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Chapter 1

Introduction

The U.S. Navy is expanding the capabilities
of the boom cranes on the T-ACS vessel to
be able to operate at higher sea states. These
ships have several large boom cranes which can
off-load cargo from container vessels to smaller
lighter vessels as shown in Figure 1.1. A sin-
gle crane on the Flickertail State was equipped
with a Pendulation Control System developed
by Sandia National Laboratories.1 By installing
ship motion and cargo pendulation sensors, as
well as a closed-loop crane servo system, the
PCS has demonstrated that it is capable of
avoiding the onset of swing to due ship motion
or operator commanded cargo motion, and re-
ject any existing swing due to lift-off transients
or wind disturbances.

Figure 1.1: Cargo Ship Off-Loading Containers
Onto Lighter Vessels.

The current control solution of the PCS re-
quired the inertial position and attitude mea-
surements of the ship. A commercial sensor
called the POS/MV is used to obtain these
states. This sensor uses a dual-GPS system
to determine heading information, as well as
three-dimensional positions. Note, the differen-

tial GPS mode is not used here. The reason for
this is that the vessel must operate at arbitrary
locations on Earth where such differential cor-
rection signals would typically not be available.
An inertial measurement unit (IMU) is also in-
cluded to provide roll and pitch angles. The
accelerometer and rate gyro information of the
IMU are then used within an extended Kalman
filter to provide smooth estimates of all 6 de-
grees of freedom on the ship (latitude, longi-
tude, height, heading, pitch and roll). This sys-
tem works quite well for its intended purposed
of providing accurate ship motion and location
information. To use this sensor along with the
PCS, additional sensor processing had to be
done to use the ship state information in the
control strategy. In particular, the POS/MV
provides very smooth ship position estimates, a
requirement of the PCS strategy. However, the
un-aided GPS states are only accurate to about
±10 meters. The POS/MV does filter these po-
sition errors using the IMU sensor information.
However, some residual position errors will al-
ways exist. Depending on the severity of the
GPS position errors, these long term drifts (in
the order of dozens of seconds to minutes) can
be less than a meter, and up to levels of mul-
tiple meters. The PCS performs additional fil-
tering to remove this drift. However, this pro-
cess is never perfect or without consequences.
As such, the payload position with the current
PCS strategy will wander by a small amount
due to the POS/MV sensor errors. This erro-
neous motion is typically rather small and eas-
ily controlled by the operator driving the crane.
Further, the crane servo system required crane
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joint speed commands. To obtain these, the
position-based PCS solution is numerically dif-
ferentiated. Differentiating sensed states is a
difficult task. Unaided, even small noise can
become hugely amplified through the numeri-
cal differentiation process. Thus this differenti-
ation is performed simultaneously with a low-
pass filtering process. This has been shown to
work reasonably well the with Flickertail in-
stalled sensor. However, adding this filter also
introduces some performance penalty through
the introduction of additional phase lag.

The accompanying report entitled “Rate-
Based Pendulation Control System Study”
presents two new control strategies for the Navy
Pendulation Control System (PCS). Instead of
measuring the inertial ship position and at-
titudes, it is assumed that the ship sensor
will measure the ship acceleration and rota-
tion rate (rate gyro), along with the inertial
ship pitch and roll angles. Such sensors sys-
tems are much cheaper than the more sophisti-
cated POS/MV sensor system. The accelerom-
eter and rate gyro information is measured un-
filtered and processed inside the new PCS con-
trol strategy. Carefully filtering and integrating
the accelerometer information, the ship veloc-
ity and positions can be estimated. These steps
are outlined in the Reference 2. The filtered
accelerometer-based ship positions are equiva-
lent to the filtered GPS-based position. Note
that neither filtered position measurements are
the absolute ship motion. Rather, only the
ship motion which will cause significant cargo
pendulation is retained. The advantage of us-
ing accelerometers and rate gyros to estimate
surge, sway, heave and heading is that the sen-
sor technology is much cheaper to implement.
The down side is that the numerical integration
from accelerometer states to position states is
complicated by the presence of sensor noise and
bias. If a constant sensor bias is present in the
accelerometer measurement, then the double in-
tegration will result in a quadratically growing
error. The filtering and integration strategy
presented in Reference 2 is able to provide a
stable integration method.

Given the newly estimated ship motion posi-

tion, one proposed PCS solution is to use the
existing position-based control strategy. This
will involve less changes to the PCS software
to implement. Another advantage is that the
deck-tracking mode of the PCS will continue
to function as is. The ship motion sensor pro-
cessing software component will have to be re-
placed with new routines. This report stud-
ies the performance of this new PCS strategy
and compared it to the performance of the
position-based PCS strategy. Note that both
of these methods end up numerically differen-
tiating position-states to obtain crane velocity
servo commands.

The second new PCS control strategy also
measures the motion through accelerometer and
rate gyro sensors, and filters-integrates the sen-
sors to obtain velocities and position estimates.
However, here the control algorithm of the PCS
is replaced with a new algorithm which di-
rectly computes commanded crane servo rates.
This avoids the numerical differentiation pro-
cess of the position-based strategy. Sensing a
certain ship motion rate, a corresponding crane
rate is directly computed.2 Un-aided, any pure
velocity-based control strategy will be unstable
in the presence of unmodeled system behaviors.
This new control strategy is thus stabilized by
using the position-based control solution.

This report will study and compare the per-
formance of all three control strategies. An ad-
vanced crane simulation software package called
CraneSim is used. Sensor communication, dis-
cretization, and noise behaviors are modeled.
The crane hydraulic drive system is modeled
through using a transfer function with a lag be-
havior which reflects that of the actual hard-
ware. Rate and acceleration limits are also im-
posed. Note that this work is not intended
to provide actual payload motion predic-
tions. Rather, the differential performance of
the crane control strategies is of interest. The
three different simulations only differ in how
they sense the ship motion, and how they com-
pute a control strategy. The same crane drive
system and swing sensor models will be used
through-out. To compare to the position-based
PCS strategy, realistic POS/MV sensor error
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models are used. This are discussed in detail in
the following chapter. The accelerometer and
rate gyro sensor error type of concern is the
bias. Small measured noise levels will be auto-
matically smoothed out through the integration
process. Thus, the accelerometer and rate sen-
sors errors are modeled as a constant bias in
this study.



