are discussed, and key
physical parameters defined. The baseline NPC algorithm
is described in detail, including a novel approach to the
correction step that improves computational efficiency,
and targeting results under relevant uncertainties are esti-
mated. The proposed algorithm is also described, and com-
pared directly with NPC. A parameter study is presented
that gives insight into optimal tuning and tradeoffs between
memory and performance for the proposed algorithm.
Finally, results are discussed along with a number of ave-
nues for potential future work.
2. Methodology

2.1. Reference mission

Researchers from the NASA Jet Propulsion Laboratory
(JPL), NASA Ames, and the University of Colorado Boul-
der have been studying drag-modulated aerocapture for
small satellites (Austin et al., 2019; Werner et al., 2017),
including concepts for an Earth flight test of the technology
(Werner and Braun, 2019). This idea is supported by the
2022 Strategic Framework1 released by the NASA Space
Technology Mission Directorate, which states that ‘‘an
Earth-based aerocapture demonstration will reduce per-
ceived risk and mature guidance and control methods”
for aerocapture at other planetary destinations. Motivated
by these developments, single-event jettison drag-
modulated aerocapture at Earth by a SmallSat is the refer-
ence mission considered in this work. As summarized in
Fig. 1, the spacecraft is launched into a geosynchronous
transfer orbit, then performs a maneuver to lower periapsis
into the atmosphere, achieving the desired entry state.
Based on the JPL reference mission, the spacecraft targets
an apoapsis of 5000 km and performs a maneuver at the
next pass through apoapsis to raise periapsis to 200km.
Autonomously raising periapsis during the first pass
through apoapsis in order to achieve a near-term stable
orbit is a significant component of successful aerocapture;
however, specific consideration of the on-orbit maneuver
guidance and control is beyond the scope of this study.

The drag skirt in this study is modeled as the Adaptable
Deployable Entry and Placement Technology (ADEPT),
an umbrella-like deployable structure for entry probes cur-
rently under development at NASA Ames (Cassell et al.,
2018). During launch, ADEPT is in the retracted configu-
ration, significantly reducing fairing volume required for
the spacecraft and enabling stowage in the standard ESPA
1 https://techport.nasa.gov/framework.
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envelope (Cassell et al., 2018; Wegner et al., 2001). The
drag skirt is fully deployed between separation from the
launch vehicle and atmospheric entry, and remains rigidly
deployed until it is jettisoned by the guidance algorithm.

The initial epoch for simulation of this mission is defined
as 10 min before nominal atmospheric entry, which is the
time of the final orbit determination (OD) update to the
spacecraft from ground control. From this point onward,
the navigated states are based on propagation with only
IMU data. The nominal entry state, defined at the atmo-
spheric interface altitude of 125km, has a planet-relative
velocity u of 9.9km/s and flight-path angle c of �4.6�,
where flight-path angle is the angle between the planet-
relative velocity vector u and the local horizontal plane.
The nominal entry point is at a geocentric latitude / of
�7:4� and longitude h of 14:8� with a heading of 118:9�,
where heading angle w is defined as the angle between the
horizontal projection of the velocity vector and a due-
North vector in that same plane. These definitions are illus-
trated in Fig. 2, where the unit vector bases

n̂1; n̂2; bKn o
; bI ; bJ ; bKn o

, and ê1; ê2; ê3f g define inertial,

planet-fixed, and position frames, respectively. The vector
from the central body to the vehicle is denoted r, and
r̂ ¼ r=r is the associated unit vector.

2.2. Problem dynamics

2.2.1. Simulation

In this work, the performance of each guidance algo-
rithm is quantified through testing in a high-fidelity simula-
tion environment implemented in the Dynamics Simulator
for Entry, Descent, and Surface Landing (DSENDS) soft-
ware developed by the DARTS lab at NASA JPL
(Cameron et al., 2016). The gravity model includes point-
mass and spherical harmonics of degree and order 8 for
the Earth, as well as point-mass gravity from the Moon
and the Sun. Atmospheric density is modeled using the
Earth Global Reference Atmospheric Model (Earth-
GRAM) 2010 (Leslie and Justus, 2011), such that the value
of density depends on 3D position and time.

The vehicle shape is a 60-degree sphere-cone both with
and without the drag skirt, such that the drag skirt extends
the conical section at the same angle. The aerodynamics
model used in simulation includes drag and aerodynamic
moments. No lift is modeled; the vehicle is axisymmetric
and passively-stabilized, such that the axis of symmetry
remains approximately aligned with the freestream velocity
vector. Thus, while the simulation is 6 degree-of-freedom,
oscillations in vehicle attitude are small and have only a
minor effect on the vehicle trajectory.

2.2.2. Predictor model

Both guidance algorithms presented in this work rely on
numerical propagation of the relevant equations of motion
to predict trajectories onboard. These equations constitute
a simplified version of the dynamics modeled in the full

https://techport.nasa.gov/framework


Fig. 1. Aerocapture earth flight test.

