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1. Introduction

The ability to accurately estimate the position and orientation of one object with respect
to another is an important issue for many air and space operations. A vision based strat-
egy using statistical pressure snake methods represents a real-time method to identify
and track objects in a video stream. Possible fields of application are automatic dock-
ing problems, e.g. air refueling [2], spacecraft docking [6], and similar relative attitude
problems [7].

Visual snakes are able to track an object in the video stream and yield snake points
on its contour. Further the routine is capable to identify geometries – for now circles
and quadrangles – even if they are partially obscured. In this case parameters like center
coordinates and radius are determined using the snake points on the visible part of the
contour. The correct identification and choice of the snake points included into the
calculations is a very important issue especially for advancing to more general shapes,
e.g. ellipses. Thus, the first part of this work deals with the identification problem and
introduces several modifications to the disk tracking algorithm to improve the choice of
points.

The second part of this project pushes the tracking algorithm towards more general
shapes by adapting the algorithm to elliptical shapes. While a circle is uniquely defined
by three different points ellipse determination requires further information because there
are five different parameters defining an ellipse: coordinates of the center, minor and
major axis and the orientation angle.
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2. Statistical Pressure Snakes

Active contour models, also known as snakes, represent a popular method in computer
vision community to determine a spline following edges in video streams. Figure 2.1
shows this spline, also called snake, which is defined by a finite number of snake points
drawn in blue.

Figure 2.1.: Statistical pressure snake in violet with blue snake points defining the spline.
The red and blue lines show the calculated principle axes of the object.

The traditional model for statistical pressure snakes was proposed by Kass et al. [5]
and is a parametric curve of the form

S(u) = I(x(u), y(u))′, u ∈ [0, 1] (2.1)

where I stands for the image data. The curve is placed into an image-gradient-derived
potential field and allowed to change its shape and position in order to minimize its
energy defined by

E =

∫ 1

0
ESnake(S(u)) du (2.2)
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2 Statistical Pressure Snakes

where
Esnake(S(u)) = Eint(S(u)) + Eimg(S(u)) + Econ(S(u)). (2.3)

The internal energy Eint of the spline represents two characteristics of the snake –
tension (first order) and stiffness (second order). The original formulation by Kass is

Eint =
α

2

∣∣∣∣ ∂∂uS(u)
∣∣∣∣2 du+

β

2

∣∣∣∣ ∂2

∂u2
S(u)

∣∣∣∣2 du (2.4)

where α and β are weights. If β is set to zero the snake can become second order
discontinuous and develop a corner. Eimg is an image derived term (typically image
gradient) and Econ gives rise to an external constraint force which is controlled by the
user in Kass’ formulation.

For this work a modified parametric snake formulation by Ivins and Porrill [3] is used.
They propose a snake which expands from a seed point to the edges of the tracked object.
In the closed contour case (S(0) = S(1)) one obtains

Esnake =
α

2

∮ ∣∣∣∣ ∂∂uS(u)
∣∣∣∣2 du+

β

2

∮ ∣∣∣∣ ∂2

∂u2
S(u)

∣∣∣∣2 du+

∮
P (I)du (2.5)

where the potential P (I) contains the potential induced by the image as well as the
constraint potential. Eint is replaced with a single term that maintains a constant third
derivative (i.e. a zero fourth derivative) to more accurately reflect the original moti-
vations for active deformable models (proposed by Smith & Perrin [8]). The potential
P (I) is replaced with a statistical pressure term

Epressure = ρ

(
∂S

∂u

)⊥
(ε− 1). (2.6)

This was first proposed by Schaub & Smith [9] with

ε =
|I(S)− µ|

kσ
(2.7)

where the mean µ and standard deviation σ of pixel values are determined in the seed
region of the snake. k defines the spread of acceptance on pixel values and ρ is a weight
factor. Epressure makes the snake points expand as long as they stay on a color close
to that one of the seed region and makes the snake to contract if the color differences
become significant.

Using a HSV color space equation 2.7 can be written

ε =

√(
p1 − τ1
k1σ1

)2

+

(
p2 − τ2
k2σ2

)2

+

(
p3 − τ3
k3σ3

)2

(2.8)

where pi are local average pixel color channel values, τi are the target color channel
values, and σi are the target color channel standard deviations. The choice of an HSV
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2 Statistical Pressure Snakes

color space provides us with an algorithm which is rather robust against changes in
lighting conditions and shadowing.

The snake algorithm provides a certain number of snake points on the contour of the
visible part of the tracked object. The identification of a circle from the given snake
points is described in the next section.
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3. Disk Identification Algorithm

The disk estimation algorithm forms an important part of the tracking routine because
it allows the estimation of center and radius of the tracked disk even if it is partially
obscured. The estimation algorithm is supposed to determine all snake points that make
part of the contour of the tracked disk and performing a least squares fit afterwards.

The first goal of this work is to improve the identification of the correct points. So
far the algorithm described by Chakravarty & Schaub [1] was used and represents the
starting point of this work.

3.1. Basic Algorithm using a 3-Point-Solution

The main idea of the disk identification is a transformation into Hough space where
parameters of an object are displayed on the coordinate axes. Since a circle is determined
by three parameters – the coordinates of its center (xc, yc) and its radius r – the Hough
space is in this case three dimensional. For every snake point i a set of parameters
(xc,i, yc,i, ri) can be found and converted to a corresponding point in Hough space by
solving the following equation system.

(xi − xc,i)
2 + (yi − yc,i)

2 − r2i = 0 (3.1)

(xi−2 − xc,i)
2 + (yi−2 − yc,i)

2 − r2i = 0 (3.2)

(xi+2 − xc,i)
2 + (yi+2 − yc,i)

2 − r2i = 0 (3.3)

The snake does not exactly track the contour but rather crosses the contour alternately.
Therefore better estimations can be achieved by employing the points i± 2 rather than
the direct neighbors in the latter equations. Figure 3.3a shows this set of points.

For all snake points which lie on the disk contour and whose neighbors i± 2 do so as
well the estimated parameters (xc,i, yc,i, ri) fluctuates around the real parameters of the
tracked disks. The corresponding points in Hough space lie consequently close to each
other and form a cluster of points (figure 3.1). Calculating the distance in Hough space
between the snake points and introducing a threshold ∆ every point in Hough space can
be assigned to a certain cluster. Since the snake points are equidistant and the segment
of the tracked disk has to be the longest circular shape the biggest cluster of points in
Hough space is usually formed by the contour of the tracked disk. All points of the
biggest cluster are chosen for the following least squares fit.