Chapter 2

Sensor Error Models

2.1 POS/MV Sensor Error
Mode

This section outlines how the POS/MV sen-
sor errors are to be modeled. The three con-
trol strategies being considered will only differ
significantly in their performance when sensor
corruption are introduced. To provide a fair
comparison, incorporating realistic POS/MV is
important. The following issues are of con-
cern. 1) The degree of multi-path severity will
cause some slow acting drift (periods often ten
times slower than the pendulation frequency)
in the horizontal translation and vertical heave
measurement, as well as some amount of in-
creased drift in the heading measurement. This
drift manifests itself as a non-Gaussian error
component. 2) The measured ship states are
clipped to values with a specific resolution. The
POS/MV sensor model will need to duplicate
this resolution. 3) A certain amount of Gaus-
sian noise is included if needed. The position
measurements of the POS/MV are very smooth
and don’t show any gaussian noise characteris-
tics. Only the resolution clipping is present.
However, the orientation measurements do ex-
hibit some small amount of gaussian noise be-
havior. This will cause noise-amplification is-
sues when the position-based control strategies
numerically differentiate crane states to com-
pute velocity servo commands.

Dynamic POS/MV tests conducted at Sandia
National Labs found the sensor to be very ac-
curate and no perceived sensor lag was found in
the rates (even within the high accuracy of the
benchmark units). Thus no sensor lag is incor-

porated into the POS/MV sensor model. The
static drifts discussed earlier will introduce by
themselves some small amount of rate errors.
However, since these drifts are relatively slow
acting, the modeled rate errors will be small, as
required.

2.1.1 Numerical Model

Figure 3.3 shows some sample static drift be-
havior of the actual POS/MV unit. The results
shown are for a low multi-path environment.
The amount and frequency content of the trans-
lational and heading drift depends on how se-
vere the multi-path environment is. To model
different multi-path situation, three cases are
considered. Case 1 is a best case scenario with
a very low multi-path environment. Both the
static drift amplitudes and dominant drift fre-
quencies will be small. Case 2 is a medium
severity case of sensor errors. The frequency
content of the error drifts is still low, but the
amplitudes are somewhat larger. Case 3 is a
worst case scenario modeling static drifts that
were encountered with a high multi-path envi-
ronment. Note that the roll and pitch errors are
not affected at all by the degree of GPS multi-
path severity. Thus, the roll and attitude error
models are identical for all three cases.

The general concept of the POS/MV sensor
model is to mathematically capture the static
sensor drifts, as well as any Gaussian noise com-
ponents, and to superimpose this error on top
of the true ship motion. The summed signal
is then clipped to the appropriate resolution.
This concept is illustrated in Figure 2.2. The
thus produced POS/MV sensor signal will cause

4
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Figure 2.1: Static POSMV error comparison of the numerical POSMV error model (red) and the measured
POSMV static errors (black). A low multi-path scenario is shown.
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Figure 2.2: Illustration of the POS/MV sensor Error Model
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the PCS an equivalent amount of differentiation
and sensor error issues as the true POS/MV
sensor signal will.

To most challenging aspect of modeling the
POS/MV sensor errors is capturing a realistic
static drift behavior. The main cause of the
”random-walk” like drift of the sensor signal is
due to the multi-path environment. There are
routines available to generate bounded random
walk behavior, which are similar to the rou-
tines which generate true gaussian noise. How-
ever, these random walk routines don’t pro-
vide a high enough fidelity match with the
measured POS/MV sensor drifts. To mathe-
matically model the translational sensor signal
drifts, a model of the POS/MV Kalman filter
with its multi-path rejection logic would need
to be used. Because the POS/MV is a propri-
etary commercial unit, obtaining such informa-
tion would not be trivial. Further, to program
such a model would be a very complex, involved
and expensive development.

A simpler and sufficiently effective modeling
method is chosen instead. The spectral de-
composition or Fast-Fourier-Transform (FFT)
of the sensor drift provides a means to ”finger-
print” the drift signal. To create a time de-
pendent function which models the desired drift
behavior, we only use the dominant FFT com-
ponents to reconstruct the signal. The math-
ematical details of this idea are outlined next.
Let h(t) be the original sensor signal which we
are attempting to model. The signal is sampled
N times at discrete time intervales tk with a
sampling time ∆.

tk = k∆ for k = 0, 1, . . . , N − 1 (2.1)

Let hk be the sampled signal h(t) at a particular
time tk.

hk = h(tk) (2.2)

Performing the FFT of a time based signal h(t)
we obtain an equivalent frequency based signal
H(f). Doing a discrete FFT on N samples hk

we obtain N complex variables Hk. Each Hk

parameter provides the amplitude and phase
response of the signal h(t) at a particular fre-
quency fk. If h(t) has a dominant sinusoidal

motion at a frequency fk, then the magnitude of
the complex variable Hk would be much larger
than the remaining complex FFT coefficients.
The frequency fn is defined as

fn =
n

N∆
=

n

T

for n = −N

2
, . . . , 0, . . . ,

N

2

(2.3)

where T is the total time that the signal h(t)
was sampled. Due to Nyquist’s sampling the-
orem, the highest frequency content that can
be detected with a sampling period of ∆ is
fmax = 1/(2∆). The FFT produces the sig-
nal response due to both positive and negative
frequencies. The first N/2 samples of the FFT
output Hk correspond to the positive frequen-
cies. The second half of Hk outputs correspond
to the negative frequencies. If the signal h(t)
is real, then H(−f) = H(−f)∗, with ()∗ being
the complex conjugate operator. The FFT bode
magnitude plot will thus be symmetric about
the N/2 sampling point. To consider real sig-
nals h(t), we can focus on the real frequencies
fn with n = 0, 1, . . . , N/2. The angular velocity
ωn is defined as

ωn = 2πfn = 2π
n

N∆
= 2π

n

T
(2.4)

At this point we are ready to look at the
mathematical details of the discrete FFT trans-
formation itself. Let us define the discrete FFT
of a set of signal samples hk through

Hn =
1√
N

N−1∑
k=0

hke
2πikn/N

=
1√
N

N−1∑
k=0

hke
iωntk (2.5)

This definition of the discrete FFT is standard
except for the scaling parameter

√
N . In some

definitions this is set to 1. However, using the
scaling in Eq. (2.5), the inverse discrete FFT
has the same functional form except for the sign
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of the exponential.

hk =
1√
N

N−1∑
n=0

Hne−2πikn/N

=
1√
N

N−1∑
n=0

Hne−iωntk (2.6)

Given the Hn coefficients, to reconstruct the
original time based signal h(t) one would use

h(t) =
1√
N

N−1∑
n=0

Hne−iωnt (2.7)

