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Panosian, Stephen (MS. Aerospace)
Stiffness Analysis of the Tethered Coulomb Structure Concept and Application

Thesis directed by Dr. Hanspeter Schaub

This thesis investigates the Tethered Coulomb Structure (TCS) concept and its operating
regime for creating large space structures and for providing satellite situational awareness. A TCS
consists of a three-dimensional tethered spacecraft formation that uses electrostatic forces to repel
the spacecraft and inflate the formation to a semi-rigid structure. The influential force modeling
and equations of motion are given. Numerical simulations of a two-node TCS show that TCS
systems have the greatest translational and rotational stiffness when the nodes have high voltage,
low separation distance and low mass. Single tether two node TCS at 30 kV with 5 m separation
are shown to withstand up to 50 deg/min initial rotations before reaching an entangled state.
Multiple tether TCS simulations demonstrate that additional tethers between TCS nodes provides
full three-dimensional stiffness and reduces the maximum absolute rotation for the system due to
an initial perturbation. Using a double- or triple-tether TCS increases the maximum allowable
initial rotation by 40-60%. Orbital perturbations, differential gravity and solar radiation pressure,
are examined and it is demonstrated that both can be considered negligible for this study. A TCS
configuration where one small spacecraft is tethered to a large spacecraft in orbit is presented.
Simulations using a simple attitude control law show that a TCS in this configuration can be used
to hold the smaller craft at a relatively fixed arbitrary position and rotation relative to the larger
craft. Using multiple tethers for this configuration allows for separation distances of up to 10 m

with less than 5 deg and 1 cm relative rotation and translation, respectively.
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Chapter 1

Introduction

1.1 Motivation and Literature Review

Advancing space technologies such as remote sensing, high resolution surveillance, radiom-
etry, space telescopes, space situational awareness and power collection are pushing the limits of
current space based platforms. These technologies desire large space-based platforms on the order
of hundreds of meters. Due to launch vehicle fairing size, the space-based platforms for these tech-
nologies is currently restricted to free flying spacecraft formations and large space structures that
are capable of fitting in a fairing. Advanced space platform technologies with large on orbit shape
change ability would allow for hundreds of meter space platforms to be launched on current launch
vehicles and perform long duration missions without major fuel restrictions.

One method of creating large rigid space structures is on-orbit construction, which has been
demonstrated in recent years by the assembly of the international space station. Even though this
method is proven, it requires human or advanced autonomous assembly which is very costly. An
additional, less costly, means of large space platforms are deployable spacecraft. This is an active
area of research, with only a few being successfully implemented or tested on orbit.[8, 9]

Two proposed NASA missions, Goddard Stellar Imager and the Terrestrial Plantet Finder,
have the intent of creating kilometer size baselines in space.[1, 3]. These two missions propose
the use of free-flying spacecraft to generate their baseline because these types of formations are
capable of variable baselines, system redundancy and fractionated and responsive architectures.[2]

However, free-flying formations with their complex relative dynamics have the disadvantage that



they necessitate precise relative motion sensing and control which often requires high propellant
usage. Even if the issue of propellant usage can be overcome, whether it be chemical or electrical
propulsion, free flying formations are not ideal for proximity operations less than 100 meters. At
these lower separation distances, thruster exhaust plume impingement would most likely damage
the spacecraft.

Several, essentially propellantless, concepts in recent years that address the relative mo-
tion and control issue are to use Coulomb electrostatic interactions,[11, 20] magnetic formation
flying,[12] Lorentz forces,[18] or flux-pinning.[6] Of specific interest is the use of inter-spacecraft
Coulomb forces to conduct close formation relative control because of its low power and propel-
lant requirements.[11, 20, 21] Even with the benefits this technology provides, the control of such
a cluster of spacecraft remains a challenging area of research because of the non-affine nature of
electrostatic force actuation. Only two and three craft formations have had analytically stable
charge feedback control strategies developed.[15, 16, 17, 29] Additionally, Coulomb spacecraft have
been proposed for the self-assembly of large space structures.[10] However, there are no analytical
stability guarantees for this N—vehicle assembly. This work examines a new concept, the Tethered

Coulomb Structure, that addresses the pitfalls of other space based technologies.