The cluster determination algorithm and the least squares fit for the circle are de-
scribed in detail in [1]. Important for the implementation of the cluster determination
is the calculation of the distance d between two points ’1’ and ’2’ in Hough space:

d =
√

wxc(xc,1 − xc,2)2 + wyc(yc,1 − yc,2)2 + wr(r1 − r2)2 (3.4)
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3 Disk Identification Algorithm 3.2 Modifications to the Disk Identification

Figure 3.1.: Sample Hough space plot with dominant cluster (Source: [1])

If d does not exceed ∆ and one of the two points is part of a cluster the other snake
point is added to the same cluster. If none of them is assigned to a cluster a new cluster
is opened. No tags are assigned if d > ∆.

For the least squares fit a differential corrector scheme is used. The update equation
is

∆x = (HTH)−1HT∆y (3.5)

where the matrix H is known as Jacobian containing the derivatives according to xc, yc
and r. The vector ∆y represents the residual errors of the current estimation of the
parameters in x. It can be calculated for each snake point i by

∆yi = −
[
(xi − xc,i)

2 + (yi − yc,i)
2 − r2i

]
. (3.6)

For circles the differential corrector scheme converges quite well towards the optimal
value x which holds the three parameters of the circle.

3.2. Modifications to the Disk Identification

The algorithm described in the latter section is computationally fast but not able to
identify correctly all points of the contour. Ellipses representing the next step towards
more general shapes are uniquely defined by five parameters. Therefore more points are
required for the transformation into Hough space and consequently the correct identifi-
cation of snake points becomes more and more important. The importance still increases
if the total number of points is limited or the tracked object is highly obscured.

Figure 3.2 shows a flowchart of the algorithm including all modifications that were
introduced in this work. They are marked red and will be discussed in the following
subsections.

6



3 Disk Identification Algorithm 3.2 Modifications to the Disk Identification

Figure 3.2.: Flowchart of the disk identification algorithm. Red parts are added for this
work in order to improve identification.
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3 Disk Identification Algorithm 3.2 Modifications to the Disk Identification

3.2.1. Prefit Estimation

The first idea to improve the identification is to use more than three points to determine
the parameters in Hough space which requires an additional least squares fit. For this
fit an equal number of snake points on both sides of the considered snake point is used.
Usually five, seven or nine snake points are used. The so called prefit uses exactly the
same differential corrector routine as the already implemented final least squares fit [1].
Figure 3.3 shows two different set of points that are used for a 3-Point estimation and a
prefit with five points.

(a) 3-Point Estimation (b) 5-Point Prefit

Figure 3.3.: Comparison of the different sets of points used for the estimation around
i-th snake point.

The test case used for validation and detailed numerical results for this modification
are discussed in section 3.3. Figures 3.4a and 3.4b show the test case and two typical
results of the identification for both, the original algorithm and the prefit modification.
The snake points of the biggest cluster are shown in yellow, otherwise in blue. The
yellow circle is the estimation of the algorithm for the tracked red disk.

The prefit is able to improve the estimations and identify more snake points. However
it can also have the contrary effect. The incorporated problem of the prefit is shown in
figure 3.4b. The advantage of the prefit consisting in the use of in this case seven points
resulting in a better fit becomes its disadvantage at the edges of the target contour. In
figure 3.4b the last identified point has still three neighbors which should be identified
as well. The problem consists in the fact that at least one snake point that is not part of
the target contour participates in the symmetric prefit around these unidentified snake
points. Even one point has enough influence to move the corresponding point in Hough
space far away from the cluster and therefore prevents the right identification of the
snake point. Increasing the number of points in the prefit is consequently limited and
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3 Disk Identification Algorithm 3.2 Modifications to the Disk Identification

(a) Original (b) Prefit with seven points (c) Prefit with residual

Figure 3.4.: Typical results of the three different estimation algorithms

yields unsatisfying results because more and more points get lost at the edges of the
target contour.

This issue leads to the residual-based assignment of cluster tags described in the
following subsection 3.2.2.

3.2.2. Residual-Based Assignment of Prefit Results

Initial idea for the improvement of the prefit is to turn away from the principle that the
estimated parameters xc,i, yc,i and ri are determined with a prefit based on the same
number of neighbors in both directions. Instead it should be possible to use only the
next neighbors on one side of the considered i-th snake point or any other possible choice
of nprefit neighboring snake points. Considering nprefit as the number of snake points
used for a prefit this principle allows us to choose between nprefit different prefits for
every snake point. The task is to choose the best of these prefits.

As criterion for the decision between the nprefit prefits an average residual was found
to yield very good results. The residual ρj of the j-th snake point in the prefit is

ρj =
√

(xj − x̂c)2 + (yj − ŷc)2 − r̂ (3.7)

where xj and yj are the coordinates of the snake point while x̂c, ŷc and r̂ refer to the
parameters estimated by the prefit. The average residual ρ̄ is the arithmetic mean of the
absolute value of the residuals of all snake points participating in the current “prefit”.

ρ̄ =
1

nprefit

nprefit∑
j=1

|ρj | (3.8)
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3 Disk Identification Algorithm 3.2 Modifications to the Disk Identification

For every snake point the prefit with the lowest average residual ρ̄ is chosen. As soon
as one point participates in the prefit that lies not on the target contour the estimated
circle differs from the contour of the tracked disk and the average residual generally
increases.

The edge points represent a marginal case since, on one side, they have only neighbors
that do not lie on the target contour. In consequence there should be only one set of
points that fits very well to a circle with the edge point at one end of the set of points.
In figure 3.5 this set of points is marked in dark blue while the originally used symmetric
set of points is shown in light blue. The two circles in dark and light blue show the
corresponding fits to the two different sets of points.

Obviously the light blue circle has a higher residual compared to the dark blue circle.
Consequently the parameters of the dark blue fit are assigned to the considered edge
snake point.

Figure 3.5.: Two different sets of prefit snake points, one with high and the other one
with low residual.

The number of prefits is equal to the number of snake points. So you do not increase
the computational requirements compared with the first prefit algorithm but still the
prefit itself is computationally more expensive than the three point solution.

The implementation requires two loops over all snake points. The first loop performs
the three point estimation algorithm which is still necessary to yield a start value for
the least squares fit. The second loop calculates the prefit as in the initial version with
the current snake point in the center of the set and equal number of neighbors on both
sides. Including the residual we acquire four values from the fit: (xc,i, yc,i, ri, ρ̄i)

Instead of writing the first three parameters only to the central snake point of the fit
an inner loop over all points of the prefit copies all four parameters to every point whose
former parameters where obtained by a fit with a higher ρ̄. At the end of the outer loop

10



3 Disk Identification Algorithm 3.3 Validation

every snake point got the estimation values obtained by the best prefit it participated
in. Figure 3.6 shows a flowchart of the residual-based assignment of prefit results to the
snake points.