However, it is not necessary to use all N of the
complex Hn coefficients to reproduce the sig-
nal h(t) to a reasonable accuracy. Assume that
h(t) was sampled at 10 Hz, then ∆ would be
0.1 seconds. Using Nyquist’s sampling theorem,
the highest frequency which can be detected is
5 Hz or ∆ = 0.2 seconds. However, the signal
often only has a frequency content which is a
small subset of the total frequency content that
is measured. To reproduce an approximate sig-
nal ĥ(t) we can ignore the higher frequencies
and only use the dominant Hk components in
the inverse FFT. For the case of modeling the
POS/MV sensor drift, we assume that the drift
will occur about a zero static offset. Any non-
zero offset, due to either the sensor itself or its
mounting, can be incorporated later with the
calibration procedure. If the drift is occurring
about a nominal zero mean point, then H0 (cor-
responds to a zero frequency) will be zero. Thus
we start the counter in the approximate inverse
FFT with 1 instead of zero. Further, assume
that only the first M FFT coefficients are sig-
nificant. The integer M must be less than N/2
to only use the Hn corresponding to positive fre-
quencies. The approximate signal ĥ(t) is then
expressed as the truncated series

ĥ(t) ≈ 1
α

M∑
n=1

Re
(
Hne−iωnt

)
(2.8)

The scaling factor is changed here to α = 2
√

N
since only have the frequency spectrum is con-
sidered (thus only half of the Hn coefficients).

Whereas Eq. (2.7) will return a real function
h(t) if the original function is real, Eq. (2.8) will
not return a real function. Due to the trunca-
tion, some imaginary components will remain.
This is why the Re() operator has been added
to the ĥ(t) evaluation. Let the complex coef-
ficient Hn be expressed in real and imaginary
components as

Hn = Hnr + iHni (2.9)

Using eiθ = cos θ + i sin θ, Eq. (2.8) is then
rewritten as

ĥ(t) ≈ 1
α

M∑
n=1

(
Hnr cos(ωnt)

−Hni sin(ωnt)
)

(2.10)

The advantage of this form is that no complex
algebra must be programed. All variables in
Eq. (2.10) are real variables. To model the gen-
eral drift behavior of the POS/MV signal, typ-
ically 15–25 Hn coefficients are used.

Note that a myriad of other curve fitting
methods could have been used. For example,
one consideration was to model the sensor drift
by using an interpolation scheme such as cu-
bic splines or Hilbert polynomials. However,
the drawback of this method is that there is
no smooth sway to loop the drift data once the
end of the measurements are reached. Using
the FFT coefficients we are left with a nat-
urally cyclic drift function that smoothly will
transition at the data end to the beginning of
the data. Further, using the data interpolation
method would require reading in large amounts
of data. Using the FFT coefficients provided a
faster and more efficient implementation.

The resolution of the POS/MV serial commu-
nication is specified by the TSS specifications.
What remains is the modelling of the gaus-
sian random noise component. As was observed
earlier, the position states of the POS/MV
where very smooth. No Gaussian noise was ob-
served on the signal, only the communication
discretization. The attitude measurements did
show some small amount of gaussian noise. Fig-
ures 2.1(b) and 2.1(c) show the attitude static
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Figure 2.3: Illustration of typical pitch and roll
static attitude errors

errors as black lines. Note that the errors are
overall very small and of the order of the com-
munication resolution level.

Figure 2.3 shows only the POS/MV sensor
error for the pitch and roll angles. This illus-
tration is simpler to view than Figure 3.3 be-
cause no approximated ĥ signal are super im-
posed. If the attitude errors were solely due to
gaussian noise, then the signal errors would be
composed of a series of sharp spikes. Instead,
a small drift-like behavior is observed. This is
why the attitude errors are also modeled using
the ĥ(t) function mentioned earlier. However,
note the black box-like areas in Figure 2.3. For
example, consider the black box near sample
point 2000 in the pitch plot. The true value of
the pitch error is probably near -0.005 degrees.
This is precisely between the 0 and -0.01 degrees
that are obtained by the pitch communication
resolution. A small amount of gaussian noise
would cause the POS/MV pitch signal to ei-
ther jump to 0 or -0.01 degrees. A region where
the gaussian noise has no effect is around data
point 3500–4000. Here the pitch error is essen-

tially steady at 0.01 degrees. The actual pitch
angle must be close to 0.01 degrees in this zone.
Adding a small amount of gaussian noise is not
sufficient to tip the POS/MV pitch output to ei-
ther 0 or 0.02 degrees. Looking at the modeled
pitch and roll error behavior in Figures 2.1(b)
and 2.1(c), we see that the combination of mod-
eling the overall drift through the FFT coef-
ficients and then adding some small gaussian
noise before clipping the angle to the commu-
nication resolution does produce a signal who’s
qualities are equivalent to the original POS/MV
signal. In particular, differentiating the mod-
eled attitude signal would be equally difficult
to differentiating the true POS/MV sensor sig-
nal.

To generate gaussian noise we use the follow-
ing numerical procedure. Assume that x is a
random number with a value between 0 and 1.
This number by itself will not have a gaussian
distribution. Let y be the desired gaussian ran-
dom number which is to have a standard devia-
tion of σ. This value is obtained by computing
2N xi values:

y = σ

(
2N∑
i=1

xi −N

)
(2.11)

The random y value distribution will resemble
the standard bell-shaped gaussian distribution
out to Nσ. The parameter N is given a value
of 6 in the current simulations.

2.1.2 POS/MV Error Model Cases

As mentioned earlier, depending on the local
GPS conditions, the level of random-walk be-
havior observed with the POS/MV can differ
substantially. The POS/MV sensor errors are
modeled for three different situations:
• Case 1: Best GPS conditions encountered.

This usually meant very low multi-path
problems with the GPS receivers.

• Case 2: Medium case. This meant moder-
ate GPS multi-path issues.

• Case 3: Worst case. This illustrates some
of the worst POS/MV random walk issues
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encountered. Unfortunately, the environ-
ment on the ship tended to favor case 3.

