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Spaceflight involves humans working or teaming with robotic or semi-autonomous systems

to perform complex tasks, such as satellite rendezvous, docking, or Earth imaging. Operators

often interact with these systems as remote supervisors, by monitoring them, providing high-level

objectives, or intervening as needed. These teaming tasks can present many challenges for the

operator, and current displays and training practices may not be sufficient for these future complex

operations. Motivated by this, a series of experiments was designed to investigate virtual reality

(VR) for satellite operations and training, as well as to investigate how displays are used to make

decisions when teaming with autonomous systems for operations.

In Aim 1, a systematized literature review was conducted on how to display menus and

text in VR, as there was a lack of dedicated VR display design principles that are applicable

for operational use. From these display design guidelines, a series of displays were developed,

and 3 VR experiments were performed. In Aim 2, VR and screen-based 3D Visualizations were

compared to traditional displays during a spacecraft monitoring task. In Aim 3, this research was

extended to investigate supervisory control, where the operator had the ability to intervene and

take action, using the same display categories. Both Aims 2 and 3 address the gap in the literature

surrounding using VR for monitoring and supervisory operations. These experiments found that

3D visualizations (either on a screen or in VR) provided benefits over traditional displays for the

monitoring or supervising of spacecraft operations, but that VR did not provide additional benefits.

Specifically, visualizations were found to improve situation awareness for monitoring tasks and

improve performance and subjective utility for supervisory control tasks. In Aim 4, these display

modalities were studied for use as a training paradigm. VR was found to be a promising training

modality for spacecraft operations, as it improved level 2 situation awareness (comprehension) and
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usability in operations and had higher perceived utility. This addressed the lack of literature on VR

training and supervisory control operations. The fifth, and final aim, of this work was an assessment

of how and what display components are used on a screen-based display when assessing correct

decision making and trust. Gaze behaviors could explain decision making, notably operators spent

the majority of their time on the left side of the screen, but these cannot fully explain trust.

The main contributions of this work includes the synthesis of VR literature on menus and

text for operational contexts and the use of novel displays for supervisory control operations and

training. VR’s application to operational contexts such as remote monitoring operations, remote

supervisory operations, and training for supervisory control is particularly understudied. In all of

these applications, an operator’s understanding of key information is crucial for success, which can

be achieved through effective display design for training and operations. One specific operational

context that is further understudied in the context of display design is spaceflight operations.

As space missions grow more complex and novel display technologies become more accessible,

understanding how to design displays to promote appropriate usage, and consequently, facilitate

mission success, is critical. For the first time, this work synthesizes display design principles for VR

in operational environments such as spaceflight. Critically, this can inform the adoption of VR in

these contexts. Furthermore, this work examines operators’ usage of current supervisory displays

and how this usage affects their decision making and trust, allowing for an understanding of how

to improve future display designs. Together, these contributions advance our understanding of how

operators use displays to complete their objectives and subsequently how to better design future

displays for spaceflight supervisory control.
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Chapter 1: Motivation

Spaceflight, like many exploration and operational paradigms, involves humans working or

teaming with robotic or autonomous systems to perform complex tasks, such as satellite rendezvous,

docking, and Earth imaging and detection of targets. Currently, the majority of these activities

involve humans on Earth remotely working with automated or semi-autonomous systems in space,

such as satellites. Operations for remote tasks where the operator and system are not co-located,

like with mission control, can be difficult. Due to time delays and communications limitations,

operators (i.e., the individuals responsible for working in these settings) cannot directly command

or control these assets unless in direct communication; instead, operators act in a remote supervisory

control paradigm and send intermittent commands or set goals for the system to accomplish [1,2].

The allocation of responsibility between humans and the systems is not consistent between

use cases. Satellite operations, such as controlling orbital burns, satellite attitudes, or rendezvous,

and proximity operations, are often made with a human-in-the-loop providing commands to the

satellites, but not directly controlling them. Further from Earth, for deep space exploration and

planetary rovers, humans often command actions like orbital burns, camera targets, or rover paths,

but cannot directly fly or drive the vehicles [2]. Supervisory control is also used for current human

spaceflight missions, such as the docking of resupply vehicles to the ISS.

Outside of commanding satellites, supervisory control is often used when working with satel-

lites to gather or interpret data. Autonomous agents have been placed on Earth observational

satellites to assist in determining imaging targets, such as military and ship movement, wildfires,

or harmful algae blooms, and automatically process data in real time before sending it back to

Earth [3, 4]. However, humans are still on the loop when teaming with these systems and act in

a supervisory position. Humans may help predetermine areas of interest, review images to ensure

the autonomous system is accurate, or schedule follow-up images [4].

These types of operations can lead to challenges for the operator. Remote separation leads

to the operator’s perceptual processing abilities being decoupled from the environment, decreasing

situation awareness (SA) [5]. Additionally, inappropriate trust can lead to misuse or disuse of the
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autonomous systems [6]. Overall, these factors reduce mission effectiveness and task completion. A

key component for these operations is the display, or how the operator is able to receive the required

telemetry and data. Current mission control displays can be ineffective for monitoring [2, 7] and

increase the operator’s workload, especially when trying to process 3D data on 2D screens [8–10].

It has been recommended that improvements to the display and mission control be made for future,

complex satellite operations [2]. Beyond this, when teaming with autonomous systems, it is not well

understood what display components are most useful to promote accurate decisions, appropriate

reliance, and calibrated trust.

Another key component of successful operations is training. Insufficient or ineffective training

can harm mission performance, potentially leading to loss of mission, particularly for the complex-

ity of these future planned operations. Current training consists of presentation-based learning,

simulations, and on-the-job training [11]. However, high-fidelity simulators are often costly to use

and may not easily be modified to cover multiple scenarios, and it has been suggested that new

technologies may be able to improve current training practices.

With the advancement of virtual reality (VR) technologies, there has been an increasing

interest in VR for operations and training to combat these issues. VR offers the ability to present

tasks immersively and has been shown to improve aspects of operations like increased SA and

reduced workload for some environments [5, 12–14]. Additionally, it has been a promising training

modality for a variety of operational tasks [15–18], but there is still an open question of how VR

can translate to supervisory control tasks. Additionally, while VR is proposed as a solution, there

is a lack of consensus in the literature about how to optimally design displays for VR, and a gap

in established display design principles. This may lead to conflicting results in the literature on

potential VR benefits [14,19].

This motivates the following thesis focus on display designs for remote supervision of space-

flight applications. This includes VR display design principles, VR for monitoring and supervisory

satellite operations, and VR for training. Beyond this, it will also study the type of information

displayed to promote appropriate decisions, reliance, and trust for teaming.



Chapter 2: Background

2.1 Supervisory Control

Human-autonomy teaming, where a human operator is working remotely with an autonomous

system to achieve a shared goal [20–22], is a challenging yet important modality for future explo-

ration or operational environments, including spaceflight. For spaceflight, these environments are

characterized by highly trained operators, where there are often consequences to safety and per-

formance due to improper action, particularly when there are uncertainties in the state of the

system.

Working with autonomous or robotic systems is often classified by the level of control afforded

to the human operator. While not a perfect representation [23], one such way of categorizing the

level of control has been developed by Sheridan [24]. The control modality most relevant to this

research and spaceflight operations paradigms is supervisory control and can be seen in Fig. 2.1.

This is where the operator provides intermittent commands, but the majority of the control is

through the computer without human input. While there are many different aspects to these

control paradigms, this research will primarily focus on the display block.

Figure 2.1: A representation of supervisory control operations. The focus of this research is on
the display component.

Supervisory control is found in various forms in many exploration, transportation, industrial,

military, and medical contexts [1, 23, 25]. For example, in commercial aviation, pilots often spend
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the majority of the flight monitoring the autopilot system. They occasionally provide inputs, such

as setting the destination or altitude, and only take over in emergencies. In addition, supervisory

control is often used in situations in which the human operator and autonomous system are not

co-located. This may be due to the safety of operators when the autonomous system is working

in a dangerous environment, like space, mining, underwater, or military zones [2, 26]. In many

spaceflight operations, the human operators are on Earth working with assets in space. In these

settings, time delays are also present from the order of seconds to hours, eliminating the ability

to directly command the asset. This time delay is one of the initial early drivers of supervisory

control, since requiring continuous control with a time delay present produces instability in the

system [1].

Supervisory control involves many cognitive demands as the human operator has multiple

functions, including planning the task and teaching the computer how to perform it, monitoring the

autonomous system to ensure the task is going as planned, intervening to update directions, and

then learning for future work [24,25]. Monitoring is a very important aspect of remote supervision

[24], as it enables operators to understand system states, anticipate future issues, and quickly

detect and respond to failures [1]. Monitoring is also how an operator spends the majority of their

time. During intervention, operators can provide new subgoals or aid in decision making for the

autonomous system.

Remote operations are where operators and the systems they work with are separated spa-

tially and potentially temporally (i.e., due to time delay of sending information), like in a spacecraft

mission control center, and are the focus of this work. Remote operations can be challenging due

to the lack of environmental context and the decoupling of processing abilities from the physical

environment [5, 27], creating a host of new challenges for human information display, including

compromised situation awareness (SA) [5, 28]. SA can be defined as having 3 levels where level

1 is “the perception of critical elements in the environment”, level 2 is “the comprehension of their

meaning”, and level 3 is “the projection of their status into the future” [29]. Low SA can make

operations a difficult and cognitively challenging task, reducing mission effectiveness and task com-
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pletion. This problem is compounded as monitoring operations are often already correlated with

lowered SA [30].

Additionally, supervisory control is influenced by the need for effective human-autonomy

teaming, which is important to ensure mission success, performance, and appropriate use of the

system. One critical aspect of human autonomy teaming is trust, or “the attitude that an agent

will help achieve an individual’s goals in a situation characterized by uncertainty and vulnerability”

[6]. Inappropriate trust in a particular system can lead to overtrust or distrust, and supporting

appropriate trust is critical to avoid misuse and disuse of an autonomous system. Inappropriate

use of the system could lead to inadequate performance or a mission failure. Trust is especially

critical for supervisory control operations, where the autonomous system has leeway to make its

own decisions and recommendations.

2.2 Current Practices for Spaceflight Applications

2.2.1 Satellite Operations

The operation of satellites is a monitoring and supervisory operational domain that is often

understudied. Beyond the challenges present with supervisory control, future proposed mission

objectives may present additional difficulties. For example, on-orbit inspection and servicing tasks

are becoming increasingly desirable, but involve multiple satellites in close proximity [31–33]. The

relative trajectories of the satellites must be quickly understood by operators in order to avoid

collisions, but are governed by flight dynamics that can be complex and non-intuitive. Additionally,

the close proximity between satellites during these tasks results in less time to make decisions and

send commands. Critical events, such as for collision avoidance maneuvers, may necessitate actions

to be made in seconds [34]. The complexity of the system increases with uncertainties in the

states of the satellites (i.e., their exact positions, velocities, and orientations) and can be especially

significant when repairing a dead or injured satellite.

Current satellite operations take place in a mission control room, an example of which is



6

seen in Fig. 2.2. While different organizations have different protocols and displays, the majority

of displays consist of densely packed telemetry data, 2D graphical representations of values over

time [2], and many times different subsystems have their own displays and alarms [24]. The data

presented comes from a variety of sources, and can include past, present, and/or predicted future

data [1, 27]. Additionally, mentally processing 3D data that is represented in 2D can increase the

operator’s workload [8–10]. Workload can be influenced by the task and environment, as well as

the operators’ skills, behavior, or perception, and is defined to be the cost incurred by an operator

to achieve a particular performance level [35]. Workload can include aspects like mental, physical,

and temporal demand, as well as be related to effort, frustration, and performance. Additionally,

workload can be related to the amount of data that needs to be processed [7], and having to quickly

comprehend and react to the data can further increase workload. To improve these displays for

next-generation supervisory control rooms, it has been suggested to develop systems to manage the

large amounts of data and provide only needed or requested information, which would improve SA

and reduce workload [2].

Figure 2.2: ISS mission control center. Each operator has multiple computer screens to monitor.

There are multiple operators in the control room and there are additional back rooms with more

operators. (Source: NASA)
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2.2.2 Training for Satellite Operations

Due to the complexities and risks of current and planned satellite operations, it is important

that operators have appropriate training, as failures can lead to the loss of spacecraft. Training is

defined as the process by which individuals can gain job-relevant skills, knowledge, or competency

[11]. Effective training ensures operators have an accurate sense of system capabilities and adequate

practice in putting together and understanding complex information. This is often developed

through repeated interaction. Inadequate training can make it more difficult for operators to

maintain SA during the task [11], which can harm mission performance.

Current supervisory control training practices often involve classroom education, simulators,

and on-the-job training (OJT) [11]. Spaceflight operators in training are often taught along these

lines. For example, command controller training at one satellite mission control facility consists of

10 weeks of classroom-based lectures [36]. In contrast, NASA space shuttle mission controllers, in

some years, completed over 100 simulations to become certified [37]. Other organizations may take

between 3 months and a year to complete training [38–42]. The training times and requirements,

particularly for classroom lectures, may be increased for training operators who do not have previous

experience or an educational background that is necessary to complete the task.

Figure 2.3: Example of a current air traffic control training simulator (Source: Air Force)

Practice-based training can include simulators and OJT and can be a costly but important

component of training. This type of preparation is necessary to build mental models, skills, and
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judgment to complete a task without errors in both nominal and off-nominal situations [1]. Mental

models are “mechanisms whereby humans generate descriptions of the system purpose and form,

explanations of the system functioning and observed system states, and predictions of future system

states” [43]. Anticipating future states, enabling pattern recognition, and information-seeking have

all been attributed to mental models [44]. Additionally, mental models can aid in improving SA,

particularly the higher levels [45]. For many operations, especially in novel environments, it is

critical for operators to include consideration of imperfect information and the possible impacts of

that uncertainty in mental models of their actions. For example, in satellite operations, there may be

uncertainties during a satellite burn or uncertainties inherent in a given sensor. These imperfections

in knowledge of the current spacecraft state may affect the appropriate actions required and can

impact future states. It is apparent that appropriate mental models will include an appreciation of

uncertainties in the system, and that this must be taught as part of the training program.

However, even the most comprehensive current training environments have their downsides.

Simulator training devices, particularly high-fidelity ones, are expensive to design and may require

many personnel to run. In addition, simulators can become obsolete compared to current technology

due to the large cost of updates [37]. It has been suggested that incorporating new technology into

training as an alternative to simulations can reduce total cost and time [37].

2.2.3 Human Autonomy Teaming with Satellites

Beyond operations, humans may also be working with autonomous systems on-board the

satellite to aid in processes like image identification. When working with autonomous systems,

operators may verify or confirm the autonomous systems’ recommendations. Other times, operators

may follow a recommendation of the system, ignore the system’s recommendation, or not take

action if no alert is given. Compliance is an active form of agreement, where an operator positively

responds to alarms [46], and reliance is the passive form of compliance, where an operator does not

correct or override a system when there is an absence of alerts.

These constructs are influenced by trust, but not determined by it [6]. Verification can be
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a relatively objective measure or distrust [47–49]. Reliance is related to the trust in automation

exceeding an operator’s self-confidence, and high reliance can be representative of high trust, high

workload, complacency, inadequate training, or high risk situations [50,51]. Likewise, reliance and

compliance are affected differently based on the type of errors exhibited by the system. A false

alarm affects both, but a missed detection affects only reliance [46].

2.3 Alternative Display Designs

Displays are a critical component of successful supervisory control operations, as it is how

the operator receives the information from the system. As described above, current displays and

training paradigms may not be adequate for the additional challenges of future missions, and im-

provements need to be made. For satellite operations, there is a need for improved understanding

and SA, which changes to the display, such as introducing VR or 3D visualizations, may be able

to provide. For operational training, there is a need for low-cost, high-fidelity simulations, which

VR may also be beneficial for. However, there is a gap in the literature in understanding how

these display changes to VR can affect spaceflight operations and operations. Finally, for pro-

moting human-autonomy teaming and appropriate trust, reliance, and decision making, there is a

need to better understand what information is currently used in order to include the appropriate

information in future displays.

2.3.1 Virtual Reality

VR has been proposed as an alternative to traditional 2D display interfaces in many situations

that would benefit from increased immersion in the environment and 3D interactions, such as

operations and training. An example of a virtual reality setup is in Fig. 2.4. Such displays

increase telepresence, which is the feeling of being present in an environment other than where

one is physically [52]. This is due to the immersive nature of VR, where immersion is defined

as “the extent to which the computer displays are capable of delivering an inclusive, extensive,

surrounding and vivid illusion of reality to the senses of a human participant” [13]. Throughout



10

Figure 2.4: A demonstration of a virtual reality setup being used for satellite orbit visualizations
and training (Source: Space Force)

this work, immersion is provided through a head-mounted display (HMD) VR system. VR may

enhance performance through the improvement of perception, increased field of view, and the ability

to change viewpoints without the loss of telepresence [5, 12, 53]. The ability to change viewpoints

(i.e., teleportation) offers improvements in performance over a fixed viewpoint but comes with the

risk of increasing cognitive load [54]. Furthermore, the ability to increase the field of view through

natural head motions in VR can help improve collision avoidance and understanding of future

vehicle states over the reduced field of view 2D displays.

2.3.1.1 Virtual Reality for Operations

Most of the prior research into using VR and remote operations has focused on direct tele-

operation, where the human operator manipulates or controls a robot [5, 14, 54–56]. This includes

situations such as operating undersea robots [53], remotely driving a car [57], or remotely manipu-

lating robotic arms [14]. Whitney et al. [14] found that using VR to complete a teleoperation task

with a robotic arm led to faster completion time, lower workload, and improved usability compared

to traditional monitor and keyboard interfaces. Similarly, Elor et al. concluded that stereoscopic

VR displays led to faster completion times, increased usability, and increased perceived presence

and performance over desktop displays in an underwater capture task. However, in this study, no

differences were found in workload [53].

Consistently, studies have found that VR displays can improve depth perception and collision
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avoidance, lead to faster task completion, increase the sense of presence, increase usability, and

reduce perceived effort compared to the 2D displays [5,12,14,53]. In prior work, immersive displays

has been studied in the context of data visualizations and immersive analytics, and have been

shown to improve estimations of depth, size, distance, cluster identification, and trajectories [58–62],

further promoting the hypothesis that VR may be useful for monitoring and supervisory operations.

However, there are mixed results on the effects of VR on task performance. For example, some

studies find VR does not change workload [53] while others reported a decrease [14,63]. With regards

to SA, some studies have found improvements [57], while others have reported no differences [64]

between VR and screen displays. Some of these differences may be attributed to display design

choices, as there is a lack of validated design principles for VR operations, and ineffective display

design choices may result in reduced performance. In addition, the task type or complexity may

also influence the outcome, as VR may not be appropriate for all tasks. Finally, differences may

also be attributed to inconsistencies in how these variables are measured. For examples, using

subjective [64] or proxy measures of SA [57] may not capture the same aspects of SA [65].

The direct control paradigms that have been studied in depth may not be appropriate for all

future operations, such as spaceflight, where time delay and bandwidth limitations inhibit direct

control. Some of the benefits seen with direct control, such as improved collision avoidance, may

still apply. However, other benefits may not be as applicable due to the differing control authority

and cognitive demands on the operator. Manual control tasks tend to have higher workload [66],

which VR may be able to reduce [14, 63]. Unlike direct control, monitoring tasks already have a

low workload [66], so VR might not reduce it further [19]. However, it is still important to study

VR for monitoring tasks, as successful monitoring relies heavily on an operator’s SA, which VR

may increase.

As such, a gap in prior work is the use of VR for remote supervisory and monitoring opera-

tions, particularly with a lack of research on satellite operations. VR has been proposed for use in

operations for many monitoring control rooms, such as for spaceflight [67,68], maritime [19,69], and

air traffic control [70,71]. For satellite operations in particular, VR has been suggested as a way to
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improve environmental context and allow operators to better understand 3D orbits. While there

has been research focusing on these monitoring applications, primarily for air traffic control, using

augmented reality [72–76], there have been limited experimental studies into VR for supervisory

operations.

Lager et al. compared the use of traditional 2D GUI, 3D screen-space GUI, and 3D VR

GUI to remotely monitor autonomous surface vehicles and found that users were better able to

detect collisions and had improved SA in both the 3D and VR displays compared to the 2D display.

The 3D GUI had significantly reduced cognitive load (as measured through a proxy variable of a

secondary task) compared to both the VR GUI and 2D GUI. However, participants subjectively felt

that if they had many hours of training, the VR display would be best for the task, indicating that

VR has the potential for monitoring applications [19]. Other research has studied VR for maritime

control room monitoring and has found that VR could replace complex monitoring dashboards

[69]. Although an experiment was conducted, no comparisons were made between VR and current

maritime displays, representing a gap in VR monitoring research and understanding how VR can

facilitate improvements. A different study comparing VR to physical displays for the monitoring

of autonomous cars found that VR increased task load and simulator sickness, and decreased

usability [77]. However, the authors acknowledge that these differences are likely attributed to

the hardware used (i.e., headset weight and resolution) and the fact that their VR display was

not designed or optimized for use in VR, indicating that it is important to design with VR in

mind. Finally, for air traffic control applications, VR has been demonstrated to reduce the number

of errors and aid in identifying dangerous situations compared to the typical 2D view controllers

see [71], but no comparison was made to a 3D view, making it unclear if the benefits come from

increased immersion or 3D visualizations.

2.3.1.2 Virtual Reality for Training

VR has been studied and used for training in medicine [15, 16], firefighting [17], human

spaceflight [78], education [79], among other disciplines [80, 81]. VR has been demonstrated to
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facilitate skill transfer to the real world [15], and lead to improvements in mental models [82] and

perceived learning [83].

VR can provide a customizable, adaptable, and immersive environment to simulate tasks that

might otherwise be costly, unsafe, or unintuitive to replicate in the real world [81]. This allows users

the opportunity to train for a variety of scenarios and in a variety of environments, both nominal

and off-nominal. During VR training, trainees can make mistakes with no real-world risk to safety

or expensive systems and build a better understanding of how actions and outcomes are connected.

VR has also been shown to induce realistic stress responses, which can lead to operational realism

and enhance training [84]. Although using immersive displays for training and learning is generally

promising across a wide variety of fields, little work has been done to apply these principles to

remote supervisory operations, where the consequences of inappropriately conveyed uncertainty in

this environment are profound for the operator’s human perception and performance.

2.3.1.3 Virtual Reality Limitations

While VR has many potential benefits, it also has some limitations that may affect how much

benefit it can provide for a particular application. Some of these are related to limitations in the

hardware, which is actively improving as technology progresses, but still must be considered to

ensure current operational use and operator buy-in.

VR displays can lack the resolution to display blocks of text in a readable way to properly

understand large chunks of data [85], which may be required for the supervision of autonomous

systems [24]. Operator buy-in and susceptibility to cybersickness are influenced by refresh rates,

resolution, and other headset properties as well as display design choices, including viewpoint

selection, field of view, amount of control over the environment, and headset properties [86, 87].

Finally, VR headsets can be uncomfortable to wear for long periods of time, due to eye strain and

pressure points [88].

Many of these technological limitations can be overcome through display design choices.

Display design choices can also reduce other common VR limitations. Information overload and
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misinterpretation of the signal may be exacerbated in a VR-based environment representation [89].

Inappropriate choices for interaction and selection techniques can result in selection errors, longer

competition time, fatigue, and decreased usability [90,91], which may be problematic for operational

uses. Teleportation can increase an operator’s cognitive load [54], and mismatches between the

expected and actual viewpoints can decrease SA and cause simple tasks to be challenging [5].

