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Aerocapture, the method of entering orbit via a single pass through the atmosphere of a

planet, is an enhancing or enabling technology for a range of interplanetary missions. Compared

to propulsive maneuvers, aerocapture can reduce cruise duration while decreasing the total mass

expended for orbit insertion, thus leaving more time and mass for the primary science mission. Two

mission classes in particular both benefit from aerocapture and are of high priority for the next

decade of planetary science: exploration of the ice giants, Uranus and Neptune, and low-cost small

satellite platforms. However, despite its potential benefits, aerocapture has never been implemented

in flight. This is primarily because of the large uncertainties involved, which must be modeled and

adequately mitigated by closed-loop autonomous guidance onboard the spacecraft.

Aerocapture guidance has been well-studied for vehicles that control their atmospheric flight

by changing the orientation of a lift vector, but is not as well developed for a class of flight vehicles

that achieve control by releasing a drag device mid-flight. Known as drag modulation, this control

mechanism is significantly less complex in terms of hardware and avionics than lift modulation, and

is thus appealing for small satellite missions. However, the state of the art guidance solutions have

a computational demand that is both high and difficult to bound. This dissertation contributes a

novel guidance algorithm for drag-modulated aerocapture that achieves equivalent performance to

the state of the art, but with reduced computational demand.

One of the most pernicious sources of uncertainty that aerocapture guidance must mitigate

is atmospheric density, which varies over space and time. While scientific and engineering atmo-

sphere models are available and well-characterized for on-the-ground studies, models that retain

this fidelity while being significantly more compact and analytically tractable are desirable for on-

board use. This dissertation develops reduced-dimensionality models of uncertain atmosphere for



iii

use onboard a spacecraft, derives a method for updating the model based on noisy measurements,

and demonstrates the ability to accurately predict future state uncertainty resulting from these en-

vironmental dispersions without requiring the use of random sampling. These contributions have a

range of potential applications, including incorporation into future stochastic guidance algorithms.

Many of the mission concepts most relevant to aerocapture, such as the Uranus Orbiter and

Probe, involve more than one flight vehicle. These missions benefit from the ability to deliver both

spacecraft to their destination with minimal disruption to the overall concept of operations. While

a number of missions have successfully executed multi-vehicle architectures in the past, this “co-

delivery” method has not received dedicated systematic attention. This dissertation addresses the

concept as a topic in its own right, investigating the ability to co-deliver an orbiter and probe from a

single approach trajectory without the need for a divert maneuver. Co-delivery of an entire network

of probes from a single, non-maneuvering mothership is also investigated. Finally, expressions for

relative motion in the velocity frame are derived in order to provide a mathematical model that is

more intuitive than the typical rotating orbit frame for highly-elliptical orbits, as are common for

aerobraking, entry, and aerocapture.

To illustrate the unifying motivation for this work, the contributions of this dissertation are

applied to an example problem: the concept of reducing atmospheric uncertainty for aerocapture

by including a fly-ahead probe that enters the atmosphere some time before the orbiter. While

this idea has been proposed several times, the benefit conferred to the orbiter by the probe has not

been quantified. The contributions of this dissertation naturally lend themselves to addressing this

problem, as well as other entry, aerocapture, and co-delivery scenarios for future interplanetary

missions.



Dedication

Do I dare disturb the universe?

– T. S. Eliot

To my parents and my grandparents, who taught me always to dare.



v

Acknowledgements

First, I am grateful to Hanspeter Schaub for his wisdom and expertise, and for exemplifying

who I aspire to be as a research professional and leader. I am indebted to every committee member:

to Bobby Braun, who inspired and guided my initial passion for EDL; to Alireza Doostan and Jay

McMahon, both of whom went above and beyond as teachers and collaborators as their courses

informed integral parts of this dissertation; and to Som Dutta, who has welcomed me into the EDL

research community and shown me around the place. Angela Bowes, my NASA mentor, deserves

special mention for her technical and personal advice throughout this PhD. Alex Austin, Dan

Burkhart, Erik Bailey, and Breanna Johnson have also played invaluable roles. I am also grateful

to Dan Dumbacher and Mike Grant for their formative mentorship during my time at Purdue.

This dissertation would not have happened without the support of the NASA Space Technol-

ogy Research Fellowship, and I also owe a great deal of thanks to the Matthew Isakowitz Fellowship

Program and the Stamps Family Charitable Foundation for supporting my education. Further, my

participation in the Keck Institute for Space Studies workshop inspired and informed significant

portions of this work. One of the great joys of this PhD has been collaboration with other stu-

dents, from whom I have learned so much. Jack Ridderhof and Ethan Burnett merit a special

acknowledgement; I also extend my gratitude to Melis Grace, John Martin, Kevin Bonnet, Boris

Benedikter, and George Rapakoulias. To the entire AVS lab and EsDL: I cannot be sure if I would

have made it through this degree without you, but I am certain it would have been less enjoyable.