The parameters required to model the
POS/MV signal behavior of each of the sensed
6 degrees of freedom are stored to an ASCII
data file POSMVx.dat. The letter x corresponds
to the sensor error model case number. Case 1
is the best situation with the least amount of
drift, while case 3 is the worst situation with a
large amount of drift and higher drift frequen-
cies. The order in which the signal behavior
parameters are stored is:

1. North-South motion (to be replaced with
latitude information)

2. East-West motion (to be replaced with lon-
gitude information)

3. Heave motion

4. Roll angle

5. Pitch angle

6. Heading angle

For each DOF, the first line contains these pa-
rameters:

M α T σ δ

where M is the number of Hn coefficients used,
α is the inverse FFT scaling factor, T is the
total signal duration of the original signal (in
seconds, used in Eq. (2.4) to compute ωn), σ
is the standard deviation of the gaussian noise
component (in radians) and δ is the communi-
cation resolution (in radians). The following M
lines then contain the parameters

Hnr Hni

This process is repeated for each POS/MV de-
gree of freedom.

Figures 2.4 through 2.6 show the static
POS/MV errors that are modeled for each case.
In case 1, the position drifts are very small with
values less than 0.5 meters. In case 2, the po-
sition drifts increase some to values of about
1 meter. The worst case, case 3, has position

drifts up to several meters. Further, recall that
since the roll and pitch angle errors were essen-
tially invariant to the effects of the GPS multi-
path induced errors, the same roll and pitch er-
ror models are used for all three cases.
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Figure 2.4: Case 1 (best) static POSMV static error drift model. (low amplitudes and low frequency
content found during a low multi-path environment
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Figure 2.5: Case 2 (medium) static POSMV static error drift model. (medium amplitudes and low
frequency content found when during a medium multi-path environment
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Figure 2.6: Case 3 (worst) static POSMV static error drift model. (larger amplitudes and higher frequency
content found when during a high multi-path environment
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2.2 Accelerometer and Rate
Gyro Sensor Errors

Fortunately, the accelerometer and rate gyro
sensor errors required for this crane control per-
formance study are far simpler to model than
the POS/MV sensor errors. The POS/MV
errors have to be modeled to a high fidelity
because the drifts will directly cause payload
wander, and the sensor noise can be amplified
through the numerical differentiation process.
The accelerometer and rate gyro sensor corrup-
tion types considered include gaussian noise,
static bias, and an erroneous sensor measure-
ment scaling value. Thus, no random walk be-
havior is modeled for the modeled IMU sensor
measurements.

Note that all control strategies assume that
the ship pitch and roll angles are measured di-
rectly. With an IMU (accelerometer and rate
gyro combination) this can easily be done. The
position-based control strategy requires a nom-
inal heading motion to be estimated. This is
obtained by taking the rate gyro sensor infor-
mation (i.e. the body angular velocity vector ω)
and computing first the corresponding heading
rate through a kinematic transformation. Note
that this calculation only requires the absolute
ship roll and pitch angles, which are assumed to
be measured directly. The periodic ship head-
ing motion for a vessel anchored at sea is a rel-
atively minor motion compared ship roll and
pitch motion. Most of the motion is typically
the ship roll motion excited through the ocean
waves. As with the ship translational motion,
the true inertial heading information is not re-
quired. Only the heading motion with a fre-
quency content close to that of the cargo pen-
dulation frequency is required.

The following sensor corruption types are
thus applied to the translational accelerometer
states ẍ, ÿ and z̈, as well as to the rate gyro
states ω1, ω2 and ω3. These corrupted mea-
surements are then used to estimate the current
ship velocity and position vectors, as well as the
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Figure 2.7: Illustration of Sensor Bias

ship heading angle.

2.2.1 Sensor Bias

Every sensor contains a bias error. Instead
of measuring the true acceleration, for exam-
ple, the sensed value is offset by a bias factor b.
This is typically due to minor miss-calibration
issues. A sample bias error is illustrated in Fig-
ure 2.7. This bias can vary slowly over time as
the electronics warm up. However, over short
time periods, it is reasonable to model the bias
as a constant value. It takes less than 10 min-
utes for the crane to pick up cargo and deposit it
at a new location. The bias is assumed to not
vary significantly over this short time period.
Thus, the 3D crane simulation uses a constant
bias value when modeling the accelerometer and
rate gyro sensor information.

The Litton LN200 is a very common IMU
used to measure inertial motion.3 The current
POSMV sensor contains an IMU of this class.
The LN200 specifications list an accelerometer
bias which can vary between 300–3000 µg. The
simulation uses a value of 1500 µg. The LN200
rate gyro bias specification lists a possible range
of 1–10 deg/h. The simulation uses the upper
bound of 10 deg/h. The performance results
shown are representative of using an IMU of
this grade and quality.

When using accelerometer information to es-
timate inertial motion, the sensor bias is the
primary source for integration instabilities. For
any position of velocity based control strategies,
the effect of the sensor bias on the cargo stabi-
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lization performance is of primary concern.
For actual IMU sensors the measurement bias

levels are not constant. Rather, these biases
change rather slowly as the system is running
for while and the electronics temperature in-
creases. Note that the employed estimation and
filtering techniques do not require precise bias
levels which are then compensated for in soft-
ware. Instead, frequency-based filtering tech-
niques are employed which provide much more
robust results. As a result, the shown perfor-
mance is not expected to vary by any signifi-
cant amount if the bias is replaced with a slowly
varying bias. The only requirement is that the
bias does not vary significantly over the time
period that it takes to pick up and land cargo.
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Figure 2.8: Illustration of Sensor Scaling

2.2.2 Sensor Value Scaling

Besides having a sensor bias, the next rel-
evant sensor error is the erroneous scaling
value. This concept is illustrated in Figure 2.8.
The actual sensor value is typically obtained
through a scaling process using sensor-internal
signals. If this step is not perfectly calibrated,
then the perceived motion will always be some
percent too large or too small. Note the con-
ceptual difference to having a bias b. The bias
adds a fixed error to the sensor signal, where
the scaling error add a percentage error signal.
The larger the motion, the more significant the
effect of the scaling error will be.

The Litton LN200 IMU list a scaling error
range of 0.03–0.5% for the accelerometer infor-
mation, and a range of 0.01-0.05% for the rate

gyro measurements.3 The 3D simulation uses
very conservative values of 0.5% scaling error
for both the accelerometer and rate gyro mea-
surements.

Note that this scaling error is expected to
have the most severe impact on the vertical
heave motion estimation. The accelerometers
measured the total inertial acceleration. This
includes the gravitational acceleration. A nom-
inal gravity acceleration of 9.81 m/s is assumed.
However, this value can vary slightly on differ-
ent location on the Earth. The ship motion
estimation algorithm determines the gravity ac-
celeration vector using the ship yaw and pitch
angles, and then removes this component from
the measured ship acceleration. Thus, if the
ship is not translating relative to the Earth, the
effective measured acceleration will be zero, as
expected. However, if the sensor has scaling
errors, then the measured gravitational acceler-
ation will be slightly larger or smaller, depend-
ing on the scaling error value. As a result, it is
impossible to perfectly cancel the gravitational
bias of the acceleration. This introduces a rel-
atively large net bias in the ship vertical direc-
tion. The filters will try to remove, or at least
minimize, the effect of this bias. In essence, the
sensor perceives the ship to be slowing rising or
sinking. The filtering and estimation strategy
used for the updated PCS strategy will stabilize
the effect of this scaling induced bias.