Finally, VR may cause distractions due to its immersive and novel nature, which can cause learners

to not focus on understanding the desired lesson [79] or lead to distractions during operations.

However, VR is a developing technology, and there is still a lack of validated display design

principles that inform what choices are most effective for a certain application and a need for

continued research on the user experience in VR [92]. Some companies have released guidelines,

such as Google [93] and Oculus [94]; however, these are often geared towards video game design

and may quickly become outdated with technology progression. While these guidelines may help

inform operational display design, they are often designed to improve constructs such as immersion,

which may be counter to some of the needs of operations. Little guidelines exist on how to display

text, which is common for these supervisory control displays, or how to interact with the system.

Without ensuring the display is designed appropriately for the potential application, it is also

hard to understand and research whether VR is beneficial for that application or if the benefits

are just not realized due to ineffective design choices. Thus, subjective assessments of VR, such as

display usability or utility, are important; if users find VR uncomfortable or unusable, operators

may avoid its use for both operations and training, even if it can lead to better outcomes.

2.3.2 Human-Autonomy Teaming and Decision Making

Working with complex autonomous systems also requires novel ways to display information.

This is needed to ensure that operators are able to make appropriate decisions and have calibrated

trust when working with or reviewing the autonomous system’s suggestions, as the display and

type of information provided can influence trust, reliance, and decision making [6]. Open areas of

research for displays often focus on transparency and explainability. Transparency refers to “the
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descriptive quality of an interface about its abilities to afford an operator’s comprehension about

an intelligent agent’s intent, performance, plans, and reasoning process” [95]. Transparency has

often focused on providing users with appropriate information explaining the system’s reasoning

before taking action [96–98] and may offer better usability [99], acceptance [100], more appropriate

trust [101], and reduced workload [102]. Stowers et al. found that increasing the amount of

information increased the number of correct decisions, but decreased usability and lengthened

response time [100, 103]. Additionally, the level of detail in the display was found to produce a

speed-accuracy trade-off, where more detail increases accuracy, but decreases response speed [104].

One concern for increasing the transparency is that displaying more information may increase

display clutter and overwhelm the operator’s processing ability [105,106], and it has been suggested

that the amount of information must be adjusted by the available decision time [107].

While much of the existing literature focuses on the amount of transparency, little focuses

on the type of information and what information operators use to make decisions. When designing

these future displays, it is important to include the information that is most useful to the operator in

enabling them to make correct decisions in the amount of time they have available. By determining

what information operators are processing when making decisions, better displays can be designed

to promote the appropriate information. A challenge, though, is understanding what type of

information to include and what contributes most to appropriate decisions, representing a gap in

the literature.

While there are different ways to understand what information is being used to process

decisions, one unobtrusive way to do so involves gaze or eye-tracking metrics. Eye movements have

been used to infer mental processes during decision-making in areas such as behavioral economics

[108], psychological sciences [109], and piloting tasks [110] and have been suggested to be a powerful

way to assess cognitive processes [111,112]. This may extend towards human-autonomy teaming and

being able to understand what areas of a display are being used to make appropriate decisions. Most

of the previous work involving human-autonomy teaming and gaze has been for trust and has not

considered the areas or the meaning of the areas the operator is looking at. Subjective trust ratings
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have been correlated to total fixation durations, total fixation count, and number of transitions, as

well as metrics like rate of transition and scan path per section. It was found that lower trust (and

reliability) lead to longer, and more fixations than with higher trust [113]. Likewise, for automated

driving, negative correlations were found between fixation frequency and trust [114, 115], and low

gaze dispersion has been associated with higher trust and less monitoring [116].

Beyond gaze, other behavioral metrics may be related to an operator’s decision-making. As

discussed previously, reliance and compliance are metrics that can be calculated for a period of

time to understand appropriate usage. Compliance is calculated by the rate of agreement per block

of time, and reliance is the rate of not overriding automatic control in the absence of alerts per

block of time [117]. While related to the use of the system, these do not consider the correctness of

an operator’s decision, but may be related to an operator’s trust in the system and are important

to consider to ensure the system is used appropriately. Previous research is inconclusive about

how the display affects reliance. In a study for driving simulations, display design and realism

were found to influence trust, but not reliance [118]; however, other studies found that an increase

in realism increased trust and led to a greater reliance [119]. Overall, there has been little work

understanding how specific interface features affect reliance and system usage [6].



Chapter 3: Investigative Rationale and Specific Aims Summary

The following gaps, as identified through the literature review, motivate this thesis on display

designs for training and operations in supervisory control paradigms.

Gap 1: There is a lack of dedicated design principles for VR operations in literature. In order to

design appropriate VR displays, especially for aerospace applications, it is important to identify

relevant human factor principles that can be applied in VR.

Gap 2: Few studies have explored the use of VR for monitoring and supervising autonomous

systems. To demonstrate the efficacy of VR in these control modalities, the benefits of VR that

come from the increased immersion or 3D visualizations need to be assessed.

Gap 3: Most studies into training with VR have focused on simulating environments for manual

control tasks. There is a lack of research in VR for training of supervisory control tasks.

Gap 4: It is known that trust and decision-making depend on the content, details, and format

of the display. However, there is a lack of research into understanding what specific contents of a

display are being used to make the appropriate decision, and how this relates to trust, particularly

for remote supervision.

The proposed thesis will investigate display designs for complex spaceflight supervisory con-

trol operations and training. It will investigate VR as a display modality for training and operations

in remote monitoring and supervisory paradigms using a satellite servicing and repair mission sce-

nario. In addition, this work will further study display design for satellite teaming, with a focus

on display elements that influence trust during a satellite image classification task. The following

aims comprise this thesis:

Aim 1: Establish a Coherent Set of VR Display Design Principles Derived from Literature

Summary of work: A systematized literature review is conducted on VR-relevant display

design principles, with a focus on menus/interaction and text. These synthesized guidelines are used

in the development of the VR displays used throughout the rest of the aims. This Aim addresses

Gap 1.

Aim 2: Investigate the Effects of Visualization and Immersion in Displays for Remote Monitoring
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Operations

Summary of work: Three display designs with various degrees of immersion and visualizations

are compared in monitoring satellite operations. The specific constructs of SA, workload, usability,

and subjective utility will be assessed between display designs. As monitoring is an important

aspect of supervisory control, this aim will help assess the use of VR during operations. In this

aim, we hypothesize that visualizations will improve SA, lower workload, and improve usability

and subjective utility over displays without visualizations. In addition, we further hypothesize that

immersive VR displays will provide additional benefits over visualizations. This aim addresses Gap

2.

Aim 3: Investigate the use of VR for Remote Supervisory Control Operations

Summary of work: This aim extends upon the work of Aim 2, but considers situations in

which operators have some degree of control authority. It considers the same three display types

for a similar task, but operators can now make intermittent commands. This aim aids in under-

standing the impact of VR on operations with increased control authority. We hypothesize that

visualizations will improve SA, increase usability and utility, and improve performance. Addition-

ally, we hypothesize that immersion will further improve SA, increase usability and utility, and

improve performance. Based on the results from Aim 2, we hypothesize no differences in workload

due to the typical low workload of supervisory tasks and anticipated appropriate display design

implementation. This aim also addresses Gap 2.

Aim 4: Investigate VR Training to Improve Operations for Remote Supervision

Summary of work: This aim explores the degree to which training in VR for remote supervi-

sory tasks improves the operator’s understanding of uncertainty compared to traditional training

modalities, and is done in conjunction with Aim 3. The benefits of training in a different modality

than operations are conducted in are assessed. Same modality (i.e., training in a traditional display

and operating in a traditional display) and cross-modality training (i.e., training in VR and operat-

ing in a traditional display) are compared based on subsequent performance in a traditional display.

We hypothesize that training with 3D visualizations will lead to better SA and performance in the
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operational trials, and have a higher utility rating. Furthermore, we hypothesize that VR will lead

to further improvements in these metrics than 3D visualizations alone. We do not believe there

will be a difference in workload scores or usability based on training conditions. This aim addresses

Gap 3.

Aim 5: Investigating Display Design Elements that Lead to Calibrated Trust and Appropriate

Decision Making During a Satellite Human-Autonomy Teaming Task

Summary of work: This aim studies how operators use a display during operations, specif-

ically focusing on the human-autonomy teaming component of operations. Instead of controlling

the satellites, the operator works with an autonomous system to identify if images taken by a

satellite contain objects of interest. Operators have the ability to blindly trust the system, or to

review the telemetry the satellite obtained in making the decision. We track human behavior and

identify what information they viewed when making their decision. This investigates what types

of information people use to make their decisions, as well as whether these decisions are related to

their trust. This aim addresses Gap 4.

The findings from Aim 1 will influence the VR display design used in Aims 2-4. Additionally,

aims 2-4 will use a similar task and environment, with the main difference between the degree of

control authority. Aim 5 will shift the focus from operating satellites and VR to working with

satellites to achieve a common goal on a screen-based visualization.



Chapter 4: Aim 1: VR Display Guidelines

4.1 Introduction

The objective of this aim is to develop a set of VR literature-derived display design principles

that can be used for designing systems for operational settings. This review focuses on head-

mounted VR devices, as opposed to other immersive systems like augmented reality (AR) or CAVE

Automatic Virtual Environment (CAVE, a projector-based VR system). Additionally, it will focus

on two elements that may be unique or different for operational use cases, as opposed to VR use

cases like video games that are commonly studied. This includes menus, or how a user can access

information, and the use of text, or how a user can read and interpret essential data. Operational

use of VR often requires high accuracy and lots of text, which may lead to the optimal choices being

different than VR video games or other use cases. Oftentimes, video games and similar applications

promote immersion, aesthetics, and usability, as opposed to accuracy and speed.

This aim focuses on menus/interactions and text since the initial literature review identified

these as requiring unique considerations for operational VR displays that are different than exist-

ing human factor principles, operational guidelines, and VR video game design principles. Two

systematized literature reviews are conducted. The reviews are modeled after Preferred Reporting

Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines [120]. Three databases are

searched, including Web of Science, Compendex, and Inspec. This provided a variety of sources

and identified studies across different disciplines. This approach was applied to 2 different aspects

of operational display design: Menu and Interactions and text. The results of this aim are used in

the development of the VR interfaces for Aims 2-4.

4.2 Menu and Interactions

The first area of interest is the use of menus and how users interact with them. Menus are

critical to facilitate changing the state of the interface through the selection of one or more options.

However, there are different ways of presenting and selecting the menu options, which this review



21
Table 4.1: Search terms for menu review. Note * indicates terms with multiple variations

Topic Search Term Location

Menu* Title
Technology VR OR “Virtual Reality” Title/Abstract/Keywords
Study Type participant* OR Subject* OR user* OR study Title/Abstract/Keywords
General compar* OR evaluat* OR effect* OR explor* Title/Abstract/Keywords

is interested in understanding.

4.2.1 Methods

A literature review is conducted using the search terms in Tab. 4.1. The initial search resulted

in 179 articles. The modified PRISMA procedure is documented in Fig. 4.1. The metadata is

screened to remove papers that are not in English, duplicates, published prior to 2010, and not peer

reviewed. During the title and abstract screening phase, results are excluded for no VR application,

no menu development, or no menu testing. Only the author screened the titles and abstracts of

all papers. The inclusion criteria for the full text review is having a comparison of menus. Menu

comparison testing is important to be able to assess the menu performance and understand the

benefits of certain menu types in VR. Interaction types (i.e., how to navigate the menu) are not

directly searched for in the review processes, but are identified in the resulting papers. Following

the full text review, 7 papers are included, with 1 additional paper identified through scanning

references of all full-text review articles to identify additional articles not originally identified.

Table 4.2 lists all the articles and their attributes.

4.2.2 Results

Across the literature, various combinations of menus within the design space are used. The

design space consists of menu layouts (i.e., how the items are organized), interaction (i.e., how to

select items), and anchoring schemes (i.e., where the menu is located in space). A summary of the

design space is in Fig. 4.2.

The commonly used metrics for comparison are speed, number of errors, and user preference.

In some cases, comparisons also include fatigue, usability, and immersion. Often, comparisons
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Figure 4.1: The modified PRISMA flowchart for the menu literature review

Figure 4.2: The simplified menu design space and summary of the pros and cons.
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include different factors within the design space, so results are inconsistent between studies.

4.2.2.1 Menu Layouts

Five of the papers included in the literature review discuss comparisons on menu layouts

[92, 121, 122, 124, 125], or how the items within the menu can be organized. The menu layouts

are compared on aspects of speed, accuracy, and usability. The common layouts studied and used

are either in a circular form (i.e., radial, pie) or in a panel form (i.e., rectangular grid, linear

vertical, or linear horizontal panel). Beyond these, other designs have also been considered that are

more specialized, such as the hexa-ring [124] or TULIP [126], but these are not commonly used in

real-world applications due to their novelty. These, and other specialized menus, appear often in

literature to showcase their development, but the research does not contain comparisons to common

menu types to understand how they might improve the design space. Thus, these specialized menus

are not focused on in this analysis.

Radial menus are found to be faster to navigate than panel menus in VR [125]. The speed

of radial menus has been attributed to Fitts’ law, which states that the amount of time to move a

pointer to a target depends on the distance to the target divided by the size of the target [127]. For

radial menus, there is a smaller average distance to menu items, and hence it should be faster to

navigate. However, this is not universally true, as Lediaeva and LaViola find there is no difference

in time to complete based on menu shape alone, and instead find a difference with the interaction

of anchoring and shape [121].

With regards to error rates, it is commonly found that there are no differences in error rates

among different menu layouts [121, 125]. In one situation, radial menus increase the number of

unnecessary steps required to complete a task, but only for a wall-based anchoring system. No

differences are found for hand-based anchoring [122]. (for more on anchoring, see section 4.2.2.3).

Users mainly prefer panel menus over radial menus based on subjective survey results [92,

122, 124]. In one instance, no subjective differences are reported [125]. However, this may also

be due to the coupling of other factors. Monteiro et al. only find a difference when considering
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the interaction with anchoring location: the preference is for panel menus anchored to the wall,

versus radial menus on the hand [122]. No differences are found in preference between panel menus

anchored to the hand, or radial menus anchored to the wall. Additionally, Andersson et al. have

participants use different interaction techniques for both the panel and radial menus, potentially

influencing user preferences [92].

Finally, radial menus are found to be harder to navigate when more items are included, as

the selection area or angle for each item becomes smaller [124]. Panel methods can hold more

items without resorting to hierarchical structures; however, the size of the menu becomes larger,

obscuring visual space in VR.

4.2.2.2 Interactions and Selection

Four papers included have comparisons on interaction types [90,121–123]. Menu interactions

and selection relate to how the user provides input to the menu, both in terms of navigating to

the item of interest and selecting it. Interaction types include raycasting, direct controls, joysticks,

and hand/gesture tracking. Raycasting, one of the most common selection techniques [90], is where

a ray is projected from the hand/controller to the menu. Beyond raycasting, the controller can

be used to make a selection using the joystick, trackpad, or buttons, similar to many 2D games

or applications. These will collectively be referred to as joystick controls. Alternatively, direct

controls involve physically moving the controller to touch the icon in the VR scene in order to make

a selection. Raycasting, joystick controls, and direct controls are all controller-based modalities.

Beyond controller-based modalities, selection can also be done using naturalistic movements such as

hand tracking/gestures, eye tracking, or head motion. As with layouts, interactions are compared

based on speed, accuracy, and usability.

Mixed results are found in the literature for which interaction types are fastest. In some

studies, raycasting is found to be faster than gesture-based interactions [121] and joystick-based

methods [122]. In other situations, raycasting and joysticks are found to be the same speed [123],

but direct control is faster than joysticks [123]. Mundt et al. reported that some of these differences
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may have been due to the fact that for raycasting and direct controls, participants are able to prime

themselves and put the controller in the expected position for the next task, which is not possible

with the joysticks.

In general, direct control is found to be the least error prone [123]. Raycasting was found

to be less error prone than joysticks [123], but more errors than head-based gestures [121]. The

number of errors often depends on the target size. Raycasting, hand tracking, and eye tracking can

be sensitive to movement or jitter, which may result in more errors [121]. Changes in technology

may make these more intuitive and accurate in the future [121].

In situations where usability is recorded, raycasting is consistently found to be preferred

among users [90,123].

Other considerations for interactions include accessibility, as some interaction types may

require more arm movement (i.e., hand tracking or direct control). This can result in users having

to prop their arms for stability or lead to fatigue, as reported by some participants using these

methods [123].

4.2.2.3 Anchoring

The menu placement, or anchoring, influences the user’s ability to access it, how integrated

it is to the environment, and the amount of occlusion of the surrounding visualization. Anchoring

comparisons are conducted in three of the papers [121,122,125]. Menus can be non-diegetic, where

they are not integrated into the environment, such as those attached to the HMD, and are always

in the same spot and accessible. They can also be contextual, either attached to a body part

(i.e., hand, arm, waist) or spatial (i.e., attached to a wall). Contextual menus promote increased

immersion with the environment [122]. The anchoring location is primarily compared in terms of

usability and preference.

No differences in user preference are found between non-diegetic and spatial menus (attached

to a wall) [125]. However, among different contextual menus, wall menu has higher reported

usability than a hand-based menu [122] and arm-based menu [121].
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It is found that arm menus require moving the head down, which some people find un-

comfortable [121]. Spatial menus are found to require less movement than arm and hand-based

menus [121].

4.2.2.4 Other Considerations

In addition to the above design space, there are other considerations when selecting a menu.

This includes the number of items in the menu, hierarchy levels, and menu size. These considera-

tions may interact with the other display considerations.

The more items in the menu, the more complicated it may be to navigate and interact. At a

single level, panel menus can hold more items while maintaining a reasonably sized area to select.

However, this also makes the overall menu bigger and may block more of the visual scene [90].

Instead, to compensate for the increasing number of items, hierarchy can be used, where there are

nested layouts.

The menu size, or how large a space the menu takes up, is an important consideration for

immersion and occluding the display. The bigger the menu, the more likely it is to interfere with

the visual scene, reducing immersion and the ability to process and understand the scenario, which

is important for operations [90].

4.2.3 Discussion

The optimal menu depends on the exact application and needs, as there are both pros and

cons to every method. In general, across the different studies, all the menu types scored well in

all metrics, indicating that they can be useful and still maintain good performance, even without

clarity on which type may be optimal for a given application [122,123].

Different considerations may be needed for the application when considering the design of the

menu. Depending on the situation, different weights may be placed on speed, accuracy, immersion,

or user preference, resulting in different optimal menu designs. For example, in situations where

fatigue, speed and accuracy are paramount over immersion, the design may be driven towards
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considerations like radial menus, controller inputs, or raycasting, and anchoring to the head. Factors

like frustration and usability are important for people to use the system, but preference between

two highly usable systems may not be as critical.

Finally, the duration of the operation must be considered. If operations long in duration,

ensuring that the system is not tiresome to use is important, especially if there needs to be constant

interactions with the menus. This may make the non-diegetic, attached to the HMD, menus

desirable as they can be recalled as needed and are not fatiguing. It also may make the interaction

technique decision important to limit arm fatigue, such as using controller inputs.

Some papers compare components of a menu design without holding the other confounds

constant, such as using different interaction techniques for each menu [122]. Due to the interactions

seen within the design space, this may influence the findings.

4.3 Text

The second area of interest is the use of text and how to display it. This focuses more on the

location and context of text, not on text size, as guidelines already exist for this [94]. In operational

use, text cannot always be completely replaced by visualization or other graphics. This review is

interested in understanding the best way to display text that is found to be critical for a given

application.

4.3.1 Methods

The initial search results in 470 articles. The PRISMA-like procedure is documented in

Fig. 4.3 and Tab. 4.3. During the title and abstract screening phase, results are excluded for no

VR application and no mention of the display of text. Only one reviewer screened the titles and

abstracts of all papers. Following the full text review, 6 papers are included.

4.3.2 Results

A total of 6 articles satisfied the criteria and are included. Table 4.4 lists all the articles.
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Table 4.3: Search terms for text review. Note * indicates terms with multiple variations

Topic Search Term Location

Technology VR OR “Virtual Reality” Title/Abstract/Keywords
Text Text OR HUD OR “‘Heads up display” OR diegetic Title/Abstract/Keywords

Exclusion NOT (AR OR Augmented Reality OR Automotive) Title/Abstract/Keywords
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Figure 4.3: The modified PRISMA flowchart for the text literature review
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Most of the articles compare text-based interfaces in a video game context, including both

diegetic and non-diegetic interfaces. Diegetic interface describes a situation where the controls

or information appear as a part of the simulated environment, rather than on a separate menu

system or screen overlay. Examples of diegetic interfaces include putting information on a watch

or a clipboard. A common type of non-diegetic interface is a heads-up display (HUD), which

provides information as an overlay but may hide elements in the main scene. These interfaces are

commonly compared on measures of immersion, presence, obtrusiveness, usability, accuracy, and

reaction times.

The main benefit of diegetic interfaces is the idea that they can improve immersion [129],

which may help promote many of the benefits of VR displays. The improvement to immersion is

likely due to the fact that they are unobtrusive [129]. HUDs, on the other hand, are intrusive [129]

and can cause occlusion problems, hiding the scene behind them [133]. While they improve immer-

sion, presence is not always improved by diegetic interfaces, counter to popular belief. Comparisons

found equal presence between diegetic and HUD [128, 129, 131], potentially due to an increase in

workload [128]. One study finds improvements to presence with diegetic interfaces, but notes the

nature of the interface is critical [130]. Additionally, users often prefer diegetic interfaces [132,133],

but on occasion, non-diegetic interfaces improve usability [131].

HUD promotes higher accuracy and reaction times. Across studies, HUDs are found to be

more accurate [129] and decrease the number of missed notifications [132]. HUDs are also found

to decrease reaction time to an alert [132], are quickly available [129], and are more efficient [129].

While diegetic interfaces are also been found to be accurate [129], it is noted that they often require

users to actively check and that they may be impractical to check when there are many actions

required [129,133].

Beyond this, there are a few other considerations to note. Diegetic interfaces are found to

decrease cybersickness [133]. Cybersickness includes symptoms such as nausea, eye strain, disori-

entation, and fatigue, and is not ideal for operational uses.

Finally, the location of the HUD or how the diegetic information is integrated plays an
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essential role. For diegetic interfaces, it is suggested that in situ placement may be a way to

overcome occlusion from HUD or elaborate movements (such as required by a watch) [133]. This in

situ placement should remain close to the action and still remain accessible to improve performance

[130]. For HUD, text displayed in the center and bottom, as opposed to top right leads to less

workload. The top and peripheral are deemed more comfortable and unobtrusive, while the middle

and bottom are more noticeable [134].

4.3.3 Discussion

Text is often critical in many operational environments to give guidance on exact values (i.e.,

speed, distance, times), abstract information, or warnings. Some types of operational displays,

such as those for spacecraft monitoring [2] or power plant operations, are often predominantly

text-based. Other operational displays, such as those inside a car, have more limited text, and

instead, users rely more on information gained from the surrounding view [135]. In many of these

operations, though, there is critical text or graphics that are required to be easily accessible.

Many of the benefits of VR in operational use are believed to come from the immersive

environment. Having too much text, or a HUD, is counter to an immersive environment, and

instead, this may be promoted by using visuals or diegetic textual interfaces. It is suggested, if

possible, that the text should be placed near the corresponding item and near the action scene, so

it is accessible. This is consistent with the principles of spatial contiguity [136] and the proximity

compatibility principle [137].

