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Aerocapture, the method of entering orbit via a single pass through the atmosphere of a
planet, is an enhancing or enabling technology for a range of interplanetary missions. Compared
to propulsive maneuvers, aerocapture can reduce cruise duration while decreasing the total mass
expended for orbit insertion, thus leaving more time and mass for the primary science mission. Two
mission classes in particular both benefit from aerocapture and are of high priority for the next
decade of planetary science: exploration of the ice giants, Uranus and Neptune, and low-cost small
satellite platforms. However, despite its potential benefits, aerocapture has never been implemented
in flight. This is primarily because of the large uncertainties involved, which must be modeled and
adequately mitigated by closed-loop autonomous guidance onboard the spacecraft.

Aerocapture guidance has been well-studied for vehicles that control their atmospheric flight
by changing the orientation of a lift vector, but is not as well developed for a class of flight vehicles
that achieve control by releasing a drag device mid-flight. Known as drag modulation, this control
mechanism is significantly less complex in terms of hardware and avionics than lift modulation, and
is thus appealing for small satellite missions. However, the state of the art guidance solutions have
a computational demand that is both high and difficult to bound. This dissertation contributes a
novel guidance algorithm for drag-modulated aerocapture that achieves equivalent performance to
the state of the art, but with reduced computational demand.

One of the most pernicious sources of uncertainty that aerocapture guidance must mitigate
is atmospheric density, which varies over space and time. While scientific and engineering atmo-
sphere models are available and well-characterized for on-the-ground studies, models that retain
this fidelity while being significantly more compact and analytically tractable are desirable for on-

board use. This dissertation develops reduced-dimensionality models of uncertain atmosphere for



iii
use onboard a spacecraft, derives a method for updating the model based on noisy measurements,
and demonstrates the ability to accurately predict future state uncertainty resulting from these en-
vironmental dispersions without requiring the use of random sampling. These contributions have a
range of potential applications, including incorporation into future stochastic guidance algorithms.

Many of the mission concepts most relevant to aerocapture, such as the Uranus Orbiter and
Probe, involve more than one flight vehicle. These missions benefit from the ability to deliver both
spacecraft to their destination with minimal disruption to the overall concept of operations. While
a number of missions have successfully executed multi-vehicle architectures in the past, this “co-
delivery” method has not received dedicated systematic attention. This dissertation addresses the
concept as a topic in its own right, investigating the ability to co-deliver an orbiter and probe from a
single approach trajectory without the need for a divert maneuver. Co-delivery of an entire network
of probes from a single, non-maneuvering mothership is also investigated. Finally, expressions for
relative motion in the velocity frame are derived in order to provide a mathematical model that is
more intuitive than the typical rotating orbit frame for highly-elliptical orbits, as are common for
aerobraking, entry, and aerocapture.

To illustrate the unifying motivation for this work, the contributions of this dissertation are
applied to an example problem: the concept of reducing atmospheric uncertainty for aerocapture
by including a fly-ahead probe that enters the atmosphere some time before the orbiter. While
this idea has been proposed several times, the benefit conferred to the orbiter by the probe has not
been quantified. The contributions of this dissertation naturally lend themselves to addressing this
problem, as well as other entry, aerocapture, and co-delivery scenarios for future interplanetary

missions.
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Chapter 1

Introduction

1.1 Motivation

Accelerating a spacecraft from rest atop a launch pad to the high speeds required for an
interplanetary trajectory requires a massive expenditure of energy. After launch and cruise, the
vehicle enters the local vicinity of its planetary destination, speeding up as it falls into the gravity
well. If no action is taken (and if the trajectory avoids impacting the planet or atmosphere) then the
spacecraft will, like a rollercoaster in the absence of friction, leave the gravity well and depart with
the same planet-relative energy as it arrived, thus executing a flyby. In cases where the objective
is not to perform a flyby but to enter orbit, the spacecraft must reduce its energy enough to be
captured by the gravity well and achieve orbit insertion. To date, initial orbit insertion has always
been accomplished via a propulsive maneuver.

The Tsiolkovsky rocket equation dictates an exponential relationship between required initial

total mass including propellant (i.e. wet mass) mg and desired change in velocity AV [1],

AV:veln@, (1.1)

mpy
where v, is effective exhaust velocity and my is final total mass without propellant, i.e. dry mass.
The result is that the fraction of total wet mass that must be reserved for propellant (calculated
as 1 —my/myg) is very large; around 90% for launch vehicles and typically in the range of 50% for

planetary spacecraft using chemical propulsion [!, 2]. This so-called tyranny of the rocket equation!



is a fundamental reason for the high cost-per-kilogram of launching into space? . As a consequence,
orbit insertion is a major driving factor in the design of any spacecraft destined to reach orbit
around a planet or moon.

Electric propulsion technologies such as Hall effect thrusters offer a way to loosen the grip of
the rocket equation, and have been successfully demonstrated on interplanetary missions including
NASA’s Deep Space 1 and ESA’s SMART-1 [, !]. They accomplish this by operating at much
higher efficiency, increasing the value of v, by as much as tenfold compared to chemical propulsion
[]. However, the maximum thrust of electric thrusters is proportional to available electrical power
and they often must operate continuously for long periods of time [(]; this is especially limiting
for missions to the outer planets, where incident solar radiation is greatly reduced. Moreover,

low-thrust transfers designed for electric propulsion tend to require longer times of flight [/].

Figure 1.1: JPL’s 6 kW Hall thruster®

Aerobraking provides another approach to reducing the total mass required for orbit in-

sertion, and has been successfully employed at both Venus and Mars [+, 9, 10, [ 1]. This involves

1
2
3


https://www.nasa.gov/mission_pages/station/expeditions/expedition30/tryanny.html
https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/
https://sec353ext.jpl.nasa.gov/ep/multimedia.html

gradually lowering the apoapsis of a high-energy initial orbit by repeatedly flying through the upper
planetary atmosphere, intentionally incurring a small reduction in energy due to atmosphere drag
each time, as shown in Fig. . However, insertion into the initial orbit still must be accomplished
propulsively, so significant propellant mass is still required. Moreover, aerobraking missions often
require hundreds of passes through the atmosphere, which takes months and requires demanding

around-the-clock operations in addition to increasing mission risk [!”].

Aerobraking Orbits

Atmosphere

Periapsis Raise
to Final Orbit

Final Orbit

Periapsis
Adjustment
Maneuvers

Cruise

Figure 1.2: Aerobraking

Aerocapture is a promising alternative method of orbit insertion that addresses several of the
shortcomings of both low-thrust propulsion and aerobraking, and will be the focus of much of the
rest of this dissertation. Like aerobraking, aerocapture makes use of atmospheric drag to reduce
the energy of the spacecraft to achieve the desired orbit. However, aerocapture trajectories rely on
a single, lower-altitude pass through the atmosphere to capture into orbit [/, [, 7], as shown

in Fig. . As a consequence of the high heating environment encountered during hypersonic



flight through mid-altitudes, aerocapture requires a protective aeroshell, much like those used for
planetary entry missions. The vehicle also requires some method of flight control during atmospheric
flight. This is achieved by judiciously adjusting the aerodynamic forces acting on the vehicle, and
control approaches thus generally fall into two categories: lift modulation and drag modulation [ (].
After exiting the atmosphere, the spacecraft executes a propulsive maneuver at the subsequent pass
through apoapsis to raise periapsis out of the atmosphere, and performs other correction maneuvers
as necessary. By essentially relying on a naturally-available resource (the atmosphere) rather than
propellant, aerocapture could enable shorter transit times and lower total expended mass for orbit
insertion for a variety of interplanetary mission concepts [ 7, 1=, 9], including crewed mission to
Mars [20, 21]. Although it has been proposed for a number of missions [2”, !, 7], aerocapture
has never been flown [11].
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Figure 1.3: Aerocapture

Aerocapture is particularly relevant to two classes of missions of high interest for the next
decade of planetary exploration: a flagship mission to the ice giants and low-cost small satellite
interplanetary missions [2, 2(]. To date, the ice giants, Uranus and Neptune, have each only been

visited once, by Voyager 2 during flybys in the 1980s [27, 2%]. The 2023-2032 Planetary Science



Figure 1.4: Voyager 2 portraits of Uranus (left) in 1986 and Neptune (right) in 1989*

Decadal Survey, Origins, Worlds, and Life, establishes a Uranus orbiter and probe mission as
the highest priority new Flagship mission [2V], delivering an in situ atmospheric probe as well as
conducting a multi-year orbital tour. Trajectories to this outer planet are characterized by long trip
times from Earth and large orbit insertion AV's [0, 71]. For traditional propulsive orbit insertion,
this results in greatly reduced time and mass for the science mission. Aerocapture has been shown
to reduce the total mass required for orbit insertion by some 40% for Uranus missions [’”], while
also reducing transit time by 2-5 years (15-30%) [7].

Small satellites (smallsats), especially CubeSats, have accounted for an increasingly large
share of satellites launched each year since around 2012 [’]. Technological innovations, including
the miniaturization of electronics and availability of commercial-off-the-shelf hardware, have led
to a steady increase in the capabilities possible in these small form-factors, and CubeSat missions
have now moved beyond serving a primarily educational role to making numerous notable scientific
contributions [?]. A 2014 study sponsored by the Keck Institute for Space Studies (KISS) presented

space science mission concepts “uniquely enabled by the small satellite platform,” and recommended
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Figure 1.5: Image of Mars taken by MarCO-B after a successful InSight landing®

including small spacecraft as secondaries on all missions beyond low Earth orbit [27]. NASA has also
studied a variety of mission concepts through its Planetary Science Deep Space SmallSat Studies
program [’0]. In November 2018 MarCO-A and MarCO-B, the twin CubeSat communications
relays accompanying the InSight Mars lander, successfully demonstrated the merit of smallsats
in deep space applications [17]. Aerocapture offers significant benefit to smallsats launched via
rideshare with a primary mission, enabling orbit insertion despite the lack of high-AV systems at
smallsat scale and reducing sensitivity to primary mission trajectory design [’0, 7%]. The NASA
Science Mission Directorate (SMD) has re-established the Small Innovative Missions for Planetary
Exploration (SIMPLEx) class of competed missions, which solicits smallsat missions for rideshare

opportunities with primary SMD missions® . The 2022 Strategic Framework” released by the NASA
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Space Technology Mission Directorate states that “an Earth-based aerocapture demonstration will
reduce perceived risk and mature guidance and control methods” for aerocapture at other planetary
destinations. Drag-modulated aerocapture is an especially good fit for smallsat missions because it
could be significantly easier to integrate on a small spacecraft than other methods of atmospheric
flight control [+, 29].

Of course, aerocapture does not deliver the benefits described above for free. The required
aeroshell imposes significant packaging constraints on the spacecraft, and the hardware required to
survive hypersonic atmospheric flight adds complexity, but perhaps the largest complication is the
inherent risk in the maneuver. By definition, aerocapture trajectories tread a careful line between
flying too low (possibly disintegrating in the atmosphere or impacting the surface) and too high
(possibly failing to capture into orbit altogether). Hypersonic flight mechanics are nonlinear and
highly sensitive to perturbations in the atmosphere, error in the vehicle state at entry, uncertainty
in the modeled vehicle aerodynamics, and more. While the guided hypersonic entries of Apollo
[10], Orion [!!], Mars Science Laboratory (MSL)[!”], and Mars 2020 [!’] provide some degree of
flight-heritage for aerocapture, it is often still perceived as high risk [!!]. Thus, advancing the
state-of-the-art for aerocapture-related technologies could reduce the associated risk
(both real and perceived) and improve the effective technology readiness level [19];
this is the underlying motivation for this thesis. The following paragraphs introduce the

specific areas in which this dissertation makes novel contributions; namely,

e efficient onboard aerocapture guidance,
e onboard modeling of uncertain atmospheres, and

e co-delivery concepts.

Closed-loop autonomous guidance is one of the critical challenges for aerocapture. Unlike
planetary entry, passive trajectories or open-loop control are generally not feasible options for
aerocapture because of the narrow window of success, on top of the significant sources of uncertainty

and highly-sensitive nonlinear dynamics that are also characteristic of entry missions. Thus, the



central objective for aerocapture guidance is to adapt to current conditions in order to guide
the vehicle to the desired final orbit with minimal error. For example, onboard accelerometer
measurements may result in a current state estimate that is higher-velocity than planned, possibly
indicating that the encountered density and/or vehicle drag coefficient is lower than anticipated;
in this scenario, the guidance needs to adjust the upcoming control profile to fly lower in the
atmosphere than originally planned. The limited capacity of flight-heritage radiation-hardened
onboard computers, combined with the requirement for the guidance algorithm to rapidly respond to
new information, means that computational efficiency is a major performance metric (and potential
limiting factor) for aerocapture guidance.

Another of the key technical challenges for aerocapture is that hypersonic flight trajectories
are highly sensitive to variation in atmospheric density. Planetary atmospheres are characterized
by high epistemic and aleatory uncertainty; that is, our ability to accurately predict local density is
limited by insufficient data as well as by the inherent random variability in the system. Thus, the
selection of an atmosphere model is an important consideration for uncertainty quantification (UQ)
analysis of aerocapture trajectories, both for modeling and simulation during mission design and for
rapid onboard predictions of uncertainty. The two most common choices are an exponential model
or a semi-empirical atmosphere model such as a Global Reference Atmosphere Model (GRAM) from
NASA or the Mass Spectrometer and Incoherent Scatter radar (MSIS) model from the US Naval
Research Laboratory. The exponential model is useful because it provides a reasonably accurate
approximation of how density varies with altitude while reducing the density profile to a function
of two scalar parameters, surface-level density and atmospheric scale height [!7]. Uncertainty can
then be modeled by dispersing these two parameters, typically as Gaussian random variables. This
approach is primarily useful as a simplified approximation enabling analytical approaches; the
actual density profiles of planetary atmospheres have significant disagreement with an exponential
curve, and dispersing only scale height and surface density will always retain the same exponential
shape of the density profile and simply scale the result in either direction. The other common

approach is using a model like GRAM that generates characteristic density profiles based on a
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combination of data and modeling. These models are generally more realistic and more flexible
than a simple exponential model, and have a built-in capability to randomly generate profiles with
physically realistic perturbations. In the context of uncertainty quantification, the major limitation
of GRAM and models like it is that they are often treated as a black box, such that a new density
profile is generated for each trial in a Monte Carlo analysis.

The issue is that many UQ techniques, such as stochastic collocation [0, 7] and polynomial
chaos expansion (PCE) [+, 1], require low stochastic dimensionality (i.e., a relatively small number
of dispersed input parameters). By relying on random sampling techniques like Monte Carlo and
simply selecting full pre-generated profiles, the analyst has implicitly forgone the implementation of
other UQ techniques which, in some cases, may have outperformed Monte Carlo. This motivates the
development of a parametric model of an uncertain atmosphere that is higher-fidelity than a simple
exponential model, while reducing dimensionality compared to a discretized semi-empirical model
like GRAM (for which the dimensionality is equal to the number of altitude points). Furthermore,
onboard density models can benefit greatly from the ability to update density predictions based on
in-flight measurements, so the developed model should accommodate such a method.

Returning now to the discussion of ice giants exploration and low-cost planetary science mis-
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sions, observe that these two mission categories have another commonality: they either inherently
require, or would significantly benefit from, more than one flight vehicle. In the case of the Uranus
orbiter and probe, this statement is self-evident. In the latter category, networks of multiple small,
fixed landers have been identified as a potential pathway to Mars surface exploration at reduced
cost; this was a conclusion of a recent KISS workshop titled “Revolutionizing Access to the Martian
Surface” as well as a follow-on “Low-Cost Science Mission Concepts for Mars Exploration” work-
shop [0, 71]. Other concepts are based on the idea of pathfinder probes that return data about a
planetary atmosphere to primary mission, such as a probe released prior to crewed Mars landing
from orbit or a small probe sent into the atmosphere of Uranus in advance of an aerocapture mis-
sion [!Y]. Finally, the “carry your own relay” architecture pioneered by the addition of the MarCO
CubeSats to the InSight mission could be significantly enhanced if a combination of co-delivery and
aerocapture enabled the relay spacecraft to enter orbit rather than continue on a flyby trajectory
[17, 52]. While some co-delivery mission concepts have been either studied or successfully executed,
the multi-vehicle architecture results in a number of unique mission design considerations [>, 7]
that, currently, lack dedicated study. This motivates systematic study of co-delivery concepts, as
well as a quantification of the extent to which a pathfinder probe would reduce risk to the primary

mission.

1.2 State-of-the-Art Overview

1.2.1 Aerocapture

Aerocapture has been studied for decades [!7, |1, 17, |7] and planned until various stages
of development for missions including the Aeroassist Flight Experiment [7”], Mars Surveyor 2001
orbiter [], and Mars Sample Return [’ ]; however, it has never been implemented in flight. The
Mars Polar Lander and Mars Climate Orbiter failures in 1999 led to the removal of aerocapture
from the mission design for the 2001 Mars orbiter [ ], and had the lasting impact of a relatively

conservative approach by NASA to Mars missions and entry, descent, and landing technology [()].
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Figure 1.7: Number of aerocapture-related publications per year colored by target planet (ISPT
refers to the multi-center NASA aerocapture system analysis studies)®

Between 2002 and 2006, a multi-center NASA team completed systems analyses for aerocapture
missions to Mars [77], Venus [70], Titan [77], and Neptune [7~]. These studies advanced the state-of-
the-art of aerocapture at a systems engineering level, built around a set of design reference missions
and quantitatively-informed assumptions. While the study team concluded that heritage blunt-
body aeroshells would be sufficient for aerocapture at Mars, Venus, and Titan, they argued that a
novel, higher lift-to-drag ratio (L/D) aeroshell would be necessary at Neptune. This conclusion —
that aerocapture at the ice giants would require design and qualification of an entirely new class
of entry vehicle as opposed to the incremental improvements to Viking-era technology that has
characterized the NASA Mars program since the 1990s [2(] — has posed a major programmatic
barrier to the implementation of aerocapture.

Aerocapture has received considerable study in the nearly two decades since the multi-center
NASA studies, particularly in the last five years, as summarized in Fig. . Significant hardware
development has advanced deployable entry vehicle technology, enabling a much larger drag area
than could otherwise fit in a launch vehicle fairing and reducing aeroheating compared to smaller

rigid aeroshells with similar mass [77]. Suborbital flight tests have been successfully conducted

8 From via
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Figure 1.8: Successful flight tests of deployable entry vehicle technologies

for the Adaptive Deployable Entry and Placement Technology (ADEPT) and Hypersonic Inflat-
able Aerodynamic Decelerator (HIAD) platforms [00), (1]° | bringing these technologies closer to
readiness for mission infusion. Improved thermal protection systems, including the Heatshield for
Extreme Entry Environments Technology (HEEET), have been developed and matured to a tech-
nology readiness level of 6 [(”]. Advances have been made for guidance, navigation, and control for
aerocapture, including: improved atmospheric estimation methods [(}], more capable aerodynamic
control mechanisms [(], development and systematic analysis of high-performance deterministic
guidance algorithms [05, 7], and investigation of stochastic trajectory optimization methods ap-
plied to aerocapture [0, (7]. Tools for rapid conceptual design of aerocapture missions have become
available [0%]. Optical navigation techniques and improved estimation methods have also improved
the accuracy possible in deep-space navigation [(7]. As a result of all of this, aerocapture is be-
coming an increasingly feasible proposition [0, 27]. A 2016 study at the NASA Jet Propulsion
Laboratory concluded that, while aerocapture technology readiness is destination-dependent, no
prior flight demonstration would be needed to implement aerocapture at Titan, Mars, and possibly
Venus ['Y]. Recent studies have argued that aerocapture at Neptune (a more stressing case than
Uranus) is feasible with heritage blunt-body aeroshells [7(); 71], avoiding the need to develop novel

acroshells as was recommended by the 2006 NASA study [>-].
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1.2.2 Guidance

Significant investment has been dedicated to developing aerocapture guidance schemes, es-
pecially centered around the aforementioned missions that planned to use aerocapture but were
eventually either cancelled or redesigned around propulsive orbit insertion. One well-studied algo-
rithm, known as terminal point control (TPC), is derived from Apollo entry guidance and relies on
linear feedback with gains derived using calculus of variations and evaluated about a pre-defined
reference trajectory [/7]. TPC benefits from very little onboard computational demand, and was
selected from among other algorithms for the Mars Surveyor Program 2001 Orbiter as well as
the French-contributed orbiter, Mars Premier, for a previous incarnation of Mars Sample Return
[72, 71]. Versions of this algorithm were also used for entry guidance on the MSL and Mars 2020
missions [0, '2]. While the algorithm is robust and lightweight, some drawbacks of TPC — typical of
linear control laws of this kind — are the need to manually tune feedback gains and the requirement
to select a nominal profile before flight [7!]. Another algorithm that has received extensive testing
is the Hybrid Predictor-Corrector Aerocapture Scheme (HYPAS) [7(], originally known as Analytic
Drag Aerocapture Guidance [/7]. HYPAS combines reference-based tracking guidance similar to
TPC with an analytical predictor-corrector approach based on solutions to the planar equations of
motion under equilibrium glide assumptions [7/, 7=, 77]. After a comparison campaign based on
six degree-of-freedom simulations, HYPAS was selected for the Aeroassist Flight Experiment and
was under development until cancellation of that mission [/, 2], and has been subsequently used
for numerous aerocapture studies including the multi-center NASA studies mentioned earlier [].
Notably, HYPAS does not require any pre-defined reference trajectories, leading to efficient code
[71], but it may be less robust to uncertainties and relies on at least some portions of the flight
profile being well-approximated by equilibrium glide.

More recently, much of the literature on aerocapture guidance has focused on numerical

predictor-corrector (NPC) algorithms, which make predictions by numerically propagating the
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nonlinear equations of motion rather than evaluating an analytical approximation. This means
that NPC algorithms should be able to make the most accurate predictions of the future state,
but this comes at the expense of increased computational demand as well as a lack of convergence
guarantees. These drawbacks of NPC guidance algorithms are a major motivation for
the work detailed in Chapter 2. NPC algorithms were studied for both the Aeroassist Flight
Experiment and Mars Surveyor orbiter [70, =0, ©1, =2], but while they were successfully demon-
strated they were, at the time, not considered competitive with the TPC and HYPAS algorithms
[77]. However, a combination of algorithmic improvements and a steady increase in availability of
onboard computational power has led to a shift in the EDL literature to largely focus on NPCs [ ].
Perhaps most notably, the Fully-Numerical Predictor-Corrector Aerocapture Guidance (FNPAG)
presented in [7] and applied to mid-L./D Mars aerocapture in [*7] improved over previous aero-
capture NPC guidance schemes by incorporating the fact that, for deterministic in-plane motion,

2

the optimal flight control law for aerocapture'? is bang-bang.

1.2.3 Uncertainty Quantification

Every guidance algorithm discussed above, as well as all flight-heritage algorithms from guided
entry missions, could be described as deterministic in nature. That is, they implicitly control uncer-
tainty by updating commands based on new estimated of the current state, and the effectiveness of
this approach is estimated in uncertainty quantification studies of the closed-loop dynamics, namely
via Monte Carlo analyses. An alternative approach that has recently gained attention in the lit-
erature is to explicitly control uncertainty by considering the effect of present and future control
decisions on the trajectory uncertainty evolution, referred to as stochastic guidance or stochastic
optimal control. Stochastic aerocapture guidance could directly incorporate an updated model of
density variability, and can be tuned to quantitatively balance nominal performance and perfor-
mance at the margin (e.g. 30 values of a targeting parameter, where o is standard deviation). This

motivates development of a stochastic guidance architecture for aerocapture that is efficient enough

12 Specifically, for bank angle modulated aerocapture
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to feasibly run onboard an flight vehicle. Specifically, because the defining source of uncertainty
for aerocapture is spatially-dependent variability in atmospheric density, stochastic aerocapture
guidance should include a method of accurately modeling an uncertain atmosphere and updating
this model based on noisy measurements. The development of high-fidelity onboard models
of uncertain atmosphere presented in Ch. is directly motivated by the potential
for incorporation of this model into an autonomous stochastic guidance framework for
aerocapture.