2.2.3 Gaussian Noise Model

The sensor gaussian noise levels have a neg-
ligible effect on the crane performance. The
accelerometer and rate gyro information is fil-
tered and integrated to yield nominal velocity
and position estimates of the ship motion. This
process is illustrated through a numerical ex-
ample in Figure 2.9. Here a very noisy sinu-
soidal signal (with ω = 0.3 rad/s) of a one-
dimensional accelerator is used as a sample sen-
sor input. After simply integrating the sensed
signal without performing any filtering, an in-
direct measurement is obtained of the velocity
state. After another integration step the indi-
rect measurement of the position state is ob-
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Figure 2.9: Illustration of Gaussian Noise Smooth-
ing through Numerical Integration

tained. The digital sampling rate used is 40
Hz (same as PCS digital sampling rate). Note
that the noise level of the computed velocity
state is already drastically improved over the
signal to noise level of the accelerometer infor-
mation. The position states are even smoother.
As expected, after some time the position mea-
surements will begin to deviate slowly from the
true positions. Without further aid, integrat-
ing unfiltered accelerometer data is never sta-
ble. The actual integration process used in the

updated PCS strategy is described in detail in
Reference 2. By carefully applying a series of
bandpass-filters, the integration process is sta-
bilized and the ship motion with a frequency
content close to the natural frequency of the
cargo pendulation is retained.

Thus, no gaussian noise levels were consid-
ered in the 3D crane simulations. The code is
equipped to include such noise. However, for
IMU sensors such as the LN200 used in the
POSMV sensor, these noise levels are very small
and don’t introduce any significant corruptions.



Chapter 3

Performance Study

3.1 Simulation Setup

The full three-dimensional simulation of the
cargo pendulation, crane motion and ship mo-
tion is used to study the performance of the new
PCS strategy. Note that this simulation also
simulates communication lags and discretiza-
tion issues, as well as ship and swing sensor
corruptions. A simple hydraulic drive system
model is employed which models the actual
TG3637 crane’s hydraulic performance before
any servo enhancements were made. The drive
system contains a linear transfer function to
model the frequency dependent response, as
well as saturation behaviors as the crane speed
and acceleration limits are reached. However,
note that the resulting crane performance tests
did not hit the existing cranes velocity and ac-
celeration limits. Doing so would only compli-
cate this analysis even further without provid-
ing any meaningful insight into the new PCS
performance.

The goal of this 3D simulation is to compare
the cargo stabilization performance of the var-
ious new PCS strategies to that of the exist-
ing position-based PCS implementation. Thus,
great effort is made to provide illustrative and
meaningful relative performance comparisons,
not just overwhelm the reader with lots of plots
with little relevance. Please not that this re-
port does not make any claims on the actual fi-
nal performance of the crane. This will depend
greatly on the final sensor choice, and very im-
portantly, on how well the crane servo drive sys-
tem operates. Instead, the position-based PCS
performance is computed for a representative

set of crane joint states, and a particular ship
motion. The operator joystick commands are
all set to zero during this study. Thus, the cargo
is to ideally maintain a fixed position while the
ship is translating and rotating. The resulting
performance is used a a yard-stick to measure
the performance of the various new PCS strate-
gies against.

Including a drive system in study is impor-
tant to have a feel of how much these improve-
ments will really mean in the final hardware
application. Using a perfect drive system, it
would be easy to generate results which could
claim great-sounding percentage improvements
in tracking. However, the drive system lags will
already result in some residual cargo motion.
The cargo motion errors due to the sensors is-
sues should be kept in perspective relative to
this drive system induced cargo error motion.

Table 3.1: Relevant Parameters of the High Fi-
delity Crane Simulation

Mode Value
Slew 45.0o

Luff 52.2o

Hoist 35 m
Roll Amp. 1.5o

Roll Period 11 sec

The essential simulation parameters are listed
in Table 3.1. This crane configuration attempts
to keep the cargo just off the port side of ship
at about deck level, a common situation when
picking up cargo or landing it on another ves-

16
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sel. The ship motion is prescribed to be a pure
sinusoidal motion about the ship center with a
period of 11 seconds. The actual ship period
could vary between 10-15 seconds. The faster
the period, the more difficult it will be for the
crane drive system to keep up. Thus, a con-
servative value of 11 seconds was chosen. Also,
note that the ship natural period can vary with
the ship loading. The code has a ship roll pe-
riod estimation algorithm implemented which
will estimate the actual, current ship roll pe-
riod. Thus the PCS will know the roll period to
within less than a second. Even tough the ship
motion is a simple sinusoidal motion, the IMU
sensor is located away from the center of rota-
tion (same location as the current POSMV sen-
sor on the Flickertail State vessel). This results
in the ship sensor having to estimate both the
resulting translation and rotation of the ship at
this sensor location.

Table 3.2: Litton LN200 IMU Sensor Error Values

Error Value
Accelerometer Bias 1500 µg

Gyro Bias 10o/h
Sensor Scaling +0.5%

Noise Unmodeled

The IMU sensor corruption levels are listed
in Table 3.2. These are very conservative IMU
sensor corruption levels that might be experi-
enced with the Litton LN200 IMU, a common
IMU used for inertial navigation applications.