However, diegetic interfaces are not accurate or quick to retrieve information from, which

can lead to missed notifications and mistakes due to not seeing the necessary information. It is

suggested that HUD, despite its limitations, may still play an important role in operational tasks.

Similar to a fighter pilot or aircraft HUD/HMD [138,139], in VR HUD should contain the text or

graphics that are important for people to know at all times and be easily accessible [130]. Effective

use of a HUD means considering the appropriate information to include; there are concerns with too

much text/excessive information increasing occlusion, and being harder to process, overwhelming,
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and hard to read [140].

A potential appropriate use of text for operations may include putting mission-critical text

and alerts in a HUD, similar to fighter pilots. Other text, that may not always need to be accessible,

can be placed diegetically near the item it is referenced to help promote immersion. Future research

should be conducted to understand the maximum amount of text in a HUD before too much

immersion is lost, and optimal HUD placement. Additionally, research should be done to compare

different operationally relevant diegetic text interfaces to understand which applications are more

beneficial to each.

4.4 Discussion

This aim focuses on menus/interactions and text since the initial literature review identified

these as requiring unique considerations for VR displays. Beyond these, there are still many other

components of a design that need to be taken into account for an operational display. However, VR

guidelines already exist for many of these, such as the size and font of text, controller mapping, and

accessibility [94,141]. In addition, other traditional human factor principles are still often applicable,

such as minimizing information access cost, and the proximity compatibility principle [142, 143].

Beyond this, many operational paradigms or organizations have their own internal guidelines that

include information about alerts, colors, graphics, and auditory (i.e., FAA regulations for aviation),

which can often be extended to VR. The main difference is ensuring that they still achieve the same

purpose in VR, so items like how to interact with them, or their location and sizing, may need to

change. These recommendations and the developed design space can be applied towards a variety

of contexts, as long as the selected design aligns with the mission goals. By optimizing the displays

for use in VR, through appropriate design choices, the benefits of VR may be realized. This may

reduce the risk of VR performing badly due to inappropriate display designs [77].

There are some limitations and confounds to this research. The majority of papers do not

focus on operational applications and outcomes. While this review considered the implications

for operations (such as reducing error rates or increasing speed), these results are not guaranteed
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to transfer to a new environment. Any decision should still be tested within the environmental

context it will be used in to ensure it meets the needs and requirements of the operations. As more

organizations are interested in VR for operations and training, future research should consider

focusing on these applications.

Additionally, as VR technology changes, these recommendations might change. The date

range of the articles is set to post-2010, but even in the past 15 years, technology has rapidly

improved. Technology is most likely to affect the interaction and selection techniques that rely

more on hardware and software to accurately track controllers, hands, or eyes. As these improve

further, it may decrease errors and selection times, changing the ideal interaction technique. Other

considerations, like fatigue, may not be influenced by technology. The display of text is additionally

heavily impacted by resolution. A limitation of VR is that large blocks of text may be challenging

to read due to low resolution. Although the literature currently suggests that large blocks of text

are also not beneficial for immersion or occlusion reasons, as resolution improves, there is a chance

that text sizes and line widths can decrease while maintaining the same readability, enabling more

text to fit in a HUD without causing problems.

4.5 Summary and Contributions

In this aim, a systematized literature review is conducted to understand the design space

and implications for VR menus and text displays in an operational context. In total 13 papers are

identified, 7 papers for menus and 6 for text are analyzed to understand the impact of design choices

on operational use. While most of the prior work is on video games or training, this aim looks at

their findings and considers the implications in operational settings. However, there is a continued

need for research in display designs with a focus on operational applications to understand how

the decisions impact overall findings. The overall contribution to the literature is the review of the

design space for VR operations, with a focus on menus and text.



Chapter 5: Aim 2: Remote Monitoring Operations

5.1 Introduction

The objective and contribution of this aim is to compare the effects of 3D visualization and

VR on a remote operator’s understanding of uncertainties using a specific application: monitoring

of a satellite during operations. Monitoring tasks are chosen, as it is how the operator spends the

majority of their time during remote supervision, and has critical implications for being able to

take appropriate actions. This aim considers three displays with varying degrees of visualization

and immersion, and their effects on SA, workload, usability, and subjective understanding of un-

certainties. We hypothesize that 3D visualizations will improve SA, lower workload, and improve

usability and subjective utility over displays without 3D visualizations. We further hypothesize

that immersive displays, such as VR, will provide additional benefits over 3D visualizations. This

research has been published in Frontiers in Virtual Reality [144].

5.2 Methods

In this research, three displays of increasing levels of visualization and immersion are designed

and implemented to simulate the remote monitoring of spacecraft operations. The simulated remote

monitoring task is a rendezvous mission scenario in which a servicer approaches a target vehicle,

performs corrective burns, and changes its orientation to inspect the target. The three display

designs are compared through a human subject evaluation.

5.2.1 Scenario Design

Participants are tasked with monitoring the proximity operations portion of a satellite ren-

dezvous mission. During the task, the participant cannot intervene or provide commands to the

satellites. The underlying trajectories used for the simulation are developed using Basilisk, a high-

fidelity, flight-proven, physics-based satellite simulation tool [145]. The scenario consists of two

satellites in orbit around Earth: a non-operational, tumbling, debris satellite and an active servicer
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satellite, supervised by a remote operator, sent to inspect the debris satellite. The debris satellite

has no communications, fuel, or battery, thus, there is uncertainty in its location.

The scenario is broken into three phases. Pre-burn, the servicer satellite is approaching the

debris satellite on a parallel orbit. There are checks to ensure that the thruster plume from the

burn will not impinge on the debris satellite. The servicer burns and enters an orbit to inspect the

satellite. This orbit is no longer parallel to the debris satellite, and instead, the servicer satellite

spirals about the debris satellite with some out-of-plane motion. In the post-burn, pre-sensor

update phase, there is uncertainty in the servicer satellite’s current location and future location

due to uncertainty in the magnitude and direction of the delta-v imparted by the thruster burn. The

combination of this and the debris satellite state uncertainty leads to a potential for collision. As

the scenario continues after the thruster burn, the knowledge of the servicer satellite of its position

relative to the debris satellite improves, simulating the gathering of data from sensor updates. The

gathered data results in a reduction of both uncertainties, which leads to a change in collision risk.

Although in a real rendezvous scenario, the satellite operations would continue, in this trial, post

sensor update, the participants’ scenario is terminated after a randomly assigned length of time.

The duration of the rendezvous simulation as experienced by a participant is compressed, with 15

seconds of simulation time displaying per 1 second of the participant’s real-world time.

5.2.2 Display Design

Three different displays were designed for this experiment to investigate the impact of 3D

visualization of data and immersion of display, as seen in Fig. 5.1. The VR display was designed first

and then modified to make the other two displays. All displays were designed with a consistent focus

on using relevant display design principles to ensure readability (i.e., legibility, contrast, minimizing

information access cost) and interpretability (i.e., avoiding absolute judgment limits [143]) so that

the results are not skewed due to fundamental differences in how they were developed.

The VR design philosophy was based on a combination of Heads Up Displays (HUD) [146–

148], traditional aerospace displays guidelines (MIL-SPEC and FAA regulations) [147,148], and best
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(a) VR Display (b) Participant using the VR display

(c) Screen Visualization Display (d) Baseline Display

Figure 5.1: The three different display designs and an example participant (person shown is part
of the research team) using the VR display. The VR display is annotated in red to show the

location of the HUD, the satellite states text, and the caution and warning alerts.

practices for VR [54,149] and visualizations [142,143]. As seen in Fig. 5.1a the VR consists of several

parts. The underlying immersive visualization was built as an extension of Vizard, a spacecraft

simulation visualization software application that provides the satellite models, relative orbit lines,

location relative to Earth, and appropriate Earth-Sun lighting [150]. Overlaying the relative orbit

lines and satellites are transparent display objects designed to illustrate the uncertainties and

locations of upcoming actions, including burns and sensor updates. The uncertainty of the servicer

satellite’s future position is represented by a blue tapered extrusion along the curve of the projected

orbit with increasing diameter representing increasing uncertainty. The ellipsoid surrounding the

debris satellite denotes the uncertainty of its position and can be used to monitor the likelihood of

a collision. Any overlap of these two uncertainty visualizations indicates a potential collision and

is highlighted in the same color as the ellipsoid. The ellipsoid color is changed to indicate the level
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of concern to the participant. Yellow represents a caution, where there is a chance of collision but

also the participant will still receive more information through a sensor update. Red represents a

warning, where there is a chance of collision, but no chance of receiving new information from a

sensor update. These colors are based on the standard alert colors for aircraft displays [147,148].

The participant can change their viewpoint as desired through panning, zooming, and tele-

portation using the left VR hand controller. In addition, participants could change their view

through natural movements like turning their head or body. The ability to change viewpoints or

switch between preset viewpoints has been shown to improve performance and increase operator

understanding of the environment, as different perspectives may be beneficial for different aspects

of a task [54,149].

In addition to visualization, critical information is displayed in text-based form (annotated

in Fig. 5.1a), as a result of the findings from Aim 1. A HUD panel displays information critical

to the mission, including the satellite’s relative ranges, rates, and time until the next action. The

HUD is always in the same location relative to the VR headset, ensuring the HUD remains visible

even if the participant turns their head. The HUD is located in the periphery of the participant’s

vision, allowing them to access the information through eye movements, minimizing the information

access effort [151] and blockage of the visualization. Location and text size were based on VR

recommendations [94], [93], and adjusted based on user evaluations for readability and accessibility

during pilot testing. The satellite states, which are critical to a specific element of the mission,

like battery, fuel, and telemetry status, are presented in text-based form and move along with their

associated satellite. This difference in text display choices is attributed to the desire to minimize

the amount of text in the HUD. While HUDs are important to display critical information that an

participant should always be aware of, they also reduce the immersion experiences in a VR display

[146,152]. Attaching text to elements in the scenario minimizes disruptions to immersion, and thus

is a way to display text that may be important, but not required to always be visible [130,153].

Finally, cautions and warnings are displayed through an alert at the top of the screen. These

alerts are triggered automatically based on certain events in the scenario, such as a warning about
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collision potential. The cautions and warnings are highlighted and presented in a salient location;

designed to be easily noticed by the participant. Cautions and warnings and are color-coded

yellow and red, respectively. Like traditional spacecraft and aviation displays, the participant can

dismiss these alerts [147, 148]. The dismissal of alerts is completed with the VR controller and

allows the participant to regain areas of their visual field. Based on the findings from Aim 1,

the participants can interact with the display using a radial menu system to toggle on and off

different aspects of the visualizations and displayed information, which was controlled through

the right VR hand controller. This allows the participant to customize their view in a way that

allows them to hide information that is not currently relevant and to more clearly understand the

information that is relevant. During development, the VR display underwent evaluations where

student volunteers were asked to perform a series of tasks. Then they commented on and used

a 6-point Likert scale to evaluate the display’s readability, controllability, and interpretability.

This resulted in multiple iterations, until all scores were positive, to increasingly improve the

text readability, display location, intuitiveness of the controls, and ensured that aspects of the

visualization were interpretable.

The screen visualization display maintains aspects of visualization but does not have the

immersion (i.e., presented on a 2D screen vs. in VR) that VR allows for and is seen in Fig. 5.1c.

It uses the same underlying visualization as the VR display, where the participant can still pan,

zoom, and interact with the visualization components in a 3-dimensional manner, however, it is

now on a 2D computer screen and thus not immersive. The HUD information, satellite states, and

alerts that were previously in text form in VR are now displayed outside the visualization on the

screen, creating a consistent scan pattern for participants, and grouped with similar constructs.

Finally, the “baseline” display (Fig. 5.1d) contains no visualization or immersion. All teleme-

try and system states are presented on a 2D display in graphical and textual form without 3-

dimensional modeling or display components. This display is representative of traditional satellite

monitoring displays used in current operations that primarily contain text-based information, but

also includes graphs of telemetry, as consistent with current operations. It has the same text as the
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screen visualization layout, however, instead of the 3D visualization view, 2D graphs of the relative

in-plane and out-of-plane orbits between the satellites are presented. Participants are unable to

customize their viewpoint or interact with the baseline display.

The same information is available to the participant in all three displays, though the presen-

tation of the information differs. Customization of the display by the participant is supported in

both the VR and screen visualization displays, however, there is no ability to control the satellites

in any display. This remote supervision task addresses an important aspect of remote supervision

by requiring the participants to continuously monitor the satellites without the ability to intervene.

5.2.3 Experimental Protocol

Figure 5.2: Experimental design flowchart. The orange boxes indicate data collection through

surveys or queries.

The study was approved by the University of Colorado at Boulder Institutional Review Board

(Protocol #23-0100). Informed consent was obtained from all participants. Thirty five participants

from around the University of Colorado Boulder campus were enrolled. Two participants did not

demonstrate an understanding of the task and did not finish data collection. Thus, 33 participants

completed the experiment (15 Female, 18 Male; ages 18-57, median age 25 years). All participants

were aware of the high-level project goals from the informed consent, but naive to the alternative

display conditions or exact manipulations of the scenario. Participants were screened for vision

correctable to 20/20, no colorblindness, and a score of less than 90% on the Motion Sickness

Susceptibility Questionnaire [154] as a means to identify individuals who would be highly susceptible

to simulator sickness prior to data collection.
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Participants were randomly assigned to one of the three display conditions: VR, screen

visualization (Scr. Viz), and Baseline (11 participants per condition; 5 F, 6 M). Those in the VR

condition wore a Meta Quest headset, while those in the other conditions used a computer and 2D

monitor. Participants in VR had the option to sit in a spinning chair or stand and walk around.

All opted for the chair, but often used head movements and body rotations, in addition to panning,

to change their view. Participants in both screen conditions sat in a chair in front of the computer.

A flowchart of the experiment design can be seen in Fig. 5.2. All participants completed

a demographic questionnaire on their background, including familiarity with orbital mechanics,

familiarity with spacecraft operations, and prior VR experience. Participants were then trained

using a PowerPoint presentation. The presentation covered any background orbital and operational

knowledge needed to be able to complete the experiment. It also provided context for the scenario

they would experience, and values specific to the satellites they would be monitoring (e.g., amount

of fuel needed to complete a burn). They were also trained on the specifics of the display modality

they were assigned to. After the training PowerPoint, participants were quizzed to ensure an

understanding of the scenario and tasks they would perform. They then completed two training

trials. The first trial provided an opportunity to become comfortable with the system controls

and the location of items within the display. For this trial, there was no monitoring objective.

When participants felt comfortable with the display, they were asked a series of questions to ensure

they could find critical information and understand the visualization. The second training trial

followed the format of a real trial. Participants had to achieve accuracy on the tasks and had

to feel comfortable before moving on. These training trials were done to minimize the effect of

participants being unfamiliar with the controls or task, rather than due to the display itself.

After training, participants completed seven trials of the experiment. The order in which the

participants saw the trials in was randomized; however, all participants experienced the same seven

trials. Each trial used the same underlying orbits, but the uncertainty surrounding the debris, the

uncertainty resulting from the servicer’s burn, and the location of the sensor update varied which

varied the likelihood of collision of the two satellites. Additionally, the servicer satellite’s initial
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fuel and battery value varied. The length of each trial varied, but all trials were approximately 8

minutes long.

SA was measured throughout the course of the trial through two different mechanisms. Level

1 SA, or perception, was measured through SA callouts [155, 156]: Participants were instructed

to report the servicer’s battery and fuel values in 10% increments (e.g., 90%, 80%) and the time

to any action (burn, sensor, collision) in 15 min increments (e.g., 15 min to burn). These values

did not always change linearly; for example, the battery value would increase or decrease based on

the orbital position of the satellite relative to the sun, and the fuel would change based on burns.

Callouts made within 2 seconds of the actual event occurring were judged successful, while late

callouts are considered missed. An experimenter marked callouts as they occurred; the callouts

were then verified post-experiment from audio recordings. The number of total possible callouts

varied per trial (between 15 to 21); however, the total percent correct of callouts made over all the

trials was used in the data analysis to normalize the values across trials.

To understand level 2 and level 3 SA, the Situation Presence Assessment Method (SPAM)

was used [157]. This is a real time SA assessment method that is meant to mimic a control room

and has been used often in other operational setting experiments, like air traffic control [158–163].

At three points throughout the trial, a beep was played. The location of the query was randomly

selected within each of the 3 phases of the scenario. Participants were instructed to say ‘ready’ when

they felt that they had a low enough workload to be asked queries. At this point, an experimenter

would proceed to ask the participant two queries, one for SA level 2 and one for SA level 3. This

mimics a second operator in a control room asking for information. The queries were randomly

chosen from a list of potential queries. The list was generated through a process similar to goal

directed task analysis [28]. Example questions include: “Is the servicer satellite currently in the

sun?” (level 2), or “Will there be enough fuel to complete a burn at the time of the next burn?”

(level 3). If a SA callout event occurred during a SPAM assessment, participants were instructed to

not announce the SA callouts, and this was not counted against them when scoring level 1 SA. For

each SA level, the total percent of SPAM queries answered correctly was used in the data analysis.
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After each trial, participants assessed their workload through the NASA Task Load Index

(TLX) [35]. They rated seven dimensions of their workload on a 21-point scale. This includes

mental, physical, temporal, performance, effort, and frustration. At the end of all seven trials,

participants then completed the comparisons between subscales. This allowed a weighted TLX

workload score to be calculated, which included the subscale rating and relative importance of that

subscale, resulting in a workload score between 0 and 100. Additionally, after the end of each trial

participants verbally rated their nausea on a scale of none, slight, moderate, and severe to help

assess cybersickness. No participant reported symptoms of nausea.

After all trials were complete, participants also completed the System Usability Scale (SUS)

[164], which is a 10 question survey in which participants respond on a 5-point scale. These are

combined to give a resulting score from 0 to 100. In addition, participants answered questions

relating to their perceived understanding of the servicer uncertainty, debris uncertainty, collision

likelihood, ease of finding information, and awareness of critical events. The full text of this survey

can be found in the supplementary materials.

5.2.4 Statistical Analysis

The three displays were compared across the 3 SA levels, workload, usability, and subjective

utility. For SA level 1 (perception) the participant averaged percent of correct callouts made was

used. For SA levels 2 (comprehension) and 3 (projection), the participant averaged percent correct

of SPAM queries for that SA level was used. Unlike traditional SPAM analysis where the response

time is used as a measure and the percent correct is treated as the same across conditions [165],

participant averaged percent correct was used as different conditions had different accuracies. For

workload, the weighted TLX score was used, and for usability, the System Usability Scale score

was used. For the utility questionnaire, each question was analyzed independently.

The study collected 231 trials over 33 participants. One trial for two separate participant s

were removed as these participant s experienced technical difficulties during those specific trials.

All other trials for those participant s were retained since the technical difficulties did not affect
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the other trials. For all 3 SA levels, usability, and utility there were 33 total data points as each

participant had a single averaged measure. For workload, as trials were kept separated, 229 data

points were used.

Prior to statistical analysis, SA and workload were inspected for potential confounding factors

of trial order to capture undesirable learning effects, and for the scenario parameters experienced,

as each participant experienced the scenarios in a different order. No effect of learning or trial

experienced was identified, based on the slope of the particular metric over trial order on a per

participant basis. In addition, the data was visually evaluated for potential confounds based on the

participant’s background, including orbital experience, satellite operations experience, gender, and

VR familiarity. The participant’s orbital mechanics experience was relevant for all three levels of

the SA data, but no participant background was relevant for workload, usability, or utility. For all

statistical tests the assumptions were met, unless otherwise noted. A criterion of α = 0.05, after

appropriate correction factors, was used for significance for all tests.

For all 3 SA levels, a linear mixed-effects model was used. The display modality was treated

as a fixed effect, and the orbital mechanics experience (coded as none to low, or moderate to high)

was treated as a random effect. The model was fit using the lme4 package in R via penalized

maximum likelihood estimation [166]. After fitting the model, the residuals were checked to ensure

that they obeyed normality and independence. The significance of display modality was assessed

using an F test with a type III ANOVA with a Satterthwaite approximation for degrees of freedom

and was implemented using lmerTest package in R [167]. Post-hoc tests were done between all

pairwise comparisons using estimated marginal means (emmeans package in R [168]) with a Tukey

p-value correction and Kenward-Roger degrees of freedom correction. The effect size was calculated

using the effectsize package in R [169].

For workload and usability, no participant background was relevant. For workload, each

trial was included as a separate data point and the participant was treated as a random effect

nested within display modality. The same analysis pipeline was followed as for SA. For usability,

no random effects were included so a linear model was fit between the system usability score and
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(a) (b) (c)

Figure 5.3: The level 1 (a), 2 (b), and 3 (c) SA results. Level 1 SA shows the participant average
percent of callouts successfully made over the condition. Level 2 and 3 SA plots the participant
averaged percent of SPAM queries of that level answered correctly. All figures show the data

mean, standard deviation error bars, and significance is noted between the conditions.

display modality. The residuals were then assessed for normality and independence. A type III

ANOVA was used to compare the display modalities.

The subjective utility questions were each on a 5-point Likert scale. Thus, ANOVAs could

not be used, and instead, each question was analyzed using a Kruskal-Wallis H-test.

5.3 Results

Significant differences are seen between the display modalities for the 3 SA measures shown

in Fig. 5.3. There is a significant difference in the level 1 SA as measured by the participant average

percent callouts made. The ANOVA comparing the linear mixed effect models found significance

between conditions (F(2, 29.06) = 11.62, p < 0.005, η2 = 0.44). Follow up pairwise comparisons

with Tukey adjusted p-values found that the differences are between the VR and baseline display

(t(29.1) = 4.76, p = 0.001, d= 2.04), and VR and screen visualization (t(29.1) = 2.95, p = 0.017,

d=1.26), but no differences between the baseline and screen visualization (t(29.1) = 2.95, p = 0.17,

d=0.78). Further analysis into level 1 SA compares the differences in display modalities across the

different types of callouts, as seen in Fig. 5.4. There are differences in modalities across the percent

of satellite state callouts made. This includes the fuel and battery values, and is unique in the VR

display as these values follow the satellite’s position and change location with time (F(2, 29.06) =
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(a) (b)

Figure 5.4: The level 1 SA sub analysis: satellite states (left), time to the next events (right).
Both show the participant average percent of callouts successfully made over the condition within
a category. The satellite state locations move in VR, the time to next event has a static location.
All figures show the data mean, standard deviation error bars, and significance is noted between

the conditions.

11.24, p < 0.005, η2 = 0.44). Post-hoc pairwise comparisons with Tukey adjusted p-values found

that the differences are between the VR and baseline display (t(29.1) = 4.66, p < 0.005, d= 2.00),

and VR and screen visualization (t(29.1) = 2.97, p = 0.016, d=1.27). However, there is not a

significant difference in the percent of the callouts made correctly regarding the time until the next

event (F(2,29.17) = 2.50, p = 0.10, η2 = 0.15). These callouts are stationary in all 3 displays, as

this information is in the HUD component of the VR display.