Finally, my deepest gratitude goes to my family for their constant love and support. To the

many people who are not listed here but should be: first round’s on me.



Contents

Chapter

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State-of-the-Art Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Aerocapture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 Co-Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 List of Related Peer-Reviewed Publications . . . . . . . . . . . . . . . . . . . . . . . 19

2 Efficient Onboard Guidance for Drag-Modulated Aerocapture 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Reference Mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Problem Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Models of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Numerical Predictor-Corrector Guidance . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Energy Reference Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vii

2.5.1 NPC Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Baseline ERG Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.3 ERG Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.4 Memory vs. Performance Trade-Offs . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Onboard Modeling of Uncertain Atmospheres 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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A.3.4 Velocity Frame S : {ŝ1, ŝ2, ŝ3} . . . . . . . . . . . . . . . . . . . . . . . . . . 226

A.3.5 Finding Unit Vectors Without DCMs . . . . . . . . . . . . . . . . . . . . . . 228

A.4 Kinematic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.5 Kinetic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.5.1 Inertial Acceleration Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

A.5.2 Acceleration Due to Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.5.3 Equate, Substitute, and Solve . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

A.6 Coordinate Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.6.1 Inertial and Planet-Relative Velocity Conversion . . . . . . . . . . . . . . . . 236

A.6.2 Spherical to Cartesian Conversion . . . . . . . . . . . . . . . . . . . . . . . . 237

A.6.3 Cartesian to Spherical Conversion . . . . . . . . . . . . . . . . . . . . . . . . 238

B Partial Derivatives 241

B.1 Common Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

B.2 Aerocapture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242



xi

C Relative Orbit Elements Derivation Detail 245

D Useful Coordinate Relationships 248

E Notes on Iterative Covariance Steering 249

F Notes on Polynomial Chaos Expansion 256



Tables

Table

2.1 Nominal Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Apoapsis altitude statistics for baseline NPC and ERG . . . . . . . . . . . . . . . . . 41

2.3 Apoapsis altitude statistics for varying distance parameter tuning . . . . . . . . . . . 44

2.4 Apoapsis altitude statistics for varying number of reference trajectories . . . . . . . . 46

2.5 Apoapsis altitude statistics for varying number of datapoints per reference trajectory 46

3.1 Vehicle and planetary parameters for entry and aerocapture examples . . . . . . . . 84

4.1 Relevant Planetary Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Input dispersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Performance Results Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Monte Carlo analysis input dispersions . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2 Summary of SHIELD EDL requirements . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 EDL event timing, in terms of seconds after entry . . . . . . . . . . . . . . . . . . . . 134

5.4 Summary of Monte Carlo results for EDL of a single SHIELD probe . . . . . . . . . 136

5.5 Statistics of error parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1 Physical constants for Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2 Physical constants for Mars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Orbital parameters for example scenarios . . . . . . . . . . . . . . . . . . . . . . . . 173



xiii

6.4 Entry trajectory chief orbit descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.5 Simulated and analytically predicted range offsets, km . . . . . . . . . . . . . . . . . 177

6.6 Simulated and analytically predicted offset bearing, deg . . . . . . . . . . . . . . . . 178

7.1 Aerocapture scenario parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 Apoapsis altitude targeting results, N = 100 . . . . . . . . . . . . . . . . . . . . . . . 185

A.1 Some possible state representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237



Figures

Figure

1.1 Hall thruster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aerobraking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aerocapture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Voyager 2 images of Uranus and Neptune . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Mars as seen from MarCO-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Relative error between nominal density profiles from the exponential model and

Earth-GRAM2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Aerocapture publication history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Successful flight tests of deployable entry vehicle technologies . . . . . . . . . . . . . 12

1.9 Pioneer Venus Multiprobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Aerocapture Earth Flight Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Frame definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 NPC Guidance Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Energy Reference Guidance Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Orbital energy vs. time for family of reference trajectories, where X marks optimal

jettison time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Targeting results for NPC, 5001-trial Monte Carlo analysis . . . . . . . . . . . . . . 40

2.7 Targeting results for ERG, 5001-trial Monte Carlo analysis . . . . . . . . . . . . . . 42



xv

2.8 Targeting results for fixed-time jettison . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Performance comparison for varying number of reference trajectories, 1001-trial

Monte Carlo analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 Performance comparison for varying reference trajectory resolution, 1001-trial Monte

Carlo analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Dynamic pressure and velocity magnitude vs. altitude for reference trajectories.