1.2 Tethered Coulomb Structure Concept

A novel new technology called the Tethered Coulomb Structure (TCS) provides a means of
creating large space structures using Coulomb forces and spacecraft interconnected with tethers.[22,
24] Compared to the previously mentioned free-flying Coulomb spacecraft, a TCS provides the
added benefit that the relative translation and rotation of spacecraft is restricted by the length
and attachment point of the interconnecting tethers. Figure 1.1 illustrates the TCS concept where
individual spacecraft nodes are interconnected with fine, low-mass tethers. Electrostatic (Coulomb)
forces provide repulsion between nodes when the spacecraft have the same polarity. The Coulomb
forces inflate the TCS structure and provide structure rigidity while the shape and size of the TCS

is determined by the tether lengths and attachment points. However, it is envisioned that tether



lengths could be varied on orbit. The potential on the spacecraft that creates the Coulomb forces
is obtained by using charge control devices. Active ejection of ions or electrons is used to drive
a spacecraft’s potential away from its natural space weather dependent equilibrium to the desired

potential.

Thruster
Charged nodes node

provide rigidity

= Tethers maintain structures
shape/configuration

‘ Conducting
-

Tethers

Fixed tether
attachment points

Figure 1.1: Tethered Coulomb Structure concept

Some key advantages of a TCS is that it would have long term mission capability because,
like Coulomb formation flying, it only requires Watt-levels of power and little propellant mass.[22]
The major benefit of a TCS compared to Coulomb formation flying is that the control required
for TCS is substantially reduced. TCS systems do not require precise charge levels to maintain
relative positions due to their shape being constrained by the tethers. Spacecraft charge levels
must only be maintained above a certain threshold for which the TCS system would be robust to
orbital perturbations such as differential gravity and solar radiation pressure. Additionally, relative
attitude control between spacecraft nodes will be negligible when the Coulomb and tensile forces
are in equilibrium.

It is envisioned that TCS configuration sizes will vary from two-node five-meter systems
to many node systems of hundreds of meters. Large TCS sizes are possible because the TCS

concept has the benefit of being able to be launched in a compact configuration and then deployed



on-orbit. The deployment is controlled by the Coulomb inflationary forces which then provide
structural rigidity. The TCS shape is determined by the length of the tethers, but varying mission
sensing requirements could be accommodated with length-adjustable tethers. The TCS concept
is not restricted to large space structures but can also be used to hold a small spacecraft in a
reasonably fixed position relative to a primary spacecraft. This provides a means for situational
awareness or other local sensing. Additionally, a TCS system is not restricted to specific equilibrium
configurations or spin rates because the Coulomb force can be used to maintain tension in the tether.

Figure 1.2 shows how the TCS concept compares to other space platform technologies. Specif-
ically, it shows the relation between a systems on-orbit shape change ability and the required control
for that technology. Starting in the lower left of the figure is a large monolithic spacecraft, such as
the Hubble space telescope, which is a single structure with its only shape change ability being that
it can deploy solar panels on orbit. This technology requires minimal relative motion or structure
flexing control. Next in the figure is large deployable space structures. The iSat is one envisioned
large deployable spacecraft in which the structure could reach a 100 meters or larger. These types
of structures would have minimal mass and could require active damping to remove oscillations.
Continuing on, other larger structures such as solar sails, inflatable spacecraft then tethered space-
craft allow for more on-orbit shape change but would require more active control. On the far right
of the figure is free-flying formations. This technology provides immense amount of variation of
orbit shape, that is only limited to propulsion and fuel constraints. Even so, the relative sensing
and control would have to be much greater than any of the previous technologies. The proposed
TCS concept lies between a tethered spacecraft and free-flying formations. The shape change of
a TCS is only limited by the tether connection points and tether lengths. The nodal control is
vastly simplified because the Coulomb inflation and tensile forces bound the relative positions and
rotations.