Table 3.3: New PCS Strategies Considered

Case Ship Motion Control Acc.
Num. Sensing Method Filter

1 POSMV (1) Pos. N/A
2 POSMV (3) Pos. N/A
3 IMU Pos. No
4 IMU Pos. Yes
5 IMU Vel. No
6 IMU Vel. Yes

There are six different PCS strategies that are
considered here as shown in Table 3.3. Cases 1
and 2 are the benchmark cases where the exist-
ing position-based PCS strategy is used. Both
cases introduce expected POSMV random walk
behaviors. Case 1 uses best case POSMV error
values, while case 2 uses the worst case values
modeled. The next four cases all assume the
ship motion is measured using an IMU. Cases
3 and 4 directly estimate the ship positions
relative to the slowly wandering inertia-prime
frame (see Reference 2), and then use the ex-
isting position-based pendulation control strat-
egy. Cases 3 and 4 differ in the number of ap-
plied filters to the ship accelerometer informa-
tion. Each integration process to obtain veloc-
ities from acceleration, or to obtain positions
from velocities, is done simultaneously with a
band-pass filter. Further, the code can option-
ally apply a band-pass filter to the accelerome-
ter measurements themselves. This will further
help reduce the effect of the sensor biases, but
will make the system system also more sensi-
tive to non-sinusoidal ship motion. The final
two cases measure the ship motion the same
way as cases 3 and 4. However, here a new
velocity-based pendulation control strategy is
employed.2

Note that the same swing damping gains, and
crane servo position-loop (to stabilize the crane
servo velocity commands) are used in all these
simulations. Also, all band-pass filter settings
are equivalent to those of the existing PCS in-
stallation. This is done to assure a fair and
reasonable relative performance comparison.

3.2 Results of 3D Numerical
Simulation

3.2.1 General Description

The time histories of the residual payload mo-
tion are shown in Figure 3.1. Each plot shows
the motion of the cargo relative to the initial in-
ertial position (time of control activation). The
goal of the PCS strategy is not to place the
cargo at a very specific location, but rather to
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(a) POSMV Sensor Case 1
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(b) POSMV Sensor Case 3
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(c) IMU Sensor with Position-Based Control Strategy
and No Bandpass Filter on the Accelerometer Mea-
surements
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(d) IMU Sensor with Position-Based Control Strat-
egy and a Bandpass Filter on the Accelerometer Mea-
surements
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(e) IMU Sensor with Velocity-Based Control Strategy
and No Bandpass Filter on the Accelerometer Mea-
surements
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(f) IMU Sensor with Velocity-Based Control Strategy
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ments

Figure 3.1: Illustration of Cargo Station-Keeping Performance of the Three Control Strategies Considered.
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maintain the current location relative to the
crane ship frame, whatever it might be. Thus,
if the ship position has a constant 10 meter er-
ror, it will have no influence on the PCS perfor-
mance. The operator in the loop will guide the
payload to the desired location.

Further, please note that in the current im-
plementation the ship motion filters are as-
sumed to have converged to their steady-state
values. Every filter will experience some start-
up transient behavior before settling down
to the desired performance. In the current
TG3637 implementation, the code verifies that
the PCS ship filter routine has received ship
motion data for a certain amount of time be-
fore allowing the crane control to be engaged.
This is not modeled in these simulations. The
ship motion filters are started up at the same
time as the crane control. Thus we will see some
initial transient crane performance which is not
representative of the actual control. The simu-
lations are run for 5 minutes (300 seconds). The
initial 100 seconds are ignored when computing
stead-state performance errors.

3.2.1.1 Cases 1 and 2

Cases 1 and 2 illustrate the PCS performance
with the existing POSMV ship motion sensor
and the position-based control strategy. Case
1 assumes that the GPS-induced random walk
behavior is very low, while Case 2 assumes the
worst case random walk behavior. Note that
the largest amount of payload motion is the ship
y-axis direction. This is expected because the
ship is performing a roll motion. Because the
crane drive system will have some lag associated
with it, the crane is not compensating perfectly
for the ship motion and some small payload mo-
tion of 0.2–0.25 meters results. The payload
vertical z motion is mostly due to the GPS-
induced random walk behavior of the POSMV
sensor. As the level of these position errors is
increased in case 3, the erroneous cargo heave
motion becomes 4 times worse. Note that the
POSMV position errors also have an influence
on the cargo surge and sway motion motion.
However, this effect is relatively minor, cer-

tainly when compared to the drive system in-
duced error motion.

3.2.1.2 Cases 3 and 4

Cases 3 and 4 assume that the ship motion
is measured using an IMU, while the exist-
ing position-based control strategy is employed.
Case 3 only applies the band-pass filter to the
two integration steps, but not to the original ac-
celerometer information. The bias and scaling
issues of the sensed IMU ship motion do result
in stable, bounded cargo payload motion. How-
ever, a noticeable cargo position bias is appar-
ent with the LN200 level of IMU corruption. If
the additional accelerometer band-pass filter is
applied, then this bias is removed.

Even though case 3 shows a small bias, in
particular in the cargo vertical motion, note
that this bias is relatively steady. The payload
motion about this stead-state offset is rather
small. In fact, the nominal vertical payload
motion about the steady-state values of case 3
is slightly less than the best POSMV ship mo-
tion measurement case 1. Recall that the opera-
tor actually commands the final cargo position.
Thus, if the sensor bias is causing a steady-state
bias in the ship position measurement, then the
operator will easily be able to compensate by
commanded the desired payload position. As
the sensor bias or scaling errors change slowly
with time, this will cause some additional pay-
load motion. However, these sensor changes are
expected to take place over the time frame of
hours and days, not a few minutes.

3.2.1.3 Cases 5 and 6

Cases 5 and 6 show the crane performance
if the ship motion is measured using an IMU,
while the control strategy is replaced with the
velocity-based kinematic solution. Note that
the gains are used for the swing damping control
and velocity-steering law feedback loop. For
case 5 the sensor bias and scaling error causes
a slightly larger payload position bias in the
sway and surge motion. The payload heave
motion, however, is noticeably larger. The
bias present in the vertical acceleration mea-
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Table 3.4: Steady-State RMS Error Comparison of the Cargo Station-Keeping Performance of the Three
Control Strategies Considered

Ship Sensor Acc. RMS Surge RMS Sway RMS Heave
Type Control Method Filter Error [m] Error [m] Error [m]
POSMV (1) Position-Based PCS N/A 0.009 0.154 0.025
POSMV (3) Position-Based PCS N/A 0.027 0.162 0.100
IMU Position-Based PCS No 0.003 0.124 0.019
IMU Position-Based PCS Yes 0.003 0.107 0.009
IMU Velocity-Based PCS No 0.003 0.113 0.004
IMU Velocity-Based PCS Yes 0.003 0.107 0.009

surement, along with the scaling error causing
the gravity components only partially removed,
causes the velocity-based control to erroneously
sense the ship as continuously raising or sink-
ing. The position-loop of the velocity steering
law of the PCS servo command generation sta-
bilizes this error to finite values. Note, again,
that the same steering law gains are used here
as with the position loop. These gains could be
increased to reduce the apparent payload off-
set. However, as noted for cases 3 and 4, a con-
stant offset in the perceived ship motion does
not cause any payload swing. The operator can
trivially compensate for a less than 1 meter off-
set. If the additional accelerometer band-pass
filter is employed, than these constant sensor
biases are perfectly removed.