Note identical y-axis scaling, different x-axis scaling. . . . . . . . . . . . . . . . . . . 58

3.2 KLE vs. Mars-GRAM for KLE constructed from density values; thick dashed lines

are ±3σ bounds, thin solid lines are sample profiles . . . . . . . . . . . . . . . . . . . 61

3.3 Models constructed from normalized density perturbations; thick dashed lines are

±3σ bounds, thin solid lines are sample profiles . . . . . . . . . . . . . . . . . . . . . 63

3.4 Models constructed from normalized density perturbations scaled by SHIELD dy-

namic pressure profile; thick dashed lines are ±3σ bounds, thin solid lines are sample

profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Histograms of density at 40km altitude, generated by models constructed on nor-

malized density perturbations scaled by SHIELD dynamic pressure profile . . . . . . 65

3.6 Peak heat flux statistics for SHIELD trajectories . . . . . . . . . . . . . . . . . . . . 66

3.7 Models constructed from normalized density perturbations scaled by aerocapture

dynamic pressure profile; thick dashed lines are ±3σ bounds, thin solid lines are

sample profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Peak heat flux statistics for aerocapture trajectories . . . . . . . . . . . . . . . . . . 68

3.9 Illustration of reshaping between an arbitrary set of points in a multi-dimensional

domain and an observation vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.10 3σ values of normalized density perturbation for 2D density models . . . . . . . . . . 71

3.11 Peak heat flux statistics for SHIELD trajectories in 2D atmosphere models . . . . . 72

3.12 Density profiles on SHIELD trajectories for 2D density models . . . . . . . . . . . . 73



xvi

3.13 Mean and 3σ bounds for prior and posterior density profiles, given five sequential

noisy observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.14 Nominal entry trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.15 Sample closed-loop entry trajectories with 3σ bounds computed from both 5,000

trial Monte Carlo (MC) and linear covariance (LC). . . . . . . . . . . . . . . . . . . 86

3.16 Nominal areocapture trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.17 Sample closed-loop aerocapture trajectories with 3σ bounds computed from both

5,000 trial Monte Carlo (MC) and linear covariance (LC). . . . . . . . . . . . . . . . 91

3.18 Statistics of post-aerocapture orbit from both 5,000 trial Monte Carlo (histograms)

and from the linear covariance (Gaussian fit). . . . . . . . . . . . . . . . . . . . . . . 92

4.1 Diagram of the aerocapture process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Conceptual diagram of co-delivery from a single entry state, shown as a close-up

view of the region in the dashed-line box in Fig. 4.1. Features exaggerated. . . . . . 97

4.3 Feasibility space for Earth, 11 km s−1 relative entry velocity, shown with example

annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Feasibility space for Mars, 6 km s−1 relative entry velocity, and nominal scenario used

in Section 4.3 marked in blue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Feasibility space for Venus, 11.5 km s−1 relative entry velocity . . . . . . . . . . . . . 106

4.6 Feasibility space for Titan, 6 km s−1 relative entry velocity . . . . . . . . . . . . . . . 107

4.7 Feasibility space for Neptune, 27 km s−1 relative entry velocity . . . . . . . . . . . . . 108

4.8 Nominal trajectories for the orbiter, guided lifting probe, and passive ballistic probe 115

4.9 Apoapsis results for orbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.10 ∆V cost for orbiter and altitude error for guided probe . . . . . . . . . . . . . . . . . 120

4.11 Target range error histograms for guided and passive probes . . . . . . . . . . . . . . 120

4.12 Target velocity error histograms for guided and passive probes . . . . . . . . . . . . 121

5.1 SHIELD concept image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



xvii

5.2 Frame definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Nominal trajectory, with event timing annotated, for a SHIELD entry at −18◦. . . . 133

5.4 Monte Carlo results for Mach number at drag skirt deployment at varying γ0 values. 134

5.5 Monte Carlo results at varying γ0 values . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 Nominal landing locations for example network, with downrange direction shown by

red arrow and central point shown by red X . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Required Vj vs. separation time for the three chosen nominal landing sites . . . . . . 140

5.8 Three example networks, illustrating center error εc vs. shape error εs . . . . . . . . 141

5.9 Nominal and random trial landing locations shown against to-scale Martian surface. 143

5.10 Error and required Vj for linearized targeting for varying downrange and crossrange

spacing. After the desired change in angle exceeds 6.5◦, both cases begin to miss the

planet entirely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.11 Required jettison speed vs. desired landing separation, for separation 3 days before

entry and varying γ0 values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.12 Probe trajectories for downrange separations ranging from 5◦ (purple) to 180◦ (red) 147

5.13 Comparisons of required jettison speed at varying separation times, for γ0 = −18◦ . 148

5.14 Monte Carlo results for large-scale network . . . . . . . . . . . . . . . . . . . . . . . 149

5.15 Actual entry flight-path angles for probe trajectories . . . . . . . . . . . . . . . . . . 150

5.16 Monte Carlo results for large-scale network without jettison speed dispersions . . . . 151

6.1 Relative motion about hyperbolic chief shown in Hill and velocity frame components 154

6.2 Hill and velocity frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 Relative motion for Scenario A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4 Relative motion for Scenario B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Velocity frame relative motion about aerobraking trajectory . . . . . . . . . . . . . . 176