Compared to the other spacecraft technologies in Figure 1.2, the TCS concept has one addi-
tional constraint, the local plasma environment. TCS systems must operate at GEO altitudes or

higher where the local plasma is nominally hot and sparse so that there is minimal charge shielding



A

Solar Tethered
" spacecraft
?ﬁ) Free-flying
g formation
=
5
_: Monolithic Tethered
£ spacecraft / Coulomb
1) » : structure
© Ve Y v

deployable Inflatable

Shape change ability

Figure 1.2: TCS concept shape change attributes and control requirements comparison

due to the local plasma. Charge shielding effectively reduces the repulsion forces between space-
craft nodes which in more cold and dense plasma could cause a TCS to collapse. During Earth
eclipse at GEQO, spacecraft can naturally charge to kilovolt potentials. These such levels are what
is envisioned for a TCS.[4, 13] Additionally, there is space-proven technology that could control
the charge of a spacecraft with a charge-emission device. This charge control, at the volt-level,
was demonstrated on the European CLUSTER mission.[5, 27, 28] Since the spacecraft are all in-
terconnected, a charge control device could be used on all structures or only on one craft and then
distributed via conducting tethers. The advantages and disadvantages of either charging scenario
are still being researched.

Previous research on the TCS concept investigates relative motion without nodal rotation[22]
as well as simplified two-dimensional translational and rotational motion about one axis.[24]. This
research expands upon previous work to investigate and quantify the full three-dimensional transla-
tional and rotational stiffness of a TCS using numerical simulations. Due to the high non-linearity
of a TCS, only numerical simulations are conducted. The stiffness of a two node TCS system is
used for analysis because it represents a lower bound on a TCS systems stiffness. TCS system
properties and effects of multiple tethers between nodes are examined to determine optimal TCS

configuration characteristics. Finally, this work presents and analyzes a TCS application in which a



small spacecraft is tethered to a large spacecraft at GEO to determine the feasibility and operating

regimes of using the TCS concept for satellite self situational awareness.

1.3 Outline

The work in this thesis explores the fundamentals of the TCS concept and its application.
To begin, an explanation of the the electrostatic force model that is used in simulation is given.
This is followed by the definition of the other influential forces and the presentation of the full
translational and rotational equations of motion. Next the translational and rotation stiffness of a
two node TCS is analyzed. Specifically, the effects of system and nodal parameters are examined as
well as environmental impacts. The impact and benefit of multiple tethers between TCS nodes is
then presented. From here, the expected perturbations for a TCS and their impact are evaluated.
Following that, a specific application for a TCS is introduced in which a small TCS node is attached
to a larger node at GEQO. Lastly, the final results from this work are presented and future work

ideas are given.



Chapter 2

Tethered Coulomb Structure Equations of Motion

2.1 Electrostatic Force Modeling

A Coulomb force is generated from the electrostatic interaction of two charged bodies. If two

bodies in a vacuum have charges ¢; and ¢, the Coulomb force between them is computed as:

|Fc| = kc‘q12q2| (2.1)
12

where k. = 8.99 x 10° Nm?C~2 is the vacuum Coulomb constant and r;5 is the separation distance
between bodies 1 and 2. If it is assumed that the spacecraft body is comprised of an outer spherical

surface that maintains a constant charge q1, then its potential in a vacuum is given as:

a1k
‘/501 ===

where p is the radius of the spherical craft.