Fig. 2. Frame definitions.
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‘‘truth” simulation. Specifically, the modeled forces include
point-mass gravity, J2 oblateness, and drag, resulting in the
following equation for inertial acceleration (Burnett and
Schaub, 2022):

€r ¼ � l
r2
r̂

� 3lJ 2R2

2r4
1� 5 r̂ � K̂

� �2
� �

r̂þ 2 r̂ � K̂
� �

K̂

� �

� qu2

2b
û ð1Þ

where r is the vector from the central body to the vehicle, l
is the gravitational parameter, J 2 is the oblateness coeffi-
cient, q is atmospheric density, R is the planetary equato-

rial radius, K̂ is the polar axis unit vector, and
b ¼ m= CDAð Þ is the ballistic coefficient of the vehicle. The
quantities m;CD, and A are the mass, drag coefficient,
and reference area of the vehicle, respectively. The quantity
u is the flow velocity, or the velocity of the spacecraft with
respect to the planetary atmosphere, which is assumed to
be rotating with the planet with angular velocity xp

between initial time t0 and current time t,

u ¼ _r� xp � r; ð2Þ
where _r is inertial velocity. The predictor models density by
linearly interpolating from a table of density vs. altitude
output by EarthGRAM that represents a nominal atmo-
sphere profile. Note that the predictor thus assumes the
same density is experienced in the descending and ascend-
ing portions of the aerocapture trajectory, other than as
modified by the atmospheric scale factor as discussed later,
whereas the DSENDS simulation incorporates dependence
of density on latitude and longitude. A table of CD vs.
dynamic pressure is similarly used by the predictor to com-
pute b. However, note that this latter step is likely higher-
fidelity than necessary because CD changes little in the rel-
evant flight regime for this scenario; constant CD would be
a reasonable approximation. The values of l; J 2, and R
used in both the predictor and simulation are provided in
Table 1. The average ballistic coefficient for each phase is
also listed, where b1 and b2 are the values pre- and post-
jettison, respectively. The predictor uses fourth-order
Runge–Kutta integration to numerically propagate the
equations of motion, with a fixed time step of 0.125 s.
Table 1
Nominal simulation parameters.

Parameter Value

l 3.9860 � 105 km3/s2

xp 7.2921 � 10�5 rad/s
J2 0.0010826
R 6378.1 km
b1 32 kg/m2

b2 137 kg/ m2

5090
2.3. Models of uncertainty

The variability of atmospheric density is modeled by
EarthGRAM, which has a built-in Monte Carlo frame-
work for generating realistic dispersions (Leslie and
Justus, 2011). The vehicle aerodynamics are dispersed
based on experience with blunt-body aeroshells Way
et al. (2003), resulting in a standard deviation of about
r ¼ 0:015 for CD near peak dynamic pressure, where r is
standard deviation and the nominal value is 1.38. The entry
state is dispersed according to a navigation assessment per-
formed at JPL that was then scaled to match the project
requirement of entry flight-path angle delivery error with
a standard deviation value of 3r ¼ 0:2� at the atmospheric
interface altitude of 125 km. The time required for the drag
skirt to fully separate from the capsule is assumed to be
uniformly dispersed along a range from 0.05 s to 0.14 s.
The vehicle mass and area are not dispersed, nor are grav-
itational parameters.

Importantly, the predictor does not operate on the true
state of the spacecraft. Noisy measurements from an iner-
tial measurement unit (IMU) are modeled and fed into a
navigation filter, and the predictor operates on these fil-
tered state estimates. The navigation filter uses the same
dynamics model as the predictor, Eq. 1.
3. Numerical predictor–corrector guidance

NPC guidance is treated as the baseline solution in this
work due to both its state-of-the-art targeting performance
and its previous application as part of the JPL SmallSat
aerocapture project (Putnam and Braun, 2014; Austin
et al., 2019; Strauss et al., 2021). The implementation dis-
cussed here is similar to that presented in Putnam and
Braun (2014), but with a more computationally-efficient
correction method. The algorithm is summarized by
Fig. 3 and outlined in detail in this section; performance
results are given in Section 5.

IMU measurements are used to generate an estimate of
sensed acceleration (or g-load), ĝ, and when this exceeds
some threshold value gt the guidance routine is initiated.
In the subsequent step, nominal density at the navigation-
estimated altitude is used with the navigation-estimated state
to compute an estimate of the dynamic pressure:

qest ¼
1

2
qnom rð Þu2 ð3Þ
where the estimated dynamic pressure is used to obtain an
estimate of the drag coefficient via interpolation of stored
data of CD vs. q. Next, the density is estimated from a re-
arranged expression for acceleration due to aerodynamic drag
(which equals ĝ since the vehicle is assumed to have no lift):

qest ¼ 2
m1ĝ

A1CD;1u2
¼ 2

b1ĝ
u2

ð4Þ



Fig. 3. NPC guidance diagram.
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where m1;A1;CD;1, and b1 are the pre-jettison values of
those variables. The density estimate is used to compute
the ith density scale factor F i:

F i ¼ qest tið Þ=qnom r tið Þð Þ ð5Þ
This value is then filtered via a low-pass filter:

F i ¼ 1� kð ÞF i�1 þ kF i ð6Þ
As the gain k is decreased, this filter will increasingly

reject small disturbances. Sensible values of k depend on
the frequency of density scale factor measurement updates.
Alternatively, the density scale factor could also be filtered
with a moving average filter, detailed below:
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F n ¼ 1

n

Xn

i¼1

F i ð7Þ
where n is a memory parameter, and again the chosen value
of n should be tuned based on the density scale factor
update frequency. In this work, the low-pass filter is imple-
mented with k ¼ 0:05 for a guidance update rate of 8 Hz.
The nominal density profile is then re-scaled by F i for all
subsequent numerical propagations within that guidance
call, as follows:

qpred rð Þ ¼ F iqnom rð Þ ð8Þ
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This form of density re-scaling significantly improves
targeting results compared to ignoring atmospheric estima-
tion altogether (Perot and Rousseau, 2002), but is limited
to linearly shifting the entire profile and thus fails to cap-
ture the more complex atmospheric perturbations that
occur in reality. Other methods, such as exponentially cor-
relating the scale factor, ensemble correlation filtering
(Roelke et al., 2019), machine learning (Wagner et al.,
2011; Amato et al., 2020), or modeling density as a Gaus-
sian random field (Albert et al., 2021) may improve the
atmospheric estimation component of NPC guidance.

Once the density scale factor is computed, the
navigation-estimated state is numerically propagated until
the altitude of the spacecraft either exceeds the atmospheric
interface altitude or decreases below some minimum. This
prediction uses the jettison time computed by the previous
guidance call or, in the case of the first guidance call, a
pre-defined initial guess, set to 700 s in this case. The radius
of apoapsis is then computed from the final state using Kep-
lerian relations, and error is computed as the difference
between the predicted and desired apoapsis radii. In the case
of an escape trajectory, apoapsis radius is poorly-defined
and the error is set equal to positive infinity. In the case
of an impact trajectory, in which the spacecraft reaches
the surface instead of exiting the atmosphere, the Keplerian
apoapsis is computed from the final state as normal; the
value will badly undershoot the target and thus the guid-
ance algorithm behaves as expected. As an aside, note that
for certain, more extreme mission scenarios an edge case is
possible in which the vehicle reaches the minimum altitude
bound while still hyperbolic in terms of orbital energy, and
care should be taken to correctly categorize these cases as
undershoots, despite their hyperbolic Keplerian state.

The error magnitude is then compared against two tol-
erance values, �1 and �2, where �1 > �2. The purpose of
the dual tolerances is to direct the algorithm to an appro-
priate root-finding subroutine for the correction step. If
the error exceeds both tolerances, bisection method is
selected; if the error is between the two tolerance values,
Newton’s method is selected; finally, if the error is below
both tolerances, no updates to jettison time are required
and the algorithm skips the correction step entirely. In this
work, tolerances were defined as �1 ¼ 500 km and
�2 ¼ 25 km, selected based on a trial-and-error process in
order to achieve a good balance between accuracy and
speed. These tolerances would need adjustment for a signif-
icantly different apoapsis target or central body.

The bisection method subroutine begins with lower and
upper bounds on the optimal jettison time, selected a priori

without any dependence on the solution from the previous
guidance call. These values should span the duration of the
longest atmosphere pass that is expected based on disper-
sions and are strongly scenario-dependent. For this work,
bounds of 600 and 900 s are selected, noting that t ¼ 0 is
defined as 10 min prior to atmospheric entry. The jettison
time is then set equal to the midpoint of these bounds,
and the predictor numerically propagates to the final state
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and computes an apoapsis error. If the magnitude of this
error is below the tolerance �1, the algorithm exits the bisec-
tion subroutine with a converged solution. Otherwise, the
bounds on jettison time are updated based on the sign of
the error. In an overshoot case with positive error, the
upper bound is set equal to the current value of the jettison
time; in the undershoot case, the lower bound is similarly
updated. The subroutine then repeats, using the updated
midpoint as the new jettison time, and continues until
either the error magnitude is below the tolerance �1 or a
maximum number of iterations is reached. The subroutine
also includes logic to recognize cases in which the jettison
time converges against the original upper or lower bound.
This can occur in cases where, due to dispersions, the target
state is unreachable and the best-case scenario is to jettison
as early or as late as possible.

Newton’s method begins by perturbing an initial guess
for the jettison time by some pre-determined amount; in this
work, a perturbation of dtj ¼ 0:5 s is used and the initial
guess is set to 700 s. For numerical consistency, the pertur-
bation should be a multiple of the time step used by the pre-
dictor for fixed-time step integration. The apoapsis radius
corresponding to this perturbed jettison time is then numer-
ically predicted; note that this propagation is not explicitly
represented in Fig. 3. The derivative of the objective func-
tion, in this case the slope of apoapsis radius as a function

of jettison time r0a tj
� �

, is then approximated via first-order

finite differencing as shown in Eq. 9. The updated jettison
time is then computed via Eq. 10, which finds the x-
intercept of the tangent line. The apoapsis radius resulting
from the updated jettison time tj;iþ1 is numerically predicted,
and the error is computed and checked against the tolerance
�2. For a sufficiently accurate linearization and a nonzero

slope of ra tj
� �

, the error should decrease each step. The sub-

routine repeats until either converging within the tolerance
�2 or reaching a maximum number of iterations.