6.6 Absolute value of percent error of range offset error, where x-axis label denotes

direction of 10m/s maneuver during approach . . . . . . . . . . . . . . . . . . . . . . 178



xviii

7.1 Prior nominal density updated by noisy probe measurements of true density via

Kalman equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.2 Mapping a state-dependent random field to a time-dependent random process . . . . 193

7.3 Summary of Proposed Guidance and Control Architecture . . . . . . . . . . . . . . . 194

7.4 Covariance steering example for discrete double integrator . . . . . . . . . . . . . . . 196

A.1 Relating the inertial, planet-fixed, and position frames . . . . . . . . . . . . . . . . . 224

A.2 Relating the position and velocity frames . . . . . . . . . . . . . . . . . . . . . . . . 227

A.3 Relating velocity, lift, and drag in the velocity frame . . . . . . . . . . . . . . . . . . 227

A.4 Finding longitude from the position vector . . . . . . . . . . . . . . . . . . . . . . . . 238

A.5 Finding latitude from the position vector . . . . . . . . . . . . . . . . . . . . . . . . 239

A.6 Finding flight-path angle from the velocity vector . . . . . . . . . . . . . . . . . . . . 239

A.7 Finding heading angle from the velocity vector . . . . . . . . . . . . . . . . . . . . . 240



Chapter 1

Introduction

1.1 Motivation

Accelerating a spacecraft from rest atop a launch pad to the high speeds required for an

interplanetary trajectory requires a massive expenditure of energy. After launch and cruise, the

vehicle enters the local vicinity of its planetary destination, speeding up as it falls into the gravity

well. If no action is taken (and if the trajectory avoids impacting the planet or atmosphere) then the

spacecraft will, like a rollercoaster in the absence of friction, leave the gravity well and depart with

the same planet-relative energy as it arrived, thus executing a flyby. In cases where the objective

is not to perform a flyby but to enter orbit, the spacecraft must reduce its energy enough to be

captured by the gravity well and achieve orbit insertion. To date, initial orbit insertion has always

been accomplished via a propulsive maneuver.

The Tsiolkovsky rocket equation dictates an exponential relationship between required initial

total mass including propellant (i.e. wet mass) m0 and desired change in velocity ∆V [1],

∆V = ve ln
m0

mf
, (1.1)

where ve is effective exhaust velocity and mf is final total mass without propellant, i.e. dry mass.

The result is that the fraction of total wet mass that must be reserved for propellant (calculated

as 1−mf/m0) is very large; around 90% for launch vehicles and typically in the range of 50% for

planetary spacecraft using chemical propulsion [1, 2]. This so-called tyranny of the rocket equation1
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is a fundamental reason for the high cost-per-kilogram of launching into space2 . As a consequence,

orbit insertion is a major driving factor in the design of any spacecraft destined to reach orbit

around a planet or moon.

Electric propulsion technologies such as Hall effect thrusters offer a way to loosen the grip of

the rocket equation, and have been successfully demonstrated on interplanetary missions including

NASA’s Deep Space 1 and ESA’s SMART-1 [3, 4]. They accomplish this by operating at much

higher efficiency, increasing the value of ve by as much as tenfold compared to chemical propulsion

[5]. However, the maximum thrust of electric thrusters is proportional to available electrical power

and they often must operate continuously for long periods of time [6]; this is especially limiting

for missions to the outer planets, where incident solar radiation is greatly reduced. Moreover,

low-thrust transfers designed for electric propulsion tend to require longer times of flight [7].

Figure 1.1: JPL’s 6 kW Hall thruster3

Aerobraking provides another approach to reducing the total mass required for orbit in-

sertion, and has been successfully employed at both Venus and Mars [8, 9, 10, 11]. This involves

1 The Tyranny of the Rocket Equation by Don Pettit
2 Interactive launch vehicle cost comparison from CSIS Aerospace
3 Image: NASA/JPL-Caltech

https://www.nasa.gov/mission_pages/station/expeditions/expedition30/tryanny.html
https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/
https://sec353ext.jpl.nasa.gov/ep/multimedia.html
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gradually lowering the apoapsis of a high-energy initial orbit by repeatedly flying through the upper

planetary atmosphere, intentionally incurring a small reduction in energy due to atmosphere drag

each time, as shown in Fig. 1.2. However, insertion into the initial orbit still must be accomplished

propulsively, so significant propellant mass is still required. Moreover, aerobraking missions often

require hundreds of passes through the atmosphere, which takes months and requires demanding

around-the-clock operations in addition to increasing mission risk [12].