A typical result of the identification is shown in figure 3.4c. The identification does
rarely not get all correct points for static test cases with ideal and real images. Only for
very high levels of obscuration the identification does not work that well.

3.2.3. The Multiple Final Fit

In order to further improve the identification the implementation a multiple final fit is
applied to the disk tracking. Initially it was developed for the ellipse identification with
a significant gain in stability. It fits very well with the Three-Point Estimation whose
biggest cluster already yields a close estimation. The multiple final fit is afterwards able
to identify the remaining points of the targe contour. Overall this modification provides
better performance for high level obscuration. It is described in detail for the ellipse
identification in section 4.2.3.

The gain of performance is discussed in the validation section 3.3.

3.3. Validation

The first part of the validation is done without the multiple final fit and the test case
used is shown in figure 3.4. The tracked red circle (r = 60px) is obscured by the green
one (r = 100px) in front of a dark blue background. The distance between the center
coordinates of the two circles is 80px.

The performance of the algorithm was measured by the relation of the number of
identified points and the total number of points. This value is nearly independent of
the total number of snake points which is a consequence of the settings concerning the
maximum (dmax) and minimum distance (dmin) between two snake points. The limits
were set to dmin = 4px and dmax = 12px resulting in about 30 snake points. Since the
snake points remain quite stationary it is possible to manually determine an upper bound
in case of an optimal identification. In this test case the optimal value is µopt = 0.586.

Table 3.1 shows the comparison of the initial three point estimation and the multi
point estimation with and without residual-based assignment. The value of ∆ counted in
horizontal direction describes the maximum distance between two points to be considered
as members of the same cluster. Thus, a low ∆ will lead to few points in the biggest
cluster because snake points are excluded by mistake while an algorithm with a high ∆
will include points which are not part of the target contour. In the latter case values are
shown gray in the table.

In vertical direction the different methods are mentioned including the number of
snake points that were used for the prefit.

Since the the snake keeps slightly deforming even if the video stream is static the
analysis of the identification algorithm is a statistical task. The averages µ and standard
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3 Disk Identification Algorithm 3.3 Validation

Figure 3.6.: Flowchart of the residual-based assignment of the prefit results.

12



3 Disk Identification Algorithm 3.3 Validation

deviations σ are calculated out of the data of hundred time steps while only every fourth
time step was used in order to get statistical independent values.

Method 5 10 15 20 30∆
NoPoints

Optimum - µopt = 0.586

Three Point Estimation -
0.448 0.490 µ
0.031 0.065 σ

Prefit
5

0.306 0.414 0.417 0.416 µ
0.094 0.065 0.050 0.052 σ

7
0.320 0.370 0.377 µ
0.058 0.018 0.010 σ

Prefit with Residual

5
0.420 0.523 0.558 0.582 µ
0.127 0.078 0.068 0.057 σ

7
0.419 0.574 0.583 0.586 0.664 µ
0.119 0.045 0.025 0.007 0.087 σ

9
0.547 0.588 0.592 0.601 µ
0.081 0.009 0.012 0.009 σ

Table 3.1.: Comparison of the size of the biggest cluster depending on the identification
algorithm, the threshold ∆ and the number of prefit points. In grey: Cases
where incorrect snake points were identified

Table 3.1 makes clear that the optimum cannot be achieved with the original algorithm
which reaches a maximum µ of 0.490 with a high standard deviation of σ = 0.065. The
prefit was implemented in order to increase µ but in the end it does not reach the
expected performance. Actually it decreases µ significantly and σ stays in the same
order of magnitude.

Comparing the results of the prefit with five and seven points it is remarkable that
one gets less points on the target contour by using more points what should lead to a
better estimation of the real contour. The reason for this behavior was already described
in section 3.2.1.

The rate of identification is significantly improved by the introduction of the residual-
based assignment of prefit results. Using seven snake points for the prefit the routine is
able to identify almost perfectly all snake points on the target contour with ∆ = 10−20.
The mean µ reaches values next to the optimum and the standard deviation is more
than halved in comparison to the original three point estimation.

A second test case in figure 3.7 shows the effect of the multiple final fit. Again, the
size of the biggest cluster is observed but this time the accuracy of the estimation is also
of interest. The results for both are shown in figure 3.8 in dependency of the number of
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3 Disk Identification Algorithm 3.3 Validation

Figure 3.7.: Highly obscured second test case.

prefit points. The original three point estimation is given at zero prefit points and the
value of ∆ was set to 30.

Concerning the size of the biggest cluster the results for the single final fit are coherent
with the first test case. The prefit allows to identify more and more snake points with
an increasing number of prefit points, even though the standard deviation is higher than
without prefit for less than nine prefit points.

The second graph for the accuracy of xc shows the quality of the three point estima-
tion which can only be achieved with eight to ten prefit points. This is due to the fact
that some prefits yield results with low residuals that are not part of the biggest cluster.
Consequently many snake points of this prefit will not be identified. This issue is less
important if you loose only one snake point as in the original three point estimation.
Furthermore the loss of snake points does not necessarily corrupt the final result signif-
icantly. A lot worse is the loss of numerous points in a row as well as of points at the
edges of the contour of the tracked disk. And the loss of many neighboring snake points
is more probable for the prefit than for the three point estimation.

This compensating feature of the three point estimation is also used for the choice of
prefit snake points in the ellipse tracking and described in section 4.2.1.

The multiple final fit improves the identification immensely in terms of both, the
cluster size and accuracy. But it is not able to fully compensate for the latter mentioned
loss of neighboring points especially at the edges induced by the prefit.

In summary the performance of the multiple final fit in combination with the three
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3 Disk Identification Algorithm 3.3 Validation

point estimation can only be reached with the prefit if more than eight prefit points are
used. However the prefit does not yield a significant improvement compared to the three
point solution as long as the multiple final fit is applied.

Consequently the conclusion must be that the prefit does not provide a worthwhile
gain of performance while the multiple final fit does. The combination of multiple final
fit and three point estimation seems optimal for the disk tracking.
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4. Ellipse Identification Algorithm

With the previously described improvements concerning snake point identification it
is possible to adapt the algorithm for the tracking of more general shapes. The next
step is therefore tracking of elliptical shapes. Ellipses are uniquely determined by five
parameters instead of three for a circle. The increased number of degrees of freedom
for the least squares fit makes it more instable and therefore more difficult to handle.
Consequently some modifications are necessary which are described in this chapter.