r0a tj
� � � ra tj þ dtj

� �� ra tj
� �

dtj
ð9Þ

tj;iþ1 ¼ tj;i �
ra tj
� �

r0a tj
� � ð10Þ

The advantage of combining these two root-finding meth-
ods in a single guidance algorithm is that bisection method is
robust but relatively slow, whereas Newton’s method tends
to converge more efficiently but requires a sufficiently-
accurate initial guess. In particular, for a more typical aero-
capture scenario in which the initial orbit is hyperbolic,
escape cases that are still hyperbolic after exiting the atmo-
sphere can be frequently encountered and may exist near
the optimal solution for a high-energy target orbit. In these
cases apoapsis radius is poorly-defined and the elliptical Kep-
lerian equations would yield a negative value. Because the
error no longer varies smoothly, the
gradient is poorly-behaved and Newton’s method fails to
accurately converge to the solution. Bisection method, on
the other hand, can handle errors of �1 and thus behaves



Fig. 4. Energy reference guidance diagram.
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as desired when escape cases are simply assigned an error of
1. Once converged to a solution, however, the optimal jetti-
son time (as predicted based on the navigation-estimated
states) tends to require only small corrections in subsequent
guidance calls. Because the initial guess is good, Newton’s
method can more efficiently compute these minor adjust-
ments as long as the perturbation step is tuned appropriately.
Note that a possible alternative implementation of the NPC
would, during a single guidance update, call the Newton’s
method subroutine after the bisection method reduces the
error to be between the two tolerance values. However, bisec-
tion method is typically only used in either edge cases where
the solution is unreachable or at times far from the optimal
jettison time, and therefore this modification would add com-
putational expense with a negligible impact on performance.

The output of this prediction-correction loop is a jetti-
son time tj. In Fig. 3 the logic to command jettison once
this time is reached or exceeded is portrayed as part of
the guidance algorithm. However, note that this command
is not necessarily limited to the update frequency of the
guidance algorithm. Instead, tj can be output by the guid-
ance and a separate jettison controller can check the cur-
rent time and command drag skirt jettison when tj is
reached. This controller is simple and can run at a higher
rate than the guidance algorithm, enabling higher-
resolution commanding of jettison and a corresponding
improvement in targeting accuracy. Finally, the ‘‘guidance
called” delay block in Fig. 3 reflects the fact that this pro-
cess is called at a fixed rate rather than constantly iterating.

A significant drawback of the NPC guidance algorithm is
that the number of iterations required to converge is indeter-
minate. That is, while an upper limit on the number of iter-
ations can be enforced, there is no guarantee on the resulting
error magnitude once this limit is reached. Each guidance
call requires a minimum of one numerical propagation, used
to determine whether or not the current tj results in apoapsis
error within the tolerances. The bisection subroutine
requires one additional propagation per iteration, and New-
ton’s method, while more efficient, requires two propaga-
tions per iteration (one perturbed, one corrected). The end
result is that the NPC is not only computationally expensive
due to the requirement of onboard propagation, but the
number of operations required for convergence is in general
unknown. In practice the number of propagations required
for convergence can be approximately bounded through
analysis with expected dispersions, as shown in Section 5,
but the lack of a theoretical guarantee can make validation
of the NPC approach difficult.
4. Energy reference guidance

The energy reference guidance (ERG) algorithm pro-
posed in this work2 seeks to achieve comparable perfor-
2 ERG is equivalent to the simplified form of the QIC algorithm
proposed by the authors in Burnett et al. (2022).
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mance to the NPC while reducing computational
requirements. The algorithm is summarized in Fig. 4 and
outlined in detail in this section, with results provided in
Section 5. ERG is divided into two phases: a pre-
compute phase that is executed after the final OD update
to the spacecraft is received, and an algorithm that is exe-
cuted each time guidance is called during the atmospheric
flight phase.

During the pre-compute phase, a smoothly-varying fam-
ily of reference trajectories is generated and stored for later
use. The ith reference trajectory is computed by linearly re-
scaling the nominal density profile by some factor Ki, then
solving for the optimal jettison time tj;i through an iterative
prediction-correction procedure. This jettison time opti-
mization is equivalent to the Newton’s method subroutine



Fig. 5. Orbital energy vs. time for family of reference trajectories, where X
marks optimal jettison time.
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from the NPC algorithm, and similarly relies on numerical
propagation from the navigation-estimated states. Fig. 5
shows an example set of reference trajectories, where the
trajectories with earlier optimal jettison times correspond
to denser atmospheres (larger Ki values).

In this work a range of Ki 2 0:8; 1:2½ � is used based on
trial and error; this range depends on the expected disper-
sions, atmospheric and otherwise, and is pre-defined on the
ground. The smallest and largest Ki values correspond to
the worst-expected overshoot and undershoot cases,
respectively, based on both expected dispersions (aleatory
uncertainty) and a potential lack of data at other planetary
destinations (epistimic uncertainty), and can be conserva-
tive. The tradeoff for conservatism in these values is an
incremental increase in memory and CPU requirements,
but this has marginal effect on the CPU demand during
the atmospheric flight phase. The number of Ki values,
N, and the resolution at which reference trajectory data
are saved are treated as tuning parameters and discussed
in Section 5. It is important to note that this method of lin-
early re-scaling density is not meant to be a good model of
how density dispersions behave in real atmospheres, in
which dispersions vary with position and time. Addition-
ally, note that it would be possible to implement ERG with
other methods of modifying density to generate a family of
reference trajectories, such as varying atmospheric scale
height of an exponential model. In SubSection 5.2 ERG
is tested against the higher-fidelity density dispersions pro-
vided by GRAM as described in SubSection 2.3.