Equation 2.2 is only valid in a vacuum, which is not true at GEO. At GEO, the Coulomb
force will be partially shielded by free-flying charged particles of the local plasma environment. The
Debye length, Ap, signifies the strength of the shielding due to the plasma. If a small spacecraft

potential compared to the local plasma thermal energy is assumed
ecVsel K K1y (2.3)

where e, = 1.602176 x 10~ C is the elementary charge, x = 1.38065 x 10723 JK~! is the Boltzmann

constant and T, is the plasma electron temperature in Kelvin, then the potential about this charged



craft is represented by the Debye-Hiickel equation [7, 30]:
V= kL= (=p)/Ap (2.4)
r

This potential equation incorporates plasma shielding and represents a conservative bound of the
charge interaction the nodes will experience[14]. At GEO, the e.Vs1 < kT, condition is no longer
true if the spacecraft charges to 1-10 kV potentials. The neglected higher order terms of Poisson’s
partial differential equation, which led to Equation 2.4, results in less plasma shielding of the
electrostatic fields.[14] Thus, the use of Equation 2.4 is considered a conservative estimate of the
actual potential that might exist about a body. The benefit of using Equation 2.4 is that it allows
for simplified analysis, and faster numerical simulations because the full Poisson-Vlasov equations
do not need to be solved. Solving the full Poisson-Vlasov equations requires solving complex partial
differential field equations.

Taking the gradient of the potential in Equation 2.4 (assuming spherical symmetry) yields

the resulting Coulomb force F relationship between charged craft 1 and 2:

|F.| = k;c%e(*(nrp))ﬁm <1 + 7“12) (2.5)
2, AD

The Coulomb force of Equation 2.5 is created between two point charges and does not accommodate
realistic charge distribution effects from having two closely separated finite spheres. An improve-
ment to the Coulomb force is made by modeling the effective charge between two finite spheres
of fixed potential. This has a significant influence on the effective charge of each sphere when the
center-to-center separation is low relative to the sphere radii (separations less than approximately
10 sphere radii, r < 10p). Figure 2.1 shows two close spheres that maintain a fixed potential, V;.
In the absence of sphere 2, the point charge of 1 is computed using Equation 2.2. However,
once sphere two is introduced the net potential of both spheres changes the effective sphere charge
and consequently the Coulomb force. The potential at sphere 1 is computed including the charge

of sphere 2 using the expression[25, 26]:

Vi = kcq—pl + k2 (2.6)

r



Figure 2.1: Two closely separated charged finite spheres

Similarly, there is an equivalent potential equation for sphere 2. With spheres 1 and 2 set to known
and equivalent potential magnitudes V; = V3, (a nominal TCS application characteristic) the two

potential equations can be independently solved for the resulting equivalent charge of each sphere:

Vi Pr
; 2.
a ke (p+r> (2.7)

If the spheres have a large separation distance (r > p) Equation 2.7 will reduce to the standard sin-

gle sphere charge defined in Equation 2.2, as required. The effective charge and repulsive Coulomb
force is reduced from the equivalent point charge model. Using the charges from this model and
the force equation of Equation 2.5 is a conservative estimate for the force in a plasma. Modeling
electrostatic forces between two finite spheres in a plasma is still under investigation.
Generalizing Equation 2.6 for IV spheres gives the potential equation:
N
Vi = ke %+Zﬂ j#i (2.8)
j=1

Tij

Equation 2.8 can be reduced to a system of linear equations given by:

V =k.Aq (2.9)
where A is given by:
R 1]
p1 [r12] 1]
1 1 :
A= |2l e (2.10)
1. . 1
LIrin] PN

This system of equations is what is used in simulation to solve for the charges of each node.
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2.2 TCS Forces

The numerical simulation used for this research solves for the translational and rotational
motion of TCS nodes. The only forces assumed to be acting on a TCS at GEO are Coulomb,
tensile, gravity, and solar radiation pressure forces. The Coulomb force is given in the previous
sections by Equations 2.5 and 2.8. The remaining forces are discussed here.

The tethers are modeled as a proportional spring with nonlinear end displacements. This al-
lows for general tether stretching due to arbitrary node translation and/or rotation. The magnitude

of the tensile force from a single tether is given by:

| Fy| = (2.11)

where k; is the proportional spring constant and §L is the stretch in the tether. The spring constant

is given by:
EA

ks 7

(2.12)

where E, A and L are Young’s modulus, tether cross-sectional area and the nominal tether length,
respectively. For this work E and A are assumed to be 271e9Pa and 5.29¢ — 10m?, respectively.
These values are representative of materials that are being consider for the TCS tethers.