For both level 2 and 3 SA there is a significant difference between display modalities as

measured by the participant averaged percent correct of the SPAM queries asked. For level 2

the ANOVA found a difference (F(2, 29.02) = 5.57, p = 0.0089, η2 = 0.28). Post-hoc pairwise

comparisons with Tukey adjusted p-values found that the differences are between the baseline

display and screen visualization (t(29) = -3.13, p = 0.011, d=-1.34) and baseline display and VR

display (t(29) = -2.56, p = 0.041, d=-1.10). Level 3 SA found similar results, with the ANOVA

finding differences in display modalities (F(2, 30) = 4.90, p = 0.014, η2 = 0.25), and post-hoc

comparisons finding the differences between the baseline display and screen visualization (t(29.3)

= -2.81, p = 0.023, d=-1.21) and baseline display and VR display (t(29.3) = -2.52, p = 0.044, d=-

1.08). The means and standard deviation for the different display modalities across the different
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(a) (b) (c)

Figure 5.5: The Workload (left), usability (center), and utility (right) results. Workload shows the
participant average weighted TLX score, and usability shows the System Usability Scale score.
Each modality’s data means and standard deviation error bars are overlayed. The utility plot
shows the results of the question that was closest to being statistically significant: “I found this
system enabled me to understand the uncertainty associated with the servicer”. (S.D. = Strongly
Disagree, D. = Disagree, N. = Neither Agree nor Disagree, A. = Agree, S.A. = Strongly Agree)

SA levels can be seen in Fig. 5.3.

No significant differences are found between the other measures collected. The comparison

of workload between displays found no significant difference (F(2, 30) = 0.51, p = 0.61, η2 = 0.03).

For the system usability scale, no significance is found with the ANOVA (F(2, 30) = 0.97, p =

0.39, η2 = 0.06). Finally, none of the utility questions yielded significant differences. However,

the comparison of participants’ subjective understanding of the servicer uncertainty was nearly

significant (H(2) = 5.35, p = 0.069, η2 = 0.11). Trends in the data yield toward highest perceived

utility for VR followed by screen visualization, followed by baseline. The underlying data for these

measures is in Fig. 5.5.

In sum, these results are in partial support of the hypothesis that 3D visualizations improve

SA. They support the idea that 3D visualizations can improve level 2 and 3 SA, but not workload,

usability, and utility. These results are contrary to the hypothesis that immersiveness will provide

additional benefits over 3D visualizations.
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5.4 Discussion

This study is one of the first to investigate the use of VR for remote monitoring of spacecraft

rendezvous operations. The objective measure of SA shows significant differences between display

modalities, with 3D visualizations improving Level 2 and Level 3 SA, but with VR harming Level

1 SA. Contrary to the hypothesis, the subjective measures of workload, and usability, did not show

statistical differences. Similarly, subjective assessment of utility did not reach statistical significance

but trended toward higher evaluations for displays with visualizations and immersion. In sum, these

results provide insight into the understudied area of the utility of 3D visualizations and VR for

operators in a remote supervisory, rather than direct command, of autonomous systems.

3D Visualizations and VR impact levels 1, 2, and 3 SA differently. Improving SA is critical

for improving performance and enabling appropriate decisions, and poor SA has been a contrib-

utor to many accidents or errors [65]. All 3 levels of SA are important, and typically build off

each other, such that level 2 SA requires level 1 SA, and level 3 SA requires level 2 SA. However,

for remote monitoring and supervision of unintuitive orbital systems, operators will need to have

an appropriate level 3 SA to understand collision risk and project the consequences of avoidance

maneuvers [65], particularly under uncertainty. For satellite operations in particular, this is espe-

cially critical as collisions can adversely affect the viability of space operations across all orbital

regimes [170].

While the SA level 1 results indicate that VR led to significantly worse performance over

the baseline and screen visualization displays, the difference was only derived from information

that was not in a fixed location on the VR display. When comparing the SA callouts, further

analysis found no differences in the display modalities for items that were always present in the

same location. For the VR display, this includes information in the heads up display. However,

there were significant differences in the analysis of items that are in a static location in the baseline

and screen visualization display but are tied to specific objects and change location over time in

the VR display. The dynamic motion of the satellite states in VR made it so these objects are less
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salient, and more effort is required to find them. Participants are thus unable to have a consistent

scan pattern. Scan patterns are often described using the SEEV (Salience, effort, expectancy, and

value) model. Effort and salience are important aspects of this model which has been shown to be

predictive of level 1 SA [171]. Although it may be desired to have all the data in a glanceable HUD

which can improve monitoring performance over other information displays [172], this also can block

visualized information, increase clutter, and disrupt immersion [146, 152, 173]. While tying some

information to the satellites may reduce level 1 SA, it still is an important design consideration to

avoid some of the pitfalls of HUD, such as putting too much information into the HUD obscuring

the visualization. These results imply that information most critical to the success of the mission or

information that needs to be consistently monitored should be located in a stationary component

of a VR display.

The SA level 2 and 3 results find that 3D visualizations lead to an improved performance

over the baseline display without 3D visualizations, but found no differences between the screen

visualization and the VR displays. These initial results indicate that in this monitoring task VR

does not impact performance. This agrees with the results of a prior remote monitoring VR

study [19], which used a proxy for SA. These results are also in agreement with a monitoring study

that compared only 3D visualizations to 2D visualizations and found that the 3D visualizations

increased SA [174]. Other studies found that VR improves SA, although they consider a direct

control paradigm of interacting with robotic systems [14]. The amount of control authority an

operator has may be a contributing factor to these differences in results. There is a need for future

work to consider other control paradigms that fall between direct control and monitoring, such as

supervisory control.

The subjective measures of workload show no differences between display modalities. There

are inconsistencies in previous literature as to whether VR increases [19] or decreases [14] workload

over non-immersive displays. This research finds no differences. This may be due to the task and

experimental paradigm itself: remote supervision, especially monitoring, is typically lower workload

compared to direct control [66, 175, 176]. Thus, it is not unexpected that most users experienced
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similar levels of workload, as they had no control authority. Additionally, participants using the

baseline display could not customize their display, while users in screen visualization and VR display

could. The effort towards customizing the display or finding appropriate camera viewpoints could

inflate the workload of visualization-based displays relative to the baseline. Most of the previous

tasks that have found workload differences have been for direct control, where the operators are

interacting with a system either through VR or a computer display and there is typically a higher

workload overall [14, 53, 66, 175]. Due to inconsistencies in the literature and the varied degrees

of operator engagement, future work should investigate other degrees of control authority, like

supervisory control. While an ideal display would decrease workload over alternative displays,

these results may be considered positive in that they did not exacerbate workload, indicating

overall good display design.

For usability and utility, no significant differences are found between display modalities. In

prior work, operators often subjectively rate VR displays to have a higher usability and prefer to

work with them [19, 53], or prefer 3D visualizations over 2D visualizations [177]. In this research,

statistical significance is not achieved, but the utility results trend toward significance. As such,

these results are consistent with that of the literature where users tended to subjectively prefer

the utility of the VR display. A critical difference between these results and those in the literature

is that many of these studies used a within participants design where participants had a chance

to experience multiple display modalities and thus their responses reflect these comparisons. By

not doing a within participants design, this study is unable to capture some of these subjective

preferences. Like workload, no differences in usability may be positive, as having a significantly

worse display may be more indicative of poor display design or issues due to limitations with VR

technology.

A challenge of this research was implementing a VR display that was designed appropriately,

and to ensure that results were not influenced by a participant’s inability to read the display or

interpret and control the visualization effectively. The results of Aim 1, in addition to established

principles for aerospace displays (such as MIL-SPEC and FAA regulations) and human factors (i.e.,
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minimizing information access cost, contrast, and avoiding absolute judgment limits) guided the

layout of the VR display. The impact of some of the results (such as the use of HUD and tying

text to specific elements) can be extended by future designers of VR displays.

There are some limitations to this aim. Using participants with no prior familiarity with

traditional displays makes it unclear how current, highly-trained operators would react to visual-

izations or a new system they are not as familiar with. Previous research for air traffic control

found that while 3D visualizations improved SA among all participants, but those with extensive

operational experience provided lower subjective ratings to 3D [174]. Future work should assess to

see if the same is true for satellite operations, and if so how to best mitigate the issue of switching

displays. In addition, the between-subject design used may impact the subjective measures as

participants did not have a chance to experience all three displays and thus did not have the ability

to compare between the features and limitations of each display.

While symptoms of nausea were monitored for during the experience, other cybersickness

symptoms, like eye strain or fatigue, were not recorded. These other symptoms may influence

the outcomes of the metrics assessed in the study or may discourage the use of VR during future

operations. Additionally, this research considers the monitoring aspect of remote supervisory con-

trol of a simplified, faster than real time satellite operation, in which participants had no control

authority. This work focuses on the monitoring of a remote system, which is how operators in

such systems will spend the majority of their time in supervisory control paradigms, and therefore

foregoes the inclusion of the ability to intermittently provide input to the autonomous system. It is

critical to understand how display modalities can impact monitoring performance. If a display fails

to facilitate effective monitoring, it will be difficult to use in supervisory control. Chapter 6 will

further this work to include intermittent control and increased complexity. Finally, this research

considers VR and immersion as applied through a head-mounted display. There are many other

ways of providing an immersive environment, such as a CAVE system, and using a single display

type represents a limitation of this work. Future research can study the impact of different degrees

of immersion using different immersive systems on monitoring.
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Beyond this, Aim 3 will expand on this experiment to consider remote supervision paradigms

to understand how VR impacts these situations. This also more closely represents what opera-

tors might encounter during normal operations when remotely supervising autonomous or semi-

autonomous agents. Understanding the impacts of display on monitoring is an important first step,

as it is how the majority of an operator’s time is spent, providing the operator with limited control

authority to make interventions while in supervisory mode may allow display differences to be seen

in metrics of workload, usability, and utility. This will also fill in the gap of understanding the

effect VR has on various degrees of control authority, as remote supervision is understudied.

5.5 Summary and Contributions

This aim compares the effects of 3D visualizations and VR for remote monitoring of space-

craft operations on SA, workload, usability, and utility. Three displays, with varying degrees of

3D visualizations and immersion, were designed and evaluated through human subject testing.

The results of this work indicate 3D visualizations may improve display interfaces for monitoring

satellites; however, there is little evidence that immersion, such as that provided by VR, yields

additional improvements. 3D visualizations improve level 2 and level 3 SA as measured through

SPAM queries, which may lead to improvements for anomaly detection or anticipating collisions.

VR reduces level 1 SA as measured through callouts, indicating that VR displays may not be benefi-

cial for processing or monitoring text-based data; this reduction was only noticed when considering

information that was not always present on the VR display. There are no differences between

displays in workload, usability, and utility. While VR has been demonstrated to be a promising

modality for direct control tasks, the benefits do not translate to remote monitoring of autonomous

agents.

The overall contribution to the literature is the focus on VR for an operational monitoring

task, as well as the inclusion of a screen based visualization modality. This aim builds upon the

results of Aim 1, and enables Aim 3, which is a similar task but with a focus on supervisory control.



Chapter 6: Aim 3: Remote Supervision Operations

6.1 Introduction

The objective of this aim is to compare displays with different degrees of immersion or

3D visualization on a satellite supervision task where participants will have some, but limited,

control authority over their satellites. VR has been shown to be promising for manual control

tasks [5, 12, 14, 53], but does not appear to be promising for monitoring as seen in Aim 2 [144].

However, it is unclear how VR will translate for supervisory control, which is between these two

extremes. The compared displays includes an immersive VR display, a 3D visualization computer-

based display, and a baseline display with 2D graphical representation. These will be compared on

measures of SA, performance, workload, usability, and subjective utility. We hypothesize that 3D

visualizations and VR will lead to higher SA, performance, usability, and subjective utility, over

the baseline display. We further hypothesize that VR will lead to an increase in these measures

over the 3D visualization display. Finally, we hypothesize there will be no differences in workload

among the displays.

The experiment for this aim is based on the scenario and displays used in Aim 2. Some key

differences do exist. First, development was done to enable limited operator input and decisions, al-

lowing real-time command of the spacecraft and subsequent orbits and uncertainties. Additionally,

the uncertainties were modified to be more realistic, incorporating lighting, burn, and positional

uncertainties that were constantly changing. Finally, displays were modified to allow for user input,

an increased number of alerts, and minor design changes were made based on user feedback. The

experiment and displays for this aim are also used in Aim 4.

6.2 Methods

In this research, three displays are designed to simulate a remote supervision of satellite

operations. The simulated scenario is a spacecraft inspection task, in which an operator assists

a servicer satellite to perform corrective burns and inspect a client satellite. These displays are
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compared through a human subject evaluation.

6.2.1 Scenario Design

Participants are tasked with monitoring and supervising the proximity portion of a satellite

rendezvous mission, similar to that developed for Aim 2. The underlying trajectories used for the

simulation are also developed using Basilisk, a high fidelity, flight-proven, physics-based satellite

simulation tool [145]. To enable evaluation in a laboratory environment, the simulation is sped up

by a factor of 15. The scenario consists of two satellites in orbit around Earth: a non-operational,

tumbling client satellite and an active servicer satellite, supervised by a remote operator, sent to

inspect the client satellite. The goal of the participant is to successfully complete the mission by

servicing the client or abort, only if necessary, to avoid a collision. The client satellite has no

communications, fuel, or battery, thus there is uncertainty in its location and attitude. In addition,

there is uncertainty in the velocity change imparted by the thruster burn. These uncertainties are

combined and visualized as a spheroidal “keep out zone”, which the servicer should avoid entering

or there may be a collision. The keep out zone grows and shrinks based on environmental factors

and participant actions. A proximity sensor is simulated to have better performance when the

satellites are in the sunlight, causing the keep out zone to shrink; when they are in the shadow it

grows due to worse sensor performance.

The servicer satellite begins on a drift orbit passing by the client satellite. During the

simulation, the servicer fires its thrusters to change its relative orbit to circle the client satellite.

The participant can select from one of three burn locations, each separated by 15 minutes of flight

time. The ideal burn location may be influenced by the lighting conditions and battery levels.

Different burn locations may result in successfully servicing the client satellite or being required to

abort. The participant can also turn on a light, which improves the sensor’s performance, and thus

reduces the uncertainty; however, this also drains the battery at a faster rate than nominal. The

battery nominally decreases slowly in the darkness and increases in the sunlight. If the servicer

enters the keep out zone, this is considered a collision. If a collision is unavoidable, the participant
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can elect to abort the mission, provided the servicer satellite has enough fuel, battery, and time.

As such, using the onboard light too much when the battery is not sufficiently charged may result

in an abort being impossible due to a low battery.

Different scenarios are created by manipulating the initial orbit, date, lighting conditions, fuel,

and battery levels. This influences the outcomes of which burn location is ideal, how long the light

should be on, and if the participant is forced to abort. Each trial lasted up to 7 minutes. Aborting

or colliding causes the trial to end earlier. Eight experimental scenarios and two familiarization

trials were developed. The experiential scenarios were of varying difficulty levels. The difficulty

was determined on an easy, medium, and hard basis, based on the number of different actions that

could lead to success (i.e., any burn location or amount of light use will lead to mission success is

characterized as easy, versus only one specific burn location and specific amounts of light use to

succeed is characterized as hard). In 2 of the 8 experimental trials, the most likely outcome was

an abort.

6.2.2 Display Designs

As in Aim 2, three displays are designed for this experiment: a VR display, a 3D screen

visualization (Scr. Viz.), and a two-dimensional Baseline display as seen in Fig. 6.1. These

displays are based on those developed in Aim 2 [144] but with modifications to allow user input

and design modifications based on feedback from Aim 2 participants. The displays are built using

Unity 2022.3.21f. All three displays present the same information to the participant, but that

information is conveyed with different degrees of immersion and 3D visualizations.

The VR display is seen in Fig. 6.1a. The underlying visualizations, including satellite models,

relative orbital motion, accurate Earth models, and appropriate sun-based lighting, are based on

the Vizard spacecraft simulation visualization software application [150] and is the same as Aim 2.

Overlaid are visualizations of the keep out zone, centered around the client satellite, and colored

based on collision risk. Red represents a warning, with less than 15 simulation minutes to a potential

collision, yellow represents a potential collision at any point within the next two relative orbits,
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(a) (b) (c)

Figure 6.1: The three different display designs. (a) VR display (b) Screen Visualization display
(c) Baseline display

gray represents no collision risk, and blue indicates the keep out zone encompassed only attitude

uncertainty was at the minimum size. The portion of the servicer orbit line, where it is projected to

enter the keep out zone, is changed to the corresponding condition color. Finally, a representative

light is visible when the participant turns on the light.

Similar to the previous Aim 2 VR display, critical information and user input options are

displayed in a text-based form. A HUD displays the range, rate, and time to burn, collision, and

lighting changes. This is always located in the same peripheral location of the headset, allowing par-

ticipants to access information through eye movements, minimizing information access effort [151]

and minimizing blocking the visualization. Satellite states, such as fuel and battery, are presented

both as text and with a gauge, and move with their associated satellite. While this was determined

to reduce level one SA for the monitoring task in Aim 2, this was still determined to be the optimal

way to display this information, while minimizing text in the HUD and preserving immersion as

found in Aim 1 [129, 130, 146, 152, 153]. Text-based descriptions of cautions and warnings are dis-

played at the top of the screen and are designed to be easily noticed by an participant. These are

triggered automatically for certain events, including low battery, fuel, and potential for a collision.

As an improvement to the VR display, alerts can now be minimized to remove them from the pri-

mary field of view or maximized to review them again [147,148]. Finally, the user input is provided

through a panel with various options presented above the HUD when available. User input panels

disappear after an option is selected or the time window for user input to the panel closes.

Similar to the display from Aim 2, participants can control their visualization and operations
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through a radial menu system and their hand controller. The right controller is used to control

the menu and user inputs. This allowed them to turn on and off components of the visualization

or text. Additionally, they can change their viewpoint or perform operations like viewing alerts,

turning on the light, or aborting. The left-hand controller controls navigation, such as panning,

zooming, and teleportation. Additionally, participants can walk around or rotate their bodies to

further navigate the scene. Participants had access to a 10 by 10 foot area of floor; the tracking

dynamics were set such that the participant could cover the distance to the satellite while staying

in this area. Additionally, preset buttons allow easy access to turning on/off the light or aborting.

An abort requires confirmation to ensure it was not selected in error. The display and controls

underwent human factors testing prior to the experiment to ensure the text was readable and the

controllers were acceptable.

The Scr. Viz. display maintains the 3D visualization described for the VR display, but is

not immersive like VR. This is seen in Fig. 6.1b. The participant can still interact with the system

by panning, zooming, and customizing their visualization, but this time on a 2D computer screen

using a mouse. All text, including the HUD, satellite states, alerts, and user input are displayed

on the screen outside the visualization, allowing for a consistent scan pattern.

Finally, the Baseline display is designed to be consistent with the text-heavy and graphical

displays currently used for most traditional satellite operations. It has only 2D visualizations

where the 3D visualization is replaced by graphical telemetry. The range is displayed as plots of

the different orbital planes and past and future motion. The same text-based interface in the Scr.

Viz. display also surrounded the telemetry plots. For both the Scr. Viz. and the Baseline displays,

navigation, and interactions were done with a mouse.

6.2.3 Experimental Design

The study was approved by the University of Colorado Institutional Review Board (#24-

0250). Informed consent was obtained from all participants. 45 participants from around the

University of Colorado Boulder campus were enrolled and completed data collection (18 female, 27
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Figure 6.2: Experimental design flowchart. The orange boxes indicate data collection through
surveys or queries.

male; ages 18-38, median age 23 years). 47 participants were enrolled, but 2 voluntarily did not

complete both visits of the study and thus were removed. Participants were aware of the high-level

project goals from the informed consent but naive to the exact manipulations or alternative display

designs. Participants were screened to ensure their vision was correctable to 20/20, they were not

colorblind, and they scored less than 90% on the Motion Sickness Susceptibility Questionnaire [154].

This was used to identify individuals who may be highly susceptible to simulator sickness before

data collection. Additionally, participants in VR were monitored for cybersickness symptoms,

particularly nausea, throughout the experiment; there were no reported cases of nausea in VR.

The experiment took place over two visits to allow for the assessment of both operations and

training. In the first visit, participants were randomly assigned to one of three display conditions:

Baseline, Scr. Viz., and VR, as described above. The second visit was the evaluation day, where

participants were asked to perform satellite operations using the Baseline display (Fig. 6.1c), as

would be consistent with displays for actual operators. Both days followed the procedures as

described below and in Fig. 6.2.

During both visits, participants were first familiarized with the task and their assigned display.

This was done through a PowerPoint which reviewed the task’s motivations and goals, as well as

how to use their display. They then did three familiarization trials. The first trial was primarily an

opportunity to get used to the controls and display – there was no collision risk present. The next

two familiarization trials mimicked a real trial and had identical initial states to give participants

an opportunity to execute different actions so they could understand the impact on the mission
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outcome. This was done to ensure that participants understood how to use the displays and perform

the task before the real trials began and to eliminate issues of performance due to lack of familiarity

with the display. During both the PowerPoint training and familiarization trials, participants were

quizzed to ensure they understood the necessary information.

Participants then completed eight trials. Every participant completed the same eight trials

on both visits, but the scenarios were presented in a randomized order. During each trial SA,

workload, and performance were assessed. To assess the three levels of SA, SPAM was used [157].

Up to three points throughout the trial, an auditory tone was played. Participants were instructed

to provide verbal confirmation when they had the ability to answer the questions. At this point,

or after 20 seconds had elapsed, an experimenter asked the participant three questions, one per

SA level. Questions were generated through a process similar to a goal directed task analysis [28].

Example questions include: “Is the servicer satellite currently in the sun? (level 1)”, ‘’Is the portion

of the orbit line in the keep out zone decreasing? ” (level 2), or “If no new action is taken, will

the keep out zone be shrinking in 30 minutes?” (level 3). The full list of questions is in the

supplementary materials. Participants were instructed to respond as quickly and as accurately as

possible and were allowed to use the display to answer. If a trial ended early due to an abort or

collision, fewer questions may have been asked.

After each trial, participants assessed their workload through the NASA TLX [35]. To do

so, they rated six dimensions of workload on a 21-point scale. This includes mental, physical,

temporal, performance, effort, and frustration. At the end of all eight trials, participants then

completed comparisons between the different components, allowing for a weighted workload score

to be calculated. After completing the TLX survey for a trial, participants were given feedback

on their performance. This included information about their burn performance (did they make a

good burn selection that could lead to success), end state performance (considering success, abort,

or collision), and combined total performance. Each of these was on a scale of ‘poor’, ‘fair’, ‘good’,

and ‘excellent’. This performance also corresponded to a monetary bonus participants could earn

between $-1.00 and $1.00 per trial. Performance-based earnings were cumulative over all trials.



60

Finally, after all trials were finished, participants completed the SUS [164], which is a 10-

question survey in which participants respond on a 5-point scale. These are combined to give

a resulting score from 0 to 100. In addition, participants answered a custom subjective utility

survey which had Likert-style questions relating to their perceived understanding of the events,

uncertainties, collision likelihood, orbital motion, and operational decision, as well as free-response

questions about their experience. The full survey is provided in the supplementary materials, and

was customized for each visit. On visit 2, this survey included questions about how their training

in the assigned display from visit 1 impacted their performance during visit 2. On visit 1, they

also completed a demographics survey including information sex, orbital mechanics familiarity,

operational familiarity, and VR familiarity. Their familiarity was coded as a binary ‘little to none’

or ‘moderate to high’. Finally, at the end of visit 2, they completed the balloon risk analog task

(BART) [178,179] to assess their risk-taking behavior.

6.2.4 Statistical Analysis

The primary objective of this aim is to compare the three displays for operational use. Only

the data from visit 1 was considered; the data from visit 2 is considered in Aim 4. In both cases, the

same statistical pipeline is used for each of the metrics. Analysis was performed to compare the three

displays on SA, performance, workload, usability, and subjective utility during the first visit. Each

SA level was analyzed independently using the percentage of questions answered correctly across

all trials. This resulted in one measure per participant per SA level. This transformation into a

percentage was made because the participants answered different numbers of questions due to their

individual performance. Performance was calculated for each trial based on the appropriateness of

their actions; a full description is in Appendix C.