During the atmospheric flight phase, guidance is called
periodically and is active while sensed deceleration is above
a threshold value, just like in the NPC guidance. Once a
guidance call is initiated, the algorithm determines the ref-
erence trajectory that most closely matches the vehicle tra-
jectory at the current time. This is accomplished via a
heuristic distance parameter d:

di ¼ c1 n� nið Þ2 þ c2 _n� _ni
� �2

ð11Þ

where n and _n are the energy and energy rate computed
from the current navigation-estimated state, respectively,

ni and _ni are the energy and energy rate along the ith refer-
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ence trajectory at the current time, and c1 and c2 are tuning
parameters. Energy is specific orbital energy,

n ¼ j_rj2
2

� l
jrj ; ð12Þ

and energy rate is computed by differencing the current
energy with the energy computed from a prior state esti-
mate. The values along the reference trajectory are approx-
imated for the current time by using the values at the time
step immediately prior to the current time. See Section 5
for a discussion of why this method is chosen as opposed
to interpolation, and for a discussion of the values of c1
and c2. The motivation for this choice of distance parame-
ter is that the target orbit is associated with a particular
energy value and, since the vehicle lacks any out-of-plane
control authority, the guidance objective can be posed as
an energy-targeting problem without loss of generality.
The current energy of a trajectory gives information about
the remaining energy that must be dissipated, and the cur-
rent energy rate of that trajectory gives information about
whether the vehicle is on track to reach the desired energy
upon atmospheric exit as compared to pre-optimized refer-
ence trajectories.

Once di is computed for each reference trajectory, the
reference with the smallest distance parameter is selected
as the nearest match. Then, the algorithm simply updates
the jettison time tj to equal the jettison time that was com-
puted for that nearest reference trajectory, tj;i. Like NPC
guidance, the algorithm outputs a jettison time that is mon-
itored by a jettison controller that is potentially running at
a higher rate.

To summarize, in ERG a family of optimized reference
trajectories is generated during a pre-compute step. Then,
during atmospheric flight updates, the nearest reference is
selected based on a heuristic distance parameter and the
commanded jettison time is updated to equal the jettison
time associated with that reference. ERG has a number
of things in common with the NPC guidance algorithm.
Namely, both algorithms rely on onboard numerical prop-
agation from a navigation-estimated state, and both solve
for optimal jettison time in a root-finding procedure that
requires an indeterminate number of iterations to converge.
The key difference, however, is that in ERG the numerical
propagations occur in a pre-compute phase that occurs
before atmospheric entry, and is thus significantly less
time-constrained. That is, whereas the NPC requires the
prediction-correction procedure to converge during a single
guidance call (0.125 s in this case), ERG only requires that
the procedure converge for each reference in the time
between OD cutoff and atmospheric entry. In fact, if the
link budget and timing of the mission design allow, the
pre-compute step could be performed on the ground and
the relevant data could be uplinked along with the final
OD update. Moreover, OD cutoff could be shifted earlier
if necessary to allow a longer time for the pre-compute
phase. An earlier OD cutoff does result in higher naviga-



Fig. 6. Targeting results for NPC, 5001-trial Monte Carlo analysis.
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tion error at entry, though, so this creates a tradeoff
between accuracy and onboard computation requirements.

Quantitatively comparing the computational demand of
these two algorithms would require hardware-in-the-loop
simulation of a flight software-like implementation of each
algorithm, which is beyond the scope of this study. While
logged CPU time on a research computer is sometimes used
as a basis of comparison in the literature, this approach can
result in misleading data. The implementations of these
two algorithms are developed as proofs-of-concept, not
designed to emulate a flight software implementation and
optimized for efficiency; additionally, other processes can
draw from the same computing resource and affect the
CPU time required. Nevertheless, the ERG algorithm has
two clear advantages over the NPC in terms of CPU
demand. During the atmospheric flight phase of ERG, no
numerical propagation or iterative root-finding is required;
the algorithm simply evaluates a mathematical expression
for the distance parameter associated with each reference
trajectory, then selects the minimum from among these val-
ues. It is clear that, when the algorithms are tuned for com-
parable performance, ERG requires significantly fewer
computer operations per guidance call than the NPC and
is less demanding of CPU capacity as a result. A second
important feature of the ERG algorithm is that it is com-
putationally well-posed, in that the number of individual
operations required per guidance call can be predicted
exactly. In contrast, the NPC requires an indeterminate
number of numerical propagations to reach a given conver-
gence tolerance as part of its root-finding procedure during
each guidance call. Reduced algorithmic complexity and an
ability to closely theoretically constrain CPU demand are
significant advantages of the ERG over the NPC when it
comes to verification and validation of flight software,
especially in the case of radiation–hardened avionics with
limited capacity.

Although ERG is less demanding of CPU capability,
this is traded-off by a higher memory requirement com-
pared to NPC. The time, energy, and energy rate at each
point along each reference trajectory must be stored in
memory and remain accessible to the guidance algorithm.
Thus, the total memory required is a product of the num-
ber of reference trajectories, the number of datapoints
per trajectory, and the memory required per value (e.g.
64 bits for double-precision numbers). In the following sec-
tion, the relationship between targeting performance and
required memory is quantitatively explored.