Onboard guidance often does include some function for updating the predicted density profile
in-flight based on deceleration data. Typical approaches estimate either a physical parameter such
as atmospheric scale height or a density scale factor that is multiplied with the a priori nominal
profile [, ©7], possibly including a fading-memory filter applied to the estimated parameter. More
recent approaches include machine learning [0, ©7] and ensemble filtering [*~]; see Ch. 6 of Ref.
[077] for further discussion. What all of these approaches have in common is that they update the
expected value of density, without explicitly modeling the random variability present in the sys-
tem. Recent works have applied more advanced uncertainty propagation methods to aerocapture,
including analytical polynomial chaos expansion and other spectral methods [V, 90], the Perron-
Frobenius operator [7], and the stochastic Liouville equation [7?]. A stochastic terminal point
control problem is solved in [/}] for an uncertain atmosphere and entry state. The aforementioned
works are all limited, however, by only considering an exponential model of atmospheric density.
Several approaches to stochastic numerical predictor-corrector guidance are proposed in [)] using
the unscented transform for uncertainty propagation, and a similar stochastic retargeting method is
applied to aerocapture in [7] using a Gaussian mixture model for uncertainty propagation. Other
approaches focus on linearization and convexification techniques to obtain stochastic optimal so-
lutions in a local neighborhood [0, 07, U5]. See Sec. for an extended discussion of
potential future work leveraging the recent developments in the literature and the

contributions of this dissertation to develop stochastic guidance for aerocapture.
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1.2.4 Co-Delivery

A number of interplanetary missions featuring a co-delivery architecture have been flown or

proposed. The Galileo and Cassini-Huygens missions each successfully delivered an atmospheric

probe along with a larger orbiter [19, ]. The Deep Space 2 Mars Microprobes were delivered to
entry by the Mars Polar Lander [/1], and the Russian Mars 96 mission included two small landers
plus two small penetrators all delivered by a larger orbiter [!0”]; unfortunately, these missions

all ended in failure, and the NASA failures scrapped plans for later Mars Surveyor landers and
accompanying Mars Micromissions [!(/!]. The sample return missions of Genesis [/(], Stardust
[101], Hayabusa [1 (7], Hayabusa-2 [100], and OSIRIS-REx!? all successfully delivered sample return
capsules to Earth entry from a hyperbolic carrier [1(7], as will the Earth Entry System component
of the Mars Sample Return campaign [/0~]. Finally, the Pioneer Venus mission delivered four
probes (one large and three identical small probes) to entry at Venus from a single spacecraft bus
[109], flinging the small probes out toward their respective entry points by spinning up the main
bus [ 10].

Despite these mission precedents, it is difficult to provide a “state-of-the-art overview” for
interplanetary co-delivery concepts for the very reason that they have received little dedicated
systematic study before this dissertation, but rather a series of independent mission design studies
as needed. One exception is a 2013 study that demonstrates a unique method of co-delivery wherein
two Phoenix-class landers enter the atmosphere together and then separate, one lander with a drag
skirt and the other without [!!]; however, this method requires separation between two flight
vehicles during hypersonic flight, a high-risk event. Recent work for the Aeolus mission concept
presents a design that co-delivers 20 probes to a global network on Mars from a single hyperbolic
carrier, but assumes that the carrier maneuvers after each probe deployment [! | ”]; this assumption
is typical to previous studies of Mars network missions. One might expect the field of spacecraft

formation flying to provide a set of useful tools for co-delivery trajectory design up until atmospheric
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Figure 1.9: Artist’s illustration of Pioneer Venus probes just after deployment from Multiprobe!

flight, but the existing literature is primarily concerned with motion about circular or near-circular
elliptical orbits [ |7]. While some relative motion descriptions do accurately model motion about
a highly-eccentric chief, they do not necessarily provide an intuitive representation in the way that
the evolution of the relative position vector in the rotating orbit frame does for a circular chief
[[11]. Motivated by the lack of dedicated study of co-delivery as its own concept,
this dissertation provides a systematic investigation of co-delivery for missions that
combine a probe and orbiter via aerocapture (Ch. /) or co-deliver multiple probes
(Ch. 5) and, furthermore, derives relative motion models that are more intuitive for

motion about a highly-eccentric orbit or entry trajectory (Ch. ©).
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1.3 Summary of Contributions

The driving motivation for this thesis is to advance the state-of-the-art for aerocapture and co-
delivery and to provide the first dedicated systematic study of co-delivery as a mission architecture;
chapters 2 — 0 each describe one contribution toward this overarching aim. In Ch. 2, an efficient
guidance algorithm is developed for a proposed smallsat aerocapture technology demonstration
at Earth, and through high-fidelity simulation is shown to equal the performance of the state-of-
the-art NPC solution while reducing computational demand. Because a defining characteristic of
aerocapture is the requirement to mitigate spatially-dependent uncertainty in atmospheric density,
in Ch. 2 multiple models are investigated and quantitatively compared for their ability to recreate
high-fidelity atmosphere models while remaining compact enough for onboard use. A methodology
is introduced for updating one of these onboard models according to incoming noisy estimates of
density. A method is then demonstrated for incorporating this model of environmental uncertainty
into approximate analytical predictions of state uncertainty. This model of uncertainty, combined
with a predictive model for a probabilistic future state, are motivated in part by the potential
for constructing a stochastic guidance scheme for aerocapture using these component parts. This
concept is beyond the scope of this dissertation but is addressed in an extended future work section.

Having described contributions related to single-vehicle aerocapture, the dissertation tran-
sitions to studies of co-delivery. In Ch. /, a novel concept is defined for co-delivering a probe
and orbiter by using aerocapture for orbit insertion and designing the two vehicles to require the
same entry conditions. The feasibility of this concept is quantitatively assessed across a large trade
space for multiple planetary destinations, and a representative scenario is simulated in more detail
including closed-loop guidance implementation. In Ch. 5, the more common idea of co-delivering
a network of probes to the Martian surface also receives systematic treatment, and a linearized
targeting method is developed for maneuver design for regional networks. Motivated by these co-
delivery concepts, expressions for relative motion in the velocity frame are derived in Ch. ¢ for both

exoatmospheric and hypersonic flight. This is shown to be a more intuitive way of understanding



19

motion about a highly-eccentric chief than the traditional orbit frame solutions. The dissertation

concludes by outlining a case study evaluating the utility of a fly-ahead probe for aerocapture

at Uranus. While not a contribution of its own, this example serves to illustrates how the tools

developed by this thesis can be brought together to address a relevant problem.
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Chapter 2

Efficient Onboard Guidance for Drag-Modulated Aerocapture

2.1 Introduction

Aerocapture is a technology that could enable shorter transit times and lower total expended
mass for orbit insertion for a variety of interplanetary missions [ 7, |, 19]. To perform aerocapture,
the spacecraft executes a single pass through the atmosphere of a planet or moon, dissipating enough
energy to reach the desired target orbit upon exit from the atmosphere. During the subsequent
pass through apoapsis the spacecraft performs a propulsive maneuver to raise periapsis out of
the atmosphere, and performs other correction maneuvers as necessary. For missions to the ice
giants Uranus and Neptune, aerocapture can potentially reduce cruise duration by 2-5 years while
reducing mass for orbit insertion by some 40% [7, 2”]. Aerocapture also offers significant benefit to
small satellites (SmallSats) launched via rideshare with a primary mission, enabling orbit insertion
despite the lack of high-AV systems at SmallSat scale and reducing sensitivity to primary mission
trajectory design [’0, 7¢]. Although it has been proposed for a number of missions [22, 23, 2],
aerocapture has never been flown [1].

Variability in the spacecraft state at atmospheric entry, atmospheric density, aerodynamic
properties of the vehicle, and other day-of-flight dispersions require a spacecraft performing aero-
capture to autonomously control its trajectory through the atmosphere. During this hypersonic
flight phase, control is achieved by judiciously adjusting the aerodynamic forces acting on the vehi-
cle, and control approaches thus fall into two main categories: lift modulation and drag modulation.

Lift modulation involves changing the attitude of the vehicle to reorient the lift vector, typically ei-
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ther by banking about a fixed trim angle (bank angle modulation) or by independently modulating
angle of attack and side-slip angle (direct force control) [! 17, ]. Note that direct force control
also involves changes in the drag and side force components, but the primary control authority
is obtained by modulating lift, and thus this technique is categorized with lift modulation for the

purposes of this discussion. Lift modulation, particularly bank angle modulation, is well-studied

in the literature [/, (7, , 1], and has relevant flight heritage from guided hypersonic entry
of blunt-body aeroshells including the Apollo [!0], Orion [!!], Mars Science Laboratory [!”], and
Mars 2020 [ '] missions, all of which relied on some form of closed-loop lift modulation.

Recent work has studied drag modulation as a potentially simpler method of achieving control
for aerocapture [0, 7). Typically, a drag-modulated vehicle is assumed to be axisymmetric and
to fly at zero angle of attack, thus generating no lift. The trajectory is influenced by adjusting
the ratio of mass to effective drag area, termed ballistic coefficient; when this ratio is low, the
vehicle rapidly dissipates energy through drag, and vice-versa. This can take a variety of forms,
including devices that achieve continuously-variable drag [ | 7], release of a trailing inflatable drag
device [! 1], and jettison of one or more rigid drag skirts [| |V]. Single-event jettison, defined here
as a single discrete change in ballistic coefficient caused by the jettison of a rigid drag skirt, is the
control architecture that will be the focus of this work. This represents a limiting case, because
after jettison the vehicle flies passively for the remainder of atmospheric flight and the vehicle lacks
any out-of-plane control. However, for a sufficiently large change in ballistic coefficient, single-
event jettison can achieve a total control authority comparable to lift modulation with heritage
blunt-body aeroshells [1(]]. Compared to lift modulation, single-event jettison drag modulation
may be less complex because the vehicle can be passively spin-stabilized, rather than requiring
a high-rate reaction control system that must operate during atmospheric flight [ 20]. Moreover,
ballast masses are not required to create an offset center of gravity, as is typically the case for
lift-modulated axisymmetric vehicles [1”].

A limited number of guidance algorithms for single-event jettison drag-modulated aerocapture

exist in the literature. The simplest solution in terms of computational expense is to trigger jettison
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when the instantaneous value of a measured state exceeds some threshold, such as a velocity trigger
[121]. To reduce error caused by noisy measurements, the observed state can be filtered and jettison
can be triggered based on some polynomial function of the state. For example, the algorithm
implemented in [ 77] triggers jettison when the total integrated AV exceeds a polynomial function
of the filtered instantaneous or maximum sensed acceleration. The deceleration curve fit algorithm
used for Mars Pathfinder parachute deploy [/”’] and applied to drag-modulated aerocapture in
[121] also triggers based on deceleration measurements. In this case, two measurements are taken
a set time apart, and a pre-computed curve fit between the second deceleration measurement and
time until jettison is consulted to set a jettison timer. All of these approaches require only minimal
onboard computation and memory, but each is also shown to have poor performance when relevant
uncertainties are applied. The predictive trigger approach applied in [/ 77] is more computationally-
intensive; in this case, the energy of the spacecraft at atmospheric exit is predicted by numerically
propagating the equations of motion, and jettison is commanded when the predicted final energy
is less than or equal to the desired final energy. Machine learning-based guidance schemes have
been successfully developed for entry and aerobraking problems [! 20, , , |, but have yet
to be applied to single-event jettison drag-modulated aerocapture other than for the purpose of
atmospheric estimation [0, ©7].

While the algorithms summarized above share the benefit of relatively low onboard com-
putational burden, the current state of the art guidance for drag-modulated aerocapture is the
numerical predictor-corrector (NPC) approach [*7]. This algorithm also predicts the final state by
numerically propagating the equations of motion, then takes the additional step of making a cor-
rection to the jettison time. This two-step procedure is applied iteratively, such that the algorithm
should converge to an optimal jettison time each guidance call. NPC has two key differences with

the predictive trigger:

(1) The NPC solves for jettison time rather than directly commanding jettison, so the release

timing can operate at significantly higher resolution; this is under the assumption that a
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simple controller releases the drag skirt when the jettison time is reached, operating at a

higher rate than the guidance algorithm itself.

(2) The NPC is significantly more computationally expensive than the predictive trigger be-

cause multiple numerical propagations may be required in each step.

In summary, NPC guidance is significantly more accurate in the presence of uncertainties than the
other algorithms discussed here [+, , |, but is also much more computationally demanding.
A more detailed description of the NPC algorithm is given in Sec.

This work investigates a guidance algorithm for single-event jettison drag-modulated aero-
capture, with the goal of achieving the same level of accuracy as the NPC but with significantly less
computational demand. The reference mission for this study is an Earth flight test of aerocapture
with a SmallSat using a rigid deployable drag skirt; that is, the drag skirt is stowed during launch
and deployed during cruise, but does not change its shape during atmospheric flight. Assumptions
regarding modeling of dynamics and uncertainties are discussed, and key physical parameters de-
fined. The baseline NPC algorithm is described in detail, including an approach to the correction
step that improves computational efficiency, and targeting results under relevant uncertainties are
estimated. The proposed algorithm is also described, and compared directly with NPC. A param-
eter study is presented that gives insight into optimal tuning and tradeoffs between memory and
performance for the proposed algorithm. Finally, results are discussed along with a number of

avenues for potential future work.

2.2 Methodology

2.2.1 Reference Mission

Researchers from the NASA Jet Propulsion Laboratory (JPL), NASA Ames, and the Uni-
versity of Colorado Boulder have been studying drag-modulated aerocapture for small satellites

[15, ], including concepts for an Earth flight test of the technology [!”]. This idea is supported
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by the 2022 Strategic Framework! released by the NASA Space Technology Mission Directorate,
which states that “an Earth-based aerocapture demonstration will reduce perceived risk and ma-
ture guidance and control methods” for aerocapture at other planetary destinations. Motivated
by these developments, single-event jettison drag-modulated aerocapture at Earth by a SmallSat
is the reference mission considered in this work. As summarized in Fig. , the spacecraft is
launched into a geosynchronous transfer orbit, then performs a maneuver to lower periapsis into
the atmosphere, achieving the desired entry state. Based on the JPL reference mission, the space-
craft targets an apoapsis of 5000 km and performs a maneuver at the next pass through apoapsis
to raise periapsis to 200 km. Autonomously raising periapsis during the first pass through apoapsis
in order to achieve a near-term stable orbit is a significant component of successful aerocapture;
however, specific consideration of the on-orbit maneuver guidance and control is beyond the scope
of this study.

The drag skirt in this study is modeled as the Adaptable Deployable Entry and Placement
Technology (ADEPT), an umbrella-like deployable structure for entry probes currently under devel-
opment at NASA Ames [/ /]. During launch, ADEPT is in the retracted configuration, significantly
reducing fairing volume required for the spacecraft and enabling stowage in the standard ESPA
envelope [ 1, |. The drag skirt is fully deployed between separation from the launch vehicle and
atmospheric entry, and remains rigidly deployed until it is jettisoned by the guidance algorithm.

The initial epoch for simulation of this mission is defined as 10 minutes before nominal
atmospheric entry, which is the time of the final orbit determination (OD) update to the spacecraft
from ground control. From this point onward, the navigated states are based on propagation with
only IMU data. The nominal entry state, defined at the atmospheric interface altitude of 125 km,
has a planet-relative velocity u of 9.9km/s and flight-path angle v of —4.6°, where flight-path
angle is the angle between the planet-relative velocity vector w and the local horizontal plane. The
nominal entry point is at a geocentric latitude ¢ of —7.4° and longitude 8 of 14.8° with a heading

of 118.9°, where heading angle v is defined as the angle between the horizontal projection of the

1
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Figure 2.1: Aerocapture Earth Flight Test

velocity vector and a due-North vector in that same plane. These definitions are illustrated in Fig.
, where the unit vector bases {1, no, f(}, {f, J, K}, and {é1, éa, é3} define inertial, planet-fixed,
and position frames, respectively. The vector from the central body to the vehicle is denoted 7,

and 7 = r/r is the associated unit vector.
2.2.2 Problem Dynamics

2.2.2.1 Simulation

In this work, the performance of each guidance algorithm is quantified through testing in a
high-fidelity simulation environment implemented in the Dynamics Simulator for Entry, Descent,

and Surface Landing (DSENDS) software developed by the DARTS lab at NASA JPL [123]. The



vehicle

NOSition .

-
~
~—.
~——n
~—.

vehicle
position

(b) Flight-path angle v, heading angle v,
(a) Latitude ¢, longitude 6, and position vector r and flow velocity vector u
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gravity model includes point-mass and spherical harmonics of degree and order 8 for the Earth,
as well as point-mass gravity from the Moon and the Sun. Atmospheric density is modeled using
the Earth Global Reference Atmospheric Model (EarthGRAM) 2010 [! 7], such that the value of
density depends on 3D position and time.

The vehicle shape is a 60-degree sphere-cone both with and without the drag skirt, such
that the drag skirt extends the conical section at the same angle. The aerodynamics model used in
simulation includes drag and aerodynamic moments. No lift is modeled; the vehicle is axisymmetric
and passively-stabilized, such that the axis of symmetry remains approximately aligned with the
freestream velocity vector. Thus, while the simulation is 6 degree-of-freedom, oscillations in vehicle

attitude are small and have only a minor effect on the vehicle trajectory.

2.2.2.2 Predictor Model

Both guidance algorithms presented in this work rely on numerical propagation of the rele-

vant equations of motion to predict trajectories onboard. These equations constitute a simplified



27

version of the dynamics modeled in the full “truth” simulation. Specifically, the modeled forces
include point-mass gravity, Jo oblateness, and drag, resulting in the following equation for inertial
acceleration [177]:

f:—“ﬁ—w((1—5(f~1§')2)f+2(f.1€)1€>—p“2a (2.1)

r2 274 203

where 7 is the vector from the central body to the vehicle, p is the gravitational parameter, J, is the
oblateness coefficient, p is atmospheric density, R is the planetary equatorial radius, K is the polar
axis unit vector, and § = m/(CpA) is the ballistic coefficient of the vehicle. The quantities m, Cp,
and A are the mass, drag coefficient, and reference area of the vehicle, respectively. The quantity
u is the flow velocity, or the velocity of the spacecraft with respect to the planetary atmosphere,
which is assumed to be rotating with the planet with angular velocity w, between initial time g
and current time t,

U=T—wp XT, (2.2)

where 7 is the inertial velocity vector. The predictor models density by linearly interpolating
from a table of density vs. altitude output by EarthGRAM that represents a nominal atmosphere
profile. Note that the predictor thus assumes the same density is experienced in the descending
and ascending portions of the aerocapture trajectory, other than as modified by the atmospheric
scale factor as discussed later, whereas the DSENDS simulation incorporates dependence of density
on latitude and longitude. A table of Cp vs. dynamic pressure is similarly used by the predictor
to compute 8. However, note that this latter step is likely higher-fidelity than necessary because
Cp changes little in the relevant flight regime for this scenario; constant Cp would be a reasonable
approximation. The values of u, Js, and R used in both the predictor and simulation are provided
in Table 2. 1. The average ballistic coeflicient for each phase is also listed, where 81 and ([ are the
values pre- and post-jettison, respectively. The predictor uses fourth-order Runge-Kutta integration

to numerically propagate the equations of motion, with a fixed time step of 0.125s.
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Table 2.1: Nominal Simulation Parameters

Parameter | Value

1 3.9860 x 10° km?/s?
wp 7.2921 x 10~ rad/s
Jo 0.0010826

R 6378.1km

b1 32kg/m?

B2 137kg/m?

2.2.3 Models of Uncertainty

The variability of atmospheric density is modeled by EarthGRAM, which has a built-in
Monte Carlo framework for generating realistic dispersions [/ !]. The vehicle aerodynamics are
dispersed based on experience with blunt-body aeroshells [! (], resulting in a standard deviation
of about o = 0.015 for Cp near peak dynamic pressure, where o is standard deviation and the
nominal value is 1.38. The entry state is dispersed according to a navigation assessment performed
at JPL that was then scaled to match the project requirement of entry flight-path angle delivery
error with a standard deviation value of 30 = 0.2° at the atmospheric interface altitude of 125 km.
The time required for the drag skirt to fully separate from the capsule is assumed to be uniformly
dispersed along a range from 0.05s to 0.14s. The vehicle mass and area are not dispersed, nor are
gravitational parameters.

Importantly, the predictor does not operate on the true state of the spacecraft. Noisy mea-
surements from an inertial measurement unit (IMU) are modeled and fed into a navigation filter,
and the predictor operates on these filtered state estimates. The navigation filter uses the same

dynamics model as the predictor, Eq. (7.1).

2.3 Numerical Predictor-Corrector Guidance

NPC guidance is treated as the baseline solution in this work due to both its state-of-the-art
targeting performance and its previous application as part of the JPL SmallSat aerocapture project

[85, 38, |]. The implementation discussed here is similar to that presented in [*7], but with a



more computationally-efficient correction method. The algorithm is summarized by Fig.

outlined in detail in this section; performance results are given in Sec.
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True

IMU measurements are used to generate an estimate of sensed acceleration (or g-load), g,

and when this exceeds some threshold value g; the guidance routine is initiated. In the subsequent

step, nominal density at the navigation-estimated altitude is used with the navigation-estimated

state to compute an estimate of the dynamic pressure:

1
Gest = ipnom (T)U2
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where the estimated dynamic pressure is used to obtain an estimate of the drag coefficient via
interpolation of stored data of Cp vs. ¢. Next, the density is estimated from a re-arranged
expression for acceleration due to aerodynamic drag (which equals g since the vehicle is assumed

to have no lift):

mig B1g
Pest A10D,1u2 u2 ( )

where my, Ay, Cp 1, and B are the pre-jettison values of those variables. The density estimate is

used to compute the i*" density scale factor Fj:

Ey = pest(ti)/ pnom (r(t:)) (2.5)
This value is then filtered via a low-pass filter:
Fi=(1-k)Fi1 +kE (2.6)

As the gain k is decreased, this filter will increasingly reject small disturbances. Sensible values of
k depend on the frequency of density scale factor measurement updates. Alternatively, the density

scale factor could also be filtered with a moving average filter, detailed below:
_ 1 <
Fp=— Z F, (2.7)
=1
where n is a memory parameter, and again the chosen value of n should be tuned based on the
density scale factor update frequency. In this work, the low-pass filter is implemented with k£ = 0.05

for a guidance update rate of 8 Hz. The nominal density profile is then re-scaled by F; for all

subsequent numerical propagations within that guidance call, as follows:

Ppred (r) = Fipnom (r) (2.8)

This form of density re-scaling significantly improves targeting results compared to ignoring at-
mospheric estimation altogether [*], but is limited to linearly shifting the entire profile and thus
fails to capture the more complex atmospheric perturbations that occur in reality. Other methods,
such as exponentially correlating the scale factor, ensemble correlation filtering [~~], machine learn-
ing [*0, ©7], or modeling density as a Gaussian random field [!?*] may improve the atmospheric

estimation component of NPC guidance.
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Once the density scale factor is computed, the navigation-estimated state is numerically
propagated until the altitude of the spacecraft either exceeds the atmospheric interface altitude or
decreases below some minimum. This prediction uses the jettison time computed by the previous
guidance call or, in the case of the first guidance call, a pre-defined initial guess, set to 700s in
this case. The radius of apoapsis is then computed from the final state using Keplerian relations,
and error is computed as the difference between the predicted and desired apoapsis radii. In the
case of an escape trajectory, apoapsis radius is poorly-defined and the error is set equal to positive
infinity. In the case of an impact trajectory, in which the spacecraft reaches the surface instead
of exiting the atmosphere, the Keplerian apoapsis is computed from the final state as normal; the
value will badly undershoot the target and thus the guidance algorithm behaves as expected. As
an aside, note that for certain, more extreme mission scenarios an edge case is possible in which the
vehicle reaches the minimum altitude bound while still hyperbolic in terms of orbital energy, and
care should be taken to correctly categorize these cases as undershoots, despite their hyperbolic
Keplerian state.

The error magnitude is then compared against two tolerance values, €; and e, where €1 >
€2. The purpose of the dual tolerances is to direct the algorithm to an appropriate root-finding
subroutine for the correction step. If the error exceeds both tolerances, bisection method is selected;
if the error is between the two tolerance values, Newton’s method is selected; finally, if the error
is below both tolerances, no updates to jettison time are required and the algorithm skips the
correction step entirely. In this work, tolerances were defined as e; = 500km and ez = 25km,
selected based on a trial-and-error process in order to achieve a good balance between accuracy
and speed. These tolerances would need adjustment for a significantly different apoapsis target or
central body.