3.2.1.4 Comparison of Cases

Table 3.4 shows a direct comparison of the
residual steady-state payload motion magni-
tudes along each ship frame axis. The errors
are computed by removing the first 100 sec-
onds of the data to discard the effects of the
ship motion filter transients response. Next, the
constant bias of the remaining payload motion
is removed before computing the RMS value.
This illustrates the effective payload error mo-
tion that would appear to the crane operator.

The pure roll motion of the ship causes the
dominant payload error motion to be along the
y axis (due to drive system lags in implementing
the crane joint rate commands) and along the
vertical z axis direction (due to the erroneous

ship sensor information). Note that the IMU
based performance results are all slightly better
than the POSMV based results. However, the
improvements in the sway direction are not that
significant compared to the drive system in-
duced errors. Even a perfect IMU sensor would
not improve these numbers very much. The
drive system is really the more limiting factor.
What this does show is that the POSMV sensor
(a $100,000 sensing system) could be replaced
with a LN200 type IMU (about a $20,000 sen-
sor) without penalizing the (x, y) cargo control
performance. In fact, the performance might
even improve slightly.

The most noticeable difference between the
POSMV and IMU-based cases is in the vertical
cargo heave motion. The current POSMV solu-
tions experience occasional random walk behav-
ior. With the IMU solution, for all cases 3–6,
the vertical cargo control is noticeably smoother
and smaller. The addition of the band-pass
filter on the measured accelerometer data im-
proves the results even further.

A final disclaimer. The presented perfor-
mance comparison is done using a pure sinu-
soidal motion with the ship filter frequency set
nearly equal to the actual ship motion. While
adding the additional band-pass filter consis-
tently improved the results here, the actual ship
motion is typically a combination of the reso-
nant ship motion, as well as much longer peri-
ods sinusoidal motion. This will cause the ship
motion amplitudes to grow and shrink. The
additional filter will cause the performance to
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be more sensitive to miss-matched ship motion
and filter frequencies. The self-tuning ship mo-
tion filter helps in making sure that the filter
is tuned correctly. However, more studies are
required where realistic ship motion is used to
see if this additional filter is beneficial. Either
way, the IMU based solution (with LN200 levels
of corruptions) appears to provide very satis-
factory performances. Recall that the modeled
sensor corruption levels reflected very conserva-
tive LN200 specification values.

3.3 Influence of Sensor Bias

This section discusses how a constant ac-
celerometer bias will influence, and provide es-
timates of the large the steady-state cargo po-
sition offsets will be. Let a(t) be the erroneous
measured acceleration information, while A(s)
is the corresponding Laplace transform of this
signal. If the erroneous acceleration is a con-
stant bias b, then we find

A(s) =
b

s
(3.1)

To obtain the erroneous velocity estimate V (s),
we first integrate A(s) without filtering:

V (s) =
b

s
· 1
s

=
b

s2
(3.2)

To determine the steady-state behavior as t →
∞, we make us of the theorem4

lim
t→∞

v(t) = lim
s→0

sV (s) (3.3)

Thus, for the un-aided acceleration integration
we find

lim
s→0

sV (s) = lim
s→0

b

s
→∞ (3.4)

This illustrates how an accelerometer bias will
cause a secular error growth in the velocity es-
timate.

Next, let us investigate what happens if the
band-pass filter is added to the integration step.
The resulting velocity V (s) is

V (s) =
b

s
· 1
s
· BWs

s2 + BWs + w2
c

(3.5)

where ωc is the filter center frequency and BW
is the filter bandwidth parameter. The steady-
state response is then

lim
s→0

sV (s) = lim
s→0

b BW

s2 + BWs + w2
c

= b BW (3.6)

The filter stabilizes the otherwise unstable in-
tegration. However, note that the velocity er-
ror does not asymptotically converge to zero.
Rather, a residual velocity bias error will result.

Next, we examine the velocity error behav-
ior if the acceleration measurement receives an
additional band-pass filtering. In this case we
find

V (s) =
b

s

1
s

(
BWs

s2 + BWs + ω2
c

)2

(3.7)

The corresponding steady-state response is

lim
s→0

sV (s) = lim
s→0

b BW 2s

s2 + BWs + w2
c

= 0 (3.8)

Adding this extra bandpass filter will cause the
accelerometer bias to be completely rejected.
The steady-state velocity errors will go to zero.

Repeating this process, estimates for the in-
tegrated/filtered position error motion are ob-
tained. Without the extra filter, the accelerom-
eter will cause a steady-state offset in position
of

lim
s→0

sX(s) = bBW 2 (3.9)

With the additional filter added, the steady-
state position error will be

lim
s→0

sX(s) = 0 (3.10)

3.4 2D-Model Sensitivity
Study

A two-dimensional cart-pendulum model was
developed to study the sensitivity of the vari-
ous control strategies to the ship motion estima-
tion filter settings and IMU sensor errors. The
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CraneSim simulation program overs advanced
crane, ship and payload motion modeling capa-
bilities. This is very useful when performing de-
tailed proof-of-concept simulation and detailed
control performance analysis. However, the fi-
delity of the simulation also makes it more diffi-
cult to perform simpler sensitivity studies. For
example, CraneSim includes bit-level modeling
of the ship motion sensor, and well as crane con-
trol and swing sensor communication modeling.
Further, several crane drive system models are
available high various degrees of fidelity.

θ

u

xs

xp

xd

Figure 3.2: Illustration of the Less-Complex Cart-
Pendulum Dynamical Model.

Figure 3.2 illustrate the simplified dynami-
cal system considered. Here the relevant dy-
namical components are still modeled, and it is
much simpler to just what relative performance
gains or losses will result with different control
strategies. Instead of having the crane boom
tip moving through 3D space to cause payload
swing, a cart moving on a 1D track is modeled.
This simulates the essentially 1D nature of the
boom tip motion when the ship is undergoing
mostly rolling motions (dominant ship motion
mode). A second rail is attached to the primary
cart. The hinge point of the spherical pendu-
lum is attached to a 2nd cart. To compensate for
the ship motion, as the primary cart (simulated

ship motion) moves through inertial space, the
secondary cart (simulated crane motion) must
compensate to stabilize the payload at a desired
position. The control u must compensate for
the perceived ship motion xs and cargo pendu-
lation θ to stabilize the payload at the desired
inertial location xd. A simplified 1D version
of the position- and velocity-based PCS strate-
gies is used to control this simplified systems.
The perceived ship motion is corrupted using
the identical types and levels of IMU corrup-
tions as discussed earlier. The estimated ship
(primary cart) motion is estimated using the
previously presented filtering algorithms. How-
ever, no detailed communication of crane servo
drive system are modeled here.