4.1. Mathematics – Least squares fit

An ellipse can be described by the following equation:(
(x− xc) cosϕ+ (y − yc) sinϕ

a

)2

+

(
−(x− xc) sinϕ+ (y − yc) cosϕ

b

)2

− 1 = 0 (4.1)

The five parameters defining an ellipse are the coordinates of the center (xc, yc), the
semi-major axis a, semi-minor axis b and the orientation angle ϕ. The ellipse tracking
algorithm bases on the improved circle tracking algorithm described in the previous
chapter. Least squares fits are therefore used for the prefit and the final fit while the
existing differential corrector routine ( [1], [4]) is only updated with the new equations.
The system equations are equal to equation 4.1. The ith equation of the system is

Φi =

(
(xi − xc) cosϕ+ (yi − yc) sinϕ

a

)2

+(
−(xi − xc) sinϕ+ (yi − yc) cosϕ

b

)2

− 1 = 0. (4.2)

Not introducing weights the differential corrector routine yields to the following update
equation [1]:

∆x = (HTH)−1HT∆y (4.3)

The matrix H is the Jacobian holding the derivatives of the system equations. Here the

17



4 Ellipse Identification Algorithm 4.2 Algorithm

derivatives are as follows:

∂Φi

∂xc
=− 2 cosϕ

(xi − xc) cosϕ+ (yi − yc) sinϕ

a2

+ 2 sinϕ
−(xi − xc) sinϕ+ (yi − yc) cosϕ

b2

(4.4)

∂Φi

∂yc
=− 2 sinϕ

(xi − xc) cosϕ+ (yi − yc) sinϕ

a2

− 2 cosϕ
−(xi − xc) sinϕ+ (yi − yc) cosϕ

b2

(4.5)

∂Φi

∂a
=− 2

a3
((xi − xc) cosϕ+ (yi − yc) sinϕ)

2 (4.6)

∂Φi

∂b
=− 2

b3
(−(xi − xc) sinϕ+ (yi − yc) cosϕ)

2 (4.7)

∂Φi

∂ϕ
= 2 [−(xi − xc) sinϕ+ (yi − yc) cosϕ]

(x− xc) cosϕ+ (y − yc) sinϕ

a2

+ 2 [−(xi − xc) cosϕ− (yi − yc) sinϕ]
−(x− xc) sinϕ+ (y − yc) cosϕ

b2

(4.8)

The conventions for the coordinate system are shown in figure 4.1. While the video
stream size is 640x480 the origin of the coordinate system is the upper left corner. With
the y-axis heading to the bottom ϕ is also inverted. The orientation angle ϕ is restricted
to ϕ ∈ (−π

2 ;
π
2 ] in order to provide a unique parametrization. This restriction creates a

singularity which has to be respected in the code. For example a good estimation for
an ellipse with orientation angle φ = 90◦ could be both π

2 − ε and −π
2 + ε where |ε| is

close to zero. The two estimations are both very close to the real orientation but the
numerical difference is close to π. Modifications have to be implemented to compensate
this singularity.

All calculations in the function FitSnakeToEllipse are done with the latter described
coordinates. In order to draw the identified ellipse in the update function the calculated
parameters are converted into a standard coordinate system with the origin in the lower
left corner, the y-axis heading upwards and positive ϕ in mathematical positive sense.

4.2. Algorithm

Many parts of the algorithm are similar to the circle tracking and are therefore not
discussed in detail. Figure 4.2 shows a flowchart of the ellipse identification algorithm.
All features that are completely new compared to the original three point estimation
with single final fit are drawn in red color. Parts that were just modified in order to
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x

y φ

a

b

φ
1
< 0

φ
1

(xc,yc)

Figure 4.1.: Conventions for coordinate system

work for ellipses instead of circles are drawn in black color. A detailed flowchart of the
whole ellipse tracking algorithm is given in appendix A.

The following sections describe the necessary modifications to the algorithm in order
to track ellipses.

4.2.1. Prefit

For an elliptical shape no simple three point solution can be found. Since an ellipse has
five degrees of freedom at least five points would be necessary for a unique definition.
But five arbitrary points do not always define an ellipse – one can think of five points
positioned as on a dice. Hence, the start values cannot be determined with a simple
analytic five-point-solution.

Start Values

The snake algorithm provides the center of mass of the area bordered by the snake. It
is used as start value for the center of the ellipse. The values for a and b are chosen
much smaller than the actual dimensions of the tracked ellipse since test cases show
that the least squares fit does not shrink well starting from a bigger ellipse. The values
a = 15px and b = 10px are chosen and work well in all test cases. The algorithm works
flawlessly also for circles with a = b as start parameters but in this case ∂Φ

∂ϕ becomes 0
and consequently the update equation yields a quasi-infinite component of ∆x for ϕ. The
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Figure 4.2.: Flowchart of the ellipse identification algorithm with modified parts in red.

algorithm leads the result for φ back into the interval [−π;π] by adding or subtracting
a multiple of 2π but the convergence is faster using start values with a 6= b.

Choice of Snake Points for the Prefit

The main routine of the prefit is the same as in the disk tracking algorithm adapted
to five parameters. As mentioned above, the increased freedom of an elliptical shape
leads to diverging behavior in several situations which occur especially in the prefit
where usually less points are used than in the final fit. In figure 4.3 two different sets
of seven snake points are marked that will usually lead to diverging behavior. They
show two main reasons for divergence of the least squares fit: In light blue an almost
linear alignment and in green a corner-like shape including points on the contour of the
obscuring object. In both cases the fit tends to become infinitely large.

The main problem especially of the prefit is the non-existent boundary which would
prevent the fit from growing infinitely. Both of the shown cases are worst case scenarios,
but generally the convergence is better for ellipse sections with high curvature. The
curvature effect will be shown in section 4.3.1.

The first measure in order to improve convergence of the prefit can already be seen in
figure 4.3. The algorithm allows to expand the set of snake points used for the prefit.
The variable prefitNghbrJump contains the distance between two prefit snake points.
The value 1 leads to the same choice as for the disk tracking with all points side by side,
2 is shown in the figure and yields the best results for the used relation between snake
length and number of snake points. The allowed distance between two snake points is
by default between 4px and 12px.
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Figure 4.3.: Two sets of snake points with probable diverging behavior

The goal of spreading the set of chosen snake points is to cover a longer segment of
the ellipse contour. Certainly it would also be possible to reduce the total number of
snake points and take every snake point into account. Yet this method would loose the
backup aspect that exists for the described approach.

The convergence and accuracy of the final least squares fit depends rather on the
length of the contour between the first and the last identified snake point than on the
total number of identified snake points. Especially close to the obscured part of the
contour a prefit can result in parameters that will make the corresponding snake points
not to be part of the biggest cluster. Since these fits sometimes have a low residual
(compare section 3.2.2) these parameters are written to some snake point. The loss of
identified contour length can be avoided almost completely if the prefit based on the
snake points in between yields parameters that will be part of the biggest cluster. For
this reason experiments yield much more stable estimations with prefitNghbrJump = 2.
Figure 4.4 shows two sets of snake points that could compensate each other.