The study collected 360 trials over 45 participants. One score was collected for each par-

ticipant for SA level, usability, and utility, for a total of 45 data points per assessment type. For

workload and performance, trials were kept separate and so the 360 data points were used. A

criterion of α = 0.05 was used for significance for all tests, and all assumptions for each statistical
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test were met.

Prior to statistical analysis, the SA, performance, workload data were inspected for a con-

founding factor of trial order to capture undesirable learning effects. No effect of trial order was

identified for any analysis. However, for performance and workload, there was a dependence on the

specific scenario (i.e., regardless of the order presented, some trials had consistently different per-

formance and workload than others). Thus, for these statistical tests, these factors were included

in the model. In addition, all data was evaluated for confounds based on participant background

including: sex, orbital experience, satellite operational experience, VR familiarity, and BART score.

These were included in the models as appropriate.

For each SA level, a linear mixed effects model was used to compare the effect of display

modality on SA. The display modality was considered as a fixed effect. The random effects were

dependent on SA level. The model was fit using the lme4 package in R via penalized maximum

likelihood estimation [166]. The significance of display modality was assessed using an F test with a

type III ANOVA with a Satterthwaite approximation for degrees of freedom and was implemented

using lmerTest package in R [167]. Any necessary post-hoc tests were done between all pairwise

comparisons using estimated marginal means (emmeans package in R [168]) with a Tukey p-value

correction and Kenward-Roger degrees of freedom correction. Effect sizes were calculated using the

effectsize package in R [169]

Performance is on a 12-point ordinal scale, and as such, a cumulative linked mixed model

approach was taken (using clmm in R [180]). This score is a combination of the participant’s burn

decision and end state (including aspects such as battery level, appropriateness of abort decisions,

and use of the light). The full metric calculation is described in the supplementary material. The

training display and its interaction with trial difficulty were included as a fixed effect, and the

number of balloons collected in the BART task [181], which has been shown to be correlated with

risk, was also included as a random effect. A significant interaction was found, indicating that

display modality may not provide differences across difficulty levels. Thus, the data was separated

by scenario difficulty level and analyzed them separately, keeping the same fixed and random
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effects. A type III ANOVA was used to compare performance across conditions (anova.clmm in

the RVAideMemoire package in R [182]). Post-hoc tests were done between all pairwise comparisons

using estimated marginal means [168] with a Tukey p-value correction.

As another measure of performance, the overall outcomes were compared across training con-

ditions including the number of scenarios aborted, the number of scenarios resulting in a collision,

and the number of successful scenarios. This was done using a Kruskal-Wallis H-test.

For workload, the unique weighted TLX score for each trial was analyzed, resulting in 360

total data points. As with SA, a linear mixed effects model was fit using the training display

condition as the fixed effect. The participant and scenario were included as random effects to

account for the repeated measures and differences across each scenario. Likewise, to assess usability

scores, a linear mixed effects model was fit with the training display as a fixed effect and sex as a

random effect. In both cases the same pipeline as SA was followed.

The subjective utility questions were each on a 5-point Likert scale. Thus, ANOVAs could

not be used to compare ratings across conditions, and instead, each question was analyzed using a

Kruskal-Wallis H-test. Post-hoc tests were done using Dunn’s test with a Holm correction [183].

6.3 Results

No significant differences in SA are found among the displays in any of the levels, as seen

in Fig. 6.3. The ANOVA comparison between the linear mixed effects models found that all were

trending towards, but did not reach, significant differences in the percent of questions answered

correctly with level 1 (F(2,23.11) = 2.3, p = 0.12, η2 = 0.17), level 2 (F(2,41.83) = 2.03, p = 0.14,

η2 = 0.09), and level 3 (F(2,41.57) = 2.42, p = 0.10, η2 = 0.13).

In the comparison of participant’s performance, significant differences are found among the

Hard scenarios (χ2(2) = 9.61, p = 0.008), but no differences among the Easy (χ2(2) = 3.53, p =

0.17) or Medium (χ2(2) = 0.70, p = 0.70) difficulty scenarios. Note that for both the Easy and

Medium conditions, participant performance was frequently at the maximum of the scale. For the
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(a) (b) (c)

Figure 6.3: The (a) level 1, (b) level 2, and (c) level 3 SA results. All figures show the participant
averaged percent of SPAM queries of that level answered correctly. The data mean, standard
deviation error bars, and significance is noted between the conditions. Note that the Y axis

ranges from 50% to 100%.

(a) (b) (c)

Figure 6.4: Participant’s performance on (a) Easy, (b) Medium, (c) Hard trials. The violin plot is
overlayed with the median score, and significance is noted between the conditions.

Hard scenarios, differences are seen between Baseline and VR (z = -3.06, p = 0.006) and Baseline

and Scr. Viz. (z = -2.36, p = 0.047). For both cases, participants in the Baseline condition

performed worse. No differences are found between VR and Scr. Viz. (z = -0.74, p = 0.74). This

can be seen in Fig. 6.4. No differences are found in the number of scenarios aborted (H(2) = 0.39,

p = 0.82, η2 = -0.038), the number of scenarios with collisions (H(2) = 4.20, p = 0.13, η2 = 0.05),

or the number of successful scenarios (H(2) = 0.2, p = 0.87, η2= -0.04).

For workload, no significant differences are found in the ANOVA (F(2,41.7) = 0.03, p = 0.97,

η2 = 0.001) as seen in Fig 6.5a. Additionally, no significant differences are found in usability’s
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Figure 6.5: The (a) workload, and (b) usability results. Workload shows the participant-average
weighted TLX score, and usability shows the System Usability Scale score. The data mean,

standard deviation error bars, and significance arenoted between the conditions.

ANOVA (F(2,42) = 1.82, p= 0.17, η2 = 0.08), as in Fig. 6.5b. However, the coefficient for the

VR term in the linear model approached significance (p = 0.09), which indicates that there are

trending differences between the VR and Baseline usability score.

Participants perceived differences in utility between the display conditions in two aspects.

Differences are reported in the participants’ perceived ability to understand orbital motion (H(2) =

14.6, p = 0.006, η2= 0.30) and ability to make operational decisions (H(2) = 6.11, p = 0.047, η2=

0.10). Post-hoc comparisons for orbital motion using the Holm correction found differences in the

Baseline and Scr. Viz. (z = -2.86, p = 0.008) and Baseline and VR (z = -3.61, p<0.005) with the

Baseline display rated significantly worse in both cases. No differences are found between Scr. Viz.

and VR (z = -0.75, p =0.45). Additionally, no significant post-hoc comparisons are found for the

ability to make appropriate operational decisions. However, the Baseline to Scr. Viz. comparison

was trending significant (z= -2.31, p = 0.061). No other differences in subjectively reported utility

are found.

Participants’ subjective written comments regarding aspects relevant to the display and/or

interface are also analyzed. The VR display was found to be polarizing. Some participants enjoyed

it “It is rather intuitive and easy to understand”, “It is a good user interface”, while others found it

hard to use “I felt like there was no benefit to being in VR and it just makes it clumsier and harder
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(a) (b)

Figure 6.6: The subjective utility questions, showing the results of (a) “I found this system
enabled me to understand the relative orbital motion of the satellites” and (b)“I found this

system allowed me to make appropriate operation decisions” (S.D. = Strongly Disagree, D. =
Disagree, N. = Neither Agree nor Disagree, A. = Agree, S.A. = Strongly Agree)

to use the menu”. No participants left insight about the Scr. Viz. display itself. For the Baseline

display comments were negative and uniformly indicated a dislike of the 2D nature “Would be much

easier if we could see the orbit paths in 3D vs on a 2D plot”, “I had to visualize the 3D space . . .

which made the task more demanding”. Similar comments were echoed among the other Baseline

participants.

6.4 Discussion

This study compared displays with different degrees of 3D visualizations and immersion in a

remote supervision task and is one of the first studies to investigate VR for remote supervision op-

erations. This research helps fill the gap in understanding of how VR may be used in an operational

environment that is not full manual control or passive monitoring.

No differences are found in any of the SA levels. This rejects the hypothesis that VR or 3D

visualizations will improve SA, as was seen in Aim 2. Previous literature is mixed on the effects

of display modality on SA. A comparison of 3D visualizations and traditional displays for an air

traffic control supervision task found that 3D visualizations improved SA [174]; likewise, for remote

monitoring of autonomous surface vehicles, both VR and 3D visualizations improved SA over a 2D
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display [19]. Additionally, Aim 2 found that both VR and screen visualization improved SA over

the baseline for level 2 and 3 SA, but that VR performed worse for level 1 SA [144]. However, some

direct control studies have found no differences in VR with respect to SA [64], while others have

found VR improves SA [57]. These differences may be a result of how SA is measured. Previous

studies have used subjective and proxy measures for SA, which may not be correlated with those

found with SPAM or other objective SA measurements [65, 184, 185]. Likewise, these results may

also be attributed to limitations of SPAM, particularly using an accuracy, not response time, based

analysis. SPAM may have less sensitivity than other objective measurements [185], influencing

the results, but is still an appropriate tool for operational environments. This result may also

be a limitation of using a goal-directed task analysis to develop SPAM questions; questions were

determined based on what information was needed to perform the task successfully. While in all

cases the questions could be answered by any display, some questions did not require the use of

any visualization to determine the answer, which may not allow differences in displays to be seen,

particularly for level 1 SA. Additionally, this may indicate that not all forms of operations may

benefit from the additional immersion or visualization.

Performance was improved by the use of 3D visualizations, both on the screen or in VR,

but only in the trials of the hardest difficulty. This result highlights a benefit of including 3D

visualizations, either from VR or on a computer screen. This scenario is already a simplified

spaceflight operation for the purposes of research. Thus, these promising results may indicate that

as more complex real-world scenarios are implemented, the potential benefit of the VR display could

be further enhanced. As satellite operations become more complex and challenging for operators,

there may be advantages to increasing the fidelity of the visualizations to help operators perform

better. The improvements align with previous manual control research that suggests that VR can

improve performance over desktop visualizations [53].

No differences were found in workload, which supports the hypothesis and agrees with Aim

2. While processing 3D visualizations on a 2D display may increase mental workload [8–10] and

subjective reports appear to indicate an increase in mental demand required to process the 2D data,
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the overall increase in workload is not reflected in the data. Additionally, while VR may increase

physical workload (due to movement or using the controller) [186, 187], this is also not reflected

in the overall workload, as participants often placed a low weighting factor on physical workload.

Furthermore, there could be a risk that the novelty and physical aspects of the VR environment

could have increased workload but this was not found to be the case. Due to the low workload

nature of monitoring and supervision [66,175,176], with traditional displays it was unexpected that

any one new display could significantly reduce workload overall.

For usability, there were no differences in displays, which agrees with Aim 2. However,

this disagrees with other experiments that often subjectively have VR improve usability [19, 53].

Notably, these previous studies are within subjects, meaning subjects were able to use all displays.

Using a between-subjects design means that these results are indicative of an objective independent

evaluation of usability, rather than a potential comparative assessment of the displays that may

be seen in a within-subjects design (i.e., subjects rate their least favorite display lower based on

preference). The overall high level of usability that was reported, even for the baseline display, is

indicative of the appropriateness of the display design in each condition.

The subjective utility found that 3D visualizations (either on a screen or in VR) can improve

the participants’ understanding of orbital motion. This is a key aspect for future satellite operations,

as complex relative orbits can be difficult to understand intuitively [34]. This may explain some

differences in performance. This conclusion is supported by the fact that a majority of the subjective

comments about the Baseline display included a dislike of the orbit paths and not being able to

visualize them.

This research shares some of the same limitations as Aim 2. While this study included limited

operator control over the satellite systems, the scenario was not as operationally complex as real-

world scenarios, which may also include aspects such as limited communication, anomalies, more

telemetry streams, and slower and prolonged operations. The short time span likely reduced the

amount of boredom participants experienced and may have reduced the amount of discomfort the

VR headset caused. VR, for prolonged use, may be uncomfortable due to the headset weight and
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eyestrain [88]. While this study did not elicit these types of responses from participants, it does

limit the ability to answer these research questions with increased experimental fidelity.

Future work involves expanding these experiments to more complex operations and using

trained operators to understand the effects of VR. It should also include different use cases for VR

within operations. While VR may not be promising for use in continuous operations, the subjective

responses and utility show that VR may offer benefits as a way to intuitively understand the orbits.

This may mean that it could be useful in advanced planning of operations to understand the orbits,

visualize the environment during a difficult or sensitive maneuver, or for improving training (Aim

4).

6.5 Summary and Contributions

This study compares the effects of 3D visualization and immersion for remote supervision of

a spacecraft operation on SA, performance, workload, usability, and utility. Three displays were

designed for a satellite rendezvous task and compared via a human subject experiment. The results

of this work indicate that 3D visualizations, whether on a computer screen or in VR, may improve

utility and performance in complex scenarios. In future, even more complex operations, these 3D

visualizations may be important to include. However, the results show that there is little evidence

that immersion through VR provides additional benefits. There are no differences between displays

in SA, workload, and usability. While VR has been shown in other research to provide benefits in

manual control operations, it does not translate to these findings for remote supervision. These

conclusions can also inform other supervisory operations that are emerging, such as transportation,

manufacturing, and robotics.

The main contribution to this literature is the study of VR for supervisory control operations,

which is understudied. The same experiment and task from this aim are also used in Aim 4.



Chapter 7: Aim 4: Remote Supervision Training

7.1 Introduction

The objective of this aim is to understand how training in alternative display modalities

impacts the operations of a satellite supervision task using traditional displays. Many organizations

are unlikely to adopt VR displays for operations due to long lead times in technology transitions,

increased adoption cost compared to including 3D visualizations on existing computers, and the

lack of strong benefits as seen in Aims 2 and 3. However, VR may be promising for training and

require less of a barrier to entry, allowing it to be more easily adopted by organizations.

As in Aim 3, the training displays include an immersive VR display, a 3D visualization

display, and a baseline display with traditional 2D graphical representations. After training (Aim

3), participants complete the satellite task in the baseline display, which is done on a different

day. Their SA, performance, and workload during their second visit are compared to understand

the effect of the training modality on operational performance. Additionally, their responses to

subjective usability and utility of training are compared. We hypothesize that training with 3D

visualizations will improve SA and performance in the second visit, as well as achieve a higher

subjective utility. Furthermore, we hypothesize that VR will lead to further improvements in these

metrics than 3D visualizations alone. We do not hypothesize there will be a difference in workload

scores or usability based on training conditions.

7.2 Methods

This aim uses the same scenario, displays, and experimental design, participants, and statis-

tical pipeline from Aim 3, and their descriptions are included in chapter 6. This Aim is concerned

with the second visit, when participants were performing the task in the Baseline display. The first

visit is treated as training, which is done through exposure, not through adaptive or modulated dif-

ficulty. This allows participants to experience different scenarios and build mental models. During

the second visit, all participants are familiarized with the traditional display to reduce the effects
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Figure 7.1: The level 1 (a), 2 (b), and 3 (c) SA results. All figures show the participant averaged
percent of SPAM queries of that level answered correctly. The data mean, standard deviation

error bars, and significance is noted between the conditions.

from learning to use a new display. Comparing participants’ visit 2 data, grouping by visit 1 dis-

play condition, allows for an understanding of whether training in alternative immersive modalities

allows operators to gain context and intuition more easily, facilitating improved operations. The

difference between visit 1 and visit 2 data was not studied, as it is more important to understand

which training modality leads to the best overall outcomes.

7.3 Results

The results show a significant difference in level 2 SA for the percent of questions answered

correctly (F(2, 40.048) = 5.83, p = 0.006, η2 = 0.23). Post-hoc comparisons found that those

who trained in VR improved over those who trained in the Baseline display (t(41.4) = -3.22, p =

0.007, d = -1.20). Those who trained in VR approached, but did not reach, statistically improved

performance compared to those who trained in Scr. Viz. (t(36.7) = -2.17, = 0.09, d = -0.98).

There was no difference between those who trained in Scr. Viz. and the Baseline screen condition

(t(40.9) = -0.52, p = 0.86, d = -0.22). Level 1 SA trended toward, but did not reach, significance

(F(2, 42) = 2.45, p = 0.09, η2 = 0.11). There are no changes in level 3 SA (F(2, 41.61) = 0.73, p

= 0.49, η2 = 0.03). Fig. 7.1 shows the level of SA achieved for all groups across the three levels.

Performance is shown in Fig. 7.2. No difference was found between training modalities for
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Figure 7.2: Participant’s performance on Easy (a), Medium (b), Hard (c) trials. The violin plot is
shown with the median score, and significance is noted between the conditions.

the Easy (χ2(2) = 3.84, p = 0.15) and Medium (χ2(2) = 3.49, p = 0.17) difficulty trials. However,

for the Hard difficulty trials, performance differed depending on the training condition (χ2(2) =

6.78, p = 0.034). Post-hoc comparisons on the Hard difficulty trials only show differences between

those trained in Scr. Viz. and VR (z = 2.55, p = 0.03), with those trained in Scr. Viz. performing

better. No differences are found between Baseline and Scr. Viz. (z = -11.66, p = 0.22) and Baseline

and VR (z = 0.89, p = 0.65). Additionally, there are no differences in the number of aborts (H(2)

= 1.21, p 0.55, η2= -0.02), number of collisions (H(2) = 2.16, p = 0.33, η2 = 0.003), or number of

successes (H(2) = 0.84), p =0.65, η2 = -0.03) between participants trained in different conditions

There are no significant difference in workload (F(2, 41.9)= 0.40, p=0.67, η2 = 0.02). Results

are seen in Fig. 7.3a.

Usability was significantly different depending on the screen condition in which participants

were trained (F(2, 42.23)= 5.91, p=0.005, η2 = 0.21), as seen in Fig. 7.3b. Post-hoc tests found

participants rated the Baseline screen more usable if they had trained in VR than if they had

trained in either the Baseline condition (t(41) = -2.90, p = 0.016, d = -1.06) or the Scr. Viz.

condition (t(41) = -2.79, p = 0.021, d = -1.02). No differences are found between how participants

rated the usability between those who trained in the Baseline and Scr. Viz. conditions (t(41) =

-0.11, p = 0.99, d = -0.04).

Finally, for subjective utility, there are differences between how people perceived the effec-
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Figure 7.3: The Workload (a), and usability (b) results. Workload shows the participant-average
weighted TLX score, and usability shows the System Usability Scale score. The data mean,

standard deviation error bars, and significance is noted between the conditions.

tiveness of their training to help them understand the relative orbital motion (H(2) = 6.39 p =

0.041, η2 = 0.10), understand collision likelihood (H(2) = 7.62, p = 0.022, η2 = 0.13), and promote

event awareness (H(2) = 7.36 p = 0.024, η2 = 0.13). In addition, their perception of understanding

uncertainties was trending toward significant (H(2)= 5.88, p = 0.053, η2 = 0.09). Post-hoc tests

found differences in understanding orbital motion between those who trained in the Baseline and

VR displays (z = -2.47, p = 0.039), indicating VR was perceived to help participants understand

orbital mechanics more, and no differences between Baseline and Scr. Viz. (z = -1.67, p = 0.19) or

Scr. Viz. and VR (z = -0.81, p = 0.42). For promoting the understanding of collision likelihood,

differences are found between Baseline and VR (z = -2.68, p = 0.022), indicating VR facilitated

a perceived improved understanding of how likely a collision is to occur. No differences are found

between Baseline and Scr. Viz. (z = -1.91, p = 0.11) or Scr. Viz. and VR (z = -0.76, p = 0.44). For

both of these cases, VR had higher ratings than Baseline. Finally, for promoting event awareness,

differences are seen between Baseline and Scr. Viz. (z = -2.73, p = 0.019), where visualizations

were perceived to improve the participant’s understanding of critical events. No differences are

found between Baseline and VR (z = -1.41, p = 0.32) or Scr. Viz. and VR (z = 1.32, p = 0.19).

Scr. Viz. had higher subjective ratings than Baseline.

Participant subjective comments indicated they found benefits in learning from VR “The
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Figure 7.4: The subjective utility questions, showing the results of (a) “I found that the training
from the first visit was effective in enabling me to understand the relative orbital motion of the
satellites today.” (b)“I found that the training from the first visit was effective in enabling my

understanding of collision likelihood today.”, and (c)“I found that the training from the first visit
was effective in enabling me to understand mission critical events today.” (S.D. = Strongly

Disagree, D. = Disagree, N. = Neither Agree nor Disagree, A. = Agree, S.A. = Strongly Agree)

overall orbit is much easier to see in VR, which is helpful.”, “I felt like I was better able to visualize

the trajectories based on the 2D graphs today [on the baseline display] because I had already seen the

3D equivalents”, and “My training on the first day helped me greatly in my decision making process.

I had developed a process on day one that was still applicable today. I looked for the same flight

telemetry metrics to base my decisions on today as I did on day one. The first day also helped me

to better visualize the 2D displays in front of me because I had already seen the 3D simulation and

knew what to picture the graphs as.”. These were echoed among the other participants. Similar

comments were reported among those trained with the 3D visualization in Scr. Viz. “I think the

transition from 3D to 2D made it much easier to understand the 2D display than I feel it would

have been if I could only see the 2D perspectives.”, “The first day of training was more visual and

enhanced my ability to understand orbit approaches and the associated nuances.”. Participants did

not provide comments about training in the baseline display.
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7.4 Discussion

This study compares the effects of training display modality with different degrees of 3D

visualizations and immersion for a satellite supervision task, and is one of the first studies to

investigate training in VR for supervisory control tasks. This helps fill the gap in understanding

how VR may be used for satellite operation training and what benefits it may offer, even when

visualizations may not be feasible in operations themselves. The Baseline display training condition

is a control and helps to set a reference point for the familiarization that occurs with repeated

interactions on the same system by using a traditional satellite operations display set-up, and

is also consistent with current satellite operations and training. Further improvements over the

Baseline display in any metric indicate additional benefits achieved from training with a system

with enhanced displays.

Training in VR improves level 2 SA (comprehension) and approached significance in level 1

SA (perception), indicating a benefit for VR-based training. However, no improvement in level 3

SA (projection) is found. This is in partial support of the hypothesis that training in VR would

improve all levels of SA. The lack of significance in level 1 SA is likely due to the fact that all

groups had high SA perception scores, making it difficult to discern differences in perception across

the groups. This is beneficial and indicates that all groups are able to achieve the high level

of perception needed for operations, and is similar to the results seen in Aim 3. The difference

in level 2 SA may be attributed to improved mental models of the scenario. Mental models are a

contributing factor to SA, especially level 2 and level 3 [45]. While previous work on VR training has

not specifically studied SA, biology education research has suggested that learning in VR leads to

improved mental models over non-immersive displays [188]; likewise, 3D visualizations have been

shown to improve mental models over 2D for electron orbits [189]. This could be one potential

mechanism for how VR training is able to improve SA. Additionally, being able to improve level 2

SA through VR is important to achieve safer operations. High SA is critical to maintaining safety

and performance [190,191]. Low SA has been attributed to many human-caused accidents in other
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fields like aviation [192,193], maritime [194], and nuclear power plant operations [195].