The bisection method subroutine begins with lower and upper bounds on the optimal jettison
time, selected a priori without any dependence on the solution from the previous guidance call.
These values should span the duration of the longest atmosphere pass that is expected based

on dispersions and are strongly scenario-dependent. For this work, bounds of 600 and 900s are
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selected, noting that t = 0 is defined as 10 minutes prior to atmospheric entry. The jettison time
is then set equal to the midpoint of these bounds, and the predictor numerically propagates to the
final state and computes an apoapsis error. If the magnitude of this error is below the tolerance €,
the algorithm exits the bisection subroutine with a converged solution. Otherwise, the bounds on
jettison time are updated based on the sign of the error. In an overshoot case with positive error,
the upper bound is set equal to the current value of the jettison time; in the undershoot case, the
lower bound is similarly updated. The subroutine then repeats, using the updated midpoint as
the new jettison time, and continues until either the error magnitude is below the tolerance €; or
a maximum number of iterations is reached. The subroutine also includes logic to recognize cases
in which the jettison time converges against the original upper or lower bound. This can occur
in cases where, due to dispersions, the target state is unreachable and the best-case scenario is to
jettison as early or as late as possible.

Newton’s method begins by perturbing an initial guess for the jettison time by some pre-
determined amount; in this work, a perturbation of §t; = 0.5s is used and the initial guess is
set to 700s. For numerical consistency, the perturbation should be a multiple of the time step
used by the predictor for fixed-time step integration. The apoapsis radius corresponding to this
perturbed jettison time is then numerically predicted; note that this propagation is not explicitly
represented in Fig. . The derivative of the objective function, in this case the slope of apoapsis
radius as a function of jettison time r/(¢;), is then approximated via first-order finite differencing
as shown in Eq. (7.9). The updated jettison time is then computed via Eq. (7. 10), which finds
the z-intercept of the tangent line. The apoapsis radius resulting from the updated jettison time
tji+1 is numerically predicted, and the error is computed and checked against the tolerance e3. For
a sufficiently accurate linearization and a nonzero slope of 74(t;), the error should decrease each

step. The subroutine repeats until either converging within the tolerance €5 or reaching a maximum
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number of iterations.

v (t) & o (2.9)
J
ra(t;)

Lt = tii = tj) (2.10)

The advantage of combining these two root-finding methods in a single guidance algorithm
is that bisection method is robust but relatively slow, whereas Newton’s method tends to converge
more efficiently but requires a sufficiently-accurate initial guess. In particular, for a more typical
aerocapture scenario in which the initial orbit is hyperbolic, escape cases that are still hyperbolic
after exiting the atmosphere can be frequently encountered and may exist near the optimal solution
for a high-energy target orbit. In these cases apoapsis radius is poorly-defined and the elliptical
Keplerian equations would yield a negative value. Because the error no longer varies smoothly,
the gradient is poorly-behaved and Newton’s method fails to accurately converge to the solution.
Bisection method, on the other hand, can handle errors of 400 and thus behaves as desired when
escape cases are simply assigned an error of co. Once converged to a solution, however, the optimal
jettison time (as predicted based on the navigation-estimated states) tends to require only small
corrections in subsequent guidance calls. Because the initial guess is good, Newton’s method
can more efficiently compute these minor adjustments as long as the perturbation step is tuned
appropriately. Note that a possible alternative implementation of the NPC would, during a single
guidance update, call the Newton’s method subroutine after the bisection method reduces the
error to be between the two tolerance values. However, bisection method is typically only used
in either edge cases where the solution is unreachable or at times far from the optimal jettison
time, and therefore this modification would add computational expense with a negligible impact
on performance.

The output of this prediction-correction loop is a jettison time ¢;. In Fig. the logic
to command jettison once this time is reached or exceeded is portrayed as part of the guidance
algorithm. However, note that this command is not necessarily limited to the update frequency of

the guidance algorithm. Instead, t; can be output by the guidance and a separate jettison controller
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can check the current time and command drag skirt jettison when ¢; is reached. This controller
is simple and can run at a higher rate than the guidance algorithm, enabling higher-resolution
commanding of jettison and a corresponding improvement in targeting accuracy. Finally, the
“guidance called” delay block in Fig. reflects the fact that this process is called at a fixed rate
rather than constantly iterating.

A significant drawback of the NPC guidance algorithm is that the number of iterations
required to converge is indeterminate. That is, while an upper limit on the number of iterations
can be enforced, there is no guarantee on the resulting error magnitude once this limit is reached.
Each guidance call requires a minimum of one numerical propagation, used to determine whether or
not the current ¢; results in apoapsis error within the tolerances. The bisection subroutine requires
one additional propagation per iteration, and Newton’s method, while more efficient, requires two
propagations per iteration (one perturbed, one corrected). The end result is that the NPC is not
only computationally expensive due to the requirement of onboard propagation, but the number of
operations required for convergence is in general unknown. In practice the number of propagations
required for convergence can be approximately bounded through analysis with expected dispersions,
as shown in Sec. , but the lack of a theoretical guarantee can make validation of the NPC

approach difficult.

2.4 Energy Reference Guidance

The energy reference guidance (ERG) algorithm proposed in this work? seeks to achieve
comparable performance to the NPC while reducing computational requirements. The algorithm
is summarized in Fig. and outlined in detail in this section, with results provided in Sec.
ERG is divided into two phases: a pre-compute phase that is executed after the final OD update
to the spacecraft is received, and an algorithm that is executed each time guidance is called during
the atmospheric flight phase.

During the pre-compute phase, a smoothly-varying family of reference trajectories is gener-

2 ERG is equivalent to the simplified form of the QIC algorithm proposed in [1:39].
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Figure 2.4: Energy Reference Guidance Diagram

ated and stored for later use. The ith reference trajectory is computed by linearly re-scaling the
nominal density profile by some factor K;, then solving for the optimal jettison time ¢;; through an
iterative prediction-correction procedure. This jettison time optimization is equivalent to the New-
ton’s method subroutine from the NPC algorithm, and similarly relies on numerical propagation

from the navigation-estimated states. Figure shows an example set of reference trajectories,
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Figure 2.5: Orbital energy vs. time for family of reference trajectories, where X marks optimal
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where the trajectories with earlier optimal jettison times correspond to denser atmospheres (larger
K; values).

In this work a range of K; € [0.8,1.2] is used based on trial and error; this range depends
on the expected dispersions, atmospheric and otherwise, and is pre-defined on the ground. The
smallest and largest K; values correspond to the worst-expected overshoot and undershoot cases,
respectively, based on both expected dispersions (aleatory uncertainty) and a potential lack of data
at other planetary destinations (epistimic uncertainty), and can be conservative. The tradeoff for
conservatism in these values is an incremental increase in memory and CPU requirements, but this
has marginal effect on the CPU demand during the atmospheric flight phase. The number of K;
values, N, and the resolution at which reference trajectory data are saved are treated as tuning
parameters and discussed in Sec. . It is important to note that this method of linearly re-scaling
density is not meant to be a good model of how density dispersions behave in real atmospheres,
in which dispersions vary with position and time. Additionally, note that it would be possible
to implement ERG with other methods of modifying density to generate a family of reference
trajectories, such as varying atmospheric scale height of an exponential model. In Subsection
ERG is tested against the higher-fidelity density dispersions provided by GRAM as described in
Subsection

During the atmospheric flight phase, guidance is called periodically and is active while sensed
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deceleration is above a threshold value, just like in the NPC guidance. Once a guidance call is
initiated, the algorithm determines the reference trajectory that most closely matches the vehicle

trajectory at the current time. This is accomplished via a heuristic distance parameter d:
9 AN
di=ci(€— &)+ (€-6) (2.11)
where ¢ and f are the energy and energy rate computed from the current navigation-estimated

state, respectively, & and & are the energy and energy rate along the ith reference trajectory at

the current time, and c¢; and ¢y are tuning parameters. Energy is specific orbital energy,

7? n
= — - — 2.12
$ 2 |r|’ ( )

and energy rate is computed by differencing the current energy with the energy computed from a
prior state estimate. The values along the reference trajectory are approximated for the current
time by using the values at the time step immediately prior to the current time. See Sec.

for a discussion of why this method is chosen as opposed to interpolation, and for a discussion of
the values of ¢; and c¢o. The motivation for this choice of distance parameter is that the target
orbit is associated with a particular energy value and, since the vehicle lacks any out-of-plane
control authority, the guidance objective can be posed as an energy-targeting problem without loss
of generality. The current energy of a trajectory gives information about the remaining energy
that must be dissipated, and the current energy rate of that trajectory gives information about
whether the vehicle is on track to reach the desired energy upon atmospheric exit as compared to
pre-optimized reference trajectories.

Once d; is computed for each reference trajectory, the reference with the smallest distance
parameter is selected as the nearest match. Then, the algorithm simply updates the jettison time
tj to equal the jettison time that was computed for that nearest reference trajectory, ¢;;. Like NPC
guidance, the algorithm outputs a jettison time that is monitored by a jettison controller that is
potentially running at a higher rate.

It should be noted that a family of guidance algorithms for aerocapture and entry relying

on profiles of energy along a reference trajectory already exist in the literature. Energy controller
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guidance was considered for the aeroassist flight experiment in the 1980’s and later studied for the
Mars sample return orbiter [/, |. In this algorithm, targeted final energy is used to analytically
compute a reference energy profile, assuming an exponential atmosphere and constant aerodynamic
coefficients. This reference energy is analytically converted into a reference bank angle profile which
is then tracked using a second-order controller. ERG shares with this algorithm the basic concept
of defining energy and energy rate along a reference trajectory optimized to reach the target final
apoapsis. A key difference, however, is that ERG generates a dispersed family of these trajectories,
chooses from among them based on current energy and energy rate, then flies that reference control
in open loop, as opposed to analytically computing and tracking a single reference.

To summarize, in ERG a family of optimized reference trajectories is generated during a pre-
compute step. Then, during atmospheric flight updates, the nearest reference is selected based on a
heuristic distance parameter and the commanded jettison time is updated to equal the jettison time
associated with that reference. ERG has a number of things in common with the NPC guidance
algorithm. Namely, both algorithms rely on onboard numerical propagation from a navigation-
estimated state, and both solve for optimal jettison time in a root-finding procedure that requires
an indeterminate number of iterations to converge. The key difference, however, is that in ERG the
numerical propagations occur in a pre-compute phase that occurs before atmospheric entry, and is
thus significantly less time-constrained. That is, whereas the NPC requires the prediction-correction
procedure to converge during a single guidance call (0.125s in this case), ERG only requires that
the procedure converge for each reference in the time between OD cutoff and atmospheric entry.
In fact, if the link budget and timing of the mission design allow, the pre-compute step could be
performed on the ground and the relevant data could be uplinked along with the final OD update.
Moreover, OD cutoff could be shifted earlier if necessary to allow a longer time for the pre-compute
phase. An earlier OD cutoff does result in higher navigation error at entry, though, so this creates
a tradeoff between accuracy and onboard computation requirements.

Quantitatively comparing the computational demand of these two algorithms would require

hardware-in-the-loop simulation of a flight software-like implementation of each algorithm, which
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is beyond the scope of this study. While logged CPU time on a research computer is sometimes
used as a basis of comparison in the literature, this approach can result in misleading data. The
implementations of these two algorithms are developed as proofs-of-concept, not designed to emulate
a flight software implementation and optimized for efficiency; additionally, other processes can
draw from the same computing resource and affect the CPU time required. Nevertheless, the
ERG algorithm has two clear advantages over the NPC in terms of CPU demand. During the
atmospheric flight phase of ERG, no numerical propagation or iterative root-finding is required;
the algorithm simply evaluates a mathematical expression for the distance parameter associated
with each reference trajectory, then selects the minimum from among these values. It is clear
that, when the algorithms are tuned for comparable performance, ERG requires significantly fewer
computer operations per guidance call than the NPC and is less demanding of CPU capacity as
a result. A second important feature of the ERG algorithm is that it is computationally well-
posed, in that the number of individual operations required per guidance call can be predicted
exactly. In contrast, the NPC requires an indeterminate number of numerical propagations to
reach a given convergence tolerance as part of its root-finding procedure during each guidance call.
Reduced algorithmic complexity and an ability to closely theoretically constrain CPU demand are
significant advantages of the ERG over the NPC when it comes to verification and validation of
flight software, especially in the case of radiation-hardened avionics with limited capacity.
Although ERG is less demanding of CPU capability, this is traded-off by a higher memory
requirement compared to NPC. The time, energy, and energy rate at each point along each reference
trajectory must be stored in memory and remain accessible to the guidance algorithm. Thus, the
total memory required is a product of the number of reference trajectories, the number of datapoints
per trajectory, and the memory required per value (e.g. 64 bits for double-precision numbers).
In the following section, the relationship between targeting performance and required memory is

quantitatively explored.
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2.5 Results

2.5.1 NPC Performance

Figure shows the histogram of apoapsis altitudes achieved using the NPC guidance in a
5001-trial Monte Carlo analysis, modeling the scenario and uncertainties as described in Sec.
The mean and standard deviation apoapsis altitude achieved by NPC are 5057 km and 357 km,
respectively; recall that the target is 5000 km. The data are approximately Gaussian, with the
exception of a small right skew due to a small number of high-apoapsis outliers. Note that one cause
of these outliers is that the dispersions assumed in this work sometimes exceed the total control
authority of the vehicle. For example, in cases where the atmospheric density is below nominal and
simultaneously navigation errors result in delivery with a shallower entry flight-path angle than

desired, the vehicle may overshoot the target orbit even if the drag skirt is never jettisoned.
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Figure 2.6: Targeting results for NPC, 5001-trial Monte Carlo analysis

In order to roughly assess the computational demand of the NPC algorithm, the number
of propagations required per guidance call is counted and the maximum of this value is recorded

for each trial; denote this maximum p, . for convenience. In 88% of cases p,,, = 7, and in all
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but 2 of the 5001 trials p,,, < 7; the maximum observed value was 11. Because the NPC lacks
guarantees on the number of iterations required for convergence, this type of numerical analysis
would be required to bound the required computational capacity. The statistics of p,,,, are affected
by the incoming trajectory, target orbit, assumed dispersions, tuning of the guidance algorithm,

and a number of other implementation details.

2.5.2 Baseline ERG Performance

The targeting performance for ERG under the same circumstances is shown in Fig. ,
where N = 17 reference trajectories are generated. In this case the mean and standard deviation
apoapsis altitude are 5009 km and 355 km, respectively, as summarized in Table 2.2. Statistically
speaking, these targeting results are approximately equivalent; the ERG algorithm achieves tar-
geting performance almost identical to that of the baseline NPC algorithm. Though the mean
apoapsis altitude of the ERG has lower error than that of the NPC, this difference is insignificant
in the context of a 5000 km target apoapsis and standard deviation of more than 350 km. This is

remarkably good performance considering that ERG can only choose from a set of 17 options for

jettison time, whereas the NPC guidance refines jettison time to within a small tolerance.

Table 2.2: Apoapsis altitude statistics for baseline NPC and ERG

Algorithm | Mean, km | o, km
NPC 5057 357
ERG 5009 355
Figures and provide a comparison that gives some insight into how ERG is able to

accurately target a final orbit. In both cases a single jettison time is chosen before atmospheric
entry and used in every trial. In Fig. , tj is optimized a priori based on the nominal scenario,
whereas in Fig. t; is optimized using simulations beginning from the navigation-estimated state
after OD cutoff 10 minutes prior to entry. Put differently, the former case is open-loop control and
the latter case is equivalent to ERG with only a single reference trajectory.

In the open-loop case shown in Fig. , targeting performance is very poor. A significant
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Figure 2.7: Targeting results for ERG, 5001-trial Monte Carlo analysis
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Figure 2.8: Targeting results for fixed-time jettison

number of cases either impact the planet or have apoapsis altitudes so low that the vehicle is

doomed to re-enter before having a chance to maneuver, with 13.3% of cases reaching an apoapsis
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below 200 km. There is also a high number of overshoot cases and a wide spread to the data. The
case in Fig. , shown with the same x-axis scaling, stands in sharp contrast. With a standard
deviation of 971 km it is significantly worse than the case with 17 reference trajectories shown in
Fig. , but performs far better than the case in Fig. , avoiding any impact cases or any
apoapsis altitudes above 8000 km.

This comparison serves to illustrate the following point. The state of the vehicle at atmo-
spheric entry is subject to two distinct types of dispersions: delivery error and navigation error. The
former is the difference between the pre-planned nominal entry state and true state, whereas the
latter is the difference between the onboard best-estimate of the state, based on filtered navigation
data, and the true state. Under the assumptions for this mission scenario, delivery error generally
exceeds navigation error; that is, the spacecraft is delivered to entry with limited accuracy, but
navigation filters produce a fairly accurate state estimate by the time of OD cutoff. The results
in Fig. use a jettison time based on the nominal entry state and are thus subject to both
delivery and navigation errors. The Fig. results, in contrast, use a jettison time based on
the navigated state at OD cutoff, which effectively removes most of the delivery error. Therefore,
it is clear that much of the benefit from the ERG algorithm is simply a result of re-computing a
reference trajectory (in this case, a jettison time) onboard the spacecraft using an updated state

estimate.

2.5.3 ERG Tuning

Recall that the ERG algorithm can be tuned by adjusting the values of ¢; and c2 in the
distance parameter, Eq. ( ). A parametric study was carried out to find values of these pa-
rameters that offer reasonable performance, with results shown in Table 2 3. In order to eliminate
other factors, these cases used 401 reference trajectories with 8000 datapoints per trajectory. A
tuning of ¢; = 1,¢co = 10 is selected based on its minimum standard deviation result, and is used
for all following results as well as for the baseline case in Fig. . It is interesting to note that

the minimum-variance case occurs when ¢ and ¢y are of similar magnitude, and that when either



44

Table 2.3: Apoapsis altitude statistics for varying distance parameter tuning

c1 Co Mean, km | o, km
1 0 6034 601
100 | 1 5036 389
10 |1 5033 382
1 1 5027 361
1 10 5019 338
1 100 | 5022 340
1 1000 | 5053 416
0 1 5121 578

parameter is set to zero performance degrades significantly. This highlights the fact that energy

and energy rate are both necessary for the best match with a reference trajectory.

2.5.4 Memory vs. Performance Trade-Offs

Although the ERG algorithm is significantly less demanding of CPU capability, it is signif-
icantly more demanding of memory space accessible to the guidance algorithm. It is therefore
of interest to quantify trade-offs between memory and performance for the ERG algorithm. The
storage required is estimated as the product 3 x N x M x D where N is the number of reference
trajectories, M is the number of datapoints per reference trajectory, and D is the required memory
per datapoint, and where 3 is pre-multiplied because each reference trajectory requires storing time,
energy, and energy rate at each datapoint.

In Figure 2.9, the number of reference trajectories is varied from 1 to 401 and the apoapsis
altitude results are compared, with a 1001-trial Monte Carlo analysis performed in each case.
M = 8000 datapoints are recorded for each reference trajectory. The mean and standard deviation
of apoapsis altitude for these same trials are listed in Table . From these results, it is clear
that increasing the number of reference trajectories above 81 makes no discernable difference in
performance. From 81 to 17 there is a small increase in standard deviation, then from 17 to 9 a
larger increase in variability and the first noticeable change in the histogram. For fewer than 9

reference trajectories, performance significantly degrades. Note that the mean remains centered for
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all cases, as overshoot and undershoot cases increase at approximately the same rate as the number
of reference trajectories is decreased. Based on this analysis, a reasonable balance between memory
and performance seems to be N = 17 reference trajectories. Note that this inflection point may
change for differing mission scenarios.

A similar analysis is presented in Fig. and Table 2.5, where in this case the number
of datapoints per trajectory is varied from 8000 to 500 while holding the number of reference
trajectories constant at 81. Note that the numerical propagation always occurs with a timestep of
0.125s, meaning that for M = 4000 a datapoint is recorded every other step, for M = 2000 every

4 steps, etc., assuming propagation for 1000s total.
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Figure 2.9: Performance comparison for varying number of reference trajectories, 1001-trial Monte
Carlo analysis

Whereas the data in Fig. remain centered while the spread increases, in this case there
is a shift to the right combined with an increased spread each time that M is decreased. That is,
recording fewer datapoints results in a bias toward overshoot cases as well as increasing variability.
Moreover, in these results targeting performance begins to degrade immediately, without a clear

inflection point.
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Table 2.4: Apoapsis altitude statistics for varying number of reference trajectories

N Mean, km | o, km
401 | 5019 338
81 5020 338
17 5010 361
9 5008 415
5 5036 511
3 5210 914
1 5026 971
160 T
M:
140 500
120 1000
2000
2 100 4000
g 8000
)
&80
)
(@]
S 60
40
20
0 | =

4000 5000 6000 7000 8000
apoapsis altitude, km

Figure 2.10: Performance comparison for varying reference trajectory resolution, 1001-trial Monte
Carlo analysis

Table 2.5: Apoapsis altitude statistics for varying number of datapoints per reference trajectory

M Mean, km | o, km
8000 | 5020 338
4000 | 5076 345
2000 | 5190 365
1000 | 5425 433
500 | 5912 588

To understand these trends, recall that during the atmospheric flight phase the reference

energy and energy rate values are approximated by using data from the time step immediately
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prior to the current time. Thus, for a resolution of 500 datapoints, the values used to compute the
distance parameters are associated with a point on the trajectory up to two seconds earlier than
the current time. This effectively inflates the energy of every reference point, and the result is that
the matched trajectory has a higher density scale factor than it otherwise would, leading to an
earlier jettison time and ultimately the skew toward overshoot cases observed in Fig. . It may
seem as though using interpolation to compute energy and energy rate of the reference trajectory
at the current time would address this issue. However, energy rate changes as a step function at the
moment of drag skirt jettison. In short, interpolating across this discontinuity disrupts the ability of
the algorithm to successfully match with the reference trajectory that would actually yield optimal
performance. Therefore, in this work values from the previous time are used and the requirement
for high-resolution reference trajectory data is accepted; a value of M = 8000 is taken to be the
baseline configuration shown in Fig. . As a point of reference, if double-precision values of 64
bits each are assumed for this baseline configuration, a total of about 3.3 MB of memory would be
required. In comparison, the Sphinx avionics platform, which was developed at JPL for SmallSat
missions and now has flight heritage from the Lunar Flashlight spacecraft [| | ], includes 256 MB of
synchronous dynamic RAM [! /7] This suggests that the 3.3 MB requirement is well within reason.
Thus, while the tradeoff of reduced CPU demand for the ERG is increased memory requirement,

this increase is not likely to represent a significant detriment to the overall design.

2.6 Discussion

A notable limitation of both algorithms presented in this work is that path constraints, such
as peak heat flux and peak g-load, are not incorporated into the onboard logic. While other work
does provide a method to account for these constraints in NPC guidance for aerocapture and entry
[65, ], there is currently no equivalent approach for ERG. The impact of this limitation strongly
depends on the mission scenario of interest. For the small satellite demonstration mission studied
here, the vehicle design is expected to have significant margin compared to the expected heating

and g-loads, and thus it is likely unnecessary for the onboard guidance to directly incorporate the
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associated constraints. In more stressing cases for which the nominal scenario is near the limits
of heating and g-loads, an additional outer loop could be added to the ERG algorithm to prohibit
executing jettison times that are predicted to have an unacceptably high likelihood of resulting in
path constraint violation.

The most likely barriers to implementation of this algorithm are the computation time re-
quired to generate the reference trajectories and the memory required to store the associated data.
Therefore, it would be of interest to extend the approach presented in this work to achieve the same
performance with fewer reference trajectories, or else improve performance with the same number.

A potential approach would be to interpolate between the reference trajectories in some
way, such that the commanded jettison time does not necessarily equal one of the reference jettison
times. Because the current vehicle state will generally not equal the state at that time along even the
nearest reference trajectory, the difference between the current and reference state could inform a
correction to the jettison time of that reference trajectory. One could accomplish this by computing
linear sensitivities of jettison time with respect to each relevant state component, then computing
the correction term as the product of this sensitivity and the state difference. The altitude, velocity
magnitude, and flight-path angle could be considered a sufficient set of state components since the
primary concern is planar motion. However, there are two significant issues with that approach.
First, this would require computing and storing sensitivity values at each time along each reference
trajectory, resulting in a major increase in CPU demand and, assuming three state sensitivities,
doubling the amount of memory required. Second, even setting aside the computational challenges,
the dynamics are nonlinear and the true state tends to diverge significantly from any of the reference
trajectories over time, leading to inaccurate linearization.