α-Method

This modification has to be implemented for the prefit in order to make all prefits
converge. Preliminary tests have shown that most of the divergent fits converge in the
beginning until a certain threshold is passed. Then they start diverging to infinite values.
The implementation of dynamic step sizes for the least squares fit (α-Method) helps to
keep these fits converging.

Introducing a factor α which is multiplied with ∆x the optimal step size can be
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Figure 4.4.: Two sets of snake points with chance to compensate each other in case of
non-identification of one set.

obtained for every time step. The update equation becomes

xi+1 = xi + α ∆xi. (4.9)

The optimal step size is that one with the strongest decrease of the cost function J .
The cost function J is

J =

nnoPrefitPoints∑
i=1

[(
(xi − xc) cosϕ+ (yi − yc) sinϕ

a

)2

+

(
−(xi − xc) sinϕ+ (yi − yc) cosϕ

b

)2

− 1

]2

. (4.10)

The calculation of the cost function is done in the two separate functions calculateCost
and calculateCostFinalFit. Two different functions are necessary because of the dif-
ferent sets of snake points that are used for prefit and final fit.

In order to determine the optimal step size the current value of the cost function J0
is calculated as well as the cost J1 for a full step with α = 1. If J1 > J0 the step size
is two large and the following while-loop will halve α as long as the optimal step size
is not yet reached. The loop breaks if the cost function increases again, the drop of the
cost function is below five percent or α is smaller than 0.0001. The first two criteria are
not used as long as the current cost is still higher than J0.

In case that J1 is already smaller than J0 it is possible to increase the step size in
order to make the algorithm converge faster. α is therefore doubled as long as the cost
function decreases more than ten percent for each doubling. The maximum value of α
is 8.
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Postprocessing Prefit

The differential corrector scheme sometimes yields high values for ϕ. In these cases n ·2π
is added in order to bring the value back into the interval [−π;π] after every convergence
step. This does not lead to a unique description of the ellipse but has the advantage
that the convergence is not influenced because sin and cos are periodic in 2π.

After the last convergence step it may be necessary to bring the result into the given
system of parametrization. Eventually major and minor axis have to be interchanged
while adding π

2 to ϕ in order to ensure a > b. If necessary π is added to or subtracted
from ϕ which has to be in the interval (−π

2 ;
π
2 ].

Calculating Residuals

The ellipse tracking uses the residual feature introduced in 3.2.2. The average residual
R̄ is calculated similar to the cost function:

R̄ =

√
a b

nnoPrefitPoints

nnoPrefitPoints∑
i=1

∣∣∣∣∣
(
(xi − xc) cosϕ+ (yi − yc) sinϕ

a

)2

+

(
−(xi − xc) sinϕ+ (yi − yc) cosϕ

b

)2

− 1

∣∣∣∣∣ (4.11)

Instead of the square the absolute value is used and the factor
√
a b was introduced.

This factor is necessary in order to get a residual which is not influenced too much by the
size of the ellipse. Since prefits tend to diverge towards high values of a and b would lead
to low residuals. Consequently the corresponding parameters would be assigned to all
snake points of this prefit because smaller, well fitting prefits still had higher residuals.
In consequence these snake points could not be identified correctly.

4.2.2. Cluster Determination

The cluster determination algorithm requires some modifications in detail in order to
work for elliptical shapes with five parameters. For the disk tracking the weights asso-
ciated with all three parameters were equal. This is not adequate in this case because
the orientation angle is measured in radian.

Two points in Hough space are considered to be part of the same cluster if their
distance d is smaller than the threshold ∆. The distance d between two points ’1’ and
’2’ is calculated by

d =
√

wxc(xc,1 − xc,2)2 + wyc(yc,1 − yc,2)2

+wa(a1 − a2)2 + wb(b1 − b2)2 + wϕ(ϕ1 − ϕ2)2. (4.12)

An appropriate estimation for wϕ can be found by comparing the dimension and order
of magnitude of the parameters. Since xc, yc, a and b use the same unit px and order of
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magnitude it is less important on which one of their four weights the comparison with
wϕ is based. In this case wxc is used.

Assuming that the parameters of point ’1’ and ’2’ differ only in the value of xc the
two points are considered to be in the same cluster if

√
wxc(xc,1 − xc,2)2 < ∆. With

wxc = 1.0 the two points are assigned to the same cluster if xc,1 − xc,2 < ∆. The same
conclusion is valid for ϕ as long as wϕ = 1.0. Since ϕ can have only values in the
interval (−π

2 ;
π
2 ] it would never have an decisive impact on cluster determination with a

typical value ∆ = 50. Therefore two ellipses with the same center and size but different
orientation angle could not be distinguished. The corresponding test case is shown in
figure 4.5.

Figure 4.5.: Two ellipses differing only in ϕ as test case for wϕ with ∆ϕ = 30◦.

Which one of the two ellipses is actually tracked is determined by the exact position of
the snake points and the size of the two corresponding clusters. Therefore the estimation
can jump from one ellipse to the other one in one timestep. If the two ellipses are
not distinguished the algorithm usually detects one big cluster resulting in a wrong
estimation.

The tracking for this case can be improved by increasing the weight wϕ. An estimation
for wϕ can be determined by assuming a maximum difference (ϕ1 − ϕ2) that still leads
to the two points assigned to the same cluster. Setting this maximum to 30◦ which
corresponds to 0, 52rad the weight can be calculated as follows:

∆ =
√

wϕ · 0, 522 = 50 ⇔ wϕ =

(
50

0, 52

)2

≈ 9120 (4.13)

Based on this calculation wϕ was set to 10000 and all other weights to 1 by default.
They can be changed while the software is running. The figures in appendix B show
that the order of magnitude of the weights is correct.

The increase of wϕ causes some problems in case that the tracked object is close to
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a circle. Here two prefits can yield very different values of ϕ although both of them
describe the tracked circle very well. Therefore wϕ is reduced in case that the relation
κ = ā

b̄
is close to one where ā and b̄ are the arithmetic means of the two considered

points. Tests show that a simple three level discrimination is sufficient. Table 4.1 shows
the three different levels with the maximum difference in ϕ for two points still to be
considered in the same cluster if ∆ = 50 and all other parameters are the same.