Cruise

Central Body

Atmosphere

Periapsis 
Adjustment 
Maneuvers

Periapsis Raise 
to Final Orbit

Aerobraking Orbits

Final Orbit

Approach

Figure 1.2: Aerobraking

Aerocapture is a promising alternative method of orbit insertion that addresses several of the

shortcomings of both low-thrust propulsion and aerobraking, and will be the focus of much of the

rest of this dissertation. Like aerobraking, aerocapture makes use of atmospheric drag to reduce

the energy of the spacecraft to achieve the desired orbit. However, aerocapture trajectories rely on

a single, lower-altitude pass through the atmosphere to capture into orbit [13, 14, 15], as shown

in Fig. 1.3. As a consequence of the high heating environment encountered during hypersonic
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flight through mid-altitudes, aerocapture requires a protective aeroshell, much like those used for

planetary entry missions. The vehicle also requires some method of flight control during atmospheric

flight. This is achieved by judiciously adjusting the aerodynamic forces acting on the vehicle, and

control approaches thus generally fall into two categories: lift modulation and drag modulation [16].

After exiting the atmosphere, the spacecraft executes a propulsive maneuver at the subsequent pass

through apoapsis to raise periapsis out of the atmosphere, and performs other correction maneuvers

as necessary. By essentially relying on a naturally-available resource (the atmosphere) rather than

propellant, aerocapture could enable shorter transit times and lower total expended mass for orbit

insertion for a variety of interplanetary mission concepts [17, 18, 19], including crewed mission to

Mars [20, 21]. Although it has been proposed for a number of missions [22, 23, 24], aerocapture

has never been flown [19].

Cruise

Approach

Atmospheric 
Flight

Initial Orbit

Final Orbit

Atmospheric 
Entry State

Atmospheric 
Exit State

Periapsis Raise 
Maneuver

Central Body

Atmosphere

Figure 1.3: Aerocapture

Aerocapture is particularly relevant to two classes of missions of high interest for the next

decade of planetary exploration: a flagship mission to the ice giants and low-cost small satellite

interplanetary missions [25, 26]. To date, the ice giants, Uranus and Neptune, have each only been

visited once, by Voyager 2 during flybys in the 1980s [27, 28]. The 2023-2032 Planetary Science
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Figure 1.4: Voyager 2 portraits of Uranus (left) in 1986 and Neptune (right) in 19894

Decadal Survey, Origins, Worlds, and Life, establishes a Uranus orbiter and probe mission as

the highest priority new Flagship mission [29], delivering an in situ atmospheric probe as well as

conducting a multi-year orbital tour. Trajectories to this outer planet are characterized by long trip

times from Earth and large orbit insertion ∆V s [30, 31]. For traditional propulsive orbit insertion,

this results in greatly reduced time and mass for the science mission. Aerocapture has been shown

to reduce the total mass required for orbit insertion by some 40% for Uranus missions [32], while

also reducing transit time by 2–5 years (15-30%) [25].

Small satellites (smallsats), especially CubeSats, have accounted for an increasingly large

share of satellites launched each year since around 2012 [33]. Technological innovations, including

the miniaturization of electronics and availability of commercial-off-the-shelf hardware, have led

to a steady increase in the capabilities possible in these small form-factors, and CubeSat missions

have now moved beyond serving a primarily educational role to making numerous notable scientific

contributions [34]. A 2014 study sponsored by the Keck Institute for Space Studies (KISS) presented

space science mission concepts “uniquely enabled by the small satellite platform,” and recommended

4 Image: NASA/JPL-Caltech/Björn Jónsson

https://www.planetary.org/space-images/uranus-and-neptune
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Figure 1.5: Image of Mars taken by MarCO-B after a successful InSight landing5

including small spacecraft as secondaries on all missions beyond low Earth orbit [35]. NASA has also

studied a variety of mission concepts through its Planetary Science Deep Space SmallSat Studies

program [36]. In November 2018 MarCO-A and MarCO-B, the twin CubeSat communications

relays accompanying the InSight Mars lander, successfully demonstrated the merit of smallsats

in deep space applications [37]. Aerocapture offers significant benefit to smallsats launched via

rideshare with a primary mission, enabling orbit insertion despite the lack of high-∆V systems at

smallsat scale and reducing sensitivity to primary mission trajectory design [26, 38]. The NASA

Science Mission Directorate (SMD) has re-established the Small Innovative Missions for Planetary

Exploration (SIMPLEx) class of competed missions, which solicits smallsat missions for rideshare

opportunities with primary SMDmissions6 . The 2022 Strategic Framework7 released by the NASA

5 Image: NASA/JPL-Caltech
6 https://soma.larc.nasa.gov/simplex/
7 https://techport.nasa.gov/framework

https://www.planetary.org/space-images/marco-view-of-mars
https://soma.larc.nasa.gov/simplex/
https://techport.nasa.gov/framework
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Space Technology Mission Directorate states that “an Earth-based aerocapture demonstration will

reduce perceived risk and mature guidance and control methods” for aerocapture at other planetary

destinations. Drag-modulated aerocapture is an especially good fit for smallsat missions because it

could be significantly easier to integrate on a small spacecraft than other methods of atmospheric

flight control [38, 39].