One possible workaround is the incorporation of quasi-initial conditions. These fully represent
the current state by back-propagating through a nominal model, effectively defining a nonlinear
coordinate transformation. Quasi-initial conditions have been shown to be a more linear state
representation than the state at a given time for aerocapture [I11]. This state representation

also removes the requirement of computing sensitivities at each time, since they need only be
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computed once in quasi-initial condition space, although a single back-propagation per guidance
call is then required during atmospheric flight. Preliminary work by the authors incorporates
quasi-initial conditions into an extension of the ERG algorithm presented here [/ 79]. While early
results are promising, it is difficult to guarantee reliable and accurate linearization in the presence
of dispersions, whereas the simpler approach presented here performs well. Furthermore, note that
while the computational burden of the quasi-initial condition approach is far less than a linearization
based on the current state, it does still require numerically computing three sensitivity values for
each reference trajectory, meaning that the number of numerical propagations during the pre-
compute phase increases by roughly a factor of four.

Another interesting avenue for future work is some method of nonlinear corrections to the
reference jettison time. This could be combined with the previous concept, such that some nonlinear
interpolation surface is generated in quasi-initial condition space during the pre-compute step and
then used to guide corrections during the atmospheric flight phase. This could potentially alleviate
issues related to inaccurate linearization, although it would likely require a commensurate increase

in computational cost.

2.7 Conclusions

It is worth returning here to the single-event jettison concept itself. This control architecture
inherently sacrifices performance in pursuit of simplicity. By relying on the jettison of a single
rigid drag skirt, the vehicle lacks any out-of-plane control authority, forgoes continuous control
and, perhaps most importantly, is coasting without any control authority for the remainder of
atmospheric flight once the drag skirt is jettisoned. A range of other approaches address one
or more of these shortcomings, including continuously-variable drag modulation [! 7], jettison of
multiple drag skirts [! 9], and lift modulation [ 17, [ 10]. However, each of these architectures adds
complexity in terms of flight hardware and, in most cases, flight software. The motivation to use
single-event jettison drag-modulation is not to achieve orbit insertion as accurately as possible;

rather, the goal is to reliably reach the target orbit within some reasonable error bounds while
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keeping the aerocapture subsystem as simple as possible. This is appropriate either for missions
that can tolerate a range of apoapsis altitudes or for cases where the spacecraft has sufficient
propellant to clean up the expected targeting errors.

This broader motivation should inform the choice of guidance algorithm and the interpre-
tation of results. In this work a guidance algorithm, ERG, is presented that achieves equivalent
targeting performance to the baseline NPC. Both algorithms have a standard deviation of about
355km and in some outlier cases reach an apoapsis several thousand kilometers higher than the
target. However, the choice of an inherently limited control architecture limits the ability of any
guidance algorithm to accurately target a final orbit. The fact that the two distinct algorithms
achieve nearly-identical results could suggest that both are operating near the ceiling of perfor-
mance for this scenario. The ERG algorithm achieves this result with significantly reduced CPU
demand, albeit with an increased demand for accessible memory. The simplicity of the atmospheric
flight phase of the ERG algorithm aligns well with the broader motivation to reduce complexity for

this type of mission scenario.



Chapter 3

Onboard Modeling of Uncertain Atmospheres

3.1 Introduction

Hypersonic flight mechanics are characterized by nonlinear dynamics and high sensitivity to
variations in atmospheric density. Furthermore, the behavior of planetary atmospheres is complex
and difficult to predict. Appropriate modeling of density is thus key to the analysis of hyper-
sonic trajectories, including in the context of onboard modeling for closed-loop guidance schemes.
Autonomous guidance algorithms typically treat density as a known function of altitude, either
in analytical form as an exponential function of altitude or by interpolating from a table [!17].
In-flight measurements of sensed acceleration can be converted to estimates of current density
(though this approach does treat aerodynamic properties as known), and these observations are
then incorporated by multiplying the nominal profile by the ratio of observed density to expected
density [*/, ©7]. Recent work contributes more sophisticated methods of incorporating in-flight
observations, such as machine learning or an ensemble correlation filter [<0, =7, “~]. However, these
methods ultimately treat the density as known and update a nominal profile.

Recent and ongoing works propose stochastic approaches to closed-loop guidance with the
aim of being robust to uncertainties without taking an overly-conservative approach [0, 7], and
central to these methods is an onboard prediction of state and environmental uncertainty. Several
non-Monte Carlo uncertainty quantification (UQ) techniques, including polynomial chaos expansion
and linear covariance analysis [~ , |, potentially enable onboard uncertainty propagation for

hypersonic flight vehicles. However, these methods generally require a parametric, low-dimensional
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representation of uncertainty [+, |. Recent studies have explicitly incorporated a probabilistic
atmosphere model into UQ approaches [150, 92, 02]; however, these approaches typically assume
an exponential form for density and incorporate uncertainty by dispersing the atmospheric scale
height and surface density, a method that always results in an exponential profile. The assumption
of exponential density significantly limits the ability of the model to capture more complex pertur-
bations due to its inability to capture short-period perturbations or other deviations of the density
profile from the idealized exponential shape [!~]. Semi-empirical models such as the Global Refer-
ence Atmospheric Models (GRAMs) from NASA provide much higher-fidelity representations of the
atmosphere and its response to external factors, such as solar weather [ 1], but lack a convenient
low-dimensional and parametric form. Estimating uncertainty using these models typically requires
generating a large number of density profiles then computing statistics of the generated dataset,
rather than estimating variability directly. Thus, GRAMs and similar models are not feasible for
onboard uncertainty propagation purposes.

This motivates the development of a reduced-dimensionality model that retains the higher-
fidelity properties of models like GRAM, and a method for in-flight updates to this model. Previous
work treats density as a Gaussian random field with altitude the sole independent variable, and
demonstrates a Karhunen-Loeve expansion (KLE) for density [!7]. Reference [/ 0] shows that
linear covariance analysis incorporating this model closely matches Monte Carlo results. This
study expands on these results in the following ways. Practical implementation of the KLE is
explored in greater detail, examining alternative methods of constructing the expansion. The KLE
models are also compared against variational autoencoder (VAE) models, which use deep neural
networks to achieve nonlinear dimensionality reduction as compared to the linear dimensionality
reduction attained by KLE models, and which enable representing non-Gaussian random processes.
A VAE is a generative model in that it learns and generates samples from the joint probability
density function of the data. The efficiency of each approach in capturing density variability is
compared both directly and through statistics of dispersed trajectories generated in Monte Carlo

analyses using each model. The aim of this work is not to claim that either the KLE or VAE
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modeling approach is better for this application; rather, this study provides a proof of concept
for each model type and discusses the benefits and drawbacks of each. New work outlining and
demonstrating an expansion on the KLLE model to treat density as a function of multiple variables
(e.g. altitude, latitude, and longitude) is presented and its comparative utility is discussed. Finally,
an approach to updating the KLE based on sequential noisy density measurements is presented

and demonstrated, and the potential for onboard execution of this method is discussed.

3.2 Preliminaries

3.2.1 Review of Karhunen—Loéve expansion

A random field is a function that maps a random outcome to a continuous function across
a (possibly multi-dimensional) domain in space. Somewhat more formally: for some measurable
space (£, F) of sample space €2 and o-field F of subsets of 2, a random field {®(z) : z € Z C R%} is
a collection of random variables (X),cz with values that map Q — R [I77]. A Gaussian random
field (GRF) ¥(z) is a random field for which any finite linear combination of the random variables
X, results in a Gaussian random variable; that is, at any point z; in the domain Z the probability
density function of the value of the field ¥(z;) is Gaussian [/ 7]. A GRF is fully characterized by

its mean function p and covariance function X,

%21, 22) = ((W(z1) = (W(20)))(¥(22) = (U(22)))), (3.2)

where () is the expectation operator.

A Karhunen-Loeve (also known as Kosambi-Karhunen-Loéve) expansion represents a random
field through an infinite linear combination of orthogonal basis functions (a Fourier expansion), in
such a way that, when truncated to a fixed number of terms, the choice of the basis functions
minimizes the mean-square error [17/, ]. This definition is shown by Eq. (7.7) where ® is the
random field, z is the independent variable, and \; and ¢;(z) are the eigenvalues and eigenfunctions

of the covariance function of the random field 3(z1, z2), respectively, as shown in Eq. (7. 1). Finally,
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each Y; is a random variable described by Eq. (7.7):

O(2) = (2(2)) + >V Nidhi(2)V5; (3.3)
=1

T
/0 E(Zl, ZQ)QSi(ZQ)dZQ == )\iqbi(zl); (34)

1 T
Y=o /0 B(2)i(2)dz. (3.5)

In practice, the eigenvalues and eigenfunctions are sorted by descending magnitude of the eigenval-
ues and then the sum in Eq. (7.7) is truncated after some dx number of sufficient terms. Determin-
ing the required dg is problem-dependent, but in general it is chosen such that the mean-square
norm of the approximation is within some relative error of the exact mean-square norm. Eq. (7.0)
gives one heuristic method, where k is some sufficiently large number and « is close to 1 based on
the desired level of permissible error (for a relative mean-square norm error of (1 — ) x 100%).
dK:min{j:gzlAiZQ} (3.6)
D ANPY
In the case where ®(z) is a GRF U(z), the Y;’s are all independent and identically distributed

(i.i.d.) standard normal random variables:
Y1,Ys, ... ~N(0,1) iid. (3.7)

Often the probability density function of a random field is not known exactly, but some sufficiently

large dataset is available. In this case the sample covariance matrix is computed,

1

— 1FFT, (3.8)

Crz7~Qzz=

where Qzz is the unbiased estimate of the sample covariance matrix Czz, F € R™ ™ is a matrix
such that each column is an observation vector less the sample mean, n is the number of datapoints
per observation vector, and m is the number of observation vectors in the dataset. Having computed
a covariance matrix, it is straightforward to find the eigenvalues and eigenvectors of that matrix

and sort them according to descending order of the eigenvalues, and the results are the {);} and
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{¢;} in Eq. (7.7), respectively, where each ¢; is now a vector rather than a function. The discrete

KLE form of a GRF ¥ € R" is thus summarized below:

di
T~ (O) 4+ VA, (3.9)
=1

Yi, ..., Yy ~ N(0,1) i.id.

3.2.2 Review of Variational Autoencoder

An autoencoder is a type of latent variable model that provides a method of nonlinear dimen-
sionality reduction, consisting of an encoder and a decoder connected sequentially. The encoder
takes the input data and, through one or more neural network layers, converts the data into a lower
dimensional encoding vector — i.e., set of latent variables — representing some learned features of the
data. The decoder, through a symmetric set of neural network layers, then attempts to reconstruct
the original input from the latent variables. By forcing the input data through a bottleneck, the
autoencoder learns a latent space that can be used for compressed representation of the data. The
use of deep neural networks for the encoder and decoder enables the autoencoder to take advantage
of nonlinear relationships in the input data. In fact, it can be shown that a linear autoencoder
(one which lacks nonlinear activation functions in the neural networks) will learn the same latent
space as a KLE applied to discrete data, commonly known as principal component analysis [/ 70].

While autoencoders are useful in applications such as denoising and anomaly detection, they
are limited in their utility as generative models. Because the latent space constructed by an
autoencoder is not necessarily smooth or continuous, interpolation or randomly sampling from
the latent space with the goal of generating new synthetic data can produce unrealistic results. A
variational autoencoder addresses this limitation by describing the encoder, decoder, and the latent
variables in terms of probability distributions rather than individual deterministic entities [!57].
More specifically, a type of distribution is assumed a priori and then, given an input vector that is
not necessarily Gaussian, the encoder outputs encoding vectors for the parameters describing that

distribution; often, a Gaussian distribution is assumed, and the encoder thus outputs the mean
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vector and covariance matrix. During the reconstruction process, latent variables are drawn as
samples from these (potentially correlated) probability distributions before being passed through
the decoder.

This probabilistic description encourages local smoothness in the latent space, but without
additional constraints the distributions can become narrow and sparse, resulting in overfitting. To
compensate, VAEs incorporate Kullback-Leibler (KL) divergence as a regularization term. KL
divergence essentially measures the divergence between two probability distributions [/ 7%]. By
penalizing divergence between the learned latent variable distributions and a target distribution
(often the standard normal), the encodings are attracted toward the center of the latent space and
sufficient variance is encouraged. The loss function can then be written as the weighted sum of

these two terms,

Lz, z) + ﬁKLZKL(%(ZIw)HP(z)% (3.10)

J

where « is the input vector, & is the reconstructed output vector, z is the latent variable, g;(z|x)
is the learned distribution for each dimension j of the latent space and p(z) is the assumed prior
distribution [ 59]. £() is the likelihood function penalizing reconstruction error, typically evidence
lower-bound (ELBO) [100], and KL() is the KL divergence acting as a regularizing term. Finally,
Bk1, determines the weight of the KL divergence term relative to the reconstruction loss, where the
subscript is used here to distinguish from ballistic coefficient.

To briefly summarize, a VAE is a probabilistic method of nonlinear dimensionality reduction
that is a popular choice for generative modeling. The derivation of a VAE can also be understood
as applying Bayesian variational inference to the latent variable distributions of an autoencoder.

For a more thorough mathematical treatment of VAEs, the reader is directed to Refs. [170, -
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3.3 Methodology

3.3.1 Simulation Description

This section briefly describes the methodology for trajectory simulation used in this study
and summarizes relevant vehicle parameters. Trajectories are simulated by numerically propagating
the three degree-of-freedom equations of motion for atmospheric flight about a rotating ellipsoidal
planet via explicit Runge-Kutta integration of order 4(5). Density is modeled using MarsGRAM
2010 [/ 7], interpolating from a resulting table of density vs. altitude unless stated otherwise.
Mars is assumed to have gravitational parameter p = 4.305 x 10* km®s~2, equatorial radius R =
3397.2 km, oblateness spherical harmonic coefficient Jo = 0.001964, and a planetary rotation period
of w, = 1.02595675 days [ (1]. Mach number is defined as the ratio of vehicle speed to the speed of
sound M = v/a, where sound speed a for the Martian atmosphere is interpolated from a nominal
tabular model [107]. Heat flux is modeled by computing convective heat flux ¢ at the stagnation
point assuming a fully catalytic surface using the Sutton-Graves expression shown in Eq. ( ),

where p is density and a value of the heating coefficient k& = 1.904 x 10~* kg% /m is used based on

nominal atmospheric composition at Mars [!(]. Dynamic pressure ¢ is defined by Eq. (7.17).
. P 13
=k,/=—V 3.11
q R (3.11)
1
q= ipv2 (3.12)

There are two types of trajectories used as representative examples in this study. The first is a steep
direct entry trajectory at Mars for the Small High Impact Energy Landing Device, or SHIELD,
a small, mostly-passive probe under development at NASA JPL intended for low-cost access to
the Martian surface [/ (/]. Once reaching subsonic conditions, SHIELD deploys a drag skirt, then
jettisons the heatshield shortly thereafter. The drag coefficient C'p during each configuration varies
with Mach number and is linearly interpolated from tabular data provided by the JPL SHIELD
team. Ballistic coefficient § = m/(CpA) describes the ratio of inertial forces to aerodynamic forces,

where m is vehicle mass and A is reference area; the ballistic coefficient for SHIELD ranges from
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about 20 kg m~2 shortly after entry to around 5kg m™2 near the surface after drag skirt deployment
and heatshield jettison. SHIELD has a lift-to-drag ratio of L/D = 0, and an assumed nose radius
of R, = 0.85m. The trajectory considered in this study is defined by an entry velocity of 6 km/s
and an entry flight-path angle (EFPA) of —18° at the atmospheric interface altitude of 125km,
entering due-East at 0° latitude and 0° longitude, where flight-path angle is defined as the angle
between the air-relative velocity of the vehicle and the local horizontal. The reference SHIELD

direct-entry trajectory is shown in Fig.
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Figure 3.1: Dynamic pressure and velocity magnitude vs. altitude for reference trajectories. Note
identical y-axis scaling, different x-axis scaling.

The other trajectory considered here is aerocapture at Mars by a vehicle similar to the Mars
Science Laboratory (MSL) aeroshell. A ballistic coefficient of 3 = 130 kg m~?2 and lift-to-drag ratio
of L/D = 0.24 are assumed [/(7], and the vehicle flies full-lift-up for the duration of the trajectory.
The entry is again due-East at 0 ° latitude and longitude, in this case with entry velocity of 5.8 km/s
and EFPA of —11°. A nose radius of R, = 1m is assumed, which conveniently normalizes the

value of ¢ for re-scaling to other vehicles. The reference aerocapture trajectory is shown in Fig.
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3.3.2 VAE Architecture and Training

This section summarizes the architecture of the deep neural networks used to construct the
VAE models in this work, and describes the approach taken to training. It is not a claim of this
work that this particular architecture or training methodology is optimally suited to representing
atmospheric density; rather, confronted with a large number of tunable parameters, this is an
approach that was found to work well over the course of trial-and-error experimentation, and it is
detailed here for reproducibility.

The encoder is built from a 6-layer deep neural network with the following numbers of nodes:
256, 256, 128, 128, 64, and 64; the decoder is also 6 layers such that the order of dimensions
is reversed, going from 64 to 256. The latent space is limited to only 4 dimensions; this is the
dimensionality that directly corresponds to the number of terms in the KLE models. All neural
networks use the Gaussian Error Linear Unit (GELU) nonlinear activation function [10(], and are
implemented using the open-source tool PyTorch [107, ].

The models are trained with batch size 1024 for 100,000 epochs, long enough that the loss
curve was observed to plateau. A weighting parameter of Sk, = 0.15 is selected, and the loss
function is normalized by the batch size. The learning rate is initially set to 1 x 1073, and a learning
rate scheduler is implemented to reduce the learning rate after a period of time once the loss is
observed to plateau. Specifically, the learning rate is reduced by a factor of 0.9 if no improvements
are observed after 500 consecutive epochs, with a threshold for improvement of 1 x 107°. Moreover,
a cooldown period of 2500 epochs is required to pass before resuming normal operations after each

time the learning rate is reduced! .

! via PyTorch


https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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3.4 Columnar Atmosphere Model Comparison

In this section, atmospheric density is approximated as a random field as a function of only
altitude. In reality, atmospheres vary across 3D position and time, and are affected by external
factors such as space weather. However, for applications like entry and aerocapture which traverse
tens of vertical kilometers within the atmosphere, the dominant factor in density change is altitude.
Thus, a columnar atmosphere model is assumed in this section, such that p(h, ¢, 8,t) ~ p(h) where
p is density, h altitude, ¢ latitude, 6 longitude, and ¢ elapsed time. See Section for a discussion
of density variation with latitude and longitude.

While a random field is a theoretically appropriate choice for modeling density [/, ,

], it is an infinite-dimensional object. In contrast, the non-Monte Carlo methods for onboard
uncertainty propagation discussed earlier require a parametric, finite-dimensional representation of
density variability [! 1~ ]. Thus, some form of dimensionality reduction is required to go from
either raw data or a more complex model to a parametric, low-dimensional model appropriate for
onboard use. In this section, KLE and VAE approaches are both applied to construct density
models, and the results are compared for accuracy in their generative modeling as well as, crucially,
their accuracy in predicting quantities of interest such as peak heat flux.

Density exhibits approximately Gaussian probability with correlation structure across a spa-
tial domain; see Ref. [13%] for detailed justification of this Gaussian assumption based on Mars-
GRAM 2010 data. Thus, a KLE can be constructed under the assumption that density is a GRF,
then truncated after an appropriate number of terms. The sample covariance matrix is formed
from any sufficiently large dataset of density values vs. altitude; typically, it is convenient to use
simulated data from a relevant model such as a GRAM. Note that, to avoid a nonzero probability
of producing a negative value, the density random field should in fact be treated as a truncated
Gaussian.

Figure shows the result of constructing a KLE from a dataset of 5000 density profiles

output by MarsGRAM, denoted KLE-p for shorthand. For the sake of later comparison, a fixed
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number of dx = 15 terms is used for this and all subsequent KLE models in this section unless
noted otherwise. The horizontal axis of this plot shows normalized density perturbation dp, as
defined in Eq. ( ), rather than density itself because this captures variability better even as the

value of density changes by orders of magnitude across this altitude range:

dop=np/p—1. (3.13)

The thick dashed lines show the +30 bounds, where o is standard deviation. In the case of
MarsGRAM these bounds are computed directly from the sample profiles; for the KLE, 5000
separate realizations are generated and evaluated, then standard deviation is computed from this
generated dataset. In addition, three sample profiles from each model are shown in the thin solid

lines.
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Figure 3.2: KLE vs. Mars-GRAM for KLE constructed from density values; thick dashed lines are
430 bounds, thin solid lines are sample profiles

Notably, the KLE 30 bounds only align with the MarsGRAM bounds up to about 35km,
badly underestimating variability at higher altitudes. This occurs because the value of density is

much greater at low altitudes: for Mars, about 1x 1072 kg/m? at the surface, order of 1x107° kg/m3
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at 50 km, and order of 1 x 10719 —1 x 107 kg/m? at the atmospheric interface altitude of 125km.
The KLE is truncated based on eigenvalue magnitude, and the variability at low altitudes where
density is high is prioritized as a result, even though as a percentage of nominal density varies more
at high altitudes. For this reason, a KLE based on density values is an inefficient way to capture
normalized density perturbations at high altitudes. A VAE model trained directly on density data
suffers even more from essentially the same issues; because of the widely-varying magnitudes of the
training data, the VAE fails to meaningfully learn density behavior at all except for at very low
altitudes.

This shortcoming can be addressed by constructing the models differently. While columnar
density remains the quantity of interest, the data can be pre-processed for model construction in
a variety of ways, with a converse post-processing step recovering density values. For example, a
model can be constructed from normalized density perturbation values in the following way. First,
compute dp values corresponding to each value in the dataset. In the case of a VAE, then train
the model on this dp data directly. In the case of a KLE, form a mean vector and covariance
matrix for these dp data and construct a KLE using these summary statistics. Finally, treat the
outputs of this model as dp values and re-arrange Eq. ( ) to recover density values. The results
of constructing KLE and VAE models in this way are shown in Fig. , denoted KLE-dp and
VAE-dp, respectively.

Figure shows a clear improvement in terms of capturing overall density variability, and
the sample profiles now look similar to the GRAM output. However, both models significantly
underestimate variability below 50 km in altitude. The specific case of the KLE-§p model, shown in
Fig. , does an especially poor job at capturing variability at low altitudes and also moderately
underestimates variability at altitudes above 50 km. These models in some ways suffer from the op-
posite problem as the KLE-p model: because normalized density perturbations are smaller near the
surface, this region is poorly captured, whereas the model performs relatively well at high altitudes.
That said, the KLE/VAE-§p models are more compact, meaning that for a given dimensionality

they each give a better approximation of density variability with altitude than an equivalent model
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Figure 3.3: Models constructed from normalized density perturbations; thick dashed lines are +30
bounds, thin solid lines are sample profiles

trained directly on density values.

However, it is important to keep the application of interest in mind. The goal of these approx-
imations is not to model the atmosphere as well as possible; the real goal is to provide a compact
atmosphere model that results in accurate trajectory predictions when compared to trajectories
predicted using MarsGRAM directly. Recall that aerodynamic force scales with dynamic pressure
q. As seen in Fig. , for a planetary entry trajectory dynamic pressure peaks at mid to low
altitudes, with the particular altitude depending on the vehicle and trajectory. Above this altitude
density is too low for significant dynamic pressure, and below this altitude the vehicle has slowed
down to the point that dynamic pressure greatly reduces. A similar phenomenon occurs in reverse
for launch vehicles. Therefore, it would be of interest for the model to prioritize density variation
where it matters most for a given trajectory of interest; that is, where dynamic pressure is highest.