One further modification is due to the singularity of ϕ at ±π
2 . A simple difference

is not necessarily the smallest distance between the values since the distance over the
singularity could be smaller. Since the distance cannot be greater than π

2 the right
distance dϕ can be determined easily:

dϕ =

{
|ϕ1 − ϕ2|, if |ϕ1 − ϕ2| ≤ π

2

π − |ϕ1 − ϕ2|, else
(4.14)

κ wϕ (ϕ1 − ϕ2)max

0.0 < κ ≤ 0.7 1.0 · wϕ,Default 0.5rad
0.7 < κ ≤ 0.9 0.25 · wϕ,Default 1.0rad
0.9 < κ ≤ 1.0 0.05 · wϕ,Default 2.24rad

Table 4.1.: Values of κ, corresponding weight wϕ and maximum difference in ϕ. (∆ = 50,
wϕ,Default = 10000)

4.2.3. Final Fit

The final fit bases on the same algorithm as the prefit. However some modifications
are necessary and with the multiple final fit a new feature is implemented in order to
improve point identification and accuracy significantly.

Start Values

As start values the arithmetic means of all snake points in the biggest cluster are used.
In case of ϕ the singularity has to be compensated in the way that only the absolute
value is accumulated while the number of values with a negative sign is counted. If
more than 80 percent of the prefit values have a negative sign the arithmetic mean is
multiplied with -1 as well. This approach is simple but sufficient for the start values
which do usually not affect the final result.

Least squares fit

In the final fit the α-Method is used as well. The algorithm is exactly the same
apart from the function that calculates the value of the cost function. It is called
calculateCostFinalFit and includes all snake points that are part of the biggest cluster
while calculateCost works only for a prefit with a different set of points.
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Multiple final fit

The multiple final fit is a feature that is implemented in order to further improve the
result of the final fit. In most cases the first final fit already yields an estimation which is
quite close to the correct dimensions. Anyway there are also cases where the parameters
differ significantly from reality and the fit is only tangent to the real ellipse because of
the lack of identified points. This case is shown in figure 4.6a.

The algorithm bases on the idea that a neighbor of the currently identified points
whose distance from the currently estimated ellipse does not exceed a given threshold
probably lies on the contour of the tracked ellipse as well. These snake points are then
added to the cluster and a new least squares fit is performed. Now further snake points
could be close to the estimation and therefore added to the cluster. The final fit is
repeated as long as there are snake points added or excluded. Snake points are excluded
from the cluster in case that they are farther away from the estimation than a given
threshold.

The parameter multipleFFThreshold contains the threshold for the multiple final fit.
If the residual of a non-cluster snake point is inferior to multipleFFThreshold the snake
point will be added to the cluster. If the residual exceeds 2 · multipleFFThreshold a
cluster snake point will be excluded.

The distance between a snake point and the current estimation of the ellipse is repre-
sented by the residual whose arithmetic mean is also used to assign the best one of all
prefit results to a snake point (see 3.2.2). The residual Ri of point i is calculated and
normalized in the same way as in equation 4.11:

Ri =
√
a b

[(
(xi − xc) cosϕ+ (yi − yc) sinϕ

a

)2

+

(
−(xi − xc) sinϕ+ (yi − yc) cosϕ

b

)2

− 1

]
(4.15)

The residual Ri is then compared with the threshold multipleFFThreshold and the
snake point i can consequently be added to or excluded from the least squares fit.

Figure 4.6a shows the estimation after the first final fit. A low threshold multipleFFThreshold =
5.0 is normally sufficient in order to identify almost all correct points. During the first
step many points in between of the already identified points will be added to the cluster
as well as the neighbors of the outer identified snake points which are close to the esti-
mated ellipse. Not only the direct neighbors of identified points are considered but also
these ones with one non-cluster point in between.

Little by little the estimation adapts to the tracked ellipse. Figure 4.6b shows the
result of a multiple final fit. While this accuracy can also be achieved with a single final
fit in some time steps the multiple final fit is characterized by a very stable result over
time.

If the threshold multipleFFThreshold is too high wrong points can be added to the
cluster and the estimation can become inaccurate. Test cases have shown that this risk
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is negligible for threshold values up to 10.0. Generally the multiple final fit improves the
accuracy but in rare cases it can cause outliers if too many points are excluded.

(a) Estimation without multiple final fit (b) Estimation using multiple final fit
(multipleFFThreshold = 5.0)

Figure 4.6.: Comparison of typical results with and without multiple final fit

Postprocessing Final Fit

The parameters determined by the function FitSnakeToEllipse gives the result of the
last final fit back to the update function in snakeMod using the variable ellipse. The
values of ellipse have to be checked on valid values. Apart from nan openCV does
not work for high absolute values. Therefore these two cases are checked in the update
function. The maximum values are 1000.0 for xc and yc and 500.0 for a and b. These low
thresholds are set in order to improve the informative value of the statistical analysis
(see 4.3). OpenCV can deal with higher values.

In rare cases the multiple final fit excludes all points from the cluster. The number of
snake points in the biggest cluster biggEllipse is consequently checked as well.

4.2.4. Estimation Based on Previous Time Step

The modifications described up to this point result in an algorithm that is already very
stable with high levels of obscuration. But some problems can occur if two or more
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objects obscure the contour of the tracked ellipse. The sections of the contour become
very short and the prefits of the different sections become rather inaccurate and do
probably not lie in the same cluster in Hough space. Consequently the estimation does
often not represent the actual ellipse at all.

In tests the multiple final fit has shown its highly positive effect on the results of the
estimation. Since the prefit does not work well if the target contour is segmented the
idea is to let the multiple final fit take care of adding and excluding points based on the
cluster of the last time step.

Using the last step implies to reactivate the snake point tags of the last time step
saved in current->previousTag by copying them to current->tag. Furthermore the
tag of the biggest cluster setno and the size of the biggest cluster bigg have to be copied
as well.

The variable usePreviousTimestep decides over the usage of the previous time step.
Even if it is set to 1 the data of the previous time step will not always be used. A check
is necessary if the prefit of the current time step did not determine a cluster which is
bigger than the final biggest cluster of the previous time step. The bigger one of both
clusters is used. This check is necessary for cases where the obscuring object moves out
of the line of sight. The multiple final fit does not always identify all snake points that
moved onto the tracked contour. Without the check the estimation can be far away from
the actual ellipse.

Often the check results in using the previous time step since the cluster of the current
time step was not yet processed by the multiple final fit which usually adds snake points
to the cluster.

Without this flaw in the multiple final fit the usage of the data of the previous time
step would also have a huge impact on the computational effort since no prefit would be
necessary.

The algorithm can be forced to use the data of the previous time step without doing
a prefit by setting sp->noPrefitPoints to four or less. Then a prefit is only done if
the size of the cluster in the previous time step was zero meaning that no estimation
was made.The identification works a lot faster and in most cases with the same accu-
racy. However in latter mentioned situations the algorithm is probable to yield bad
estimations.

This part of the algorithm is shown in detail in the flowchart in appendix A.