Of course, aerocapture does not deliver the benefits described above for free. The required

aeroshell imposes significant packaging constraints on the spacecraft, and the hardware required to

survive hypersonic atmospheric flight adds complexity, but perhaps the largest complication is the

inherent risk in the maneuver. By definition, aerocapture trajectories tread a careful line between

flying too low (possibly disintegrating in the atmosphere or impacting the surface) and too high

(possibly failing to capture into orbit altogether). Hypersonic flight mechanics are nonlinear and

highly sensitive to perturbations in the atmosphere, error in the vehicle state at entry, uncertainty

in the modeled vehicle aerodynamics, and more. While the guided hypersonic entries of Apollo

[40], Orion [41], Mars Science Laboratory (MSL)[42], and Mars 2020 [43] provide some degree of

flight-heritage for aerocapture, it is often still perceived as high risk [44]. Thus, advancing the

state-of-the-art for aerocapture-related technologies could reduce the associated risk

(both real and perceived) and improve the effective technology readiness level [19];

this is the underlying motivation for this thesis. The following paragraphs introduce the

specific areas in which this dissertation makes novel contributions; namely,

• efficient onboard aerocapture guidance,

• onboard modeling of uncertain atmospheres, and

• co-delivery concepts.

Closed-loop autonomous guidance is one of the critical challenges for aerocapture. Unlike

planetary entry, passive trajectories or open-loop control are generally not feasible options for

aerocapture because of the narrow window of success, on top of the significant sources of uncertainty

and highly-sensitive nonlinear dynamics that are also characteristic of entry missions. Thus, the
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central objective for aerocapture guidance is to adapt to current conditions in order to guide

the vehicle to the desired final orbit with minimal error. For example, onboard accelerometer

measurements may result in a current state estimate that is higher-velocity than planned, possibly

indicating that the encountered density and/or vehicle drag coefficient is lower than anticipated;

in this scenario, the guidance needs to adjust the upcoming control profile to fly lower in the

atmosphere than originally planned. The limited capacity of flight-heritage radiation-hardened

onboard computers, combined with the requirement for the guidance algorithm to rapidly respond to

new information, means that computational efficiency is a major performance metric (and potential

limiting factor) for aerocapture guidance.

Another of the key technical challenges for aerocapture is that hypersonic flight trajectories

are highly sensitive to variation in atmospheric density. Planetary atmospheres are characterized

by high epistemic and aleatory uncertainty; that is, our ability to accurately predict local density is

limited by insufficient data as well as by the inherent random variability in the system. Thus, the

selection of an atmosphere model is an important consideration for uncertainty quantification (UQ)

analysis of aerocapture trajectories, both for modeling and simulation during mission design and for

rapid onboard predictions of uncertainty. The two most common choices are an exponential model

or a semi-empirical atmosphere model such as a Global Reference Atmosphere Model (GRAM) from

NASA or the Mass Spectrometer and Incoherent Scatter radar (MSIS) model from the US Naval

Research Laboratory. The exponential model is useful because it provides a reasonably accurate

approximation of how density varies with altitude while reducing the density profile to a function

of two scalar parameters, surface-level density and atmospheric scale height [45]. Uncertainty can

then be modeled by dispersing these two parameters, typically as Gaussian random variables. This

approach is primarily useful as a simplified approximation enabling analytical approaches; the

actual density profiles of planetary atmospheres have significant disagreement with an exponential

curve, and dispersing only scale height and surface density will always retain the same exponential

shape of the density profile and simply scale the result in either direction. The other common

approach is using a model like GRAM that generates characteristic density profiles based on a
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Figure 1.6: Relative error between nominal density profiles from the exponential model and Earth-
GRAM2016

combination of data and modeling. These models are generally more realistic and more flexible

than a simple exponential model, and have a built-in capability to randomly generate profiles with

physically realistic perturbations. In the context of uncertainty quantification, the major limitation

of GRAM and models like it is that they are often treated as a black box, such that a new density

profile is generated for each trial in a Monte Carlo analysis.