To that end, a scaling vector k, is constructed based on dynamic pressure along the reference

SHIELD entry trajectory, with a value corresponding to each altitude step in the discretization of
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the original density data. In order for the resulting training data to have consistent magnitudes,
the actual dynamic pressure in Pascals is divided by 100 and the vector is further modified to have
a minimum of 1,

k, = max(q/100,1). (3.14)

The training data are then generated by elementwise multiplying the vector of dp values by the
scaling vector kg, and the output of the model is then correspondingly divided by k, before con-
verting the normalized perturbations back to density values. In effect, this informs the reduced-
dimensionality model which altitude range is most important to capture.

Figure shows results for KLE and VAE models built from normalized density perturba-
tions that have been scaled based on reference dynamic pressure, denoted KLE-q and VAE-q, re-
spectively. As seen in Fig. , the 30 bounds computed by this KLE-¢q closely match GRAM from
about 60 km down to about 20 km, corresponding closely to the dynamic pressure pulse shown in
Fig. . Given the fixed number of terms in the expansion, this comes at the expense of accuracy
outside of that altitude range, where this expansion underestimates variability. The corresponding
VAE-q model, shown in Fig. , exhibits similar results except that, for altitudes outside of the
prioritized range the model overestimates variability in some altitude regions and underestimates
it in others.

In order to take a closer look at model performance at a specific altitude of interest, Fig.
shows histograms of the normalized density perturbation value predicted at 40 km altitude by the
KLE/VAE-q models compared with the value given by GRAM. There are two key takeaways from
this visualization. First, the KLE-g and VAE-¢q both do excellent jobs of recreating the empirical
distribution of the training data. Second, the training data are, by inspection, well-approximated by
a Gaussian distribution at this altitude. The highly-Gaussian nature of the training data explains
why the KLE, which assumes an underlying GRF, does just as well as the VAE at this altitude.

As previously mentioned, the true quality test for these density models is how well they

predict dispersed trajectories compared to GRAM. To that end, a 1000-trial Monte Carlo analysis
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is performed for each of these models and for GRAM, where the only dispersed parameter in
each analysis is density. A violin plot comparing the statistics of peak heat flux for each case is
shown in Fig. . The KLE-p, KLE-§p, and VAE-§p models underestimate variability to varying
degrees. The KLE-q and VAE-q models have comparably good results, and both match well with
the statistics predicted by GRAM directly. These results demonstrate that scaling normalized

density perturbations based on reference dynamic pressure is the most compact of the modeling

approaches considered here.
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Figure 3.6: Peak heat flux statistics for SHIELD trajectories

A similar scaling approach can be applied based on the reference aerocapture trajectory.
This process is slightly more involved because during aerocapture the vehicle passes through each
relevant altitude twice, with differing dynamic pressures, and has a minimum altitude well above
the surface, as seen in Fig. . Recall, however, that the reference dynamic pressure is simply
useful for re-scaling, and does not need to be dynamically valid. Thus, the following approach is
taken in this study to form the reference dynamic pressure. Above the minimum altitude of the

reference trajectory, the dynamic pressure during the descending portion of the trajectory is used
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for scaling. For another 10 km below the minimum altitude a constant value equal to the dynamic
pressure at the minimum altitude is used; this segment exists because some dispersed trajectories
will fly below the minimum altitude of the reference. Finally, a small but nonzero value (0.01 in this
case) is used for scaling at more than 10 km below the minimum altitude of the reference trajectory.
These values for ¢ are then further modified according to Eq. ( ) to obtain the k, scaling vector
for aerocapture. The density profiles predicted by the resulting models are summarized in Fig. ,
and the corresponding peak heat flux results for Monte Carlo analyses of the aerocapture trajectory

are shown in Fig.
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Figure 3.7: Models constructed from normalized density perturbations scaled by aerocapture dy-
namic pressure profile; thick dashed lines are +30 bounds, thin solid lines are sample profiles

Overall these results are similar to the corresponding results for SHIELD direct-entry, in that
the models capture density variation most efficiently near the altitude of peak dynamic pressure
and the KLE/VAE-q models perform best when predicting peak heat flux statistics. The altitude
range where the models accurately match the GRAM 3o bounds is shifted up by about 10km

compared to the SHIELD case due to peak dynamic pressure occurring at a higher altitude for the
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Figure 3.8: Peak heat flux statistics for aerocapture trajectories

aerocapture trajectory.

These results demonstrate that the models scaled based on reference dynamic pressure are
the most compact representations of the possibilities considered here, as measured by the ability to
predict statistics of peak heat flux. A relatively small number of terms (dxg = 15) is used for each
KLE in order to highlight these differences and illustrate that some approaches are more compact
than others. However, note that any of the KLE models should perform well if the number of
included terms is sufficiently high, because the KLE representation of a GRF is exact for an infinite
number of terms. Note that the patterns that have been discussed here are somewhat tied to
the choice of random variable; because peak heat flux occurs at mid-altitudes near peak dynamic
pressure, the KLE/VAE-¢q models will be particularly efficient in capturing those statistics. The
most compact modeling approach, and the minimum dimensionality, thus somewhat depend on the
particular quantities of interest.

Having shown good performance by both KLE and VAE models of uncertainty in a columnar

atmosphere, a direct comparison of the two modeling approaches merits discussion. The VAE-
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g models achieve slightly better performance than the KLE-g models, despite each VAE model
having only four dimensions compared to 15 dimensions for each KLE model. The nonlinear
generative modeling of the VAE appears to, in this case, enable a more compact model than the
linear KLE modeling despite the approximately Gaussian nature of the training data. However,
the setup process for the VAE modeling approach is significantly more involved. Obtaining good
VAE results depends on careful tuning of neural network training parameters, which in general is
only possible through trial and error, whereas there only exists one KLE model for a given set of
input data and given expansion length. Moreover, as demonstrated in Section 3.0, updating a KLE
model based on noisy measurements of density is much more straightforward than an equivalent
measurement update would be for a VAE model. The benefits of the VAE modeling approach might
be expected to outweigh those of the KLE method if the random field of interest were significantly
non-Gaussian and sufficient samples of that field were available. Although it is still possible to
construct a KLE model for non-Gaussian data, the expansion coefficients can become complex for
generative sampling because the random variables Y; are no longer i.i.d. [/7!]. In contrast, the
VAE effectively uses the nonlinear transfer function defind by the decoder to absorb this complexity,
keeping the distributions of the latent variables simple. For data-rich non-Gaussian fields, VAEs
may thus offer advantages over KLEs, such as smaller latent variable dimensionality and a more
accurate representation of the quantity of interest. However, for this particular application, in
which the random process is approximately Gaussian, the KLE modeling approach has been shown
to perform adequately well, and has the appealing quality of a one-to-one relationship between
training data and model. Therefore, only KLE models are considered in subsequent sections, with

equivalent contributions for VAE models left for future work.

3.5 Multi-Dimensional KLE Model

Although the columnar assumption is typical for onboard models of density as previously
discussed, in some cases it may be of interest to represent density as a random function of multiple

independent variables. The KLE approximation demonstrated in Section can be straightfor-
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wardly extended to model longitudinal and latitudinal variations in density as well as in altitude.
Thus, in this section the necessary steps for constructing a multi-dimensional KLE are presented,
models are compared following the approach taken in Section ./, and finally there is a brief dis-
cussion of the potential utility of these models for onboard use.

Recall that the first step in forming a KLE approximation from some discrete dataset is
computing the sample covariance matrix as shown in Eq. (7.©). The data matrix ¥, is formed such
that each column is one observation vector with the sample mean subtracted. In the columnar
KLE model, the observation vectors are ordered such that they correspond with a reference altitude
vector. For the more general case, however, the indexing of the data matrix ¥, need not refer to
a single independent variable. Rather, the index corresponds to a specific variable being observed,
whether that be defined as density at 100km or as density at 100km, 20° E, and 40° N. Any
arbitrary set of points in a multi-dimensional domain can be uniquely identified via sequential
indexing, and then observations at these points can be reshaped into a column vector following
that ordering; this process is conceptually illustrated in Fig. . The process of computing the
covariance matrix and constructing and evaluating the KLE is unchanged. The original reshaping
is then reversed to reshape the column vectors produced by realizations of the KLE to a set of

values for each point in the multi-dimensional domain.

Figure 3.9: Ilustration of reshaping between an arbitrary set of points in a multi-dimensional
domain and an observation vector

As an example, MarsGRAM is used to generate 1000 density values at each point in an
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evenly-spaced 2D grid going from 0 to 200 km in altitude, from 0 to 10° in longitude, and at 0°
latitude. Figure visualizes the resulting data as a heatmap of the +3c value of dp; in other

words, the heatmap values correspond to the right dashed line in figures like Fig.
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Figure 3.10: 30 values of normalized density perturbation for 2D density models
Figure shows the equivalent statistics for a KLE approximation of the 2D MarsGRAM
data; in contrast to Section ./, in this case a value of o = 0.99 is used to truncate the KLE to dg =
884 terms. From visual inspection, the results shown in Fig. are virtually indistinguishable

from each other.

As before, the real test of the KLE approximation is its ability to accurately predict trajectory
dispersions. To this end, Figs. and show the peak heat flux statistics and a portion of the
density profiles, respectively, resulting from 1000-trial Monte Carlo analyses of the same SHIELD
direct-entry trajectory previously considered. In each case except GRAM 1D, bivariate spline
approximation is used to compute density at the altitude and longitude of the vehicle based on a grid
of density values. Recall that the reference SHIELD trajectory is ballistic and enters due-East, so

the trajectory remains in the equatorial plane and thus, for this scenario, this approach is equivalent
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to computing density based on the 3D position of the vehicle. The GRAM 2D case interpolates
from a set of density samples output by MarsGRAM directly, whereas the KLE o« = 0.99 case
interpolates from values produced by a realization of an 884-term KLE approximation. The KLE
di = 50 case also uses a KLE approximation, but in this case the expansion is limited to 50 terms.
Finally, the GRAM 1D case interpolates from the same MarsGRAM data but always assumes a
longitude of 0°, corresponding to a columnar assumption. This case should be exactly equivalent
to the GRAM results shown for SHIELD in Fig. , but is slightly different. This occurs due
to a quirk in how MarsGRAM density perturbations are computed. Thus, in this section the full
2D dataset is used but assuming a constant longitude of 0° in order to create an apples-to-apples

comparison.
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Figure 3.11: Peak heat flux statistics for SHIELD trajectories in 2D atmosphere models

From Fig. , it is clear that the peak heat flux statistics predicted by the 2D GRAM
and 2D KLE (a = 0.99) models are very similar, and Fig. shows a characteristic similarity
between the density profiles predicted by these two models. These results and the direct comparison

of density values in Figs. and demonstrate the successful use of a multi-dimensional
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Figure 3.12: Density profiles on SHIELD trajectories for 2D density models

KLE to approximate density as a function of both altitude and longitude. In contrast, the 50-
term KLE approximation performs very poorly, significantly under-predicting both the mean and
uncertainty of peak heat flux. The expansion fails to capture much of the variability in density,
as is clear from Fig. . The KLE di = 50 case performs worse than the KLE o = 0.99 case
because it has a much lower number of terms (50 vs. 884), and the expansion is truncated before
sufficiently capturing the modes of variability present in the multivariate data.

These comparisons merit a broader discussion of the columnar atmosphere approximation
for onboard density modeling. Figure shows that the GRAM 1D case, which is equivalent to
a columnar atmosphere assumption, almost exactly matches the 2D GRAM case in predictions of
peak heat flux, and from Fig. the sample density profiles themselves also appear to be very
similar. This is not surprising when considering Fig. , which shows no significant horizontal
gradient to indicate changes in density variability with longitude. Note that, despite this unifor-
mity in longitude, the KLE requires roughly 10x as many terms to accurately predict dispersed

trajectories when constructed from the 2D density data as opposed to the columnar atmosphere
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case. This would require an increase in both memory and computational expense for onboard use.
Furthermore, to sample across the entire 2D grid in altitude and longitude requires 8505 datapoints
for the discretization used here, as compared to 405 datapoints for a columnar profile, further exac-
erbating the onboard computational burden. These results suggest that, based on the dataset used
here, a columnar atmosphere model is likely a good enough approximation for onboard use, and
is significantly less demanding of both memory and computational effort than a multi-dimensional
model.

This is decidedly not to say that regional variations in density can be neglected. Density
gradients occur due to a range of factors including gravity waves, time of day, and winds, and
are relevant for both vehicle performance prediction and trajectory reconstruction [177, , Y.
MarsGRAM data is used in this study as an example only, and is not necessarily well-suited
to capturing these types of regional density variation. Any hypersonic vehicle using closed-loop
guidance would need to be simulated in a wide range of possible atmospheric conditions, regardless
of the assumptions used for the onboard density model. The resulting vehicle performance, taken
together with the relevant computational limitations, is ultimately what determines whether or not
the onboard density model meets requirements.

Note also that, for a scenario where density is expected to change significantly along the
groundtrack of an entry trajectory, a columnar model could be constructed using data generated
along the reference trajectory. In other words, the raw data is generated along a 3D trajectory,
but is then treated as a function of only altitude in the KLE approximation. This approach begins
to fail if altitude is not monotonically decreasing, such as in the case of aerocapture. However, the
procedure for onboard measurement updates presented in the next section would potentially result
in different density predictions for the descending and ascending portions of the trajectory, and
this could partly mitigate the limitations of a columnar model.

Finally, note that a VAE model may provide better dimensionality reduction than a KLE
for the case of a density function varying across multiple dimensions. VAEs are well-suited for

applications to complex, multi-faceted data including images and music [! 7/, |, and may do
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a superior job of recognizing the strong correlations between density profiles at different lati-
tudes/longitudes/times, and then compressing the data based on these relationships. Applying
a multi-dimensional VAE density modeling in scenarios where variation across dimensions other

than altitude are important to trajectory prediction remains an interesting topic for future work.

3.6 Kalman Measurement Updates

During atmospheric flight, observations of estimated density p*(hy) are typically available by
taking estimated sensed accelerations measurements from an accelerometer or inertial measurement

unit (IMU) and rearranging the equation for aerodynamic acceleration,

v*(hy)

26

. 2,8(1*(hk)

a(hy) = p(hi) = p*(hi) = 2 (he) (3.15)

where estimates of the ballistic coefficient 8 and current velocity magnitude v(hy) are known. Thus,
for any onboard density model to be useful in practice, it should accommodate some method of
updating the model in real-time with noisy measurements. It is well-demonstrated in literature
and in practice that appropriate onboard density estimation can significantly improve targeting
performance [~ ].

The novel benefit of a KLE density model is the representation of both a nominal density
profile and the associated uncertainty. Therefore, it is desirable to formulate an approach that
updates both the mean and covariance represented by the KLE. Furthermore, this should be done
in a way that respects the correlation structure assumed in the pre-update model, as opposed to
replacing a single diagonal element of the covariance matrix. For clarity, this section returns to the
columnar atmosphere assumption.

In this work a Bayesian approach for sequential estimation is applied, such that the mean and
covariance of density from the previous update (or the initial model) form the prior, and these are
updated with the noisy density measurement to form the posterior mean and covariance of density.
The density estimates are assumed to be corrupted by additive white Gaussian noise, based on

the assumption that some pre-processing removes artifacts such as IMU drift; note that this also
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implies accurate estimates for ballistic coefficient and velocity magnitude. The state uncertainty
is also Gaussian based on the earlier assumption treating density as a Gaussian random process.
Finally, density estimates are assumed to arrive at altitude points included in the original a prior:
density model, either by judiciously timing measurement updates or by interpolating multiple
measurements.

Based on the above assumptions, density can be optimally estimated by the Kalman measure-
ment update via the following formulation [ 70]. Take the series of density values at each altitude
to be the state vector. The dynamic equation is trivial, because the density profile is assumed
not to vary in time, so the state propagation step from the Kalman filter is unnecessary. The
measurement equation is simply a direct observation of a single state component and is thus linear.
Therefore, the optimal estimate of the vector of atmospheric density at each altitude p™ € R"
and its covariance P,:r € R™™™ can be computed according to a scalar noisy density measurement

p;. € R according to the following equations:

bt = b+ K(pf— Hypo), (3.16)
P =P - KH,P, (3.17)
K =P H] (H,P H +R) ", (3.18)
Hj, = [01k, 02k, -5 Onk], (3.19)

where K € R™! is the Kalman gain matrix, Hj;, € R is the measurement matrix, R € R'*! is
the measurement noise covariance (generically a matrix, in this case a scalar), ¢;; is the Kronecker
delta, n is the number of discrete altitudes considered, and k is the index of the altitude at which
density is currently being observed. Notably, because only one density is measured at a time the
bracketed term in Eq. ( ) is a scalar, so taking its inverse is computationally inexpensive.

For notational clarity, consider an example where the discretization of density values is from
100 to Okm in altitude steps of 0.5km, in descending order, resulting in n = 201. Then p~ and
pT are the prior and posterior 201-vectors, respectively, containing density values at each altitude.

Assume the scalar density measurement pj is at an altitude of 80km, such that & = 41 (indexing
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from 1 in this notation). Then, H} becomes a row matrix with all elements equal to zero except
in the 41st column, which is equal to one.

Equations (. 10) — (.19) can be applied to sequentially ingest noisy density measurements
and update the onboard model of the density profile and its covariance. By re-solving for the
eigenvalues and eigenvectors of the P+, the KLE representation can be updated accordingly. This
process is demonstrated in Figs. and ; here, the prior mean and covariance are formed
from a dataset of 3000 density profiles from MarsGRAM, where density perturbations are nor-
malized by the sample mean and thus the normalized prior mean falls exactly along 0. The true
profile to be estimated is also computed by MarsGRAM, but is not included in the prior dataset.
Five density values are observed, corrupted by measurement noise with a standard deviation of
1 x 107 %kg/m3, a value selected purely for illustrative purposes. In this example the assumed
measurement noise R is equal to the true noise value, but note that this can instead be treated as
a tuning parameter in practice and need not be the same value at each altitude.

Note that the posterior mean passes nearly through each observation (with one exception),
but reverts to the mean for altitudes above and below the observation altitudes. The posterior
uncertainty bounds are also only weakly affected at these higher and lower altitudes. This occurs
because the correlation structure in the prior covariance dictates the degree to which new informa-
tion at one altitude affects the estimated density at another altitude. Because in this model density
perturbation at 80km is only weakly correlated with density perturbation at 50 km, the posterior
mean has reverted to nominal by that lower altitude. This can also be achieved by onboard esti-
mation of a corrective scale factor that is then exponentially decayed back to unity for altitudes
not near the measurement. However, the approach presented here has two advantages. First, the
correlation length is inferred from the prior model (MarsGRAM in this case) rather than defined
by the user, and second, the correlation length is not necessarily constant with altitude.

The reason that the posterior mean passes more closely through the lower three measurements
than the first two is related to how measurement noise was defined. Measurement noise is applied

to the density values directly and is constant across all altitudes, but the data is then converted to
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Figure 3.13: Mean and 30 bounds for prior and posterior density profiles, given five sequential
noisy observations

normalized density perturbations for estimation and visualization. Thus, at higher altitudes where
nominal density is significantly lower, the measurement noise has a more significant effect, and the
filter tends to trust the prior. This is also observable by the much wider posterior uncertainty
bounds for the higher-altitude measurements. At lower altitudes the same measurement noise has
relatively less effect and the situation is reversed; because the actual measurement noise and the
value used by the filter are the same, this also means the lower-altitude measurements fall closer to
the true values. It should be reiterated that the assumption of a measurement noise constant with
altitude is made here for demonstration purposes and is not required.

The application of a Kalman measurement update demonstrated here provides a way of
updating the mean and covariance for atmospheric density based on noisy measurements, which

could inform onboard predictions of state uncertainty for the purpose of closed-loop guidance. A
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significant drawback of this approach, however, is the requirement to re-solve the eigenvalues and
eigenvectors after each measurement update in order to obtain the updated KLE representation.
This adds significant computational expense to the update process, potentially to the point of
infeasibility for onboard computation, depending on the resolution of the density profile and the
choice of flight hardware. This motivates an approach that updates the eigenvectors and eigenvalues
directly in a way that approximates the result of the Kalman measurement update at a lower
computational expense. Such a method could take advantage of the fact that there is approximately
zero covariance between altitudes more than a certain distance apart. Approaches such as low-rank
partial Hessian approximations or sequential updates to singular value decompositions of a matrix
provide potential pathways to significant computational efficiency improvement [I77, |; this
remains an area for future work. Another avenue for future work would be a method for onboard
upating of a VAE density model based on noisy measurements, without requiring onboard retraining
of the model. In this case, the model would be trained on the ground and then conditioned on

noisy measurements in flight, permitting computationally-efficient updates to the VAE.

3.7 Linear Covariance Analysis

This subsection summarizes another application of the KLE density model, linear covariance
analysis of guided aerocapture and entry trajectories in an uncertain atmosphere. Note that this
work was originally presented in reference [! 0], for which S. W. Albert was second author. Linear
covariance analysis approximates the uncertainty evolution of a nonlinear system by propagating
the mean and covariance of the linearized system. By including KLE terms as uncertain parameters,
the evolution of state covariance is approximated and shown to closely match the estimate provided
by a Monte Carlo analysis.

Consider a nonlinear dynamical system with state z € R™ acting under the influence of ¢

uncertain parameters pg € R? according to the dynamics

T = f(t,.I, U(t,a?),po) = fcl(ta .T,po), ﬂ3(750) = Zo, (320)
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where u(t, z) is a closed-loop control. For generality, let the initial state z¢ be included as an uncer-

tain parameter and define the new £ = n + ¢ dimensional parameter vector p as the concatenation

T
p= € R". (3.21)

bo
The following analysis, which is adapted from Ref. [| 7] Ch. 3, is concerned with approximat-

ing variations in trajectories of the system ( ) as linear functions of variations of the parameter
vector p.
Let x(t,p) be the solution to (.20) for a particular realization of the parameter vector p,

which is given as
t

a:(t,p) =x0+ ) fcl (771'(7-7 P)ypo) dr. (3.22)

Taking the partial derivative of the trajectory z(t,p) with respect to the parameter p, obtain

t
20 = |1 0|+ [ { DA rarp ) et + P ratrpm) far (329

0

Next, approximate the expression (/.7)) about a given nominal parameter value p = (Zg, po). Define

the matrix-valued functions of time

af cl
dpo

ox afcl
—_— p pu—

o (t,z(t,p),p0), C(t)= ” (t,z(t,p), po) = [On

(t, x(tyﬁ),ﬁo)] .
(3.24)

The matrix S(t) is known as the sensitivity function, since the trajectory (¢, p) can be approximated

to first order as

z(t,p) = z(t,p) + S(t)(p — p). (3.25)

Furthermore, from (7.27), the sensitivity function is obtained as the solution to the ODE

() = A0SO + O, S(t0) = |1, 0, (3.26)

Suppose that the parameter vector pg is Gaussian distributed as pg ~ N (po, o). If the initial

state x( is uncorrelated with the parameters py and is also Gaussian distributed with covariance
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matrix Xg, then the parameter p is also Gaussian distributed as

p~N(p,P), where p= , P= , (3.27)
Zo Py

It then follows from the sensitivity equation ( ) that the state z(t, p) is approximately Gaussian

distributed with mean Z(t) = x(¢,p) and covariance
X(t) =S(t)PST(t). (3.28)

In summary, the state distribution can be approximated to first order about a nominal
trajectory Z(t) by the following procedure: Integrate the nominal trajectory z(t) from (.20) with
po = Po; compute the matrices Ac(t) and C(t) as functions of Z(¢) as in (7.21); integrate the
matrix-valued ODE (.20); and, finally, compute the state covariance from (.2%).

Now take a dynamical system that depends on a GRF ¥, which is approximated by a ¢-term
KLE W,:

&= fu(t,z, U(z(z)) = fult, @, Ue(2(2))) = falt, 2, po), (3.29)
where the argument z of the field ¥ depends on the state x, and where py = (w1,...,wy) =

Y1V A1, ..., Yy /Ag) are the KLE coefficients in Eq. (4.0). The partial derivatives of the dynamical

system with respect to the uncertain parameters thus depend on the basis functions ¢; as:

Ofa  Ofw 0¥,

o ’ 3.30
8170 8\1111 8p0 ( )
where the partials
Oy(2) _ [0%4(2) 0V,(2) O0,(2)
opo | Ow 7 Al o G (3.31)

are evaluated at the nominal values z = z(Z(t)).
The method of linear covariance approximation in a GRF is summarized as in Algorithm
[[10]. In order to compute the sensitivity matrix and perform linear covariance analysis for the

closed-loop dynamical system, the matrices Ay (t) and C(t) must be derived according to (.21).
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Algorithm 1 Linear covariance approximation procedure

Compute a g-term KLE model of ¥ by solving for the eigenvalues and eigenfunctions of Eq. (7. 1).
Obtain a nominal trajectory Z(t) for t € [to,t¢].