If only a two node TCS with a single there is simulated, Equation 2.11 would give the total
tether force on a node. However, the simulation is capable of simulating more than two nodes
with multiple tethers between nodes. The NxN adjacency matrix, [K], defines which nodes are
connected and by how many tethers, where NN is the number of spacecraft nodes. The tether length
increase of tether k& between nodes i and j is defined by 0L;;;. Therefore, the resulting tensile force

acting on node i from the tether(s) connected to node j is:

M
Tij = ks Z OLijkTijk (2.13)
k=1

where M is the number of tethers between nodes i and j as defined by [Kj;;] and 745 is the vector

defining the k" tether’s connections between node i to j.
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A two-body model for gravity is used in simulation to simulate a TCS operating on orbit at

GEO. The force from gravity is given as:

K

F,|=—=
‘ 9‘ ’Rz|2

(2.14)

where p = 3.986 x 10™ m3s~? is the gravitational coefficient for Earth, m; is the spacecraft node
mass and R; is the inertial position of node 3.

Solar radiation pressure is simulated using a simplified model. The SRP force magnitude is
given by:

Fsrp = PsrpCrAsc (215)

where Py, C,, and A, are the solar radiation pressure, surface reflectivity of the spacecraft and

the cross-sectional area of the spacecraft, respectively.

2.3 Translational Equations of Motion

All four forces presented previously impact the translational motion of a TCS node. Including
gravity and solar radiation pressure, then summing over all nodes, including the Coulomb force of
Equation 2.5 and the tensile force of Equation 2.13, results in translational equations of motion of

node ¢ being calculated by:

R = ‘ RL:IQ i+ PapCrAgeSi + ]Zle - 4 le cq’g;( %“J)JO“HP))/*D (1 + ;J) ey

(2.16)
where R; is the unit vector from the Earth to node i, S; is the unit vector from the Sun to node
i, N is the total number of nodes in the TCS model, and Kj; is a scalar based on the adjacency
matrix which is 0 if no tethers connected or 1 if any tethers are connected. Figure 2.2 depicts
a general multi-node TCS with various amounts of tethers which is governed by Equation 2.16.

Equation 2.16 is the full translational motion for a TCS in GEO. However, most of the simulations

in this work use a simplified model for translational motion where gravity, solar radiation pressure
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Node 3

Double tether
Node 2

Node 1

Triple tether

Figure 2.2: Dynamic model setup for a 3D three-node example

and plasma effects are neglected. The simplified equation of motion is given by:
N N ]
2 T kegiqi(—Pi;) ., .
R — K. =Y 4 J 2L 2.17
i jzz:l U, Jz::l mirigj F#J ( )

Justification for this simplification is given in further sections.

2.4 Rotational Equations of Motion

It is assumed that the only force that affects the rotational motion of a TCS are the tether
forces. Coulomb forces are neglected because they are assumed to be acting on the center of each
node. Differential gravity can be ignored because the spacecraft are spherical. Solar radiation
pressure can induce torques but its effects are not included here. Justification for this is given in a
later section. Therefore, the attitude of each spacecraft node is dependent on the torque acting on
the node from each tether:

N [ M
BT =Y > (KifPpin x [BI Tyr) |, i # (2.18)

j=1 Lk=1
where p; ;1 is the body fixed vector that defines the location of the k" tether attachment point on
node ¢ that connects to node j and [BZ]; is the direction cosine matrix of the attitude of node 4

relative to the inertial frame. The angular acceleration of each node is defined in the body frame
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with Euler’s rotational equations of motion[19]:
o = —w; x ([[w;) + T (2.19)

The attitude of each node is represented with the modified rodrigues parameters (MRP) which are

integrated using the differential kinematic equation:

(1 — 07)[I348] + 2[6); + 200] | w; (2.20)

=

o =

The MRP set will go singular with a rotation of £360°. To ensure a non-singular description, the

MRP description is switched to the shadow set whenever |o| > 1.[19]