The issue is that many UQ techniques, such as stochastic collocation [46, 47] and polynomial

chaos expansion (PCE) [48, 49], require low stochastic dimensionality (i.e., a relatively small number

of dispersed input parameters). By relying on random sampling techniques like Monte Carlo and

simply selecting full pre-generated profiles, the analyst has implicitly forgone the implementation of

other UQ techniques which, in some cases, may have outperformed Monte Carlo. This motivates the

development of a parametric model of an uncertain atmosphere that is higher-fidelity than a simple

exponential model, while reducing dimensionality compared to a discretized semi-empirical model

like GRAM (for which the dimensionality is equal to the number of altitude points). Furthermore,

onboard density models can benefit greatly from the ability to update density predictions based on

in-flight measurements, so the developed model should accommodate such a method.

Returning now to the discussion of ice giants exploration and low-cost planetary science mis-
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sions, observe that these two mission categories have another commonality: they either inherently

require, or would significantly benefit from, more than one flight vehicle. In the case of the Uranus

orbiter and probe, this statement is self-evident. In the latter category, networks of multiple small,

fixed landers have been identified as a potential pathway to Mars surface exploration at reduced

cost; this was a conclusion of a recent KISS workshop titled “Revolutionizing Access to the Martian

Surface” as well as a follow-on “Low-Cost Science Mission Concepts for Mars Exploration” work-

shop [50, 51]. Other concepts are based on the idea of pathfinder probes that return data about a

planetary atmosphere to primary mission, such as a probe released prior to crewed Mars landing

from orbit or a small probe sent into the atmosphere of Uranus in advance of an aerocapture mis-

sion [19]. Finally, the “carry your own relay” architecture pioneered by the addition of the MarCO

CubeSats to the InSight mission could be significantly enhanced if a combination of co-delivery and

aerocapture enabled the relay spacecraft to enter orbit rather than continue on a flyby trajectory

[37, 52]. While some co-delivery mission concepts have been either studied or successfully executed,

the multi-vehicle architecture results in a number of unique mission design considerations [53, 52]

that, currently, lack dedicated study. This motivates systematic study of co-delivery concepts, as

well as a quantification of the extent to which a pathfinder probe would reduce risk to the primary

mission.

1.2 State-of-the-Art Overview

1.2.1 Aerocapture

Aerocapture has been studied for decades [13, 14, 15, 17] and planned until various stages

of development for missions including the Aeroassist Flight Experiment [22], Mars Surveyor 2001

orbiter [23], and Mars Sample Return [24]; however, it has never been implemented in flight. The

Mars Polar Lander and Mars Climate Orbiter failures in 1999 led to the removal of aerocapture

from the mission design for the 2001 Mars orbiter [54], and had the lasting impact of a relatively

conservative approach by NASA to Mars missions and entry, descent, and landing technology [20].
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Figure 1.7: Number of aerocapture-related publications per year colored by target planet (ISPT
refers to the multi-center NASA aerocapture system analysis studies)8

Between 2002 and 2006, a multi-center NASA team completed systems analyses for aerocapture

missions to Mars [55], Venus [56], Titan [57], and Neptune [58]. These studies advanced the state-of-

the-art of aerocapture at a systems engineering level, built around a set of design reference missions

and quantitatively-informed assumptions. While the study team concluded that heritage blunt-

body aeroshells would be sufficient for aerocapture at Mars, Venus, and Titan, they argued that a

novel, higher lift-to-drag ratio (L/D) aeroshell would be necessary at Neptune. This conclusion –

that aerocapture at the ice giants would require design and qualification of an entirely new class

of entry vehicle as opposed to the incremental improvements to Viking-era technology that has

characterized the NASA Mars program since the 1990s [20] – has posed a major programmatic

barrier to the implementation of aerocapture.

Aerocapture has received considerable study in the nearly two decades since the multi-center

NASA studies, particularly in the last five years, as summarized in Fig. 1.7. Significant hardware

development has advanced deployable entry vehicle technology, enabling a much larger drag area

than could otherwise fit in a launch vehicle fairing and reducing aeroheating compared to smaller

rigid aeroshells with similar mass [59]. Suborbital flight tests have been successfully conducted

8 From Wikimedia via A. Girija

https://commons.wikimedia.org/wiki/File:Aerocapture-publications-histogram.png
https://github.com/athulpg007/AMAT/blob/master/bibliometric-data/literature-survey-analytics.ipynb
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(a) ADEPT sounding rocket test 1, 201810 (b) HIAD suborbital test (LOFTID), 202211

Figure 1.8: Successful flight tests of deployable entry vehicle technologies

for the Adaptive Deployable Entry and Placement Technology (ADEPT) and Hypersonic Inflat-

able Aerodynamic Decelerator (HIAD) platforms [60, 61]9 , bringing these technologies closer to

readiness for mission infusion. Improved thermal protection systems, including the Heatshield for