Compute the matrices A(t), B(t), and C(t) as in Eq. (7.21).

Integrate the sensitivity equation (Eq. (7.70)) from ¢y to ty.

Obtain state covariance X (¢) from Eq. (7.2%).

The control input u, which is taken to be the cosine of the bank angle © = coso, is assumed to

follow the linear feedback law
u(t,z) = u(t) + K(t) (z — z(t)), (3.32)

for a given feedback gain matrix K (t). The closed-loop matrix A.(t) can then be expressed as

_Ofa _0f OfOu _
Aa(t) = or 8x+8u8x a

A(t) + BOK (), (3.33)

where the matrices A(t) and B(t) are evaluated along the reference trajectory z(t) and wu(t). The
matrices A(t), B(t), and C(t) are provided for this dynamical system in Appendix !’. This proce-
dure is applied to two numerical examples, Mars direct entry and Mars aerocapture, with results

summarized in the following subsections.

3.7.1 Guided Mars Entry
3.7.1.1 Problem Definition

Consider a Mars Science Laboratory (MSL)-like vehicle performing a guided entry at Mars.
The vehicle lift-to-drag ratio is £ = 0.24, the ballistic coefficient is 8 = 130 kg/m?, and Mars is
assumed to have gravitational parameter figray = 4.2828 X 10 m3/s? and surface radius rp = 3397
km; these parameters are listed in Table . At the initial time tyg = 0 the vehicle is nominally
at an altitude of 125 km with planet-relative velocity 5.8 km/s and flight path angle —15.5°. The
vehicle state error from these nominal values is Gaussian distributed such that the 3o errors of
velocity, flight path angle, and downrange distance are 20 m/s, 0.5°, and 5 km, respectively; the

initial altitude is assumed to be exactly 125 km, by definition of the initialization condition at entry
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interface. Thus the initial state is Gaussian distributed as

125km + 1) 0

5.8 km/s (20m/s /3)?
xo ~ N(.J_So, Py), where Zp= , Py=

—15.5° (0.5°/3)?

0 (5km /3)? |
(3.34)

Both the nominal and samples of the dispersed atmospheric density are provided by Mars-GRAM

2010. The nominal bank angle is set as a piecewise-linear function of velocity, with the nodes

cos~(u) | 70° 70° 45° 45° 10° 10°
(3.35)
1% 6km/s 5.5km/s 25km/s 1.1km/s 1km/s Okm/s
The resulting nominal entry trajectory is shown in Figure . Closed-loop range control is pro-
vided by the Apollo final phase guidance algorithm [0, ], which is described in the following.
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Table 3.1: Vehicle and planetary parameters for entry and aerocapture examples

Parameter Value
Lift-to-Drag ratio, £ 0.24
Ballistic Coefficient, 3 130 kg/m?
Gravitational Parameter, pigray  4.2828 X 1013 m3 /82
Surface Radius, 7, 3397 km

3.7.1.2 Apollo Final Phase Guidance

Let f(t,x,u,po) be the right hand side of the equation (??), with control v = coso, and

define the system matrices

A = Lm0, B = 2L @0),00).0), (3.36)

evaluated along the nominal trajectory z(t), nominal control %(t), and with nominal density p(h)

(i.e., po = 0). The adjoint state (A, A,) to the system (?7?) is defined as the solution to the backwards

d | A@®) AT(t) 0] | A(®) A(tr) A
" — , 1 (3.37)
Au(t) BT(t) 0] [Au(t) Au(ty) 0
where the boundary value Ay is a user-defined vector determining the relative effects of the final
states on the final range error. For the Apollo final phase algorithm, this boundary value is set to
T

Af=|—coty(ty) 0 0 1| > (3.38)

and the state feedback gain is defined in terms of the adjoint values as

(3.39)

where K, is a user-defined overcontrol gain. In this example, we set Ko, = 4. Furthermore, we
assume that the (range) control effect is zero during the heading alignment phase, which begins
when the vehicle velocity decreases below 1.1 km/s. Thus the control matrix is set to B(t) = 0
when V(t) < 1.1 km/s.

The closed-loop bank angle cosine is thus given by the linear feedback law ( ). In practice,

the nominal control u, feedback gain K, and reference trajectory = are all set as functions of
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velocity. But, for the purposes of linear covariance analysis, we assume these reference values are

set as functions of time. The closed-loop, linearized system is thus described by the state matrix

in (2.07).

3.7.1.3 Results

The closed-loop entry trajectory dispersions, due to both the initial state uncertainty and
the MarsGRAM-generated density variations, are computed using two methods: Monte Carlo, for
which 5,000 sample trajectories are integrated, each with a fixed MarsGRAM density profile sample;
and by linear covariance (LC) analysis, using a ¢ = 50 dimensional KL representation of the density
profile. Sample Monte Carlo trajectories together with 3¢ bounds as computed by both the Monte
Carlo and from LC are shown in Figure . The 30 bounds from LC approximation is almost

exactly equal to the bounds computed from Monte Carlo.

3.7.2 Mars Aerocapture

The same MSL-like vehicle performs an aerocapture trajectory at Mars. For this scenario,
the desired final orbit is circular at 2,000 km altitude.

For the aerocapture scenario the vehicle parameters, Mars properties, and atmospheric flight
dynamics are all identical to the entry scenario. The nominal initial altitude, planet-relative velocity,
and downrange distance are also identical to the entry case, with a shallower entry flight path angle
of —9.8°. Smaller dispersions on the initial state are used for the aerocapture case, such that they
are Gaussian distributed about the nominal values with 3¢ errors of 10 m/s and 0.2° for velocity
and flight path angle, respectively. Downrange distance is not particularly relevant to longitudinal

aerocapture dynamics so is not dispersed, and initial altitude is again assumed to be exactly 125
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Figure 3.15: Sample closed-loop entry trajectories with 30 bounds computed from both 5,000 trial
Monte Carlo (MC) and linear covariance (LC).

km. Thus for aerocapture the initial state is Gaussian distributed as

zo ~ N (Zo, Py),

where

To =

125km + 7,
5.8km/s
—9.8°

0

0

P (10m/s /3)

(0.2°/3)2

0

. (3.40)

As a point of reference, MSL required entry flight path angle delivery within 3¢ = 0.2° and entry

velocity knowledge of 30 = 2.0 m/s |

dispersed atmospheric density profiles.

]. Mars-GRAM 2010 was again used for the nominal and
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The nominal bank angle profile is assumed to have a bang-bang form with a single transition
from lift-up to lift-down during the flight. To provide margin for feedback, the vehicle has an initial
bank angle of 0 = 85° from entry until some switching time ¢4, then linearly increases the bank
angle over a duration of 30 sec until reaching a final bank angle of ¢ = 115°, and finally the bangle
angle ¢ = 115° is held until atmospheric exit. The switching time ¢, is solved by a foot-finding
procedure so that the apoapsis after atmospheric exit equals a desired value. For this problem,
the switching time was found to be t; = 114.9 sec to meet a target apoapsis of 2,000 km, and the

resulting nominal trajectory is described by Figure
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Figure 3.16: Nominal areocapture trajectory

In many ways aerocapture is the same as guided entry but with a different final objective,
namely, targeting a Keplerian orbital state at atmospheric exit rather than a final range. Thus, we
adapt the Apollo final phase guidance algorithm for aerocapture. This method of terminal point
controller guidance for aerocapture is well-studied [72, 77]; the particular implementation used in

this work is briefly reviewed here.
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For this study, the closed-loop guidance during atmospheric flight is designed to target the
desired apoapsis after atmospheric exit r,, which is given as a function of the vehicle state x; =

(rf, Vi,vf, Ry) at atmospheric exit by
Pyl
Vo'

~

(3.41)

rq =

where h is the specific angular momentum and Vj, is the velocity at apoapsis, which are given by

v Hgrav — \/:uérav + 2€f‘h’f|2
a — ‘hf| bl

\h¢| =7 V5cosyy, (3.42)

where,
2
Y

e =4 - “i;” (3.43)
is the specific energy. Note that in (. 11)-(. 1) the states are inertial, not planet-relative; when
using the simplified longitudinal dynamics in (??), which assume a nonrotating spherical planet,
the inertial and planet-relative states become identical.

After the atmosphere pass, two maneuvers are required to ensure the spacecraft reaches
the desired final orbit. First, a periapsis raise maneuver is performed at first apoapsis along
the velocity direction and with magnitude AVj; this maneuver has some nonzero nominal value
because initially the periapsis will be below the atmospheric interface altitude. Second, an apoapsis
correction maneuver is performed at periapsis (at its new altitude) in either the posigrade (to raise
apoaisis) or retrograde (to lower apoapsis) direction and with magnitude AV,. Nominally AV, = 0,
but the value of AV; is uncertain as this maneuver corrects for any apoapsis error following the
atmospheric pass. Lateral dynamics, guidance, and a plane correction maneuver are all neglected
for the purpose of this study. The magnitudes of these maneuvers can be computed as shown,
where in this study the target orbit is assumed to be circular at some radius r. (the equations are

readily modified to eliminate this assumption). The magnitudes of the velocity at apoapsis after

the first maneuver Vi and the velocity at periapsis before the second maneuver V5 are given by

2 2
Vi = HgravTec Vo = HgravTa ’ (3.44)
ra(rq + 7¢) re(re + 7¢)
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where V. is the circular velocity at the radius 7., given by

Vo= [HER (3.45)

Finally, the total maneuver cost AV is computed as the sum
AV = AV + AV = (Vi = V) + |V — Val. (3.46)

Because of the absolute value sign in the expression for AVs, the partial derivatives become unde-
fined at the nominal value AVs = 0. Therefore, in this work only AV} is linearly predicted.

The aerocapture guidance algorithm consists of integrating the same dynamics for the adjoint
state (A, A,) using the same open-loop system matrices A(t) and B(t) evaluated along the nominal
aerocapture trajectory. The state feedback gain matrix K (t) is also computed the same way
and user-defined overcontrol gain is again used, this time with a value K,. = 3. The first of
two differences in the guidance is that the control is active until ¢ = 240 sec, at which point the
feedback control is set to zero, i.e. B(t) = 0 when ¢ > 240 sec. This time was selected to correspond
approximately to when the energy stops decreasing in the reference trajectory, and was set so that
the Apollo guidance would remain well-behaved with minimal modifications.

The second difference between the aerocapture and entry guidance implementations is the
way the boundary value Ay is computed. Following the terminal control theory, the terminal
condition is set equal to the partial derivative of a performance index ©(t) with respect to the
state, evaluated at the final time [1=7]. In Ref. [[77]], total AV is used as the performance index;
in this study we use radius of apoapsis error, where the target apoapsis radius r. falls out of the

partial derivative given by

0O(t )
= 20Uy (ora (3.47)
/ dx(ty) ox t=t;
The construction of this control law implicitly assumes a constant bank angle [/”] (even though

the reference bank profile is not necessarily constant), and therefore apoapsis targeting is a nearly-
equivalent proxy for AV optimization; a difference in the two solutions would only be expected for

steep entry flight path angles [(7]. The partial derivatives of apoapsis radius, apoapsis velocity,
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and total AV, each with respect to the state, are provided in the appendix. The aerocapture
closed-loop guidance algorithm is implemented as in (.20), (2.27), and (.29)-(2.22), replacing the

boundary value in (.2%) with the value for apoapsis targeting in ( ).

3.7.2.1 Results

As with the guided entry example in Sec. , dispersions are estimated using both a
5,000-trial Monte Carlo analysis and a linear covariance analysis using a ¢ = 50 dimensional KL
representation of density variability. The trajectory dispersions are compared in Figure . Ad-
ditionally, histograms of the Monte Carlo results for apoapsis altitude, velocity at apoapsis, and
total AV are shown in Figure with a Gaussian-fit probability density function estimated from

the linear covariance analysis superimposed.

3.7.3 Discussion

The numerical examples show a close match between the Monte Carlo estimates and linear
covariance approximations, as seen by the plots of standard deviation over time in Figures
and . This suggests that the implemented control laws keep the dispersed trajectories close
enough to the reference for the linearization to remain accurate, and the linear feedback nature
of these control laws enables estimating the full closed-loop system. It also suggests that the KL
expansion of density models the MarsGRAM density variability well enough to make accurate
predictions of this dynamical system. The aerocapture numerical example demonstrates how these
predictions can be translated into performance metrics, such as a histogram of apoapsis targeting
or 99th-percentile value of total AV, AVyg.

The main purpose of these two numerical examples was to show that the Monte Carlo and
linear covariance analysis predictions matched, and this has been achieved. A next step would be
removing some of the simplifying assumptions regarding the dynamics and guidance algorithms to
implement this linear prediction in a more realistic simulation. Planetary rotation and nonspherical

gravity terms were neglected and, for aerocapture in particular, these can be important effects. Lat-
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Figure 3.17: Sample closed-loop aerocapture trajectories with 3o bounds computed from both 5,000
trial Monte Carlo (MC) and linear covariance (LC).

eral dynamics and guidance were not accounted for, and though these are often handled somewhat
independently using bank reversals, the finite time spent reversing bank introduces a coupling be-
tween longitudinal and lateral guidance that is not considered here. The reference trajectory could
also be further optimized for both of these examples to improve targeting performance, and the
overcontrol could vary over the reference trajectory as a function of time, velocity, or energy. For
the aerocapture guidance, traditionally terminal point control implements the feedback table as a
function of energy instead of time as performed here.

One avenue for potential future work is to incorporate such predictions into an onboard
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guidance scheme. For example, a numerical predictor-corrector could be wrapped around the
linear feedback control, propagating the linear covariance and using AVgg as the error function
instead of propagating single deterministic trajectories. The linear predictions could also be used
to optimize the nominal trajectory and overcontrol value(s) to minimize AVyg with constraints on
control saturation. Overcontrol could become a function of time and apply differently to different

state errors as part of this process.

3.8 Conclusions

This work presents the mathematical foundation and practical implementation for modeling
density using either a KLE or a VAE. This approach to compact modeling of an uncertain environ-
ment could have value in a wide range of other applications, including rocket ascent and drone flight
planning. For the direct-entry and aerocapture scenarios considered here, a model constructed by
scaling normalized density perturbations by the reference dynamic pressure is shown to be the best
predictor of peak heat flux. Directly forming the model from density or normalized density pertur-
bations is less compact but also gives accurate predictions, and could be the more straightforward
approach if the necessary number of terms is allowable based on computational limitations. Be-

cause the data in this study are approximately Gaussian, the KLE modeling approach is shown to
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be adequate and has the advantage over VAE models of being simple to construct from the training
data.

A KLE formed over a multi-dimensional domain is demonstrated, but for the MarsGRAM
data considered here the gains compared to a columnar model are unlikely to outweigh the addi-
tional computational expense. Additionally, a Kalman measurement update is used to update the
density covariance matrix for a KLE model based on new density measurements, and the example
results show promising behavior. However, further work is necessary to improve the computational
efficiency of this approach for onboard implementation. Implementing a VAE density model over a
multi-dimensional domain and developing a method of conditioning a VAE model on noisy density
measurements are both promising avenues for potential future work. In the case of the former, a
VAE may outperform KLE models for dimensionality reduction of multi-dimensional density data,
but might require a modified network architecture or training approach. In the case of the latter,
retraining of the VAE onboard during flight would present an infeasible computational burden, so
the key innovation would be a method of conditioning the VAE on noisy data without requiring

further training.



Chapter 4

Co-Delivery of Direct-Entry Probe and Aerocapture Orbiter

4.1 Introduction

Co-delivery of a probe and an orbiter is a powerful architecture for a variety of interplanetary
missions. The Galileo and Cassini-Huygens missions are two famous examples, among many others,
of this approach. Given the infrequency of major planetary science missions, it is desirable to
maximize scientific return by gathering data from orbit as well as in-situ measurements from
the atmosphere or surface. Though interplanetary probe and orbiter missions have already been
accomplished a number of times, two technologies could be combined to enable a new type of
co-delivery architecture for planetary science missions.

The first technology is low-cost small satellites (smallsats), especially CubeSats, which have
accounted for an increasingly large share of satellites launched each year since around 2012 [].
Technological innovations including the miniaturization of electronics and availability of commercial-
off-the-shelf hardware has led to a steady increase in the capabilities possible in these small form-
factors, and CubeSat missions have now moved beyond serving a primarily educational role to make
numerous notable scientific contributions []. A 2014 study sponsored by the Keck Institute for
Space Studies presented space science mission concepts “uniquely enabled by the small satellite
platform,” and recommended including small spacecraft as secondaries on all missions beyond low
Earth orbit [7]. NASA has also studied a variety of mission concepts through its Planetary Sci-
ence Deep Space SmallSat Studies program [’(]. In November 2018 MarCO-A and MarCO-B, the

twin CubeSat communications relays accompanying the InSight Mars lander, successfully demon-
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strated the merit of smallsats in deep space applications [7]. Ongoing research is applying smallsat
innovation to entry, descent, and landing (EDL) by developing technologies including deployable
aeroshells and multifunctional EDL structures [/, ]. Smallsat secondary spacecraft enhance
planetary science missions only if the secondary mission can minimize the additional mass, risk,
cost, and complexity to the primary mission.

The second technology is aerocapture, the often-studied technique of flying through a planet’s
atmosphere to reduce the spacecraft’s energy and capture into orbit, as shown in Figure .. This
technique has been studied for decades, but not implemented in flight. In recent years, signifi-

cant work has contributed to the development of aerocapture and related technologies, including

development of advanced thermal protection systems [! ], robust flight-control methods and guid-
ance algorithms [~7, , 00], uncertainty quantification [1 =7, , , 125], deployable decelerator
technology [+, , |, and broad aerocapture technology studies [19, 20, 27] to list a few. A

2016 study at the NASA Jet Propulsion Laboratory concluded that while aerocapture technology
readiness is destination-dependent, no prior flight demonstration would be needed to implement
aerocapture at Titan, Mars, and possibly Venus [!]. Some of the renewed interest in aerocap-
ture can be attributed to recent concepts for missions to the ice giants (Uranus and Neptune) in
preparation for the Planetary Science Decadal Survey [!0], because it is these destinations where
aerocapture can offer the most benefit compared to propulsive orbit insertion [/ ~].

The concept that combines secondary smallsats and aerocapture is to design a probe and
an orbiter to reach their desired final states from a single approach trajectory and entry state,
illustrated in Fig. . The two vehicles travel together during cruise and separate shortly before
atmospheric entry, then diverge during atmospheric flight due to differences in their aerodynamic
properties and control strategies. The orbiter stays higher in the atmosphere, dissipating just
enough energy to perform aerocapture, while the probe continues deeper into the atmosphere until
reaching its desired target state, such as parachute deployment or surface impact. By designing the
probe and orbiter to target a single atmospheric entry state, the need for a critical divert maneuver

performed shortly before entry is avoided. For example, a satellite using lift-modulated aerocapture
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Figure 4.1: Diagram of the aerocapture process

to reach Mars orbit could release several small probes that follow ballistic trajectories down to the
surface. A jettison event is still required to physically separate the orbiter and probe and prevent
recontact in the atmosphere, akin to the mechanical separation of Mars Science Laboratory (MSL)
aeroshell from its cruise stage 10 minutes prior to atmospheric entry [/~!]. In general this co-
delivery approach can apply to missions with multiple probes or orbiters, but for simplicity this

study proceeds assuming only one of each. Some key terms as used in this study:

e “Co-delivery” refers to any two or more spacecraft that reach a shared destination via a
single interplanetary trajectory, such as the delivery of five separate probes by the Pioneer

Venus Multiprobe bus [190].

e “Probe” is used as a catch-all term including landers, impactors, deep atmospheric probes,

etc.

e “Secondary” refers to a smaller, ride-along addition to a larger, more expensive “primary”
craft, e.g. MarCO was a secondary mission for the InSight primary spacecraft. In the

context of the proposed co-delivery method, a primary orbiter could have a secondary
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Figure 4.2: Conceptual diagram of co-delivery from a single entry state, shown as a close-up view
of the region in the dashed-line box in Fig. . Features exaggerated.

probe or the other way around, hence these terms are defined separately.

The primary motivation for targeting a single entry state for both orbiter and probe is to
avoid requiring a divert maneuver, and managing its associated error, shortly before entry. If
this maneuver is performed early, the probe would either require a propulsion subsystem and
navigation capability, or would be coasting without course-correction capability from separation
until entry. The later the orbiter performs the divert maneuver, the larger this maneuver becomes
and the less time there is to quantify and potentially mitigate maneuver execution error. This is
not to say that these other co-delivery architectures are not feasible; indeed, Galileo and Cassini-
Huygens successfully had probes coast passively for nearly 150 days and 20 days, respectively
[99, ]. Rather, targeting a single entry condition is a solution to this tradeoff that reduces
maneuver complexity on approach and eliminates a source of navigation error. Furthermore, by co-
delivering the probe and orbiter, the secondary craft is able to benefit from the primary spacecraft’s

resources such as power, propulsion, and communications until shortly before atmospheric entry.
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This may significantly simplify the design of the secondary ride-along craft compared to separate
post-launch operations; for example, independent operations and navigation during cruise proved
to be a significant challenge for the MarCO CubeSats [191].

Reference [77] qualitatively discusses the challenges of the proposed co-delivery method in
detail. These challenges include the timing and dynamics of the separation event, post-separation
collision concerns, timing and observation geometry between the orbiter and probe, and the fea-
sibility of trajectories that deliver an orbiter for aerocapture and a probe for direct-entry from a
single entry state. The last of these is the focus of this study, with the remaining challenges left
for future work.

This study focuses on the feasibility of the flight mechanics associated with this co-delivery
strategy. A broad trade space is explored to understand the regions of feasibility for co-delivery from
a single entry state while quantifying relevant mission constraints. Earth, Mars, Venus, Titan, and
Neptune applications are considered. A single representative scenario is developed that implements
closed-loop guidance for both vehicles and also includes a passive ballistic probe, and illustrates

the performance of these vehicles under relevant uncertainties via Monte Carlo simulation.

4.2 Trade Study

The purpose of this section is to understand, at a high level, the combinations of trajectories
and vehicles for which co-delivery from a single entry state is a possibility. A wide range of entry
trajectories are simulated and classified by their final states, and a number of key constraining
parameters are computed. The goal of this study is to demonstrate the fundamental flight mechanics
feasibility of this co-delivery method at each destination and provide a starting point for further

investigation of any specific mission concept.
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4.2.1 Methodology

To simulate these trajectories, three degree-of-freedom equations of motion are numerically
integrated assuming a point-mass gravity with lift and drag forces acting on each vehicle! [7-].
Consistent with the flight of a blunt body in hypersonic continuum flow, constant aerodynamic
coefficients, constant mass, and zero thrust are assumed, as well as zero wind. The vehicle state
is propagated using a variable-step Runge-Kutta numerical integration method of order 5(4) [197].
The vehicle is initialized at the atmospheric interface altitude haty. For each target destination, a
representative planet-relative entry velocity, Vg, is defined based on entry velocities of previous
planetary entry missions or aerocapture mission studies [/07, 50, 55]. Entry flight path angle
(EFPA) and ballistic coefficient are varied as part of the trade study. EFPA is the angle between
the vehicle’s planet-relative velocity vector and the local horizontal. The ballistic coefficient [ is
effectively a ratio of inertial to aerodynamics forces on the vehicle and is defined in Eq. (/. 1), where
m is vehicle mass, Cp is hypersonic drag coefficient, and A is reference area. Note that while the
particular results described herein will vary as a function of entry velocity, the purpose of this work
is to demonstrate the conceptual feasibility of this co-delivery technique. The parameters used in

this analysis are listed in Table

= (4.1)

Table 4.1: Relevant Planetary Constants

Central Body  hatm, km Vg, km/s k&, kg% /m atm. composition by volume
Earth 125 [101]? 11 1.748 x 10~* 78.1% Na, 20.9% Og [1 0]

Mars 125 [167] 6 1.904 x 107%  2.59% N, 95.1% COq, 1.94% Ar [10]
Venus 135 [167] 11.5 1.897 x 1074 3.50% Na, 96.5% CO4 [107]
Titan 800 [107] 6 1.758 x 10~* 97.7% Nag, 2.30% CHy [107]
Neptune 1000 [107] 27 7.361 x 107°  1.50% CHy, 79.6% Ha, 18.9% He [100]3

Profiles of atmospheric density are taken from the nominal output of the Global Reference

Atmospheric Model (GRAM) for that planet/moon [107, , , , |, where each GRAM

1

2 Orion uses hqtm = 400,000 ft., which here is rounded up to 125 km to match convention
3 Particular values chosen to match


https://github.com/salbert21/petunia
https://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html
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provides an engineering-level model that can produce both mean and dispersed atmospheric data.
The density profile is then linearly interpolated with altitude; although density varies approximately
exponentially with altitude, GRAM data is output every 0.1km, so linear interpolation between
datapoints is sufficiently accurate for this application. To approximately characterize the effect of
density variability, results are shown for density profiles at plus or minus three standard deviations
from nominal, where these +30 profiles are directly output by GRAM.