Differences in performance are seen among the Hard trials, where training in the Scr. Viz.

display led to better performance than training in VR. In the Easy and Medium trials, participants

had a high level of success in all conditions, and no differences were seen. While participants

trained in VR performed worse than those trained with Scr. Viz. on the Hard trials, there was

no difference in performance between those trained in Baseline or in VR. This is a positive, as it

indicates that VR does not harm performance compared to traditional training displays, and so

would not be detrimental to use. Some of these differences, or lack of differences, may be attributed

to being unfamiliar with the display. The Scr. Viz. display had many elements in common with

the Baseline, including the same interface to display alerts, data, and methods to take action; the

only difference between these two displays was the visualization of the data. These differences in

familiarity may have contributed to some of the differences seen in performance with the VR display.

No differences between VR and traditional training on subsequent performance are consistent with

findings in literature [196, 197], which have found VR to often be as good as, but not better, for

promoting performance. However, previous research has not considered 3D visualizations as an

in-between.

Finding no differences in workload is also a positive result and matches the hypothesis. As

has been discussed in Aims 2 and 3, any increase in workload would be indicative of a poor training

experience that left participants unprepared to understand the Baseline display without increased

effort. Supervisory control and monitoring tasks are typically lower workload [66,175,176] to begin

with, and it was not expected that any one training modality could reduce this further.

The results in support of using VR in training also come from subjective participant assess-

ments. Participants trained in VR gave the Baseline display higher usability scores compared to

those trained in the Baseline display, contrary to the hypothesis. This indicates that the prior con-

text developed by people trained in VR enabled them to synthesize and understand the traditional

display more easily. How training modality influences the usability of a traditional display has not

previously been studied, and represents an important finding of this study. The utility question-
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naires and comments further highlight the potential of VR or 3D visualizations for training and help

explain some of the differences in other metrics. These results also support the idea that VR and

visualizations may be improving mental models of the scenario. As previously mentioned, future

satellite operations may be more complex and require quicker decisions to avoid collisions and have

harder to understand orbits [198]. Being able to promote understanding of aspects like collision

likelihood or orbital motion, which VR did, is critical to improving operators’ understanding of

the scenario. These are reflected in the comments about the importance of understanding the 3D

orbits before transitioning to operating on the Baseline display. In sum, these results indicate that

those who trained in VR and Scr. Viz. perceived them as being very useful for understanding the

task better in a traditional environment. These perceptions may also be indicative of the inferred

improvements in mental models achieved through training in VR. This finding agrees with previous

training studies where participants subjectively prefer VR [199,200].

There are some limitations to the approach taken for this study. The scenario and task used

are both sped up and simplified compared to actual operations. This simplification may influence

some of the results; for example, in SA level 1 and the easy trials scores are generally high regardless

of modality, and no differences are found. Additionally, training took place over one day instead

of the typical 3 months to a year that is required for complex operations. Despite this, the results

show that VR is able to provide benefits from just one day of training, highlighting its potential.

Furthermore, training sessions were not evenly spaced between participants, although they were

bounded between 1 and 8 days. No trends were observed between the duration between training

sessions and any of the metrics, indicating these differences did not impact the results. Future

work should increase the complexity of these trials and include repeated training sessions or more

consistent timing between sessions to further understand how VR can provide an impact. While

the speed of the trials may influence aspects like boredom, it was consistent between the two visits,

allowing us to compare metrics across trials to understand differences based on training modalities.
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7.5 Summary and Contributions

This aim compares three training displays, including an immersive VR display, a 3D screen

visualization, and a representative traditional display for satellite operations. The results of this

work indicate that VR is a promising training mechanism for satellite operations as it improves

level 2 SA and usability in traditional displays. No differences were found in the other SA levels

and workload. Training in VR also has a higher perceived subjective utility towards understanding

critical aspects of satellite operations. VR training may be able to promote improved mental mod-

els, safer operations, and improved understanding of traditional display, and future work should

continue to assess this and VR’s potential for use in training. Additional work is also needed to de-

termine how to incorporate it into training plans effectively. These conclusions can inform training

for satellite operations, as well as other supervisory control scenarios like robotics, manufacturing,

and transportation.

The main contribution to the literature of this aim is understanding how VR can be useful

for supervisory control training, as opposed to the more commonly studied manual control training

tasks.



Chapter 8: Aim 5: Supervisory Displays and Trust

8.1 Introduction

The objective of this final aim is to understand how an operator uses the information on the

display to make decisions, and how these decisions are related to trust. Unlike the previous aims,

this aim focuses on the teaming aspect of operations, where the operator works with an autonomous

agent to identify objects in satellite images and does not rely on VR. Instead, 2D visualizations are

included as a way to convey information to verify an autonomous system.

This aim seeks to answer three research questions: 1) What information do participants use

that makes them more accurate in their decisions? 2) What aspects of gaze do participants exhibit

when reviewing information that make their decisions more accurate? 3) What behaviors (i.e.,

actions or gaze) are related to a participant’s trust in the autonomous system?

The culmination of these research questions will allow for the understanding of what display

components are being used as operators team with an autonomous system to make decisions,

and how they view information influences their trust in the autonomous system. This leads to

discussions on how to better design displays to promote accuracy and calibrated trust.

8.2 Methods

8.2.1 Task and Display Design

To study decision making and trust in autonomous systems, an operationally relevant human-

on-the-loop task was designed, where participants work with an autonomous system to classify

satellite data as containing ground troop movement or no ground troop movement. The complete

details of the task have been described previously by Sung et al. [201], and the relevant portions

are summarized here.

The participants work with nine different ground imaging satellites. Every 30 seconds, two

of the satellites flag as having updated information, and the autonomous system classifies these

as containing troop movement or no troop movement, as seen in Fig. 8.1a. Participants have the
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(b)

Figure 8.1: The user interface the participant used. (a) The home screen, exhibiting 2 satellites
which the system has flagged as having been reviewed by the autonomous system. The operator
has the option to review or not review the decision as they choose. (b) The review screen, with

the visual, thermal, and the command and data handling (C&DH) screens.

option of reviewing the data, but are not required to. Additionally, participants are also tasked with

suggesting regions on the globe to image next. This is done to require participants to strategically

allocate attentional resources and to encourage less monitoring of the system if they feel it is

appropriate.
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If the participant opts to review the data, they would see the screen in Fig. 8.1b. This screen

contains the autonomous system’s recommendation and the system’s confidence level in that rec-

ommendation. The autonomous system is not always reliable, and the recommended classification

is not always correct. On the review screen, the participant can see three pieces of information,

or data streams, that can be used to verify the accuracy of the system’s recommendation. If the

classification is incorrect, a conflict would be present in one, two, or all of the data screens that the

participant has access to. There is a visual and a thermal image of the terrain that can be used

to assess the autonomous system’s accuracy. These images show satellite images of the terrain in

either the visual spectrum or with thermal coloring. Troop movements are represented by a singular

tank object superimposed into the image. For both these images, a conflict is defined as showing

the opposite of the recommendation (e.g., showing a troop in the image when the autonomous

system made the determination that there was no troop movement present). Finally, a command

and data handling image (C&DH) is included to verify the health of the autonomous system and

if it received all the information from the satellite. When the C&DH shows dropped signals, as

represented by a mismatch in the vertical lines in the top and bottom sections of this telemetry

stream, not all information was transmitted. Participants are instructed that if signals are dropped,

the autonomous system is working with incomplete data, and thus, may not be reliable.

There are four different autonomous systems that the participants work with, each having

varying reliability and explainability. These are designed to manipulate their trust. Two have

low reliability (67.4%), and two had high reliability (83.8%). Additionally, two of these systems

have low explainability (where the explanation uses terse, robotic-like language) and two have high

explainability (where naturalistic language is used).

8.2.2 Experimental Design

Twelve participants (5 female, 7 males, ages 19-43, median age 23.5 years) completed the

study. The study was approved by the University of Colorado Institutional Review Board (protocol

# 23-0103). The experiment consisted of 1 training session and 4 testing sessions, where each testing



81

session involved a unique autonomous system.

The training session began with operator background surveys designed to capture individual

differences that may influence their trust [202]. These include the “High Expectations” component

of the Perfect Automation Schema (PAS) [203], the Automation Induced Complacency Potential

(AICP) Scale [204], the Propensity to Trust survey (PT) [205], the “Extraversion” and “Agree-

ableness” sections of the Big Five Factors of Personality survey [206], the “Masculinity” dimension

of the Cultural Values Scale (CVS) [207] and the “Performance Expectancy” as well as “Effort

Expectancy” sections of the Unified Theory of Acceptance and Use of Technology (UTAUT) sur-

vey [208]. Additionally, a demographics questionnaire was administered that captured age, sex,

race, ethnicity, dominant hand, experience with video games, experience with robotic systems,

navigational aid use, experience with aerospace-relevant displays, and experience with military

monitoring systems.

Next, the participants were trained using a PowerPoint slideshow that they could read

through at their own pace. This contained relevant information about the task, how to complete

it, and how to rate their trust. After training, they completed a quiz to ensure understanding.

Finally, participants performed three practice trials with a simulated 100% accurate autonomous

system to practice using the display and working with the autonomous system, such as verifying

classifications.

During each of the four testing sessions, participants worked with one of the four autonomous

systems in a randomized order. Participants were informed that it was a new system each session

and that they should not let their feelings and attitude toward a previous system influence their

trust or decisions with the new system. When they arrived for the experiment, they completed

a brief survey capturing the amount of sleep they had the night before and completed the psy-

chomotor vigilance test (PVT) [179]. They then completed 6 trials. During each trial, 24 satellites

were flagged, 2 every 30 seconds, for possible review. Every 45 seconds (8 times per trial), the

task paused, and a screen appeared for participants to use a slider to rate their agreement with

the statement “I trust this autonomous system” on a continuous scale from “Not at all” to “Com-
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pletely”. After their rating, the trial continued. At the end of a trial, participants filled out the

Trust in Autonomous Systems survey [209]. In addition to this, participants wore neurological and

physiological sensors, which are not included as part of this data analysis. Participants were paid

for their time and could earn bonuses for performance, which included both accuracy in classifi-

cation and the degree to which they assisted the autonomous agent in identifying areas to take

images. Participants received feedback on the team’s performance at the end of every trial.

8.2.3 Metrics

In addition to the background surveys described previously, additional metrics were collected

that were analyzed in this aim. Observable information about the system and environment were

recorded, such as the explainability and reliability of the autonomous system, which satellite was

flagged and the time it was flagged, the system’s recommendation and whether or not it was correct

for that particular satellite, and if inaccurate, what and how many of the 3 data streams were in

conflict with the recommendation. Additionally, information about the participant’s direct actions

was collected. This included whether they reviewed the satellite, the duration and frequency of their

reviews, and whether they accepted or rejected the autonomous system’s assessment. Gaze metrics

were also collected. Areas of interest (AOI) for the gaze metrics are highlighted in Fig. 8.2 and

include the visual image, thermal image, C&DH screen, systems analysis (system recommendation

and confidence), and buttons (selection of agree or disagree). Gaze metrics for each AOI include how

long they were looking at it, the number of times they looked at it, and the number of transitions

between each combination of AOIs (e.g., looking first at the visual image and then the thermal

image). Beyond this, the coordinates of their gaze can be used for a recurrence quantification

analysis (RQA) [210]. RQA is a way to describe dynamical systems, and characterized fixation

sequences and discovered repeated scan patterns and fixation locations, which may be related to

their decision; the full definition of the RQA terms is in Appendix D.

Additionally, the trust slider values are recorded on a scale from 0 to 1. The differences

in subsequent trust sliders is used to capture trust dynamics, or how the trust changes between
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Figure 8.2: The review screen, with the visual, thermal, and the command and data handling
(C&DH) screens. The yellow boxes indicate the AOIs used for gaze tracking and are not present
on the display that the participants reviewed. This includes the system recommendation AOI
(top left), the buttons AOI (top right), the visual AOI (bottom left), the thermal AOI (bottom

middle), and C&DH AOI(bottom right).

epochs. Including both trust values and trust dynamics is important to capture if calibrated trust

is achieved and to understand events that cause trust to change. Within each 45 second epoch, or

time between trust slider reports, additional metrics can be computed. This includes the number

of satellites that were flagged, the number that were classified during that epoch, the number of

satellites reviewed by the participant, how many recommendations they agreed with, how many

they rejected, and how many were passively agreed upon (i.e., not reviewed).

8.2.4 Statistical Analysis

In total, 6912 satellites were classified during all testing sessions. Out of these, 6527 satellites

were reviewed by the participants, and among them, 1517 had a conflict present (i.e., where the

autonomous system was incorrect). In addition, 2304 trust sliders and epochs worth of data were

collected.

To understand research question 1, if the participant’s accuracy and duration spent reviewing

the data streams were influenced by the number of data streams in conflict, several analyses were

conducted. For participant accuracy, a generalized linear mixed effects model was created (using
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lmer4 in R [167]) to compare the number of conflicts, the autonomous system recommendation, and

their interaction effects on accuracy. The participant’s score on the PAS was included as a random

effect to account for individual differences. To assess significance, an ANOVA was run, followed

by simple effect pairwise comparisons using estimated marginal means with a Tukey correction

(emmeans package [168]). Likewise, for duration, a linear mixed effects model was generated

to compare the duration of review based on the number of data streams in conflict, the system

recommendation, and the participant’s accuracy. In order to meet the assumptions of the model,

the duration was log-transformed. To assess significance, an ANOVA was run, followed by estimated

marginal means pairwise comparisons.

Additionally, to understand the relative use of a particular data stream and if, when it was in

conflict with the recommendation, it affected their accuracy and review duration, a similar analysis

as with the number of data streams in conflict was conducted. Instead of using the number of

data streams in conflict, the analysis was restricted to times when there was only 1 conflict (i.e.,

only a single data stream was in conflict) so an analysis of which data stream and how participants

used it was performed. The analysis of accuracy did not meet the assumptions required for the

ANOVA, and instead, a χ2 test was used. Unlike previously, interactions are not considered due

to the limitations of this test. Post-hoc pairwise comparisons were conducted using prop.test with

a Bonferroni correction. The review duration was analyzed with a linear mixed effects model.

For research question 2, to understand how a participant’s behavior differs based on decision

accuracy, mutual information was calculated (sklearn in Python) between each of the gaze variables

and accuracy. This allows for the understanding of what factors differ based on the decision

accuracy. Due to the findings from the previous research question, which identified an interaction

with the system recommendation, the mutual information was calculated for three separate data

sets. This included all reviewed satellites, when the recommendation was troop movements, and

when the recommendation was no troop movement. This also allows for an understanding of how

people behave differently based on the recommendation.

To identify if gaze is useful for predicting accuracy, a random forest was generated to classify
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the data as correct or incorrect, using the same 3 data subsets (all, recommended troop, recom-

mended no troop, using sklearn in Python with an 80/20 test split). All the variables with non-zero

mutual information are included as predictors available to the random forest, as a way of doing

feature downselection. From this, the top 10 variables with the highest feature importance were

considered. Comparisons were made between the three different models to see what participants are

doing differently when they are performing well and when the autonomous system recommendation

differs.

For the 3rd research question, an analysis to investigate if there is a relationship between

the user’s decisions and trust. For each epoch, the total number of times the participant actively

reviewed and agreed with the system, disagreed with the system, and never reviewed the system

was calculated. For each of these metrics, a repeated measure correlation was run between the trust

slider value and the trust dynamics. This was done using rmcorr in R [211]. Since each individual

may trust each autonomous system differently, groups were defined based on both participants and

the autonomous systems with which they worked, resulting in 48 groups in the repeated measures.

Finally, to understand if gaze and trust are related, a similar process was used to answer this

question as was done for understanding how gaze is related to accuracy. A random forest regression

was run with the variables containing non-zero mutual information. The top 10 variables by feature

importance were kept. This was only run on all the data, as system recommendations should not

influence trust. Since trust was only recorded after each epoch, the trust value for each data point

was the trust recorded for the previous epoch.

8.3 Results

Overall, the participants were correct 78.8% of the time, which is higher than the 75.6%

accuracy of the system alone. For research question 1, to understand the impact of the number

and type of conflicts on accuracy and duration, the results comparing the number of conflicts

to participant accuracy and review duration can be seen in Figs. 8.3a and 8.3b. A significant
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interaction between the autonomous system recommendation and number of conflicts is found

(χ2(2) = 9.38, p =0.009). As the goal is to understand how the number of conflicts influences

accuracy, a post-hoc simple effect analysis is conducted with a Tukey correction factor. When the

system incorrectly recommends no troop movements, differences in accuracy are found between 1

and 2 conflicts (z = 6.08, p < 0.005) and between 1 and 3 conflicts (z = 6.38, p < 0.005). No

differences are found in accuracy between 2 and 3 conflicts (z = 1.64, p = 0.23). When the system

incorrectly recommends troop movements, all three pairwise comparisons are significant; between 1

and 2 conflicts (z = 4.03, p < 0.005), 1 and 3 conflicts (z = 10.78, p < 0.005) and 2 and 3 conflicts

(z = 7.17, p < 0.005).

For the duration spent viewing the recommendation screen (Fig. 8.3b), the ANOVA com-

paring the number of conflicts, participant accuracy, and system recommendation resulted in no

three-way interaction (χ2(2) = 1.73, p = 0.41), but significant two-way interactions are found.

There are interactions between the number of conflicts and the system recommendation (χ2(2) =

34.79, p < 0.005), the number of conflicts and accuracy (χ2(2) = 13.75, p < 0.005), and between

accuracy and system recommendation (χ2(1) = 165.5, p < 0.005). Of particular interest is the

interaction between accuracy and system recommendation. In both recommendation cases, there is

a significant difference in the post-hoc simple effect analysis comparing participant accuracy. How-

ever, the directionality is different between when the system incorrectly recommended no troop

movement (z = -4.35, p < 0.005, when the participant is correct they spend less time reviewing)

and when it recommended troop movement (z = 16.08, p < 0.005, when the participant is correct

they spend more time reviewing). Furthermore, in the post-hoc analysis of the interaction between

the number of conflicts and the system recommendation, all pairwise comparisons are significant

when there is no troop movement recommended (1 to 2 (z= 2.69, p = 0.02), 1 to 3 (z = 4.63, p

< 0.005), and 2 to 3 (z = 2.40, p = 0.04). When troop movement is recommended, the pairwise

comparison between 1 and 3 conflicts (z = -3.75, p < 0.005) and 2 to 3 (z = -4.12, p < 0.005) are

significant. The comparison between 1 and 2 conflicts is not significant (z = 0.4, p = 0.91).

Looking specifically at the differences between what screen is in conflict when there is only
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(a) (b)

(c) (d)

Figure 8.3: (a) The percent accuracy compared to the number of data streams in conflicts, split
by system recommendation. The accuracy increases with an increasing number of conflicts. (b)

The review duration compared to the number of data streams in conflicts, split by system
recommendation and by accuracy. (c) The percent accuracy compared to the type of data stream

in conflict. Due to the limits of the statistical analysis, this is not split by accuracy (d) The
review duration compared to the type of data stream in conflicts, split by system

recommendation, and by accuracy.

one conflict, as this informs how participants use the different pieces of data, significant differences

between conflict type and accuracy (χ2(2)=94.4, p < 0.005) are found. Pairwise comparisons found

differences between visual and thermal conflicts (p< 0.005), and visual and C&DH (p< 0.005). No

differences are found between thermal and C&DH (p = 0.13). These results can be seen in Fig.

8.3c.

Like with the number of conflicts, the ANOVA comparing the duration spent viewing the

recommendation screen based on conflict type (Fig. 8.3d) has no significant three-way interaction
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(χ2(2) = 1.63, p = 0.45); however, significant two-way interactions existed. Significant interac-

tions are found between conflict type and recommendation (χ2(2) = 47.00, p < 0.005), conflict

type and accuracy (χ2(2) = 26.00, p < 0.005), and between accuracy and recommendation (χ2(1)

= 48.85, p < 0.005). In contrast with the earlier findings, a difference in the pairwise compar-

isons between participant accuracy and system recommendations is significant when the system

recommends troop movement (z = -9.27, p < 0.005). For no troop movement recommendation,

the pairwise comparison for accuracy is not significant (z = -0.13, p = 0.89). Additionally, in the

post-hoc pairwise comparisons for conflict type and recommendation, when no troop movement is

recommended, there are significant differences in duration between visual and thermal (z = -3.98,

p < 0.005), visual and C&DH (z = -6.5, p < 0.005) and no differences in thermal and C&DH

(z = -1.662, p = 0.25). A similar trend is observed when the troop is recommended. Significant

differences are seen for visual and thermal (z = 3.32, p < 0.005) and visual and C&DH (z = 2.81,

p = 0.01) comparisons, and no differences in thermal and C&DH (z = -0.45, p = 0.89).

For research question 2, Tab. 8.2 shows the top 10 gaze metrics, by feature importance,

that are used in the random forest classification model to distinguish between correct and incorrect

decisions. As it is clear from the previous analysis that people behave differently based on the

recommendation of the autonomous system, this analysis is over all data to identify gross behavioral

differences in accuracy, and then also split by recommendation to determine behavioral differences

when the recommendation differs that influence accuracy. Table 8.1 shows the performance metrics

for these models. While the accuracy is high, the F1 score, which accounts for false positives and

false negatives, is relatively poor. These models are intended to understand what features are most

important, not to have high predictive performance. The features selected have high importance

out of all the features.

Table 8.1: Random Forest Model Performance

Metric All data Recommend Troop Recommend No Troop

F1-Score 0.45 0.45 0.48
Accuracy 0.80 0.78 0.82
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(a) (b)

(c) (d)

Figure 8.4: Repeated measure correlation plots between (a) trust value and the number of times
the participant agreed during the previous epoch (b) trust value and the number of times the

participant rejected the recommendation during the previous epoch. (c) trust dynamics and the
number of times the participant agreed during the previous epoch (d) trust dynamics and the

number of times the participant rejected the recommendation during the previous epoch. For all
plots each participant and session has their own intercept, but the slopes are consistent with the

correlation found. Correlations and p-values are labeled.

Finally, for research question 3, to understand how behaviors are related to trust, significant,

but weak, correlations are found between some of the participants’ actions and trust values as

seen in Figs. 8.4a and 8.4b and Tab. 8.3. A correlation of r = 0.25 (p <0.005) is found between

the number of recommendations the participants agreed with and their trust. For the number of

recommendations they rejected, a similar correlation is found of r = -0.26 (p < 0.005). A negligible,

but significant, correlation of r = -0.09 (p < 0.005) is found between their trust and the number of

recommendations they did not review.
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Table 8.3: Correlations between participants’ outcomes and their trust.

User Decision Trust Value (r) Trust Dynamics (r)

Recommendation Accepted 0.25*** 0.26***
Recommendation Rejected -0.25*** -0.12***

For the trust dynamics, considering the number of recommendations agreed with, the corre-

lation is consistent with previous raw trust values with a correlation of r = 0.26 (p <0.005, Fig.

8.4c). However, for the number of recommendations they rejected, the correlation is weaker at r =

-0.12 (p <0.005, Fig. 8.4d). Similar to before, a negligible correlation of r = -0.09 (p <0.005) is

found between the trust dynamics and the number of recommendations they did not review.

Finally, Tab. 8.5 shows the top 10 gaze metrics by mutual information and by the ran-

dom forest regression for trust and trust dynamics. Table 8.4 shows the regression metrics for

the prediction of trust and trust dynamics. Regression accuracy is a much harder problem than

classification accuracy, and while these models do not demonstrate strong performance, the goal of

fitting these models is to elucidate which factors are most predictive of differences in performance.

However, given the model’s performance, the predictor variables might not be strong predictors in

understanding how gaze behavior relates to trust.

8.4 Discussion

The objective of this aim was to analyze how participants’ behaviors in viewing information

on screens while teaming with an autonomous system lead to differences in accuracy and trust.