4.3. Validation

Most part of the validation is done with static video streams using real images as well
as ideal ones drawn with OpenCV routines. Anyway a statistical analysis is necessary
because the snake points jump even on ideal images with significant impact on the result
of the fit.

The necessary data is written by the update function into a file which is afterwards
analysed. The writing algorithm is started automatically when a new snake is started
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and the first 50 time steps are ignored to allow time for the snake to expand. The
written variables are the five ellipse parameters, the size of the biggest cluster, the total
number of snake points, the computational time of FitSnakeToEllipse and the number
of invalid results. In total 100 sets of variables are written and only the results of every
fourth time step is used in order to get statistical independent values.

In order to make the statistical result reflect the actual behavior of the snake prop-
erly boundaries are introduced for xc, yc, a and b. A valid result has to comply with
the following conditions: |xc| < 1000, |yc| < 1000, a < 500, b < 500, |ϕ| < 1.6 and
biggEllipse > 0. With a video stream format of 640x480 these limits will usually not
be reached. These boundaries are able to filter results that are obviously far away from
the actual shape of the ellipse because of divergent behavior for example. Since their
numerical values tend to be very high even one divergent result would disturb the 99%
percent of good results in a manner that the accuracy of theses 99% would be no longer
reflected properly by mean values and standard deviations.

Using these maximum boundaries the mean values µ and standard deviations σ of the
mentioned variables give a good image of the capabilites of the algorithm. Anyway only
videos can reflect the dynamic behavior with real camera video streams.

Except for the videos the whole validation part is done with usePreviousTimestep

= 0. Consequently the modifications described in section 4.2.4 are not active.

4.3.1. Accuracy in Ideal Images

This first test case is supposed to show the performance of the algorithm in terms
of accuracy with three different ellipse orientations of 0, 45 and 90 degrees drawn on
the video stream. Figure 4.7 shows the three different orientations with the maximum
obscuration where the standard deviation σxc is below 4px.

The maximum obscuration is only at 50% in case of the ellipse at 90 degrees while it
is at 65% for an ellipse at 0 degree. This difference can be explained with the reduced
curvature of the visible part at 90 degrees. Here prefits tend to grow too large and
correct snake points are excluded by mistake. The observation that contours with high
curvature are easier to track can be made in other test cases as well.

Figure 4.8 shows the accuracy of the estimation of xc as a function of the grade of
obscuration. The obscuration is calculated as relation between the obscured length and
the total length of the x-axis that is covered by the ellipse. The total length is 2a for
ϕ = 0◦ respectivly 2b for ϕ = 90◦. The ellipse at 45◦ covers 332px.

For ϕ = 0◦, 45◦ and an obscuration of 50% or less the deviance of the mean value is
less than 1.5px and the standard deviation is less than 2px. This accuracy cannot be
reached with an ellipse at 90 degrees. Here the standard deviation still does not exceed
3px but the deviance of the mean is at 4px for 50% obscuration.

The graphs break off at the point where mean values differ considerably from the real
position and standard deviations increase rapidly so that a reasonable estimation is no
longer possible.

The constantly negative deviance for the ellipse with ϕ = 90◦ is remarkable and is
caused by the multiple final fit which adds points at the edges which differ slightly from
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(a) ϕ = 0◦ – 65% obscuration (b) ϕ = −45◦ – 62% obscuration

(c) ϕ = −90◦ – 50% obscuration

Figure 4.7.: Maximum level of obscuration possible with σxc < 4px.
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the real contour. If they are included the estimation becomes smaller than the real
ellipse.
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Figure 4.8.: Mean µxc and standard deviation σxc of xc depending on grade of obscura-
tion.

Figure 4.9 shows the corresponding results for yc. The same scale was used as in figure
4.8. The direct comparison reveals that the estimation is much more precise for yc. This
is due to the fact that the obscuring object approaches from the right. Therefore only
the left part of the contour is visible and tracked while the right part has to be estimated.
In contrast the upper and lower parts of the ellipse are partially visible and consequently
determined more precisely.

Likewise, the estimation of the orientation angle ϕ is most accurate for an ellipse at
0 degree. The mean values differ most from the real value for ϕ = 45◦, but in all three
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Figure 4.9.: Mean µyc and standard deviation σyc of yc depending on grade of obscura-
tion.
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cases the maximum deviance is below 0.05rad. The results are shown in figure 4.10.
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Figure 4.10.: Mean µϕ and standard deviation σϕ of ϕ depending on grade of obscuration.

The results for a and b are not given here because xc and a respectively yc and b are
interdependent for ϕ = 0◦. For other orientation angles the interdependency is changed
or less obvious.

4.3.2. Comparison of Single and Multiple Final Fit

The multiple final fit represents and important modification of the algorithm and yields
a very significant increase of accuracy. Figure 4.11 shows the test case used for the
following evaluation.

The analysis was done for different variables as a function of the number of snake
points in the prefit. In figure 4.12 xc gives an idea of a typical behavior for the five
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Figure 4.11.: Test case for comparison of single and multiple final fit.

ellipse parameters. Two different effects take place that degrade the accuracy of the
single final fit on both ends of the scale.

With less points the prefits are less accurate and therefore even the biggest cluster
consists only of about ten snake points. Consequently the final fit is not very accurate
either. The size of the biggest cluster is shown in figure 4.13. For the single final fit the
size increases with the number of snake points in the prefit. It reaches an optimum at
about 12 to 14 snake points in the prefit while the best estimation for xc is done between
10 and 12 snake points. The optimum is equal to the number of snake points that lie on
the visible part of the contour of the tracked object – in this case 41.

If the number of points in the prefit exceed 14 the size of the biggest cluster increases
further. The prefit starts to consider the whole snake one ellipse. The corresponding
estimation of xc in figure 4.12 is therefore smaller than the real center.

The figures 4.12 and 4.13 also show the behavior of the multiple final fit. The multiple
final fit is apparently able to compensate for the lack of points in the initial biggest
cluster. Even if the first final fit bases only on about 10 snake points the algorithm is
able to gradually add missing points till the optimal number is reached.

The multiple final fit can exclude points with high residuals from the biggest cluster
so that the false estimation caused by the choice of too many prefit snake points can be
compensated as well.

As often the increase in accuracy is bought with computational effort. In this case
the difference of computational effort in figure 4.14 is justifiable. Especially because the
number of snake points in the prefit can be reduced with the multiple final fit. Using 9
instead of 14 snake points reduces the computational effort by about 30%.
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Figure 4.12.: Accuracy of the estimation for xc using single and multiple final fit.
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Figure 4.14.: Computational effort for single and multiple final fit.

4.3.3. Single and Multiple Final Fit with Real Images

The algorithm has to proof its capabilities on real images as well. A board with a red
circle is used as target. Its projection becomes nearly an ellipse when inclined. The shape
and orientation of the projected ellipse can be regulated over inclination and orientation
of the board.