5. Results

5.1. NPC performance

Fig. 6 shows the histogram of apoapsis altitudes
achieved using the NPC guidance in a 5001-trial Monte
Carlo analysis, modeling the scenario and uncertainties as
described in Section 2. The mean and standard deviation
apoapsis altitude achieved by NPC are 5057 km and
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357 km, respectively; recall that the target is 5000 km.
The data are approximately Gaussian, with the exception
of a small right skew due to a small number of high-
apoapsis outliers. Note that one cause of these outliers is
that the dispersions assumed in this work sometimes exceed
the total control authority of the vehicle. For example, in
cases where the atmospheric density is below nominal
and simultaneously navigation errors result in delivery with
a shallower entry flight-path angle than desired, the vehicle
may overshoot the target orbit even if the drag skirt is
never jettisoned.

In order to roughly assess the computational demand of
the NPC algorithm, the number of propagations required
per guidance call is counted and the maximum of this value
is recorded for each trial; denote this maximum pmax for
convenience. In 88% of cases pmax ¼ 7, and in all but 2 of
the 5001 trials pmax 6 7; the maximum observed value
was 11. Because the NPC lacks guarantees on the number
of iterations required for convergence, this type of numer-
ical analysis would be required to bound the required com-
putational capacity. The statistics of pmax are affected by
the incoming trajectory, target orbit, assumed dispersions,
tuning of the guidance algorithm, and a number of other
implementation details.
5.2. Baseline ERG performance

The targeting performance for ERG under the same cir-
cumstances is shown in Fig. 7, where N ¼ 17 reference tra-
jectories are generated. In this case the mean and standard
deviation apoapsis altitude are 5009 km and 355 km,
respectively, as summarized in Table 2. Statistically speak-
ing, these targeting results are approximately equivalent;



Fig. 7. Targeting results for ERG, 5001-trial Monte Carlo analysis.

Table 2
Apoapsis altitude statistics for baseline NPC and ERG.

Algorithm Mean, km r, km

NPC 5057 357
ERG 5009 355

Fig. 8. Targeting results for fixed-time jettison optimized a priori, 1001-
trial Monte Carlo analysis.

Fig. 9. Targeting results for fixed-time jettison optimized after OD cutoff,
1001-trial Monte Carlo analysis.
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the ERG algorithm achieves targeting performance almost
identical to that of the baseline NPC algorithm. Though
the mean apoapsis altitude of the ERG has lower error
than that of the NPC, this difference is insignificant in
the context of a 5000 km target apoapsis and standard
deviation of more than 350 km. This is remarkably good
performance considering that ERG can only choose from
a set of 17 options for jettison time, whereas the NPC guid-
ance refines jettison time to within a small tolerance.

Figs. 8 and 9 provide a comparison that gives some
insight into how ERG is able to accurately target a final
orbit. In both cases a single jettison time is chosen before
atmospheric entry and used in every trial. In Fig. 8, tj is
optimized a priori based on the nominal scenario, whereas
in Fig. 9 tj is optimized using simulations beginning from
the navigation-estimated state after OD cutoff 10 min prior
to entry. Put differently, the former case is open-loop con-
trol and the latter case is equivalent to ERG with only a
single reference trajectory.

In the open-loop case shown in Fig. 8, targeting perfor-
mance is very poor. A significant number of cases either
impact the planet or have apoapsis altitudes so low that
the vehicle is doomed to re-enter before having a chance
to maneuver, with 13.3% of cases reaching an apoapsis
below 200 km. There is also a high number of overshoot
cases and a wide spread to the data. The case in Fig. 9,
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shown with the same x-axis scaling, stands in sharp con-
trast. With a standard deviation of 971 km it is significantly
worse than the case with 17 reference trajectories shown in
Fig. 7, but performs far better than the case in Fig. 8,
avoiding any impact cases or any apoapsis altitudes above
8000 km.
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This comparison serves to illustrate the following point.
The state of the vehicle at atmospheric entry is subject to
two distinct types of dispersions: delivery error and naviga-
tion error. The former is the difference between the pre-
planned nominal entry state and true state, whereas the lat-
ter is the difference between the onboard best-estimate of
the state, based on filtered navigation data, and the true
state. Under the assumptions for this mission scenario,
delivery error generally exceeds navigation error; that is,
the spacecraft is delivered to entry with limited accuracy,
but navigation filters produce a fairly accurate state esti-
mate by the time of OD cutoff. The results in Fig. 8 use a
jettison time based on the nominal entry state and are thus
subject to both delivery and navigation errors. The Fig. 9
results, in contrast, use a jettison time based on the navi-
gated state at OD cutoff, which effectively removes most
of the delivery error. Therefore, it is clear that much of
the benefit from the ERG algorithm is simply a result of
re-computing a reference trajectory (in this case, a jettison
time) onboard the spacecraft using an updated state
estimate.

5.3. ERG tuning

Recall that the ERG algorithm can be tuned by adjust-
ing the values of c1 and c2 in the distance parameter, Eq.
11. A parametric study was carried out to find values of
these parameters that offer reasonable performance, with
results shown in Table 3. In order to eliminate other fac-
tors, these cases used 401 reference trajectories with 8000
datapoints per trajectory. A tuning of c1 ¼ 1; c2 ¼ 10 is
selected based on its minimum standard deviation result,
and is used for all following results as well as for the base-
line case in Fig. 7. It is interesting to note that the
minimum-variance case occurs when c1 and c2 are of simi-
lar magnitude, and that when either parameter is set to zero
performance degrades significantly. This highlights the fact
that energy and energy rate are both necessary for the best
match with a reference trajectory.