Analyzing participants’ accuracy across different types of conflicts can provide insights into which

portions of the screen they are actively checking and which are not used in determining whether a

participant agrees with the autonomous system. In general, participant accuracy increases with the

number of pieces of conflicting information, confirming the hypothesis. Participants are more likely

to overturn the system when more pieces of information contradict the system’s recommendation.

However, the interaction between the system’s recommendation and the number of data streams in

conflict, as well as the difference in accuracy with the recommendation, was not hypothesized and
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Table 8.4: Random Forest Regression Performance

Metric Trust Value Trust Dynamics

MSE 0.032 0.01
R2 0.28 0.05

may represent differences in behavior based on the recommendation.

The interaction between accuracy and system recommendation is of particular interest when

analyzing the review duration. When the system incorrectly recommends troop movement, partic-

ipants take longer to review in order to make a correct decision. However, when the autonomous

system incorrectly recommends no troop movement, participants who are correct take less time to

review. It is hypothesized that the differences are primarily due to the nature of the task, where

determining the accuracy of the autonomous system is primarily a visual search, particularly for

the visual and thermal images. When the system recommends no troop movement but in reality

troops are present, people who identify the troop are able to stop as soon as they see the first troop.

If they do not spot the error, they may spend more time looking and be ultimately incorrect. On

the other hand, when the system recommends a troop and there is none, people who take longer

are able to verify that there is no troop present and are more likely to be correct. This difference

is noteworthy because it indicates that participant behavior varies depending on the system’s rec-

ommendation. Previous research suggests that people may respond differently to false alarms and

missed detections [46,212]. In this case, recommending a troop when there is none is analogous to

a false alarm, and recommending no troop when there is one is comparable to missed detection.

This difference in use based on recommendation has implications for future display designs, as it

may mean that display designs should be modified or adjusted based on the recommendation to

promote appropriate use and decision making.

The analysis of which data streams participants primarily use further supports these results.

Analyzing the data with one conflict provides some insight into the behavior of the participants

with regard to each data stream independently. Participants are most accurate when the visual

image, which is on the left of the display, is in conflict with the recommendation of the autonomous
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system. Inspection of the gaze data revealed that participants commonly spent the most time

on this leftmost visual screen, and often started their scan of the display there. Participants

typically reviewed all screens to some extent, just with shorter durations. This may be a result of

participants’ cultural background; in Western English reading cultures, scan patterns are generally

from left to right [213]. This may explain the increased accuracy and duration on the visual screen

in particular. Participants were not trained to have a particular scan pattern, but were trained to

know that all information was important in making their determination. There are a few potential

hypothesized explanations for why they did not evenly split their time. Given that the visual and

thermal screens present similar types of information, participants may not have felt the need to

thoroughly review both sources, instead directing their attention to the information they felt most

relevant, and spending less time on the source they felt was less relevant [214, 215]. Additionally,

they may have felt some time pressure during the task to make a decision quickly and did not further

check the rest of the data [216] if the visual screen matched their expectations, particularly if they

had a high level of trust in the autonomous system. Finally, this could indicate that participants

felt more comfortable and understood how to process visual information as opposed to the other

screens, despite initial training. This is supported by participants spending the least amount of

time on the C&DH screen, which is also the most novel. Future work should investigate if these

differences in accuracy are due to a natural scan pattern, familiarity, or perceived importance.

The random forest models provide further granularity into scan patterns and how differences

in gaze behavior enable differences in participant accuracy. Feature importance was focused on

to identify key behaviors as to how participants were using the display differently. Other features

that are not listed here may still be required to do well. However, if all participants already do

those behaviors it will not show up in the selection. There are some variables that stand out

related to their gaze metrics, including duration and entropy metrics. Fixation duration has been

shown to be linked with cognitive deliberation, where an increase in the number of fixations and

fixation durations is related to either an attempt to gather more detailed information [217], or

more difficulty extracting relevant information [218]. Participants who reviewed longer did better.
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Likewise, entropy represents the uncertainty, or randomness, in eye movements; higher entropy may

indicate broader visual search behavior or be representative of checking over the entire images and

reviewing all the data sources thoroughly. Participants who had higher entropy, on average, did

better, which is opposite of previous literature. Increased entropy has been shown to be correlated

with reduced situation awareness and poor performance in target detection [219]. However, this

only considered AOI based entropy and not entropy over the entire screen. It may also be the case

that there is a non-linear relationship between entropy and accuracy which is unable to be captured

with the modeling techniques used. Additionally, variables such as the review duration, entropy,

the number of recurrences, and duration spent on the visual screen all interact with the system’s

recommendation, reinforcing that there is a difference in how participants are behaving based on

the system’s recommendation. For all these measures, the difference between correct and incorrect

responses is more pronounced when the system recommends troop movement. The only metric

related to specific AOIs is the time spent on the visual data stream AOI, which reinforces the fact

that participants are primarily relying on it to make their decision. Additionally, larger entropy

values may indicate that either the participant is unable to find the troop in the image when one

is recommended or is engaging in a more thorough search when no troop is recommended. While

these models have high accuracy, they have low F1 scores. This is likely due to the overall imbalance

of data points, as most of the time, participants are accurate and there are no conflicts. Thus, it is

important to acknowledge that the goal of this analysis was not to build a highly predictive model,

but rather use the model building process to identify key behaviors that lead to improved accuracy.

Combined with the above findings, these gaze metrics suggest important implications for

display design [220,221]. The visual AOI and the time spent reviewing it seem to play an important

role in participants’ decisions. In similar displays, it may be important to place the key information

where participants initiate their scan pattern; in this situation, it would be on the left side. Under

time pressure, this would allow the most critical information to be encountered by the participant

first. Similar methodology using gaze tracking may be useful towards understanding scan patterns

for a particular display [106]. Alternatively, or in conjunction, training can be implemented to
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ensure participants have consistent and appropriate scan patterns for the task, or to ensure that

they are taking the actions that will allow their accuracy to increase (i.e., longer verification time).

This also suggests that for the level of reliability of the system, participants are actively choosing

to verify and not rely only on the system recommendation so spending the resources to include

verification data may be important.

Considering the relationship between the participants’ actions, gaze behavior, and trust dy-

namics for research question 3, weak correlations are found between participants’ actions and both

their trust levels and trust dynamics. These results are consistent with previous literature that

suggests that behavioral metrics may not be reliable proxies for trust alone [46, 50, 51]. However,

these types of behavioral metrics have been used in conjunction with other performance or back-

ground metrics to accurately model trust, signaling that these weak correlations can still provide

benefits [222,223]. It was hypothesized that trust should increase with increasing recommendations

they agreed with, and decrease with an increasing number of rejections. The directions of the

correlations follow this expectations. Some potential reasons for the weak correlations, and the

notably weaker correlation with trust dynamics and rejecting the recommendations may be due to

bottoming out of the trust scale or due to achieving calibrated trust, where trust changes may be

minimal. However, visual inspection of the trust dynamics over time did not show either of these

to be the case. Rather, these differences may be due to the reason why the participant rejected

the system. Participants were told that the C&DH was a way to see if the autonomous system

received all the data. If the participants determined that missing C&DH data was the reason to

reject the recommendation, they still might trust the system to make the correct decision when

it has complete data. This might strongly affect the correlation between rejecting the recommen-

dation, explaining the weaker correlation here. However, it is unable to be determined the reason

for rejection, and future work should further study this to understand if the behavioral metrics of

trust may also be influenced by factors outside the autonomous system’s control. Additionally, a

limitation is that these results may be influenced by using a repeated measures correlation as the

data is not continuous.
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Notably, there is no correlation between instances where participants did not verify the

recommendation and trust or trust dynamics. It was hypothesized that if participants did not

review the data, the trust dynamics should not be affected, which is supported. However, it was

also hypothesized that a higher trust score should be correlated with less verification; this hypothesis

was not supported. This result is likely due to the fact that there were few instances they chose

not to review the autonomous systems’ recommendation since there was an incentive to verify the

system’s recommendations to improve team performance, and no penalty for the verification other

than time pressure of not completing other tasks, which may have encouraged participants to review

all recommendations if possible. Verification typically increases time and cognitive workload [51],

but without a penalty [224] or an increased workload, there may not be the trade-off required to see

the expected correlation between verification behavior and trust. Additionally, participants may

have felt that the cost of verification is less than the cost of reliance [51].

Additionally, low R2 values indicate that gaze metrics alone may not be useful for under-

standing trust in the autonomous system. Unlike previous research [113–116], this work did not

find gaze alone to be indicative of trust. However, differences in task complexity and types of

information processed may explain some of these differences. Additionally, personality traits are

intentionally not included as predictors, as the focus is primarily on gaze and display components.

Trust has been shown to have inter-individual differences due to prior experiences with trust, per-

sonality, or identity, and demographics [202,205,225]. Trust also may be affected by factors such as

the explainability and transparency of the system, which do emerge as relatively important features

in the analysis. Gaze features may be useful in explaining trust in conjunction with some of these

other metrics [222,223,226]. Therefore, these findings do not support using gaze-based data alone

to make recommendations about display designs and their impact on trust.

There are some limitations in this research. First, there is an inherent class imbalance since

the autonomous systems had to correct the majority of the time (i.e., the autonomous system was

never working against their teammate, meaning the threshold for accuracy had to be above at least

50%). The majority (78.8%) of the data is from when the system made a correct recommendation,
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and thus where participants often correctly accepted the recommendation (90.6% of the time).

This impacts the classification analysis methods used to identify what features are important.

Additionally, as mentioned previously, there are few instances where participants chose not to

review the recommendation due to the lack of a penalty to verify and insufficient time pressure.

While this is beneficial for having a larger dataset to understand decision making and what data

streams are used, it may have influenced the correlations between trust and participant actions,

potentially impacting trust results. While the trust slider scale is not validated on its own, previous

analysis showed strong correlations with Jian’s Trust in Autonomous System survey, allowing us

to achieve a more dynamic measurement without a loss in resolution [227]. Additionally, binning

scores, such as creating a proportion for the number of recommendations agreed with per epoch,

may reduce time sensitivity, inducing measurement errors and weakening the correlation [117].

However, this is a common metric used in the literature as it allows for parametric analysis and

less frequent trust queries, and affects most of the related literature. Finally, the layout of the

display used for this study is static and is consistent across all participants. This may influence

the results related to information use. Specifically, the participants’ reliance on data streams may

be attributed to the position of the information on the display within a left-to-right scan pattern

rather than the inherent usefulness of the data. Without changing the order of the data streams, it

is unclear if the important streams are due to the location or the types of information they contain.

Future work should investigate changing the order of the data to understand if participants are

relying heavily on the visual source because of its leftmost position, it is easiest to understand,

or it is preferred by participants. Future work should also consider more complex gaze metrics,

including a quantification and comparison between scan patterns.

Additionally, in this aim visualizations are used as a way to convey information to verify the

autonomous system recommendation during the trusting task. Visualizations may be beneficial

over text-based displays as an visualizations can integrate multiple pieces of information in an

interpretable manner. Compared to the same amount of information in multiple lines of text,

visualizations may not be as cognitively demanding, enabling smoother integration of information.
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Future work should further study this idea and quantify the benefits of including visualizations for

trusting tasks, beyond the benefits of visualization explored in previous aims.

8.5 Summary and Contributions

This aim sought to understand what information operators use when making decisions, using

gaze behaviors, and how this relates to their trust. The findings indicate that an operator’s decision

accuracy is influenced by both the type of conflicting information as well as the system’s recommen-

dation. It also found that certain gaze behaviors, such as review duration, the time spent on the

visual screen, and the gaze entropy, can be correlated to their accuracy, but that behaviors cannot

be used alone to understand trust. Operator’s gaze patterns, and the system recommendation,

should be taken into account when designing future displays, but additional work should continue

to identify how information and its presentation on a display may influence an operator’s trust in

autonomous decision support systems. The methodology developed for this study reinforces the

idea of using gaze and visual metrics to further understand how operators use a display, and these

methods could help in future research on display design and trust to understand which display

components and transparency features are important, or to improve training.



Chapter 9: Conclusion

9.1 Summary of Findings and Contributions

This dissertation explored aspects of display design to address challenges with future space-

flight supervisory control operations and training. Supervisory control is often understudied, par-

ticularly for novel display designs, and is an increasingly important control modality for exploration,

manufacturing, and transportation operations.

In Aim 1, a systemized literature review was conducted on menus and text in VR, developing

a set of operationally relevant VR display design principles. This helps address the lack of dedicated

VR-specific display design principles geared towards operational use. These findings were extended

and used in the development of the VR displays throughout the dissertation. The developed design

space can be applied towards other operational contexts, and optimizing the displays for VR may

make the benefits of VR realized.

In Aim 2, VR and 3D visualizations were compared to a traditional display for the monitoring

of spaceflight operations, finding that while 3D visualizations (either on a screen or in VR) were

important, VR did not provide additional benefits. Specifically, 3D visualizations were found to

improve SA, which is critical for safe operations and may lead to improvements in collision prediction

and anomaly detection.

Aim 3 extended Aim 2 into supervisory control operations where the operator had some, but

limited, control authority. The findings were similar to those of Aim 2, where 3D visualizations

(either screen or VR) offered improvements over traditional displays, but VR alone did not provide

additional benefits. 3D visualizations were found to improve performance on the complex Hard

trials and resulted in an increased perceived ability to understand the relative orbital trajectories.

In future, even more complex, mission paradigms (i.e., refueling) 3D visualizations may be even

more critical to improve operators’ actions. Combined, these aims advance the literature on VR

for monitoring and supervisory control operations.

Aim 4 considered how these three displays could be used as a training tool for spacecraft
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operations and found that VR is a promising training modality. Training in VR yielded improved SA

in subsequent operational tasks. Additionally, it had higher subjective utility ratings, particularly

for VR as a way to improve the understanding of orbital motion and collision likelihood during

training. Aim 4 contributes towards the understanding of VR for supervisory control training. VR

training may lead to improved operator mental models, conceptual understanding of traditional

displays, and safer operations, counteracting challenges associated with traditional displays during

remote operations.

Finally, Aim 5 considered only screen displays for a spaceflight human-autonomy teaming

challenge and looked at what behaviors went into making correct decisions and leading to cali-

brated trust, addressing the gap in understanding how a screen is used for decision-making and

trust. This found that an operator’s decision accuracy is influenced by both the type of conflicting

information and the recommendation type, indicating that displays may benefit from different de-

signs based on the recommendation. Their gaze behaviors, including review duration, time spent

on the visual screen, and gaze entropy, can be correlated to accuracy and weakly correlated to trust.

Operator gaze patterns should be taken into account when designing novel displays, especially in

situations where accurate decisions are important. The developed framework and methodology

may be applicable towards designing novel displays and improving training.

9.2 Limitations and Future Work

In addition to the specific future work and limitations discussed in each of the aims, there

are some applicable to all of the experimental aims. The first is the population studied. The

participants may not be representative of the trained operators who would use these types of displays

and instead have varying backgrounds in orbital mechanics and satellite operations. While subject

background knowledge is accounted for in the statistical analysis to reduce these effects, having a

more representative subject pool would be ideal. This likely affects Aims 2, 3, and 5, which study

aspects of operations. Future work can consider whether these results translate to the highly trained
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population of operators that typically work with these systems, and commensurately increase the

task complexity for those analyses. Previous work has found that expertise may influence subjective

ratings, performance, and workload when using novel displays [174], particularly this found that

expert users may be less willing to adapt to new displays. Aim 4, which studied training, will

likely be less affected by this, as the participant population is representative of the type of people

who could become operators. However, the participants had different baseline knowledge prior to

the experiment, which may have affected their training experience. Additionally, these results may

change through repeated interaction with a system, both for training and operations. Participants

only experienced one session in VR and had some, but minimal, familiarization time with the

display prior. Using these systems over longer periods of time may lead to more comfort and

familiarity, affecting the results and performance. Repeated interactions may also help shape

operator perception of the display. This may overcome some of the issues with subjective ratings,

particularly those influenced positively by the novelty of experiencing VR or negatively from a

change from familiar displays for more expert users.

Beyond this, for all the experimental aims, simplified spaceflight applications were considered.

Although complexity was increased throughout the dissertation, and aspects of the operation task

were rooted in physics and realism, there are ways to make this research more complex and realistic.

This could include increasing task complexity and fidelity for Aims 3 and 4 by including solar

charging with respect to sun angles, physics-based uncertainty rates, the introduction of anomalies,

or varying the magnitude and directions of the burn. Increasing the complexity may allow for more

benefits to be seen for VR and visualizations, especially since performance differences were only

seen among the Hard difficulty trials. For Aim 5, complexity can be increased by including more

realistic photos and troop movements, more realistic time pressures, and a more realistic sense of

risk.

Additionally, VR technology is rapidly improving, particularly in areas like increased resolu-

tion and frame rates, and improved comfort that provides a more usable and comfortable experience.

While participants did not experience cybersickness and the majority did not have VR-specific is-
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sues, some participants noted that VR was uncomfortable to wear, increased physical effort to use,

and was harder to read. Furthermore, commercialization and subsequent standardization of VR

displays may influence these guidelines and usability. If certain features become ingrained as de-

fault, this may affect future operator experiences, and best practices may have to evolve alongside

that. Improvements and commercialization of VR display may allow for improvements in the VR

experience, particularly with regards to usability. As technology improves, future work can reeval-

uate these results. Furthermore, as future generations that may grow up using technologies like

VR, tablets, or phones, enter the operator workforce, this may influence the results. For example,

younger generations that grew up learning to use rapidly improving and changing technologies may

be faster to adapt to and accept VR. As such, it would be valuable to investigate how generational

shifts in users affect the applicability of these results. Furthermore, generational-based differences

in operators may motivate the use of training strategies for different operator backgrounds. If, for

instance, younger generations are found to be less prone to information overload in VR or grow up

using VR in educational settings, the introduction of new information streams during their training

may be able to be accelerated.

Finally, the results found may also be able to translate to other supervisory control paradigms

such as air traffic control, maritime management, manufacturing, power generation, or exploration,

especially those that present similar challenges to the spaceflight application studied here. These

types of paradigms are critical and important for aspects of daily life. Future work can extend this

research into these fields to understand if the findings are true across applications or application-

specific. Additionally, as VR training shows promise for complex operations and understanding of

orbits, future work should study it as an educational tool for other applications that require similar

mental models. For example, could VR provide benefits to educate students on complex cislunar

geometries, or schoolchildren on complex spatial concepts like 3D geometry or atomic orbits?

Spaceflight has implications for modern society. Prediction and monitoring for natural disas-

ters via weather and Earth science satellites can inform communities of potential threats and save

lives. Global Positioning satellites are important for navigation, agriculture, transportation, and
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military uses. Science satellites have far-reaching implications for understanding Earth, our solar

system, and the universe. Being able to effectively operate and team with these systems is critical,

and it is in society’s best interest to be able to avoid unnecessary collisions and facilitate repairs,

and perform maintenance on them. This work on improvements towards display designs, whether

it be increased 3D visualizations, VR, or a better understanding of how current displays are used,

can facilitate these important future operations and use of spacecraft.
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[4] D. Rijlaarsdam, T. Hendrix, P. T. T. González, A. Velasco-Mata, L. Buckley, J. P. Miquel,
O. A. Casaled, and A. Dunne, “The Next Era for Earth Observation Spacecraft: An Overview
of CogniSAT-6,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 18, pp. 2450–2463, 2025.

[5] J. Y. C. Chen, E. C. Haas, and M. J. Barnes, “Human Performance Issues and User Interface
Design for Teleoperated Robots,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 37, no. 6, pp. 1231–1245, Nov. 2007, conference
Name: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews).

[6] J. D. Lee and K. A. See, “Trust in Automation: Designing for Appropriate Reliance,” Human
Factors, vol. 46, no. 1, pp. 50–80, Mar. 2004, publisher: SAGE Publications Inc.

[7] S. Warm, G. Matthews, and V. Finomore, “Vigilance, workload, and stress,” Performance
Under Stress, pp. 115–141, Jan. 2008.

[8] M. Bualat, T. Fong, M. Allan, X. Bouyssounouse, T. Cohen, L. Fluckiger, R. Gogna,
L. Kobayashi, G. Lee, S. Lee, C. Provencher, E. Smith, V. To, H. Utz, D. W. Wheeler,
E. Pacis, and D. Schreckenghost, “Surface Telerobotics: Development and Testing of a Crew
Controlled Planetary Rover System,” in AIAA Space 2013 Conference and Exposition. San
Diego, CA: American Institute of Aeronautics and Astronautics, Sep. 2013.

[9] A. Dan and M. Reiner, “EEG-based cognitive load of processing events in 3D virtual worlds
is lower than processing events in 2D displays,” International Journal of Psychophysiology,
vol. 122, pp. 75–84, Dec. 2017.

[10] N. B. S. Woods, David D., “Situation Awareness: A Critical But Ill-Defined Phenomenon,”
in Situational Awareness. Routledge, 2011, num Pages: 14.

[11] J. K. Hawley, A. L. Mares, and C. A. Giammanco, “Training for Effective Human Supervisory
Control of Air and Missile Defense Systems,” 2006.

[12] J. S. Tittle, A. Roesler, and D. D. Woods, “The Remote Perception Problem,” Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 46, no. 3, pp. 260–264,
Sep. 2002, publisher: SAGE Publications Inc.



106

[13] M. Slater, V. Linakis, M. Usoh, and R. Kooper, “Immersion, presence and performance in
virtual environments: an experiment with tri-dimensional chess,” in Proceedings of the ACM
Symposium on Virtual Reality Software and Technology - VRST ’96. Hong Kong: ACM
Press, 1996, pp. 163–172.

[14] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex, “Comparing Robot Grasping
Teleoperation Across Desktop and Virtual Reality with ROS Reality,” in Robotics Research,
ser. Springer Proceedings in Advanced Robotics, N. M. Amato, G. Hager, S. Thomas, and
M. Torres-Torriti, Eds. Cham: Springer International Publishing, 2020, pp. 335–350.

[15] N. E. Seymour, A. G. Gallagher, S. A. Roman, M. K. O’Brien, V. K. Bansal, D. K. Andersen,
and R. M. Satava, “Virtual Reality Training Improves Operating Room Performance,” Annals
of Surgery, vol. 236, no. 4, pp. 458–464, Oct. 2002.

[16] F. Aı̈m, G. Lonjon, D. Hannouche, and R. Nizard, “Effectiveness of Virtual Reality Training in
Orthopaedic Surgery,” Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol. 32,
no. 1, pp. 224–232, Jan. 2016.

[17] S. G. Wheeler, H. Engelbrecht, and S. Hoermann, “Human Factors Research in Immersive
Virtual Reality Firefighter Training: A Systematic Review,” Frontiers in Virtual Reality,
vol. 2, 2021.

[18] G. Sun, X. Wanyan, X. Wu, and D. Zhuang, “The Influence of HUD Information Visual
Coding on Pilot’s Situational Awareness,” in 2017 9th International Conference on Intelligent
Human-Machine Systems and Cybernetics (IHMSC), vol. 1, Aug. 2017, pp. 139–143.

[19] M. Lager and E. A. Topp, “Remote Supervision of an Autonomous Surface Vehicle using
Virtual Reality,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 387–392, 2019.

[20] T. O’Neill, N. McNeese, A. Barron, and B. Schelble, “Human-Autonomy Teaming: A Review
and Analysis of the Empirical Literature,” Human Factors, vol. 64, no. 5, pp. 904–938, Aug.
2022.