Chapter 3

Translational and Rotational Stiffness

3.1 Translational Stiffness

Using the TCS equations of motion, a simplified two-node TCS configuration is numerically
simulated using Equation 2.17 to study the effects of various system parameters on the translational
stiffness of the TCS. Simulation validation can be found in Appendix A. The system parameters
under investigation are the node separation distance, node mass, tether spring constant and node
voltage. Table 3.1 shows the nominal parameters used in the numerical simulation sweeps. These
parameters are the values used when varying the other parameters. Figure 3.1 shows the trans-
lational frequency and peak to peak oscillation amplitude for the various simulations conducted.
For these simulations the nodes are started with the tensile and Coulomb forces in equilibrium and
then each node is given and equal and opposite initial translational velocity of 0.1 mm/s.

Figure 3.1 illustrates the common trends of a two node configuration as the TCS parameters
are varied. For example, Figures 3.1(a), 3.1(b), 3.1(c), and 3.1(d) show the frequency and amplitude

response if the voltage and separation distance is varied and all other parameters are held fixed.

Table 3.1: Translational simulation parameters

Separation Distance 5 m
Node Mass 50 kg
Spring Constant 35.8398 N/m
Node Voltage 30 kV
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Naturally the translational frequency and the amplitudes vary as the TCS equilibrium depends
on the voltage and separation distance used. The figure shows that larger voltages and shorter
separation distances increase the translational stiffness.

Figures 3.1(e) and 3.1(f) show how the translational stiffness increases if the nodal masses
are kept small. Thus, for the TCS concept, it is beneficial to keep the support nodes as light as
possible to increase the translational TCS stiffness. Additionally, Figures 3.1(g), 3.1(h) show that

a stiffer tether provides more translational stiffness.

3.2 Rotational Stiffness

Rotation of individual nodes is of specific interest for TCS systetms because the rotational
stiffness will have direct effects on deployment and orbital maneuvers of TCS systems. The aim
of this section is to determine the allowable rate and direction of node rotation that will return
the node to its original attitude and that which does not result in the tether becoming entangled
with the node. A TCS configuration must be robust towards initial conditions and perturbations.
Therefore the rotational stiffness of a two node configuration in deep space (no gravity) is examined.
Figure 3.2 details a rotation scenario that is studied. This scenario is chosen because there is no
net angular momentum, thus isolating the effects of TCS system parameters. Please note that this
2-node, single-tether configuration provides the worst possible rotational stiffness of a TCS system.
As such, it is a good system to study to examine lower performance bounds. This section examines
the two-node TCS for various TCS parameters and initial rotation rates. Additionally, the impact

of nodal properties such as inertia and nodal radius is examined.

3.2.1 System Parameter Effects

Similar to the translational stiffness analysis, a two-node TCS is examined for various volt-
ages, masses, separation distances and spring constants. The rotational case shown in Figure 3.2
is simulated with the parameters shown in Table 3.2, and the resulting rotational frequencies and

maximum angular deflections are shown in Figure 3.3. For these simulations the nodes are started
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Figure 3.2: Asymmetric rotational motion

at a TCS equilibrium with an initial angular spin rate of 10 deg/min.

Figures 3.3(a) and 3.3(c) show that the rotational stiffness of a TCS configuration can be
increased by decreasing either the node mass and/or decreasing the node separation distance.
Additionally, Figures 3.3(b) and 3.3(d) show that decreasing the separation distance and/or node
mass also decreases the maximum deflection of the nodes. Figures 3.3(e) and 3.3(f) illustrate
that the spring constant has little effect on the rotational stiffness of a TCS configuration. Finally,
Figures 3.3(g) and 3.3(h) show that increasing the node voltage effectively increases the TSC system
rotational stiffness.