5.4. Memory vs. performance trade-Offs

Although the ERG algorithm is significantly less
demanding of CPU capability, it is significantly more

demanding of memory space accessible to the guidance
Table 3
Apoapsis altitude statistics for varying distance parameter tuning.

c1 c2 Mean, km r, km

1 0 6034 601
100 1 5036 389
10 1 5033 382
1 1 5027 361
1 10 5019 338
1 100 5022 340
1 1000 5053 416
0 1 5121 578
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algorithm. It is therefore of interest to quantify trade-offs
between memory and performance for the ERG algorithm.
The storage required is estimated as the product
3� N �M � D where N is the number of reference trajec-
tories, M is the number of datapoints per reference trajec-
tory, and D is the required memory per datapoint, and
where 3 is pre-multiplied because each reference trajectory
requires storing time, energy, and energy rate at each
datapoint.

In Fig. 10, the number of reference trajectories is varied
from 1 to 401 and the apoapsis altitude results are com-
pared, with a 1001-trial Monte Carlo analysis performed
in each case. M ¼ 8000 datapoints are recorded for each
reference trajectory. The mean and standard deviation of
apoapsis altitude for these same trials are listed in Table 4.
From these results, it is clear that increasing the number of
reference trajectories above 81 makes no discernable differ-
ence in performance. From 81 to 17 there is a small
increase in standard deviation, then from 17 to 9 a larger
increase in variability and the first noticeable change in
the histogram. For fewer than 9 reference trajectories, per-
formance significantly degrades. Note that the mean
remains centered for all cases, as overshoot and undershoot
cases increase at approximately the same rate as the num-
ber of reference trajectories is decreased. Based on this
analysis, a reasonable balance between memory and per-
formance seems to be N ¼ 17 reference trajectories. Note
that this inflection point may change for differing mission
scenarios.

A similar analysis is presented in Fig. 11 and Table 5,
where in this case the number of datapoints per trajectory
is varied from 8000 to 500 while holding the number of ref-
Fig. 10. Performance comparison for varying number of reference
trajectories, 1001-trial Monte Carlo analysis.



Table 4
Apoapsis altitude statistics for varying number of reference trajectories.

N Mean, km r, km

401 5019 338
81 5020 338
17 5010 361
9 5008 415
5 5036 511
3 5210 914
1 5026 971

Fig. 11. Performance comparison for varying reference trajectory resolu-
tion, 1001-trial Monte Carlo analysis.

Table 5
Apoapsis altitude statistics for varying number of datapoints per reference
trajectory.

M Mean, km r, km

8000 5020 338
4000 5076 345
2000 5190 365
1000 5425 433
500 5912 588
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erence trajectories constant at 81. Note that the numerical
propagation always occurs with a timestep of 0.125 s,
meaning that for M ¼ 4000 a datapoint is recorded every
other step, forM ¼ 2000 every 4 steps, etc., assuming prop-
agation for 1000 s total.

Whereas the data in Fig. 10 remain centered while the
spread increases, in this case there is a shift to the right
combined with an increased spread each time that M is
decreased. That is, recording fewer datapoints results in a
bias toward overshoot cases as well as increasing variabil-
ity. Moreover, in these results targeting performance begins
to degrade immediately, without a clear inflection point.
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To understand these trends, recall that during the atmo-
spheric flight phase the reference energy and energy rate
values are approximated by using data from the time step
immediately prior to the current time. Thus, for a resolu-
tion of 500 datapoints, the values used to compute the dis-
tance parameters are associated with a point on the
trajectory up to two seconds earlier than the current time.
This effectively inflates the energy of every reference point,
and the result is that the matched trajectory has a higher
density scale factor than it otherwise would, leading to an
earlier jettison time and ultimately the skew toward over-
shoot cases observed in Fig. 11. It may seem as though
using interpolation to compute energy and energy rate of
the reference trajectory at the current time would address
this issue. However, energy rate changes as a step function
at the moment of drag skirt jettison. In short, interpolating
across this discontinuity disrupts the ability of the algo-
rithm to successfully match with the reference trajectory
that would actually yield optimal performance. Therefore,
in this work values from the previous time are used and the
requirement for high-resolution reference trajectory data is
accepted; a value of M ¼ 8000 is taken to be the baseline
configuration shown in Fig. 4. As a point of reference, if
double-precision values of 64 bits each are assumed for this
baseline configuration, a total of about 3.3 MB of memory
would be required. In comparison, the Sphinx avionics
platform, which was developed at JPL for SmallSat mis-
sions and now has flight heritage from the Lunar Flashlight
spacecraft (Rizvi et al., 2022), includes 256 MB of syn-
chronous dynamic RAM (Imken et al., 2017) This suggests
that the 3.3 MB requirement is well within reason. Thus,
while the tradeoff of reduced CPU demand for the ERG
is increased memory requirement, this increase is not likely
to represent a significant detriment to the overall design.