Several potentially constraining quantities are calculated for each trajectory, one of which is
peak heat flux. Specifically, peak convective heat flux at the stagnation point for a fully catalytic
surface is estimated using the Sutton-Graves method [201]. The expression is shown in Eq. (!.2),
where ¢ is total convective heat rate at the stagnation point, p; and hs are the total stagnation
point pressure and enthalpy respectively, R, is the effective nose radius, h,, is the surface enthalpy,
and Kgg is a coefficient. This expression is then converted to the more useful form shown in
Eq. (1.7) using a few assumptions for hypersonic flow. In hypersonic flow the surface enthalpy
hy is a negligible contribution to the total value, which can then be approximated as hs ~ V;2/2
[207]. Using a Newtonian flow approximation, the pressure coefficient at the stagnation point is
Cp,s = 2, and freestream pressure makes a negligible contribution, so stagnation point pressure
becomes ps = 1/2 CpspVi2 + pso = pVi2 [202]. The modified Sutton-Graves coefficient is then
k = Ksg/(2v/101325)* . The values used in this study for k, as well as the atmospheric compositions

used to compute them, are listed in Table

QS = KSG’M %(hs - hw) (4.2)

. P 3
s =k —V 4.3

Radiative heating is not included in this analysis. Total integrated heat load is computed by
numerically integrating the stagnation point convective heat flux over time. An effective nose

radius of R, = 1m is assumed, which allows easy scaling of these heating results for other nose

* The 1/+/101325 factor comes out of a unit conversion from atm to Pa.
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radius values. The maximum sensed acceleration in terms of Earth g’s is also calculated.

P

1% 4.4
R,k (4.4)

QS:k

Each trajectory is categorized based on its exit state: if the trajectory intersects the surface
(or some minimum altitude) it is a probe, if the vehicle exits the atmosphere on an elliptical
orbit it is an orbiter, and if the vehicle exits the atmosphere on a hyperbolic orbit the trajectory is
categorized as escape. For the orbiter trajectories, apoapsis altitude is computed using the vehicle’s
post-atmospheric Keplerian state.

Three types of trajectories are described in the open-loop analysis presented in this study:
ballistic, full-lift-up and full-lift-down. These descriptors do not imply that the vehicle has no
additional control authority; rather, they represent nominal trajectories for which no lift- or drag-
modulation is required. A lift-to-drag ratio of L/D = 0.25 is selected based on the approximate
hypersonic trim L/D of MSL and Mars 2020 and the known capabilities of a 70° sphere cone
aeroshell [107]. While the results of this study provide insight into the consequences of increasing
or decreasing L/D from this value, quantitative analysis for vehicles with significantly different
L/D is left for future work. By showing these three cases, the set of trajectories approximately

accessible with a 70 ° sphere cone aeroshell is characterized for each scenario.

4.2.2 Results

The results at each planetary destination are summarized in Figs. - . For each of
the three trajectory types, trajectories are simulated across a grid of varying EFPA and ballistic
coefficient. For each grid, at any given (8 there will be some EFPA value that delineates between
orbiters and probes. These EFPA values form the black line on each plot. Similarly, if the inertial
entry velocity exceeds escape velocity, there will be an EFPA value delineating between orbiters
and escape trajectories, and this is shown as the purple line. The shaded regions for each line
are bounded by the values of that line when the £30 profiles are used for density. Therefore, any

gridpoints left of the black line are probe trajectories, any gridpoints between the lines are orbiters
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(aerocapture), and to the right of the purple line are escape trajectories. Contours of apoapsis
altitude, peak g-load, peak heat rate, and total heat load are then overlaid for each plot. Note
that the contour values are not necessarily evenly incremented, and that the x-axis scale varies
significantly between destinations.

The interpretation of these plots is illustrated through the following example. By definition
the proposed co-delivery method is feasible where a probe trajectory and orbiter trajectory both
exist at the same EFPA for realistic ballistic coefficients. Because the vehicles share an entry
condition, co-delivery scenarios are identified in these plots with vertical cross-sections along a
single EFPA. As a simple example, a vertical line at —5.5° (not shown) for the Earth-ballistic plot
would pass through the middle of the black line. Here, ballistic coefficients less than 75 kgm™2 are
probes, and greater than 110 kg m~2 are orbiters. Thus, for 11 km/s entry at Earth with an EFPA
of —5.5°, co-delivery from a single entry state is possible using only ballistic trajectories, just by
tuning the g values of the two vehicles.

The application of lift broadens this feasible range significantly. In Fig. a light blue
vertical line is added at a nominal EFPA of 6.25°. On the ballistic plot the line is entirely behind
the orbiters/probes cutoff, meaning all ballistic coefficients in the range considered (10 - 200 kg m~2)
result in probe trajectories. On the full-lift-up plot the line is entirely in front of the cutoff line, so
all B values result in orbiter trajectories. The initial apoapsis altitudes for these trajectories vary
with ballistic coefficient, and are shown in the dashed blue contour lines.

For the proposed co-delivery method to be plausible, the architecture should be robust to
a number of uncertainties, including navigation uncertainty. This can be described as an entry
corridor, a range of possible EFPA values. In Fig. the dashed light blue vertical lines represent
an entry corridor of —6.25°+0.5°. As a result of this uncertainty the dashed lines now intersect the
black cutoff lines for ballistic and lift-up trajectories, and these intersection points give the ballistic
coefficient requirements for this scenario. For feasibility even with this large EFPA uncertainty the
orbiter 5 would need to be at least 40 kg m~2, and the probe coefficient no greater than 160 kg m—2.

The value of £0.5° used here is only an example; the same process can be followed for any width
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entry corridor using the results in Figs. -

These ballistic coefficients might be further constrained by other requirements. Continuing
the example annotated in Fig. , to achieve an initial apoapsis altitude of at least 150 km, the
orbiter 3 should be at least 75kgm™2. To keep the total heat load at the stagnation point below
20kJ cm™2, the probe 3 should be no greater than 120kg m~—2. Additionally, note that the EFPA
range still does not intersect the cutoff line on the full-lift-down plot, so any ballistic coefficient
in range would result in a probe trajectory, although the peak g-loads are significantly higher for
lift-down trajectories. In addition to these flight mechanics constraints, packaging and vehicle
geometry considerations make some ballistic coeflicients more feasible than others.

Alternatively, these plots can be used in the other direction to determine the tolerable amount
of uncertainty before the co-delivery architecture design fails to close entirely. Consider co-delivery
at Neptune for an orbiter flying full-lift-up and a deep atmospheric probe flying ballistically, each
with a ballistic coefficient of 150 kg m~2. Imagine, arbitrarily, that the orbiter is required to achieve
an initial apoapsis below 50.000 km, without other constraints on either vehicle. The theoretical
corridor width for the orbiter can then be determined by the intersection of the 150 kg m~2 horizon-
tal line with the shaded black region on the left and the dashed blue contour for 50.000 km apoapsis
on the right. This results, approximately, in a theoretical entry corridor of —13.875°+0.375°. Here,
theoretical corridor width represents a combination of navigation and aerodynamic uncertainties,
but atmospheric density uncertainty is already taken into account in the plot.

The examples above demonstrate how a mission designer can choose constraints on nominal
EFPA, entry corridor, apoapsis, etc. and then directly assess the feasibility of probe and orbiter

co-delivery from a single entry state for that mission scenario from the plots in Figs. -

4.2.3 Discussion

The feasibility assessment at each destination depends on the specific scenario and constraints,
making it challenging to compare the destinations in a general way. One heuristic approach is to

consider the EFPA range spanned by the probes/orbiters cutoff line, i.e. the difference between
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the probe/orbiter transition EFPAs at 8 = 200kgm~2 and 8 = 10kg m~2 for ballistic trajectories,
including the narrowing effect of the atmospheric uncertainty bars. In ascending order, this value is
approximately: 0.66 ° at Venus, 0.84 ° at Earth, 0.88 ° at Neptune, 1.22° at Mars, and 3.8 ° at Titan.
These values reflect the the ranges of usable EFPAs for two ballistic vehicles, meaning Titan is by
far the most flexible if no nominal lift is required. A similar heuristic parameter is the EFPA range
gained from a full-lift-up trajectory, defined as the difference between the probe/orbiter transition
EFPAs at 8 = 100kg m~2 for full-lift-up and ballistic trajectories including the narrowing effect of
the atmospheric uncertainty bars. Again in ascending order, this value is approximately: 1.18° at
Neptune, 1.36° at Earth, 1.52° at Mars, 1.84° at Venus, and 1.9° at Titan. Titan again has the
widest range by this measure, though by a smaller margin. Notably, Venus had the smallest range
for ballistic-only trajectories but has the second-widest range by this measure of lift-effectiveness.
The small scale height of the Venusian atmosphere at aerocapture altitudes corresponds to rapid
density variations with altitude [7(], resulting in narrow corridor widths but a large control authority
for lifting vehicles. Furthermore, all else being equal, high entry velocities lead to larger theoretical
corridor widths for lift-modulation aerocapture vehicles 1], and the representative entry velocity
chosen for Venus in this study is high relative to the planet’s mass. It is important to note that
these benefits are directly traded-off by high g-loads, heat rates, and heat loads at Venus; the high
entry velocity at Neptune, dictated by its large gravity well and the constraint of reasonable times
of flight from Earth, has similar drawbacks. Note that the particular values of these EFPA ranges
are tied to the choices of atmospheric interface altitudes listed in Table

The results shown in Figs. - and discussed above are primarily in terms of ballistic
coefficient, which is a ratio and provides no information on the actual mass and volume of the
vehicle. The mechanical and aerodynamic design of specific aeroshells to meet a target ballistic
coefficient, fit within secondary smallsat mass and volume constraints, and accommodate a science
payload is beyond the scope of this study. That said, there is precedent for entry capsules in a
smallsat form factor. Most notably, the Mars Microprobes provide flight-heritage at Mars and

each probe had a ballistic coefficient of 35.6kgm™2, an entry mass of 3.6kg, and would have fit
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within a 35 x 35 x 27.5cm box [20], well within the mass and volume constraints for a secondary
payload on an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) ring [20].
The Adaptive Deployable Entry and Placement Technology (ADEPT) deployable aeroshell enables
aeroshell diameters of up to 1.7m to stow within an ESPA secondary payload volume and has an
expected ballistic coefficient in the range of 25-50kg m~2 and entry mass of 75-150kg for delivery
of a 12U CubeSat payload volume [!=3]. The notional design for the Small High Impact Energy
Landing Device (SHIELD) has a ballistic coefficient as low as 10kg m~2 for an entry mass of 50 kg
and 6 kg payload mass [/ 0, ]. These example designs are included here to illustrate the fact
that, while detailed design is out of scope, the flight mechanics of the co-delivery method with
smallsat-class vehicles are feasible.

There are some key limitations to the approach taken in this study. For the sake of space,
only one entry velocity is considered for each destination. In general, increases in entry velocity
on the order of 1kms™! lead to an increase in lift-modulation control authority, increased g-loads,
and a compression of the available apoapsis radii in terms of EFPA, but the overall feasibility of
co-delivery is not dramatically affected. This is shown in Reference [2(/(] through a comparison
of feasibility with 10, 11, and 12.5kms~! entry velocities at Earth. Another limitation is the
bounding case approach to lift-modulation. While it is possible to use 100% of available lift to bias
the nominal trajectory — Viking flew a full-lift-up trajectory with no guidance — in general some
control authority must be allocated to compensate for uncertainties in EFPA, atmospheric density,
vehicle parameters, etc. MSL, for example, used about 70% of its available lift to bias its nominal
trajectory, reserving 30% for control authority margin [1(7]. The ability of the results shown here
to capture these types of trajectories is limited. For example, for a lift-up trajectory at Earth,
11kms™!, and an EFPA of —6°, a ballistic coefficient of 50 kg m™2 results in an apoapsis altitude
of about 3000 km. Intuitively, a similar trajectory that instead uses only 70% of its lift for the
nominal trajectory would result in aerocapture with a lower apoapsis, but the results shown here do
not quantify this idea. Nonetheless, these results give bounding cases within which a vehicle could

reserve some control margin for uncertainties by targeting a lower apoapsis or increasing control
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authority by increasing L/D.

Another aerocapture trade reflected in these results is that, in general, more is gained from
the lift-up trajectories than from lift-down. From inspection of the example in Fig. , it is clear
that one appealing configuration is a lift-modulated orbiter with a ballistic probe trajectory. The
ballistic probe trajectory could be truly passive, such as for a simple penetrator probe mission, or
it could apply lift- or drag-modulation to the ballistic trajectory for the purpose of accommodating
uncertainties. Passive impactor or penetrator probes are already excellent candidates for co-delivery
due to their simplicity and small size, so this configuration stands out as a promising mission

architecture for multiple reasons.

4.3 Representative Scenario

The previous section explores a large trade space for probe and orbiter co-delivery by consid-
ering numerous point designs. Each of these trajectories is only passively controlled (full-lift-up or
-down, or ballistic) and has no accounting for random uncertainties. In order to further demonstrate
the fundamental feasibility of the proposed co-delivery method from a flight mechanics standpoint,
this section more closely examines a single representative mission scenario. A nominal scenario is
defined that makes use of bank-angle modulation lift control for the orbiter and guided probe while
also considering a passive ballistic probe. Representative uncertainties are then applied, and their

effect quantified through a Monte Carlo analysis.

4.3.1 Methodology

A general co-delivery scenario involves two vehicles, an aerocapture orbiter and a direct-entry
probe, each of which may implement some closed-loop guidance to control their atmospheric flight.
As noted in Subsection , a particular scenario of interest would involve a passive ballistic probe;
because this vehicle would be significantly simpler than an entry vehicle using active guidance and
control, it may be a better fit for ride-along probe missions. Thus, three vehicles are considered in

this section: a guided orbiter that performs aerocapture, a guided probe following a direct-entry
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trajectory, and a passive ballistic probe that follows a similar direct-entry trajectory.

Mars is chosen as the destination for this representative example scenario. The trajectories
are simulated using the same equations of motion as in Subsection , with the addition of
the Jy zonal term in the spherical harmonics gravity model, where J, = 0.001964 [/ (1]. For the
orbiter and guided probe, bank-angle modulation is used as the method of control, which updates
the orientation of the lift vector about the velocity vector without changing the angle of attack.
This method is selected here for its flight heritage on the Mars Science Laboratory and Mars 2020
missions [ (7, ], but note that other control approaches such as drag-skirt jettison or direct-force
control would also be applicable.

Mode 1 of the Fully-Numerical Predictor-corrector Aerocapture Guidance (FNPAG) scheme
developed by Lu et. al [(7] is implemented for the orbiter. This guidance algorithm assumes a bang-
bang structure to lift-modulation, wherein the vehicle uses Brent’s method [?("] to numerically
predict a switching time from a lift-up angle 0 < o; < 90°° to a lift-down angle 90° < o4 < 180°.
This bang-bang structure targets the desired apoapsis while minimizing the total AV required for
the periapsis raise and apoapsis correction maneuvers. A number of simplifying assumptions are

made for the purpose of this demonstration.

(1) Only longitudinal guidance is implemented, meaning a final apoapsis radius is targeted
while ignoring the final inclination or wedge angle. Lateral guidance is normally achieved
separately from the modulation of the bank-angle magnitude through periodic bank re-
versals [07]. Assuming no plane change is desired during aerocapture, the feasibility of
achieving the desired apoapsis under uncertainties can be approximately assessed without
considering the lateral guidance component, even though for any real aerocapture mission

the lateral logic is an important part of the guidance scheme.

(2) The initial bank-angle is assumed to be o; = 0°, and the initial guess for the final bank-

angle (which is updated during Phase 2 of FNPAG) is assumed to be 04 = 150°. Note that

® called o in [67], renamed here to distinguish from the FNPEG variable of the same name
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with o; = 0° there is neither lateral force nor lateral control authority during Phase 1, but

bank reversals could be performed during Phase 2.

(3) The guidance is run at a rate of 1Hz and the bank-angle is updated instantaneously,

neglecting the effect of a finite roll rate and acceleration for the vehicle.

(4) No additional trajectory constraints are imposed, such as limits on peak heat rate or g-load,

because the value of those limits would be strongly mission-dependent.

(5) No atmospheric estimation model is included in the guidance implementation as this was

found to be unnecessary to demonstrate fundamental feasibility for this scenario.

These simplifying assumptions are appropriate here because this section presents a proof-of-concept
demonstration; a dedicated mission analysis would iteratively tune o4, potentially assume a larger
value for o;, implement bank reversals and a finite roll rate and acceleration, and so on.

A similar approach is taken for the guided probe, which implements the Fully-Numerical
Predictor-corrector Entry Guidance (FNPEG) developed by Lu [ 1}]. FNPEG assumes the bank-
angle magnitude profile is a linear function of e as shown in Eq. (1.0), where e is the negative
of the specific orbital energy as given in Eq. (1.0). The value of ¢ is then updated with each
guidance call in order to target a desired range and energy, where the desired energy is computed
by applying Eq. (1.0) to the desired radial distance and inertial velocity at the final time. Note that
because the target values for radius and velocity are combined into a single constraint, FNPEG
can result in small altitude and velocity errors, but in many applications (such as targeting range
at parachute deploy) this is acceptable [I12]. At each guidance call, FNPEG uses the Golden-
Section method to minimize the error function Eq. (1. 7) [207], where s(ey) is the predicted great-
circle range at the target energy and S;Z is the target final range. The value of s(ey) is predicted
numerically by including range s (in radians) in the equations of motion as § = V cos(y)/r and
propagating until the target energy is reached [ /}], where V and 7 are both planet-relative values.

Similar assumptions are made here as for FNPAG. Lateral guidance is again neglected for the same
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reasons, instantaneous bank-angle updates are assumed with guidance run at a rate of 1 Hz, and
no additional trajectory constraints are imposed. A value of oy = 60° is used for this study. As
with FNPAG, these assumptions are made for the sake of a proof-of-concept demonstration, and a

more detailed mission analysis would tune o, implement finite roll rate and acceleration, etc.
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4.3.2 Nominal Scenario
A nominal scenario is constructed starting from the results shown in Fig. . As seen from
the full-lift-up plot in Fig. , a lifting vehicle with 8 = 130kg m~2 can achieve aerocapture with a

low apoapsis from an EFPA of —12°. As seen in the ballistic plot, a probe with = 35kgm™2 can
follow a direct-entry trajectory from the same EFPA, either as a ballistic probe or a lifting vehicle
dedicating some or all of its control authority to mitigating uncertainties. The orbiter ballistic
coefficient was chosen to be similar to that of MSL [107], and the probe ballistic coefficient to be
similar to that of the Mars Microprobe capsules [20%]. As in the trade study, the guided vehicles
have a lift-to-drag ratio of L/D = 0.25, whereas the passive probe is ballistic (L/D = 0). As before,
the entry state is defined at the atmospheric interface altitude with a planet-relative entry velocity
or Vgo = 6km s~!, with a due-East initial heading angle at 18.38° latitude. The nominal values
of key parameters are listed in Table in the Mean column.

For the orbiter, the target final orbit is defined to be a 250 km altitude circular orbit. By
running an FNPAG trajectory once with no dispersions (a perfect predictor), the switching time
required to reach this apoapsis from the entry state described above is found to be approximately

1

152.6s. This nominal trajectory results in a nominal total AV cost of 74ms™", as shown in Table

. This total AV is computed as the sum of the AV for a periapsis raise maneuver performed at
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Figure 4.8: Nominal trajectories for the orbiter, guided lifting probe, and passive ballistic probe

the initial apoapsis (AV7) and the AV for a subsequent apoapsis correction maneuver performed at
the new periapsis (AV3). This cost is computed as in Eq. (1), where r, and r,, are the apoapsis and

periapsis radii of the post-atmospheric state, respectively, and r; and r;; are the desired apoapsis

1 1 1 1

Ta Tq + 7“; Ta To+7p
1 1 1 1

7“; T+ 7“;; r;; Tq + 1";_

For the guided probe, the target altitude and velocity are set to 15 km and 300 ms~!, respec-

and periapsis radii, respectively.

AV = AV + AVy =\/24

(4.8)

+v/2p

tively, and the target range is approximately 700.8 km. This target state corresponds to a Mach
number of 1.3 and a dynamic pressure of 175Pa, where the speed of sound at Mars is found by
interpolating from the table provided in [!0”]. Depending on the specific mission design, the final
state targeted by FNPEG could represent parachute deployment, retrorocket ignition, or simply
a shift to some other guidance method as the entry capsule continues down to the surface. The
main purpose here is to give FNPEG something to aim for so that the effect of uncertainties can
be understood, rather than to design a full EDL sequence. With these target values and a perfect

predictor, FNPEG computes an initial bank-angle magnitude of approximately og = 139.3°. This
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Table 4.2: Input dispersions

Parameter Mean Dispersions
EFPA —12° 30 =02°
Entry Velocity 6kms~! 30 =10ms~!
Orbiter 130 kg m—2 +5%

Probe 3 35 kgm ™2 +5%
Orbiter L/D 0.25 +5%
Guided Probe L/D 0.25 +5%
Density Mars-GRAM 2010 Mars-GRAM 2010

nominal trajectory results in zero range error, but has altitude and velocity errors of 441 m and
—5.5ms ™!, respectively. As mentioned in Subsection , here FNPEG undershoots the target
velocity and overshoots the target altitude in such a way that the final energy is still correct, but
these errors are relatively small and could also be further reduced by optimization of the reference
trajectory. The discrepancy is mainly notable because a bias can be expected in the results under
uncertainty due to these nonzero errors for the nominal trajectory.

Lastly, the passive ballistic probe has no target state because it has no variable control
authority during atmospheric flight. In order to compare results with the guided probe, the passive
probe’s trajectory is always terminated at 15km altitude, and the errors are defined as differences
compared to the nominal velocity and range values at this altitude: 353.1ms~! and 735.0 km,
respectively. Note that this means there are no performance results for altitude for the passive
probe. This corresponds to a Mach number of 1.6 and a dynamic pressure of 242 Pa.

The nominal trajectories for these three vehicles are shown in Fig. , where the blue
dot shows the point along the orbiter’s trajectory where it switches from lift-up (o;) to lift-down
(04). The orbiter trajectory and either of the two probe trajectories constitute one representative
scenario at Mars; a similar process could be followed for any of the feasible regions of the trade

space identified in Section
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4.3.3 Performance Under Uncertainty

Having designed nominal trajectories for a guided orbiter, guided probe, and passive probe,
the performance of these vehicles is assessed under representative uncertainties in the entry state,
vehicle aerodynamics, and atmospheric density. A 1500-trial Monte Carlo analysis is performed.
The mean and dispersions for each randomized input are listed in Table .2, where 30 = X indicates
a Gaussian distribution with zero mean and standard deviation o, and &Y % indicates the bounds
for a uniform distribution relative to the mean. The input parameter is computed by adding the
mean and a dispersion value randomly generated from the associated probability distribution.