Even though these cases are a lower bound on TCS performance, Figure 3.4 shows that
the spacecraft are still capable of withstanding moderate initial rotation rates without the tether
wrapping up around the spacecraft. For this single tether spherical two-node TCS, tether wrap
up would occur when a node is rotated 90 degrees from the vector connecting the two nodes.
Figure 3.4(a), 3.4(b) and 3.4(c) show the maximum angular deflection of nodes over various initial
rotation rates and voltages for 2.5m, 5m, and 10m separation distances. The results from Figure 3.4
also agree with the results from Figure 3.3, which show that larger voltages and shorter separation

distances increase the rotational stiffness of the TCS configuration.
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Table 3.2: Rotational simulation parameters

Separation Distance 5 m
Node Mass 50 kg
Spring Constant 35.8398 N/m
Node Charge 30 kV
Node Radius 0.5 m

Inertia Distribution  Solid Sphere

80 5 deg/min
10 deg/min

60 15 deg/min
20 deg/min

Max Rotation (deg)
Max Rotation (deg)
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Figure 3.4: Stiffness towards initial spin rates

3.2.2 Spacecraft Nodal Properties

To further expand the TCS capabilities it is advantageous to explore other system parameters
that affect the rotational stiffness of the system. Spacecraft nodal parameters such as radius
and mass distribution are critical components in determining the rotational stiffness of a TCS

configuration. Figure 3.5 shows the effect of varying these nodal parameters on the maximum
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Figure 3.5: Node parameter variation

absolute rotation of a two-node configuration, disturbed about the X-axis. During the inertia
variation, the mass and radius are held fixed. For the radius variation, the inertia is based off of
the radius. Figures 3.5(a) and 3.5(b) show the results for a single-tether TCS as a function of mass
distribution and nodal radii respectively. All other simulation parameters are listed in Table 3.2.

With a node of a certain mass and radius, the shell model provides the largest possible
nodal inertia. This scenario is the lower bound on the rotational stiffness that can be achieved.
The solid sphere (homogeneous mass distribution throughout the sphere) will have a lower inertia,
and thus increased rotational stiffness. However, even the solid sphere model is very conservative.
Ideally the TCS nodes would have most of their mass near the node center, and thus obtain an
even lower moment of inertia. As Figure 3.5(a) indicates, compared to the shell model, a 2-3 fold
increase in the rotational stiffness can be achieved by designing the TCS nodes to have their most
massive components near the nodal center, and thus a lower inertia. Additionally, for a constant
mass distribution, solid sphere, Figure 3.5(b) shows that larger node radii increase the rotational
stiffness. Even though the inertia is increasing for larger radii, the larger moment arms for the
tether dominates and thus increases the stiffness. Therefore, Figure 3.5(b) indicates that the ideal
TCS would have its attachment point the furthest away from the center of the craft.

Taking into consideration the previous results of nodal parameters an ideal TCS spacecraft
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node design may appear similar to the conceptual illustration of Figure 3.6. The figure depicts
a multiple tether TCS, whose detailed effects are discussed in a later section. However, multiple
tether TCS have the same dependencies on inertia and radius. This design maximizes the spacecraft
rotational stiffness, increases nodal wrap-up angles and provides a spherical conductive surface for
even Coulomb force generation. The mass moment of inertia is minimized by placing the spacecraft
components within a low-mass exterior conducting shell. The tethers are connected to attachment
arms that extend beyond the shell increasing the tether moment arms and consequently rotational

stiffness. This attachment arm design also increases the maximum angle before nodal wrap up.

Tethers

=~ Spacecraft

"~~~ Conducting shell

"~ Tether attachment arm

Figure 3.6: Illustration of conceptual TCS spacecraft node design

3.3 Environmental Impacts on Stiffness

Analyzed here is the effect of charge shielding which reduces the inflationary Coulomb force
and stiffness capabilities of the system.[24] The charge reduction is examined for a range of GEO
Debye lengths from nominal to worst-case conditions. Figure 3.7 shows the effect of these plasma
conditions on the rotational stiffness of a single-tether TCS configuration with disturbance about
the X-axis. The results shown are for the conservative partial charge shielding force model of
Equation (2.5). For spacecraft charges of these magnitudes, the effective Debye length will in fact

be larger improving the rotational stiffness results.
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