6. Discussion

A notable limitation of both algorithms presented in this
work is that path constraints, such as peak heat flux and
peak g-load, are not incorporated into the onboard logic.
While other work does provide a method to account for
these constraints in NPC guidance for aerocapture and
entry (Lu et al., 2015; Lu, 2014), there is currently no
equivalent approach for ERG. The impact of this limita-
tion strongly depends on the mission scenario of interest.
For the small satellite demonstration mission studied here,
the vehicle design is expected to have significant margin
compared to the expected heating and g-loads, and thus
it is likely unnecessary for the onboard guidance to directly
incorporate the associated constraints. In more stressing
cases for which the nominal scenario is near the limits of
heating and g-loads, an additional outer loop could be
added to the ERG algorithm to prohibit executing jettison
times that are predicted to have an unacceptably high like-
lihood of resulting in path constraint violation.

The most likely barriers to implementation of this algo-
rithm are the computation time required to generate the
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reference trajectories and the memory required to store the
associated data. Therefore, it would be of interest to extend
the approach presented in this work to achieve the same
performance with fewer reference trajectories, or else
improve performance with the same number.

A potential approach would be to interpolate between
the reference trajectories in some way, such that the com-
manded jettison time does not necessarily equal one of
the reference jettison times. Because the current vehicle
state will generally not equal the state at that time along
even the nearest reference trajectory, the difference between
the current and reference state could inform a correction to
the jettison time of that reference trajectory. One could
accomplish this by computing linear sensitivities of jettison
time with respect to each relevant state component, then
computing the correction term as the product of this sensi-
tivity and the state difference. The altitude, velocity magni-
tude, and flight-path angle could be considered a sufficient
set of state components since the primary concern is planar
motion. However, there are two significant issues with that
approach. First, this would require computing and storing
sensitivity values at each time along each reference trajec-
tory, resulting in a major increase in CPU demand and,
assuming three state sensitivities, doubling the amount of
memory required. Second, even setting aside the computa-
tional challenges, the dynamics are nonlinear and the true
state tends to diverge significantly from any of the reference
trajectories over time, leading to inaccurate linearization.

One possible workaround is the incorporation of quasi-
initial conditions. These fully represent the current state by
back-propagating through a nominal model, effectively
defining a nonlinear coordinate transformation. Quasi-
initial conditions have been shown to be a more linear state
representation than the state at a given time for aerocap-
ture (Grace et al., 2022). This state representation also
removes the requirement of computing sensitivities at each
time, since they need only be computed once in quasi-initial
condition space, although a single back-propagation per
guidance call is then required during atmospheric flight.
Preliminary work by the authors incorporates quasi-
initial conditions into an extension of the ERG algorithm
presented here (Burnett et al., 2022). While early results
are promising, it is difficult to guarantee reliable and accu-
rate linearization in the presence of dispersions, whereas
the simpler approach presented here performs well. Fur-
thermore, note that while the computational burden of
the quasi-initial condition approach is far less than a lin-
earization based on the current state, it does still require
numerically computing three sensitivity values for each ref-
erence trajectory, meaning that the number of numerical
propagations during the pre-compute phase increases by
roughly a factor of four.

Another interesting avenue for future work is some
method of nonlinear corrections to the reference jettison
time. This could be combined with the previous concept,
such that some nonlinear interpolation surface is generated
in quasi-initial condition space during the pre-compute step
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and then used to guide corrections during the atmospheric
flight phase. This could potentially alleviate issues related
to inaccurate linearization, although it would likely require
a commensurate increase in computational cost.
7. Conclusions

It is worth returning here to the single-event jettison
concept itself. This control architecture inherently sacrifices
performance in pursuit of simplicity. By relying on the jet-
tison of a single rigid drag skirt, the vehicle lacks any out-
of-plane control authority, forgoes continuous control and,
perhaps most importantly, is coasting without any control
authority for the remainder of atmospheric flight once the
drag skirt is jettisoned. A range of other approaches
address one or more of these shortcomings, including
continuously-variable drag modulation (Vinh et al.,
1986), jettison of multiple drag skirts (Roelke et al.,
2022), and lift modulation (Vinh et al., 2000; Deshmukh
et al., 2020). However, each of these architectures adds
complexity in terms of flight hardware and, in most cases,
flight software. The motivation to use single-event jettison
drag-modulation is not to achieve orbit insertion as accu-
rately as possible; rather, the goal is to reliably reach the
target orbit within some reasonable error bounds while
keeping the aerocapture subsystem as simple as possible.
This is appropriate either for missions that can tolerate a
range of apoapsis altitudes or for cases where the space-
craft has sufficient propellant to clean up the expected tar-
geting errors.

This broader motivation should inform the choice of
guidance algorithm and the interpretation of results. In this
work a novel guidance algorithm, ERG, is presented that
achieves equivalent targeting performance to the baseline
NPC. Both algorithms have a standard deviation of about
355km and in some outlier cases reach an apoapsis several
thousand kilometers higher than the target. However, the
choice of an inherently limited control architecture limits
the ability of any guidance algorithm to accurately target
a final orbit. The fact that the two distinct algorithms
achieve nearly-identical results could suggest that both
are operating near the ceiling of performance for this sce-
nario. The ERG algorithm achieves this result with signif-
icantly reduced CPU demand, albeit with an increased
demand for accessible memory. The simplicity of the atmo-
spheric flight phase of the ERG algorithm aligns well with
the broader motivation to reduce complexity for this type
of mission scenario.
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