The ship estimation filter frequency is set to a
constant value. The CraneSim implementation
shows how the ship motion period could be de-
termined through the sensed motion. The pe-
riod of a nearly sinusoidal motion can easily be
estimated to within less than 0.5 seconds. Per-
formance studies are conducted to explore how
accurate the ship motion filter settings must be.
The nominal simulation parameters are listed in
Table 3.5. Note that some of these values are
varied during the following sweeps. This table
only provides the nominal values.

Table 3.5: Nominal 2D Simulation Parameters

Parameter Value
Hoist Length L 35 m
Control Time Step 1/40 sec
Ship Motion Period 11 sec
Ship Motion Amplitude 1 m
Filter Center Frequency 11 sec
Filter Bandwidth BW 0.1 Hz
Filter Damping Coefficient ξ 0.707
Accelerometer Bias 2·10−3 g

The first study of interest is a sweep of the
ship motion amplitude (of xs) versus the ship
motion period. Once case uses the existing PCS
control strategy, but models the ship motion
as being sensed by an IMU. The second case
has the same ship motion sensor models, but
uses the new velocity-based PCS strategy. All
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(a) Position-Based PCS – Boom tip motion vs Ship Period
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(b) Velocity-Based PCS – Boom tip motion vs Ship Period
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(c) Position-Based PCS – Filter center frequency vs Ship
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8 9 10 11 12 13 14
8

9

10

11

12

13

14

Ship Motion Period, sec

B
an

dp
as

s 
F

ilt
er

 C
en

te
r 

F
re

qu
en

cy
 P

er
io

d,
 s

ec

Mean Error of Payload Position (m) w/ Varying Ship Motion & Bandpass Filter Periods

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Velocity-Based PCS – Filter center frequency vs Ship
Period

Figure 3.3: 2D Cart-Pendulum Performance Tests for the Position- and Velocity-Based PCS Concepts.
Ship Motion is Measured using an IMU Sensor Only in Both Cases.
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studies show the final steady-state inertial pay-
load motion. Note that this rejects any constant
steady-state errors. It is assumed that a human
operator will be in the loop and should be able
to compensate for static payload offsets.
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Figure 3.4: Comparison of Cart Motion Ampli-
tude Versus Equivalent Ship Roll Motion for Various
Boom Luff Angles.

Figures 3.3(a) and 3.3(b) show the perfor-
mance comparisons where the simulated ship
motion amplitude and ship roll period are
swept. As the the ship period varies, the ship
motion estimator filter will not be tuned cor-
rectly and an increase in payload steady-state
errors is expected. Further, as the boom tip
motion is increased, these payload motion er-
rors should increase as well. Both figures clearly
illustrate this behavior. Figure 3.4 provides a
convenient comparison of cart motion to equiv-
alent ship roll motion. The boom is assumed
to be about 35 meters long, and about 10 me-
ters off the water level. For severe ship roll mo-
tion up to 5 degrees, we find that the equiva-
lent cart motion amplitude must be within 1–3
meters, depending on the current boom luff an-
gle. The sweeps consider cart motions up to 6
meters. This represents very extreme motion
that should not typically be encountered by the
PCS. Note that the velocity-based control strat-
egy does provide slightly better results than the
position-based strategy. This reflects the find-
ings of the full 3D CraneSim simulations pre-
sented earlier. Further, note that the steady-
state payload errors don’t start to significantly
increase until the ship filter frequency is off by

about 0.5–1.0 seconds. This illustrates that the
proposed self-tuning ship filter strategy should
function very well, where the sinusoidal ship pe-
riod estimation errors are far less than 0.5 sec-
onds. This results in a more robust PCS strat-
egy that can self-tune its filter as the natural
ship period varies from day to day due to dif-
ferent loading conditions.

Figures 3.3(c) and 3.3(d) show the steady-
state payload motion errors if the bandpass fil-
ter and ship motion period are swept between
8 and 14 seconds. As expected, the perfor-
mance drops off as the filter and ship periods
become more and more out of alignment. Over-
all the velocity-based solution provides slightly
better results in these tests. Further, a 1 sec-
ond corridor is apparent where the period miss-
alignment has a minor effect on the crane per-
formance.



Chapter 4

Conclusion

This report outlines how the GPS/IMU and
IMU based ship motion sensors were modeled
numerically. The PCS performance of the
existing implementation, as well as the pro-
posed IMU position-based, as well as the IMU
velocity-based PCS strategies are evaluated us-
ing a high fidelity CraneSim simulation. The
proposed ship motion filtering method is very
effective in removing the typical IMU sensor
biases. The simulations are performed using
the Litton LN200 values, a common and pop-
ular IMU. Further, the IMU sensor scaling er-
rors of the LN200 type IMU were modeled as
well. The performance penalty on the simu-
lated PCS was minimal. The CraneSim simula-
tion also included a nominal drive system model
of the current Flickertail State TG3637 class
crane (unmodified). The new control meth-
ods (using IMU to measure ship) motion are
compared to the existing PCS strategy where
the ship motion is measured using a GPS/IMU
sensor (POS-MV 320). Typical GPS induced
drift behaviors are included. The new strate-
gies appears to consistently perform at least as
well, and often better than the current strategy.
These results are promising in that it appears
it is possible to replace the more expensive ship
motion sensor with a more cost-effective solu-
tion.

The new position-based strategy on average
performed slightly worse than velocity-based
PCS strategy. In particular, when compared to
the drive system induced payload error motion,
these performance differences were small, but
noticeable. While the velocity-based strategy
could provide better steady-state performance,

it does have two drawbacks. First, the current
payload deck tracking strategy would have to
be redone to be made compatible with this ve-
locity based strategy. As the payload is picked
up, there will me some small amount of drift in
the vertical direction (due to not being able to
reject the gravity term perfectly from the IMU
sensor information). The filters will quickly re-
ject this drift as shown in the numerical simula-
tion. From then on, the operator will easily be
able to control the cargo position. However, the
impact on this drift on the actual pick up pro-
cess would still need to be studied. This study
shows that adding the additional bandpass fil-
ter to the measured IMU data could help reduce
this pick-up drift substantially.

In conclusion, both IMU based PCS strate-
gies look very promising and should provide
cost-effective cargo control strategies.
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