[21] K. T. Wynne and J. B. and Lyons, “An integrative model of autonomous agent teammate-
likeness,” Theoretical Issues in Ergonomics Science, vol. 19, no. 3, pp. 353–374, May 2018.

[22] M. Johnson, J. M. Bradshaw, P. Feltovich, C. Jonker, B. van Riemsdijk, and M. Sierhuis,
“Autonomy and interdependence in human-agent-robot teams,” IEEE Intelligent Systems,
vol. 27, no. 2, pp. 43–51, Mar. 2012.

[23] J. K. Hawley, A. L. Mares, and C. A. Giammanco, “The Human Side of Automation: Lessons
for Air Defense Command and Control:,” Defense Technical Information Center, Fort Belvoir,
VA, Tech. Rep., Mar. 2005.

[24] T. B. Sheridan, Telerobotics, automation, and human supervisory control, ser. Telerobotics,
automation, and human supervisory control. Cambridge, MA, US: The MIT Press, 1992.

[25] J. C. F. de Winter and P. A. Hancock, “Why human factors science is demonstrably necessary:
historical and evolutionary foundations,” Ergonomics, vol. 64, no. 9, pp. 1115–1131, Sep. 2021,
publisher: Taylor & Francis eprint: https://doi.org/10.1080/00140139.2021.1905882.



107

[26] T. B. Sheridan, L. Charny, M. B. Mendel, and J. B. Roseborough, “Supervisory Control,
Mental Models And Decision Aids,” in Analysis, Design and Evaluation of Man–Machine
Systems 1988, ser. IFAC Symposia Series, J. Ranta, Ed. Amsterdam: Pergamon, Jan. 1989,
pp. 175–181.

[27] M. Cummings, L. Huang, H. Zhu, D. Finkelstein, and R. Wei, “The Impact of Increasing Au-
tonomy on Training Requirements in a UAV Supervisory Control Task,” Journal of Cognitive
Engineering and Decision Making, vol. 13, no. 4, pp. 295–309, Dec. 2019.

[28] M. R. Endsley, “Direct measurement of situation awareness: Validity and use of SAGAT,”
in Situation awareness analysis and measurement. Mahwah, NJ, US: Lawrence Erlbaum
Associates Publishers, 2000, pp. 147–173.

[29] ——, “Design and Evaluation for Situation Awareness Enhancement,” Proceedings of the
Human Factors Society Annual Meeting, vol. 32, no. 2, pp. 97–101, oct 1988, publisher:
SAGE Publications.

[30] M. Endsley and W. Jones, “Situation Awareness Information Dominance & Information War-
fare.” Wright-Patterson Air Force Base, OH: United States Air Force Armstrong Laboratory,
Tech. Rep. AL/CF-TR-19970156, 1997, section: Technical Reports.

[31] R. Opromolla, D. Grishko, J. Auburn, R. Bevilacqua, L. Buinhas, J. Cassady, M. Jäger,
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interfaces for air traffic alert and their evaluation using a Virtual Reality aircraft-proximity
simulator.” IEEE Computer Society, Mar. 2024, pp. 817–826.

[74] J. Rohacs, D. Rohacs, and I. Jankovics, “Conceptual development of an advanced air traf-
fic controller workstation based on objective workload monitoring and augmented reality,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engi-
neering, vol. 230, no. 9, pp. 1747–1761, Jul. 2016, publisher: IMECHE.

[75] R. Reisman and D. Brown, “Design of Augmented Reality Tools for Air Traffic Control
Towers,” in 6th AIAA Aviation Technology, Integration and Operations Conference (ATIO).
Wichita, Kansas: American Institute of Aeronautics and Astronautics, Sep. 2006.



111

[76] S. Bagassi, M. Corsi, F. De Crescenzio, R. Santarelli, A. Simonetti, L. Moens, and M. Terenzi,
“Virtual/augmented reality-based human–machine interface and interaction modes in airport
control towers,” Scientific Reports, vol. 14, no. 1, p. 13579, Jun. 2024, publisher: Nature
Publishing Group.

[77] S. Kalamkar, V. Biener, F. Beck, and J. Grubert, “Remote Monitoring and Teleoperation of
Autonomous Vehicles—Is Virtual Reality an Option?” in 2023 IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR), Oct. 2023, pp. 463–472, iSSN: 2473-0726.

[78] A. D. Garcia, J. Schlueter, and E. Paddock, “Training Astronauts using Hardware-in-the-
Loop Simulations and Virtual Reality,” in AIAA Scitech 2020 Forum. Orlando, FL: Amer-
ican Institute of Aeronautics and Astronautics, Jan. 2020.

[79] R. E. Mayer, G. Makransky, and J. Parong, “The Promise and Pitfalls of Learning in Immer-
sive Virtual Reality,” International Journal of Human–Computer Interaction, vol. 39, no. 11,
pp. 2229–2238, Jul. 2023, publisher: Taylor & Francis.

[80] M. Li, Z. Sun, Z. Jiang, Z. Tan, and J. Chen, “A Virtual Reality Platform for Safety Training
in Coal Mines with AI and Cloud Computing,” Discrete Dynamics in Nature and Society,
vol. 2020, p. e6243085, Oct. 2020, publisher: Hindawi.

[81] B. Xie, H. Liu, R. Alghofaili, Y. Zhang, Y. Jiang, F. D. Lobo, C. Li, W. Li, H. Huang,
M. Akdere, C. Mousas, and L.-F. Yu, “A Review on Virtual Reality Skill Training Applica-
tions,” Frontiers in Virtual Reality, vol. 2, 2021.

[82] M. Thompson, C. Uz-Bilgin, M. S. Tutwiler, M. Anteneh, J. C. Meija, A. Wang, P. Tan,
R. Eberhardt, D. Roy, J. Perry, and E. Klopfer, “Immersion positively affects learning in
virtual reality games compared to equally interactive 2d games,” Information and Learning
Sciences, vol. 122, no. 7/8, pp. 442–463, Jul. 2021, publisher: Emerald Publishing Limited.

[83] G. Makransky and L. Lilleholt, “A structural equation modeling investigation of the emo-
tional value of immersive virtual reality in education,” Educational Technology Research and
Development, vol. 66, no. 5, pp. 1141–1164, 2018, place: Germany Publisher: Springer.

[84] L. v. Dammen, T. T. Finseth, B. H. McCurdy, N. P. Barnett, R. A. Conrady, A. G. Leach,
A. F. Deick, A. L. Van Steenis, R. Gardner, B. L. Smith, A. Kay, and E. A. Shirtcliff, “Evoking
stress reactivity in virtual reality: A systematic review and meta-analysis,” Neuroscience and
Biobehavioral Reviews, vol. 138, p. 104709, Jul. 2022.
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Appendix A: Detailed Results

A.1 Aim 2

Table A.1: Summary of Metrics including mean and standard deviation for each condition.

Baseline Scr. Viz. VR

M SD M SD M SD

Level 1 SA [%] 83.39 5.40 78.81 6.50 71.82 5.31

Level 1 SA - Satellite States [%] 78.24 11.93 71.37 5.55 5992 9.02

Level 1 SA - Time to Event [%] 86.59 5.39 83.70 9.99 79.68 5.43

Level 2 SA [%] 78.35 12.84 89.61 8.99 87.46 7.15

Level 3 SA [%] 74.37 6.74 82.19 4.25 81.38 7.81

Workload 40.25 12.87 34.43 12.67 37.12 15.04

Usability 59.09 26.68 69.54 13.77 61.81 12.10

Table A.2: Summary of the subjective utility questionnaires results, including the median for each
condition.

Baseline Scr. Viz. VR χ2(2) p-value

Servicer Uncertainty Neutral Agree Agree 5.34 0.069

Debris Uncertainty Agree Agree Agree 2.43 0.30

Collision Likelihood Agree Agree Agree 2.29 0.32

Easy to Find information Agree Agree Agree 0.85 0.65

Event Awareness Agree Strongly Agree Agree 0.41 0.82

A.2 Aim 3

Table A.3: Summary of Metrics including mean and standard deviation for each condition. The
performance data is on a Likert scale so the median is reported.

Baseline Scr. Viz. VR

M SD M SD M SD

Level 1 SA [%] 90.24 10.27 95.00 4.89 95.27 6.29

Level 2 SA [%] 79.47 10.73 78.18 10.27 90.22 6.28

Level 3 SA [%] 70.93 10.95 80.42 10.22 77.69 11.55

Performance Easy 13 - 12 - 12 -

Performance Medium 9 - 9 - 8 -

Performance Hard 6 - 8 - 8 -

Workload 33.13 19.09 32.92 17.05 32.12 21.28

Usability 57.83 18.41 66.67 13.62 67.50 13.73
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Table A.4: Summary of the subjective utility questionnaires results, including the median for each

condition.

Baseline Scr. Viz. VR χ2(2) p-value

Easy to Find Info Agree Agree Strongly Agree 3.37 0.18

Event Awareness Agree Strongly Agree Strongly Agree 2.98 0.23

Uncertainties Agree Agree Agree 3.30 0.19

Collision Likelihood Agree Strongly Agree Agree 3.48 0.18

Orbital Motion Neutral Agree Strongly Agree 14.58 < 0.005

Operational Decisions Agree Agree Agree 6.11 0.047

A.3 Aim 4

Table A.5: Summary of Metrics including mean and standard deviation for each condition. The
performance data is on a Likert scale so the median is reported.

Baseline Scr. Viz. VR

M SD M SD M SD

Level 1 SA [%] 94.53 6.42 92.37 4.74 96.69 4.35

Level 2 SA [%] 80.71 9.13 83.58 9.45 90.22 6.27

Level 3 SA [%] 77.24 11.68 79.11 9.49 81.80 8.28

Performance Easy 13 - 13 - 13 -

Performance Medium 9 - 11 - 9 -

Performance Hard 8 - 9 - 8 -

Workload 21.31 16.66 23.26 17.43 22.44 19.00

Usability 61.17 19.84 61.83 16.41 79.00 16.58

Table A.6: Summary of the subjective utility questionnaires results, including the median for each
training condition.

Baseline Scr. Viz. VR χ2(2) p-value

Event Awareness Strongly Agree Strongly Agree Strongly Agree 7.46 0.024

Uncertainties Agree Strongly Agree Strongly Agree 5.88 0.052

Collision Likelihood Agree Strongly Agree Strongly Agree 7.62 0.022

Orbital Motion Neutral Strongly Agree Strongly Agree 6.40 0.041

Operational Decisions Strongly Agree Strongly Agree Strongly Agree 0.71 0.70

A.4 Aim 5
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Appendix B: Aim 2: Custom Surveys and Questionnaires

The following surveys are questionnaires were created for the Aim 2 experiment. In addition,
the System Usability Scale [164] and NASA TLX [35] were used.

B.1 Demographics

Please fill out this questionnaire so that we can obtain some information about your level of
experience and demographics.

What is your sex?
⃝Male
⃝Female
⃝Non-binary/third gender
⃝Prefer not to say

What is your age? (years)

How much sleep did you get last night? (hours)

Have you had alcohol in the past 6 hours?
⃝No
⃝Yes

What is the highest level of education you have completed?
⃝High school
⃝Some undergraduate education (not complete)
⃝Undergraduate degree
⃝Some graduate education (not complete)
⃝Graduate degree

What kind of content have you experienced in virtual reality?
□Traditional Media (2D movies, TV, Video)
□3D/360 Media Gaming in VR
□Simulation (flight/driving, Google Earth)
□Product or industrial visualization (ex. CAD)
□Previous human subject experiments
□None
□Other

How would you describe your familiarity with virtual reality environments?
⃝Little to no experience
⃝Moderate to high experience

Do you have experience with orbital mechanics?
□Currently in a class
□Have completed a class
□Have experience through work/design team.
□Have experience through video games (e.g., KSP)
□None
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□Other

How would you describe your familiarity with orbital mechanics?
⃝Little to no experience
⃝Moderate to high experience

Do you have any experience with spacecraft operations?
⃝Yes
⃝No

How would you describe your familiarity with spacecraft operations?
⃝Little to no experience
⃝Moderate to high experience

B.2 SPAM queries

The following lists the possible SPAM queries asked to operators. Queries were randomly
selected from this list, however, queries were only allowed to be selected in times were they were
appropriate to the situation (e.g. “Will you receive new information before the next collision?”
would only be asked if there was a collision potential.) Queries with a ‘/’ indicate that either
option may be selected.

Level 2:

• Is the next sensor update scheduled to occur before/after the next potential collision?
• Is the servicer satellite approaching/going away from the debris in all 3 axis?
• Is the servicer satellite going faster/slower than the debris?
• Is the servicer battery level currently increasing/decreasing?
• Is the debris/servicer satellite tumbling?
• Is there currently enough fuel to complete a burn?
• Is the servicer currently in the sun/Earth’s shadow?
• Is the uncertainty associated with the servicer’s orbit currently increasing/constant?
• Is the servicer satellite approaching/going away from the debris in the out of plane direc-
tion?

Level 3:

• Is there a risk of the servicer running out of fuel/battery before the next action?
• Will you meet the criteria to perform an mission abort at the time of the next action?
• Will you have enough fuel at the time of the next burn to complete the burn?
• If there is not a burn, will the servicer cross orbits with the debris satellite?
• Will the servicer’s next crossing in the along track direction be in front/behind of the
debris?

• Will the servicer’s next crossing in the radial direction be closer to/further from Earth than
debris?

• Will there be sufficient battery to complete the next hour of the mission?
• Is there a high, medium, or low likelihood of a future collision?
• Will you receive new information before the next potential collision?
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B.3 Utility

Please read EACH of the following statements, and indicate the extent to which you agree
with each:

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I found this system enabled me to understand
the uncertainty associated with the servicer.

⃝ ⃝ ⃝ ⃝ ⃝

I found this system enabled me to understand
the uncertainty associated with the debris.

⃝ ⃝ ⃝ ⃝ ⃝

I found this system promoted my understanding
of collision likelihood.

⃝ ⃝ ⃝ ⃝ ⃝

I found the necessary information easy to find. ⃝ ⃝ ⃝ ⃝ ⃝
I felt that I was aware of mission critical events. ⃝ ⃝ ⃝ ⃝ ⃝



Appendix C: Aims 3 and 4: Custom Surveys and Questionnaires

The following surveys are questionnaires were created for the Aims 3 and 4 experiment. In
addition, the System Usability Scale [164] and NASA TLX [35] were used.

C.1 Demographics

Please fill out this questionnaire so that we can obtain some information about your level of
experience and demographics.

How much sleep did you get last night? (hours)

Have you had alcohol in the past 6 hours?
⃝No
⃝Yes

What sex were you assigned at birth, on your original birth certificate?
⃝Male
⃝Female
⃝Don’t know
⃝Prefer not to say

What is your current gender?
⃝Male
⃝Female
⃝Non-binary/third gender
⃝I identify as:
⃝Prefer not to say

What is your age? (years)

What is the highest level of education you have completed?
⃝High school
⃝Some undergraduate education (not complete)
⃝Undergraduate degree
⃝Some graduate education (not complete)
⃝Graduate degree

What kind of content have you experienced in virtual reality?
□Traditional Media (2D movies, TV, Video)
□3D/360 Media Gaming in VR
□Simulation (flight/driving, Google Earth)
□Product or industrial visualization (ex. CAD)
□Previous human subject experiments
□None
□Other

How would you describe your familiarity with virtual reality environments?
⃝Little to no experience
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⃝Moderate to high experience

Do you have experience with orbital mechanics?
□Currently in a class
□Have completed a class
□Have experience through work/design team.
□Have experience through video games (e.g., KSP)
□None
□Other

How would you describe your familiarity with orbital mechanics?
⃝Little to no experience
⃝Moderate to high experience

Do you have any experience with spacecraft operations?
□Military Work □Commercial Space Work □Research □None
□Other

How would you describe your familiarity with spacecraft operations?
⃝Little to no experience
⃝Moderate to high experience

C.2 SPAM queries

The following lists the possible SPAM queries asked to operators. Queries were randomly
selected from this list, however, queries were only allowed to be selected in times where they were
appropriate to the situation (e.g., “Is the next planned burn more/less than 30 minutes away?”
would only be asked if there was a planned burn.) Queries with a ‘/’ indicate that either option
may be selected.

Level 1:

• Is the servicer’s battery greater/less than 50%?
• Is the servicer’s fuel greater/less than 50%?
• Is the servicer currently in the sunlight/shadow?
• Is the servicer’s flashlight on/off?
• Are there currently any cautions/warnings?
• Is the next planned burn more/less than 30 minutes away?
• Is there more/less than 30 minutes until the lighting conditions change?
• Is the servicer above/below the client satellite?
• Is the servicer ahead/behind of the client satellite?
• Is there a potential collision in the next 30 minutes?
• Does the servicer’s current trajectory enter the keep out zone?

Level 2:

• Is the servicer’s battery level currently increasing/decreasing?
• Is the keep out zone currently increasing/decreasing in size?
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• Is the servicer’s flashlight currently aimed towards the client?
• Is there currently enough battery/fuel/time to complete an abort burn?
• Does the orbit enter the keep out zone from ahead/behind of the client satellite?
• Does the orbit enter the keep out zone from above/below the client satellite?
• Is the time to collision increasing/decreasing?
• Is the portion of the orbit line in the keep out zone increasing/decreasing?

Level 3:

• If no new unplanned actions are taken will there be a collision alert in 30 minutes?
• If no new unplanned actions are taken, will there be enough battery/fuel to complete an
abort burn in 30 minutes?

• If no burns occur, will the servicer enter the keep out zone in the next 30 minutes?
• If there is not a burn, will the servicer cross orbits with the debris satellite?
• If no new unplanned actions are taken, will the servicer’s battery be greater/less than 50%
in 30 minutes?

• If no action is taken, will you receive a new low battery/fuel caution/warning within the
next 30 minutes?

• If no new action is taken, will the keep out zone be growing/shrinking in 30 minutes?
• If no new unplanned action is taken, will the servicer’s battery be increasing/decreasing in
30 minutes?

• Will the servicer be in the sun/shadow at the early/default/late burn location?

C.3 Utility

Please read EACH of the following statements, and indicate the extent to which you agree
with each. The system refers to the display that you worked with today.

Strongly
disagree

Disagree Neutral Agree
Strongly
Agree

I found the necessary information easy to find
in this system.

⃝ ⃝ ⃝ ⃝ ⃝

I found this system allowed me to be aware of
mission critical events.

⃝ ⃝ ⃝ ⃝ ⃝

I found this system enabled me to understand
the uncertainties associated with the mission.

⃝ ⃝ ⃝ ⃝ ⃝

I found this system promoted my understanding
of collision likelihood.

⃝ ⃝ ⃝ ⃝ ⃝

I found this system enabled me to understand
the relative orbital motion of the satellites.

⃝ ⃝ ⃝ ⃝ ⃝

I found this system allowed me to make appro-
priate operation decisions.

⃝ ⃝ ⃝ ⃝ ⃝

Please provide any additional comments on this display and your experience performing the
task.
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Please read EACH of the following statements, and indicate the extent to which you agree
with each. The training from the first visit refers to your previous visit.

Strongly
disagree

Disagree Neutral Agree
Strongly
Agree

I found that the training from the first visit was
effective in enabling me to understand mission
critical events today.

⃝ ⃝ ⃝ ⃝ ⃝

I found that the training from the first visit was
effective in enabling me to understand the un-
certainties today.

⃝ ⃝ ⃝ ⃝ ⃝

I found that the training from the first visit was
effective in enabling my understanding of colli-
sion likelihood today.

⃝ ⃝ ⃝ ⃝ ⃝

I found that the training from the first visit was
effective in enabling me to understand the rela-
tive orbital motion of the satellites today.

⃝ ⃝ ⃝ ⃝ ⃝

I found that the training from the first visit was
effective in enabling me to make appropriate op-
eration decisions today.

⃝ ⃝ ⃝ ⃝ ⃝

Please provide any additional comments about how your training the first day impacted your
performance today.

Did you prefer the display from visit 1 or 2? Why?

C.4 Performance

Participants’ performance score on each trial was composed of two parts: burn decision
and satellite end state. Burn decision relates to how effective the participants’ burn selection
enables overall mission success. During training, participants were instructed to always select
a burn location, so no burn selection is an indication of either poor SA or poor understanding of
appropriate actions. A ‘Poor’ burn decision consists of a burn location where it would be impossible
to service the satellite. ‘Fair’ and ‘Good’ burn decisions are locations where servicing a satellite
was possible, but different burn decisions would be more effective. ‘Excellent’ burn decisions were
selections that put the participant in the best position to service the client. Not every scenario
has all possible outcomes and for each trial, the location of a ’Poor’, ’Fair’, ’Good’, or ’Excellent’
may differ. The satellite end state refers to the final serviced state (collided, aborted, or serviced).
The granularity of the serviced state was added by evaluating participants’ abort attempts, time to
collision when aborted, use of flashlight, and end battery level. These different actions and metrics
provide indirect information about the participants’ understanding of the task, awareness of the
environment, and optimization of the outcome. Like the burn decision, not every trial had the full
spectrum of possible scores for the satellite end state. The granularity of the scores is intended to
objectively evaluate subject actions. These performance subdivisions allow for the delineation of
performance but can be generalizable across scenarios. It should be noted that all scenarios cannot
achieve all of the performance values.
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Table C.3: Burn Decision

Outcome Score

No Selection 1

Poor 2

Fair or Good 3

Excellent 4

Table C.4: End State

Outcome Score

Collision - No Abort Attempt 1

Collision - Abort Attempt 2

Abort with > 15 minutes to collision 3

Serviced with < 5 minutes to collision or < 25 % battery 4

Abort - light use < 75% 5

Abort - light use > 75% 6

Serviced - Battery < 30 % 7

Serviced - Battery 30-50 % 8

Serviced - Battery > 50 % 9

Total Performance = End State(battery, outcome) + Burn Decision



Appendix D: Aim 5: Gaze Metric Definitions

The following gaze metrics were found in the models:

• Duration: Duration spent reviewing the recommendation
• Total Duration on AOI: Sum of all the fixation durations on that AOI
• Switches from AOI1 to AOI2: Number of times participant’s fixation went from AOI1 to
AOI2. In a unidirectional manner

• Total Switches: Total times the participant switched fixations between AOIs
• Number of fixations on AOI: Number of times the participant fixated on an AOI
• Number of Reviews: Number of times the participant opened the review screen for a
particular recommendation

• Number of Recurrence: R =
∑N−1

i=1

∑N
j=i+1 rij The sum of recurrences

• Percent Recurrence: REC = 100 2R
N(N−1) , represents for a sequence of N fixations the

percentage of recurrent fixation
• Entropy: ENT = −

∑
(plog2(p)), where p is the probability of an event. Shannon entropy

of the system. This is maximized when the distribution of a set of observations is uniformly
distributed and is 0 when all observations share the same value.

• Relative Entropy: RelENT = ENT
log2(MaxLine−minLine+1) , where MaxLine is the maximum

length of a diagonal, and minLine is the minimum length of a diagonal.
• Determinism: DET = 100 |DL|

R , where |DL| is the set of diagonal lines. The proportion of
recurrent points forming diagonal lines and represents repeating gaze patterns

• Laminarity: LAM = 100 |HL|+|VL|
2R , where HL is the set of horizontal lines in the RQA plot

and represents areas first scanned in detail and refixated briefly on later in time, and VL

is the set of verticle lines that area fixated first in a single fixation and rescanned over
consecutive fixations at a later time. In general, laminarity indicates that specific areas of
a scene are repeatedly fixed.

• Cluster: Number of recurrence clusters normalized by size of recurrence triangle
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