Variation in the entry state is simulated by independently normally dispersing the planet-
relative EFPA and planet-relative entry velocity magnitude. Because the orbiter and probe are
assumed to share a delivery state, the same randomly-selected entry state is used for all three
vehicles for each trial. The numerical predictor component of FNPAG and FNPEG is given perfect
state knowledge, including of the entry state, so the EFPA and velocity dispersions represent
guidance performance under a range of initial conditions, as opposed to performance with an
imperfect predictor or error between the navigated and true states. The EFPA dispersion is set
equal to the delivery requirement for MSL, and the entry velocity dispersion is set to bx the MSL
requirement for the navigation knowledge accuracy used for EDL guidance system initialization
[[©1]. The larger entry velocity dispersion is used in this study to generate a wider range of
potential entry states for illustrative purposes.

Uncertainty in the vehicles’ aerodynamic properties is modeled by independently uniformly
dispersing ballistic coefficient and L/D. Because the orbiter and probe are separate vehicles, their
aerodynamic properties are dispersed separately. However, because the passive probe is included
for direct comparison to the guided probe, its ballistic coefficient is always set equal to the actual
value of the guided probe’s ballistic coefficient; there is no dispersion on the passive probe’s L/D
because it always equals zero. Unlike the entry state, the numerical predictor guidance always uses

the nominal values for § and L/D, whereas the true state is propagated using the dispersed values



118

for each trial, resulting in an imperfect predictor. The uniform +5% dispersion for these vehicle
parameters represents modeling uncertainty associated with computational fluid dynamics analysis
and ballistic range testing, and is based on values used in previous studies [’-].

Finally, atmospheric density variability at Mars is modeled using Mars-GRAM 2010, which
has a built-in capability to output randomly-perturbed correlated density profiles in a Monte Carlo
sense [ 71]. Because the orbiter and probe would arrive simultaneously and experience the same
atmosphere, the same dispersed density profile is used for all three vehicles in each trial. Differences
in the density encountered at a given altitude due to different paths through the atmosphere are
assumed negligible for this study. As with the aerodynamics dispersions, the guidance algorithm
always uses the nominal density profile in its predictions, whereas the true state is propagated
according to the dispersed density profile. The Mars-GRAM 2010 settings are generally kept at
their default values, including a perturbation scale of 1 and solar radio flux at 10.7cm of 68 sfu

[[01], using a date of Feb. 18 2021.

Table 4.3: Performance Results Under Uncertainty

Parameter Nominal Mean Standard Deviation

Orbiter Apoapsis Error 0km 30.87 km 65.05 km

Orbiter Total AV Cost 73.73ms ™! 86.75ms ! 16.85ms™!

Guided Probe Altitude Error 441.1m 466.9m 338.4m

Guided Probe Range Error Okm —0.1821 km 1.076 km

Guided Probe Velocity Error —5.486ms™! —5.840ms~! 4.250ms~!

Passive Probe Range Error 0km 0.1483 km 9.984 km

Passive Probe Velocity Error Oms™! 0.1006 ms~* 11.45ms~!

The results of this 1500-trial Monte Carlo analysis are summarized in Table , and his-

tograms of error and cost parameters are shown in Figs. — . The purpose of this analysis is

to demonstrate feasibility for this mission scenario and to compare the performance of the guided
and passive probes, not to precisely estimate the performance metrics of the vehicles. By numer-
ically examining the convergence as the number of trials was increased, the quantities of interest
listed in Table are found to converge to within roughly +£5%. The mean range error for both

probes and mean velocity error for the passive probe are exceptions to this statement, because as
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quantities with nominal values of zero and mean values near zero their percent errors are poorly
behaved. The guided probe range error converges to within roughly 0.05km, the passive probe
range error to roughly 0.2km, and the passive probe velocity error to roughly 0.5ms™1.
The orbiter achieves aerocapture with a 100% success rate despite a relatively large range
in entry states, although some cases do significantly overshoot the desired apoapsis as seen in Fig.
. Note that Fig. is a close-up view of Fig. in order to better see those high-error cases.
These errors also lead to a positive skew in the total AV results shown in Fig. , with the
worst cases exceeding twice the nominal cost. Note that the total AV results are centered nearly
one standard deviation above the nonzero nominal value. Although these errors are significant,
they are not unexpected considering the relatively large entry state dispersions and the use of
an imperfect predictor in the guidance algorithm. The large overshoot cases are often a result
of saturation in Phase 2 of FNPAG, meaning the vehicle flies full-lift-down but is still unable to
sufficiently reduce its energy, resulting in an apoapsis that is higher than desired. With better
tuning of the o4 parameter, robustness could be improved and a reduction in the high-error cases

may be achieved. The performance could also be improved by adding some adaptive atmospheric

estimation capability to the guidance implementation [0, ==].
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Figure 4.9: Apoapsis results for orbiter
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The altitude performance for the guided probe is shown in Fig. , and the range and
velocity performance is compared between the guided and passive probes in Figs. and ,

respectively. As expected, the altitude and velocity errors for the guided probe are centered near the

nonzero nominal error values. While the specific requirements for this delivery accuracy would be

mission-dependent, in general FNPEG shows good performance. Particularly notable for this study

is the comparison of range and velocity errors between the guided and passive probes. As expected,
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Figure 4.12: Target velocity error histograms for guided and passive probes

the passive probe does perform much worse than the guided probe; in terms of standard deviation,
the passive probe has roughly double the velocity error and roughly an order of magnitude more
range error compared to the guided probe. That said, a delivery uncertainty on the order of +50 km
range and +25ms~! velocity at 15km altitude may well be acceptable for some applications. For
example, if the probe were a small secondary ride-along payload targeting a broad surface region
either by parachute or as an impactor, perhaps these error ranges would be sufficient.

The Monte Carlo analysis results are included to demonstrate two main conclusions. First,
aerocapture and direct-entry trajectories from the same entry state are feasible even under sig-
nificant navigation, vehicle, and atmospheric dispersions if the orbiter is provided some control
authority and closed-loop guidance capability. Second, the probe can target a specific final state
if also provided control authority and closed-loop guidance, though the final state dispersions for
a passive ballistic probe may already be sufficient for some applications. The performance results
presented in this section are intended to serve as a proof-of-concept for one representative scenario

at Mars under uncertainty.
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4.4 Conclusion

The proposed co-delivery method is an architecture for smallsat ride-along missions to in-
terplanetary destinations. This co-delivery architecture is shown to be feasible for wide ranges of
vehicle and trajectory parameters at Earth, Mars, Venus, Titan, and Neptune, subject to mission-
specific heating and g-load constraints that are quantified across this trade space. An example
scenario is developed using FNPAG and FNPEG closed-loop guidance for the orbiter and probe,
respectively, and the vehicles’ performance under uncertainty is shown to be adequate through a
Monte Carlo analysis. Based on the trade space analysis and the uncertainty quantification results,
passive ballistic impactor or penetrator probes as a secondary mission on an orbiter delivered by
a lift-modulated aerocapture trajectory is shown to be a particularly promising configuration. A
number of challenges remain for implementation, including separation design, timing and observa-

tion geometry, packaging, and tight volume and mass constraints.



Chapter 5

Co-Delivery of a Martian Probe Network

5.1 Introduction

Entry, descent, and landing (EDL) systems for Mars missions are complex, and typically
involve multiple mission-critical subsystems that must operate autonomously in harsh conditions
[20]. Bringing the risks associated with these subsystems down to acceptable levels is a significant
engineering challenge, and this is one reason why, as the size and complexity of payloads to the
Martian surface have increased over time, mission costs have also increased [’(0]. The top priority
for Mars surface missions in this decade is Mars Sample Return (MSR), a multimission campaign
with high cost and requiring significant technology development [210]. It is in this context that a
community of planetary scientists and engineers is seeking lower-cost mission concepts and delivery
vehicles to enable a sustained program of Mars surface exploration during and after MSR, as
outlined in a recent report from the Keck Institute for Space Studies (KISS) [70].

One mission category examined by the KISS study as a potential pathway to reduced cost
is networks of small, fixed landers without requirements for surface mobility and with tolerance
for relatively high g-loads at landing [70]. These network missions are of growing interest for
a variety of investigations, including atmospheric science and seismology [7! !, 0, , |. In
some cases, relevant instruments can be built at small size (5-15 kg) and high g-load tolerance
(1,000-2,000 Earth g’s) [2!1, |. In general, for these mission concepts the probes must be
delivered to a surface arrangement with roughly the right size and shape but precision landing

is unimportant. Notionally, a probe network would consist of 4-8 probes delivered to Mars by
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a single carrier spacecraft, and networks of regional (10’s of km), mid-range (100’s of km), and
global sizes are all potentially of interest. A wide variety of network missions for Mars have been
proposed [ 10, , , , , , |, but none have come to fruition. In most cases, these
missions were cancelled early in development due to high-level budgetary and programmatic issues,
influenced in part by the failures of the Mars Observer and Mars Polar Lander missions [7()]; see
Appendix A.3 of Ref. [10] for a brief history of Mars network mission concepts. The Mars '96
and Mars Microprobes technical failures are notable exceptions. A significant reduction in the cost
and complexity of a Martian probe network could therefore improve the likelihood of selection and
successful development of such a mission.

Probe network missions characterized by miniaturized instruments, high g-load tolerance,
and the lack of a requirement for precision landing enable the use of small, simplified landing
platforms with minimal flight-control requirements. The Small High Impact Energy Landing Device
(SHIELD), illustrated in Fig. [227], is a vehicle concept under development at the NASA Jet
Propulsion Laboratory (JPL) that would meet these needs [/(!]. The purpose of SHIELD would
be to deliver payloads of about 5 kg to the Martian surface at greatly reduced cost and complexity
[l01]. These reductions would be achieved by eliminating EDL subsystems wherever possible,
relying entirely on a passive aeroshell-only entry system followed by a hard landing attenuated by
crushable material, notionally resulting in landing decelerations on the order of 1,000 Earth g’s
[l01]. As a point of comparison, the expected landing g-load for the Mars Microprobes, a pair of
small probes designed to penetrate the Martian surface upon impact, was 30,000 g’s [20].

Mission complexity may be further reduced if all of the probes could be co-delivered by a
single carrier spacecraft onto their uncontrolled entry trajectories without requiring intervening
translational maneuvers between probe deployments. The carrier spacecraft provides necessary
resources to the probes during cruise and eliminates the need for attitude control or propulsion
subsystems on the probes. The timing, magnitude, and direction of each probe’s separation from
the carrier spacecraft is an aspect of mission design faced with competing requirements. In the case

of late probe separation, the impact of probe jettison execution error is reduced, and less battery
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Figure 5.1: SHIELD concept image [2””]

life is required for the probe to survive between separation and landing. In contrast, for an early
probe separation, the required jettison speed is smaller and there is more time to estimate and
correct any execution error.

Delivery of a passive probe to entry from a carrier spacecraft on a hyperbolic approach
trajectory is not inherently a new architecture. The Galileo and Cassini-Huygens missions both
successfully delivered probes to entry trajectories before performing orbit insertion [19, . The
sample return missions of Genesis [/(], Stardust [!(!], Hayabusa [107], Hayabusa-2 [I((], and
OSIRIS-REx! all successfully delivered sample return capsules to Earth entry from a hyperbolic
carrier [107], as will the Earth Entry System component of the Mars Sample Return campaign
[[0%]. The upcoming DAVINCI mission will also include a passive probe delivered by a carrier
spacecraft [777]. What all of these examples have in common, however, is that only a single probe

is delivered in each case.

1


https://www.nasa.gov/news-release/nasas-first-asteroid-sample-has-landed-now-secure-in-clean-room/
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Recent work for the Aeolus mission concept presents a design that co-delivers 20 probes to a
global network on Mars from a single hyperbolic carrier, but assumes that the carrier maneuvers
after each probe deployment [!|”]; this assumption is typical to previous studies of Mars network
missions. A 2013 study demonstrates a unique method of co-delivery wherein two Phoenix-class
landers enter the atmosphere together and then separate, one lander with a drag skirt and the
other without [! | 1]. This creates a discrete change in ballistic coefficient for both vehicles and is
shown to achieve a 3000 km separation on the surface [! | |]. However, this method requires separa-
tion between two flight vehicles during hypersonic flight, a potentially risky event, and assumes a
significantly larger landed mass than will be considered in this study. Broadening scope from plane-
tary probes to include defense applications, missiles armed with multiple independently-targetable
reentry vehicles are capable of delivering multiple warheads to separate locations from a single
carrier vehicle on a suborbital trajectory [?2!]. Due to limited publicly-available information and
significant differences in mission scenarios, defense applications are not further considered here.

In terms of planetary entry missions, the Pioneer Venus Multiprobe provides the most relevant
example. One large probe and three small probes were delivered from a single spacecraft bus during
hyperbolic approach, with the small probes accurately targeted to pre-determined entry locations
separated by 8,800 to 10,400 km [!09]. The Multiprobe bus first released the large probe, then
performed a small maneuver, reoriented, and increased its rate of spin to 48.5 rpm [/ 1(]]. The
three small probes were then released simultaneously, achieving their desired separation due to
the tangential velocity provided by the spinning bus [/ 10]. This represents a unique approach to
probe co-delivery without intervening maneuvering, and provides a degree of flight heritage for the
concept. However, the Pioneer Venus mission design does not amount to a systematic study of co-
delivery trajectory design. Recent work does provide a systematic study of co-delivery trajectories
[227], but considers co-delivery of a probe with an orbiter performing aerocapture rather than
multiple probes forming a network.

The purpose of this study is to broadly investigate the probe network co-delivery problem,

assuming no intervening translational maneuvers and using SHIELD as an example probe design.
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While literature related to specific probe networks does exist, as summarized earlier in this intro-
duction, this article provides a more systematic study of the co-delivery problem under a set of
assumptions relevant to missions of current-day interest. This work begins by presenting a flight-
mechanics analysis for the SHIELD probe, considering event timing, landing accuracy, and the
effect of varying entry flight-path angles. The problem of co-delivering probes to form a surface
network is then considered, first for regional networks within 100 km of a central point followed
by results for larger-scale networks. A linearized targeting method, inspired by B-plane targeting,
is introduced for the design of regional networks and its limitations are quantified. Monte Carlo
analyses are performed for both regional and large-scale networks to capture the impact of relevant
uncertainties, including probe jettison execution error, on the feasibility of the computed co-delivery

trajectories.

5.2 Models and Assumptions

An assumed design goal in this work is that precision landing is not required, but the network
should approximate a desired distribution and location on the surface. Additional assumptions

regarding probe co-delivery include:

e Each probe is a ballistic rough lander, and is passive other than drag skirt deployment and

heatshield jettison.

e The probes approach Mars on a single carrier spacecraft on an entry trajectory, and the
separation events do not change the carrier’s trajectory and no other maneuvers are per-

formed. However, changes in carrier attitude between separation events are allowed.

e The probes separate from the carrier mechanically.

e Probe jettisons occur between 0.25 and 20 days before atmospheric entry.

e The carrier spacecraft has an approach trajectory such that the magnitude of the planet-

relative velocity at the atmospheric entry interface altitude of 125 km is 6 km/s.
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Approach trajectories in this study are defined by their state at atmospheric entry interface,
that is, the position and velocity of the carrier spacecraft at 125 km altitude. This state is defined
by altitude h, longitude 0, latitude ¢, planet-relative velocity V', flight-path angle v, and heading
angle 1; flight-path angle is the angle between the velocity vector and local horizon, and heading
angle is the angle between the horizontal projection of the velocity vector and a due-North vector in
that same plane (e.g. a 90° heading angle is due-east). Figure provides a visualization for these
definitions, where the 2 basis vectors form a planet-fixed frame, é; is aligned with the position vector
of the spacecraft, and S5 is aligned with the planet-relative velocity vector. The central landing
site is then the point on the surface where a SHIELD probe would nominally land after continuing
on this trajectory. Two things should be noted about this convention. First, because of the probe
jettison velocities, each probe will actually enter the atmosphere with different states, potentially
resulting in significantly different entry flight-path angle and entry velocity values. Second, the
carrier spacecraft would not itself be a SHIELD probe and could perform a divert maneuver or
intentionally burn up in the atmosphere; the carrier’s entry state and central landing site are
simply convenient ways to define the approach trajectory and a reference point on the surface,
respectively.

Separation events are assumed to impart an impulsive change in velocity to the probe, where
the jettison velocity Vj is defined as the velocity of the probe relative to the carrier the moment
after separation, and jettison speed is defined as the magnitude V; = |V;|. This notation is used to
distinguish from impulsive AV because, while they are theoretically equivalent events, this study
assumes jettisons occur mechanically (e.g. a spring jettison) rather than propulsively.

Though mostly passive, SHIELD does go through three different configurations from atmo-
spheric interface to surface. First, in its entry configuration, SHIELD is entirely within its protected
aeroshell, and this configuration is maintained through the hypersonic and high-heating portion of
the flight. Next, SHIELD enters the descent configuration soon after beginning subsonic flight
by deploying a drag skirt, the purpose of which is to reduce the terminal velocity of the vehicle.

Shortly thereafter, the landing configuration is initiated with jettison of the heatshield. SHIELD
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Figure 5.2: Frame definitions

is assumed to fly at a trim zero angle of attack and has an axisymmetric shape with balanced
center of mass, resulting in a lift-to-drag ratio of L/D = 0. The drag properties of SHIELD are
linearly interpolated based on Mach number from tabular data provided by the JPL SHIELD team,
resulting in ballistic coefficients ranging from about 20 kgm~2 in the entry configuration down to
around 5kgm~? in the landing configuration. Ballistic coefficient describes the ratio of inertial to
aerodynamic forces and is defined as § = m/(CpA), where m is mass, Cp is drag coefficient, and
A is aerodynamic reference area. SHIELD is assumed to have a nose radius of R, = 0.85 m.
Table summarizes the relevant uncertainties applied throughout this study. Uncertainty in
the approach trajectory of the carrier spacecraft is modeled by dispersing the state at atmospheric
entry interface for each trial, then back-propagating the dispersed state to the time of first jettison.
Interplanetary navigation to Mars has advanced to the extent that its contribution to the landing
2

error is small compared to the impacts of atmospheric variability and aerodynamic modeling errors,

even for unguided entry. For example, the navigation-only errors for the Mars Exploration Rovers

2 Note, however, that this statement assumes significant Deep Space Network coverage during approach, which



130

Table 5.1: Monte Carlo analysis input dispersions

Parameter Dispersion
entry interface flight-path angle ~g 30 =0.2°
entry interface velocity magnitude V 30 =2m/s
atmospheric density p MarsGRAM 2010
probe ballistic coefficient 3 +5%
jettison speed V; +10%
(MER) were 3.3km for Spirit and 9.7km for Opportunity [220]. Furthermore, the large majority

of landing error is in the downrange direction; the final landing ellipses predicted for MER due
to all error sources had crossrange components below 5km, compared to approximately 60 km in
downrange [7”0], indicating high accuracy in heading angle at entry. The driving requirement for
approach navigation is precise targeting of the entry interface flight-path angle [220, , 1, 70,
because even small variations can have a significant effect on the altitude-velocity entry profile
[7%]. The velocity magnitude at entry interface, Vj, is also relevant because of its impact on
key quantities like peak heat flux and peak deceleration. These two entry state components are
dispersed independently according to Gaussian distributions centered at the nominal value and
with some standard deviation, o. For this study, the 3o value for 7 is set equal to the requirement
on delivery error for MSL, and the 3o value for Vj is set equal to the required knowledge accuracy
at EDL guidance system initialization for MSL [/ ©]. In contrast, minor errors in entry position
and heading angle have very little impact on the altitude-velocity profiles of the probes, and thus
primarily contribute a small center error for the network without adding significant shape error.
Recall that it is an assumption of this study that small errors in network center are unimportant
compared to the distribution of the probes. Therefore, the longitude, latitude, and heading angle
at entry interface are not dispersed in this study.

Variability of atmospheric density is modeled by using random profiles of density vs. altitude
that are generated using the 2010 version of the Mars Global Reference Atmospheric Model (Mars-

GRAM 2010) [ 71]. For a given trial, the dispersions on atmosphere, 7, and Vj are applied once,

may potentially be a limiting factor for small missions.
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such that all probes experience the same atmosphere and carrier spacecraft trajectory.

The ballistic coefficient of each probe is dispersed along a uniform distribution with bounds
at £5% of the nominal value. This value is representative of the confidence level provided by
computational fluid dynamics and ballistic range testing, and is chosen based on previous studies
[25, |. The lift-to-drag ratio always remains at its nominal value of zero, assuming that axisym-
metric spin removes the effect of any small, unintended lift force. Finally, the magnitude of the
jettison event is dispersed along a uniform distribution with bounds at £10% of the nominal value
under the assumption that a separation mechanism could be designed to within this uncertainty
level; through discussions with mission engineers, this was judged to be a conservative assumption.
The direction of the jettison velocities are assumed to be nominal for the purpose of this study.
These two dispersions are applied independently to each probe for each trial. Finally, note that
although carrier entry longitude, latitude, and heading angle are not dispersed, individual probes
may have off-nominal values of these parameters due to jettison speed dispersions, and these effects
are accounted for.

Trajectories are computed via numerical propagation of the three degree-of-freedom equations
of motion for a rotating ellipsoidal planet using explicit Runge-Kutta integration of order 4(5) with
relative and absolute tolerances equal to 1 x 10~ [75]. Mars is assumed to have gravitational
parameter 1 = 4.305 x 10* km?® s~2, equatorial radius R = 3397.2km, oblateness spherical harmonic
coefficient Jy = 0.001964, and a planetary rotation period of 7' = 1.02595675 days [/ |]. The speed
of sound for the Martian atmosphere, which is used to compute Mach number, is interpolated from
a nominal tabular model[! (”]. Heat flux is modeled by computing convective heat flux ¢ at the
stagnation point assuming a fully catalytic surface using the Sutton-Graves expression shown in
Eq. (7.1) [201], where p is density and a value of the heating coefficient k& = 1.904 x 10~% kg’ /m

is used based on nominal atmospheric composition at Mars [1:].
G=ky V> (5.1)

Finally, sensed deceleration (or g-load) is computed as g = V' L? + D?/gy where L and D are the
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accelerations due to lift and drag, respectively, and gg is the standard acceleration due to gravity

at the Earth’s surface.

5.3 SHIELD Flight Mechanics

Before investigating co-delivery of networks, a flight mechanics analysis is presented for the
atmospheric flight of a single SHIELD probe in order to determine feasible nominal values for drag
skirt deployment and heat shield jettison. This analysis also assesses the robustness to uncertainty
of time-triggered configuration changes and the possibility of using drag skirt deployment timing
as a method of control. Analysis is performed at several representative entry interface flight-path
angles: —12°, —18°, and —24°.

First, EDL event timing is considered. Drag skirt deployment and heatshield jettison are
constrained by three parameters: maximum Mach number at drag skirt deployment, maximum
impact velocity, and minimum time between deployment and jettison. The assumed values® for
these requirements are summarized in Table 5.2. The combined result of these parameters defines
an acceptable range for the timing of each event for any entry trajectory, and the nominal event
times can then be selected from within this range. The resulting bounds on event timing were
computed for 79 = —18°, and were found to be 105.7 seconds after entry (denoted E+105.7 s)
for earliest deployment and E+170.9 s for latest jettison, where in this context entry is defined as
the point at which sensed deceleration first exceeds one Earth g. Nominal event times of E+140
s and E4+150 s were then selected on the basis of being well-within this acceptable range, and the
resulting trajectory is shown in Fig. 7.3, Similar analysis was performed for the other values of 7y,
with results summarized in Table

EDL events are often triggered by processed sensor data, such as commanding parachute
deployment using either a velocity trigger or range trigger [*”7]. For SHIELD, however, the goal of
eliminating subsystems wherever possible motivates the following question: would a simple onboard

timer be sufficient to trigger drag skirt deployment and heatshield jettison without violating the

3 based on discussions with the SHIELD team at JPL
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Table 5.2: Summary of SHIELD EDL requirements

Parameter Requirement
Mach number at drag skirt deployment <0.9
Time between drag skirt deployment and heatshield jettison >4s
Impact velocity < 50m/s
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Figure 5.3: Nominal trajectory, with event timing annotated, for a SHIELD entry at —18°.

assumed requirements when relevant uncertainties are applied? If so, this could simplify EDL for
SHIELD even further.

A 1000-trial Monte Carlo analysis is performed at each of the 7y values of in