Figure 4.15.: Three different grades of obscuration for real image comparison of single
and multiple final fit.

Figure 4.15 shows the three different grades of obscuration that were used. Again, it
is xc which is used to give an idea of the characteristical behavior of the accuracy. In
figure 4.16 the comparison between single and multiple final fit is done for both seven
and nine prefit snake points.
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(a) Seven prefit snake points
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(b) Nine prefit snake points

Figure 4.16.: Mean and standard deviation of xc using seven or nine prefit snake points.
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The result corresponds to those with ideal images. Nine snake points are more accurate
and stable than seven in the prefit and the multiple final fit yields advantages compared
to the single final fit. At 65% obscuration, using nine prefit points and the multiple final
fit the mean deviance does not exceed 5px even though the standard deviation reaches
20px.

4.3.4. Contour with Multiple Segments

This short test is used in order to show that the algorithm is able to track objects
whose contour is devided into multiple segments by the obscuring objects. Both seg-
ments are part of the same cluster in Hough space and their snake points are iden-
tified also without using the multiple final fit and the data of the previous time step
(multipleFFThreshold ≤ 0.0, usePreviousTimestep = 0). Figure 4.17a shows a typi-
cal identification of this configuration while the figures 4.17b and 4.18 represent result
using multiple final fit and the data of the previous time step.

(a) Single Final Fit ignoring data of previous
time step.

(b) Multiple Final Fit with data of previous
time step.

Figure 4.17.: Identification of ellipses with segmented contour.
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Figure 4.18.: Identification of ellipse with segmented contour.

4.3.5. Comparison of Ellipse and Disk Tracking

This test case gives an idea of the differences between disk and ellipse tracking for
real data. Figure 4.19 is a screenshot of this test case. The estimation of xc and the
calculation time for both algorithms is given in figure 4.20.

The circle algorithm yields very stable results with a standard deviation of less than
0.4px while the accuracy of the ellipse estimation is much lower. Especially with seven
prefit snake points the results differ significantly from the circle prefit. For nine prefit
points the results come closer together, but the standard deviation is still higher for the
ellipse identification.

The evaluation videos also show the performance of the circle algorithm which is able
to yield reasonable estimations for circles which are obscured by 80 to 90 percent. For the
ellipse algorithm this limit is at about 60 to 70 percent depending on other parameters.

The computational effort for the ellipse identification is about three times higher
compared to the disk identification. Nevertheless the algorithm still runs smoothly in
almost real time on the test machine with a 2.8 GHz CPU (total number of snake points:
50). The difference between single and multiple final fit is ambiguous.
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Figure 4.19.: Test case for comparison between disk and ellipse tracking.
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Figure 4.20.: Estimation for xc and computational effort for disk and ellipse tracking.
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5. Conclusion

As it was shown the adaptation of the disk tracking algorithm in order to identify
ellipses is possible, but requires numerous modifications. The complexity is significantly
increased by the two additional degrees of freedom and the fact that, especially in the
prefit, the considered snake points fit very well to an ellipse but cover only a small part
of its total contour. The missing ”boundary” on the other side makes the estimated
ellipses to have the tendency to grow too big.

The most important modifications to the original algorithm are the residual based
assignment of prefit results to the participating snake points and the multiple final fit.
For the disk tracking the multiple final fit turned out to improve the identification more
than the introduction of the multi point prefit.

Using the described modifications the algorithm is able to identify ellipses in ideal
and real video streams in nearly real time. The computational effort meanwhile triples
and the possible grade of obscuration is limited at about 50 or 60% depending on the
orientation of the ellipse and direction of obscuration.

In order to damp the possible jumping of the estimation a low pass filter could be
implemented since the movement of the object is assumed to be much slower than the
image refresh interval of the tracking routine.

For the cluster determination the snake points are ordered by the major semiaxis a
in order to speed up the process. Consequently many pairs of snake points can already
be identified not to be in a common cluster because the difference in a already exceeds
∆. Eventually the cluster determination could be sped up by using additional variables
in order to exclude further pairs of snake points. Since the computational effort for
the cluster determination is negligible compared to the total effort a the overall gain in
performance could be negligible as well. Anyway this method could be advantageous
when more variables are introduced while ongoing to more general shapes.

An important finding of this project is also the highly increased complexity of the
ellipse tracking. The step from three to five degrees of freedom requires numerous mod-
ifications in order to work properly and nevertheless the ellipse tracking is still bound to
lower grades of obscuration. Therefore it is probable that the next step to more general
shapes, increasing the number of parameters further, will lead to similar problems as the
disk-to-ellipse step.

Depending on the particular problem it could therefore be interesting to describe more
general shapes by cutting the contour into circular or elliptical sections. The general
shape could then be determined by the relative orientation of some well recognizable
sections to each other.
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Appendix



A. Flowchart Ellipse Identification

Figure A.1.: Detailed Flowchart of Ellipse Identification Algorithm - Part 1
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A Flowchart Ellipse Identification

Figure A.2.: Detailed Flowchart of Ellipse Identification Algorithm - Part 2
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A Flowchart Ellipse Identification

Figure A.3.: Detailed Flowchart of Ellipse Identification Algorithm - Part 3
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A Flowchart Ellipse Identification

Figure A.4.: Detailed Flowchart of Ellipse Identification Algorithm - Part 4
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B. Threshold for Ellipse Identification

The following five figures show the parameters xc, yc, a, b and ϕ for every snake point
at one time step for the testcase shown in figure 4.11. Blue markers are used for snake
points that are later identified to be part of the biggest cluster. For all other snake
points red markers are used. The shown mean value of the biggest cluster and the grey
threshold are only shown for comparative purpose since the cluster determination is not
based on the mean value.

The grey interval shown in the first figure is [x̄c +
∆

5
√
wxc

; x̄c − ∆
5
√
wxc

] with x̄c as mean

value. Corresponding intervals are chosen for the other parameters. The weights are set
to 1.0 except for ϕ with wϕ = 10000. Some snake points can be outside of this interval
and be part of the cluster the same time when the total distance to another snake point
of the cluster (including all five parameters) is still below the threshold ∆.

Furthermore the maximum total distance in Hough space between two points of the
biggest cluster can exceed ∆ since only the minimum total distance to another cluster
snake point is compared to ∆. The distance to the mean value is irrelevant.
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Figure B.1.: Estimated xc for each snake point.
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Figure B.2.: Estimated yc for each snake point.
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Figure B.3.: Estimated a for each snake point.
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Figure B.4.: Estimated b for each snake point.
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Figure B.5.: Estimated ϕ for each snake point.
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