Extreme Entry Environments Technology (HEEET), have been developed and matured to a tech-

nology readiness level of 6 [62]. Advances have been made for guidance, navigation, and control for

aerocapture, including: improved atmospheric estimation methods [63], more capable aerodynamic

control mechanisms [64], development and systematic analysis of high-performance deterministic

guidance algorithms [65, 54], and investigation of stochastic trajectory optimization methods ap-

plied to aerocapture [66, 67]. Tools for rapid conceptual design of aerocapture missions have become

available [68]. Optical navigation techniques and improved estimation methods have also improved

the accuracy possible in deep-space navigation [69]. As a result of all of this, aerocapture is be-

coming an increasingly feasible proposition [26, 25]. A 2016 study at the NASA Jet Propulsion

Laboratory concluded that, while aerocapture technology readiness is destination-dependent, no

prior flight demonstration would be needed to implement aerocapture at Titan, Mars, and possibly

Venus [19]. Recent studies have argued that aerocapture at Neptune (a more stressing case than

Uranus) is feasible with heritage blunt-body aeroshells [70, 71], avoiding the need to develop novel

aeroshells as was recommended by the 2006 NASA study [58].

9 LOFTID Flight Test Successful

https://www.nasa.gov/feature/loftid-inflatable-heat-shield-test-a-success-early-results-show
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1.2.2 Guidance

Significant investment has been dedicated to developing aerocapture guidance schemes, es-

pecially centered around the aforementioned missions that planned to use aerocapture but were

eventually either cancelled or redesigned around propulsive orbit insertion. One well-studied algo-

rithm, known as terminal point control (TPC), is derived from Apollo entry guidance and relies on

linear feedback with gains derived using calculus of variations and evaluated about a pre-defined

reference trajectory [72]. TPC benefits from very little onboard computational demand, and was

selected from among other algorithms for the Mars Surveyor Program 2001 Orbiter as well as

the French-contributed orbiter, Mars Premier, for a previous incarnation of Mars Sample Return

[73, 74]. Versions of this algorithm were also used for entry guidance on the MSL and Mars 2020

missions [75, 43]. While the algorithm is robust and lightweight, some drawbacks of TPC – typical of

linear control laws of this kind – are the need to manually tune feedback gains and the requirement

to select a nominal profile before flight [54]. Another algorithm that has received extensive testing

is the Hybrid Predictor-Corrector Aerocapture Scheme (HYPAS) [76], originally known as Analytic

Drag Aerocapture Guidance [77]. HYPAS combines reference-based tracking guidance similar to

TPC with an analytical predictor-corrector approach based on solutions to the planar equations of

motion under equilibrium glide assumptions [54, 78, 77]. After a comparison campaign based on

six degree-of-freedom simulations, HYPAS was selected for the Aeroassist Flight Experiment and

was under development until cancellation of that mission [74, 22], and has been subsequently used

for numerous aerocapture studies including the multi-center NASA studies mentioned earlier [54].

Notably, HYPAS does not require any pre-defined reference trajectories, leading to efficient code

[74], but it may be less robust to uncertainties and relies on at least some portions of the flight

profile being well-approximated by equilibrium glide.

More recently, much of the literature on aerocapture guidance has focused on numerical

predictor-corrector (NPC) algorithms, which make predictions by numerically propagating the

11 ADEPT image
11 LOFTID image

https://ntrs.nasa.gov/api/citations/20190028862/downloads/20190028862.pdf
https://ntrs.nasa.gov/citations/20230003943
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nonlinear equations of motion rather than evaluating an analytical approximation. This means

that NPC algorithms should be able to make the most accurate predictions of the future state,

but this comes at the expense of increased computational demand as well as a lack of convergence

guarantees. These drawbacks of NPC guidance algorithms are a major motivation for

the work detailed in Chapter 2. NPC algorithms were studied for both the Aeroassist Flight

Experiment and Mars Surveyor orbiter [79, 80, 81, 82], but while they were successfully demon-

strated they were, at the time, not considered competitive with the TPC and HYPAS algorithms

[73]. However, a combination of algorithmic improvements and a steady increase in availability of

onboard computational power has led to a shift in the EDL literature to largely focus on NPCs [54].

Perhaps most notably, the Fully-Numerical Predictor-Corrector Aerocapture Guidance (FNPAG)

presented in [65] and applied to mid-L/D Mars aerocapture in [83] improved over previous aero-

capture NPC guidance schemes by incorporating the fact that, for deterministic in-plane motion,

the optimal flight control law for aerocapture12 is bang-bang.

1.2.3 Uncertainty Quantification

Every guidance algorithm discussed above, as well as all flight-heritage algorithms from guided

entry missions, could be described as deterministic in nature. That is, they implicitly control uncer-

tainty by updating commands based on new estimated of the current state, and the effectiveness of

this approach is estimated in uncertainty quantification studies of the closed-loop dynamics, namely

via Monte Carlo analyses. An alternative approach that has recently gained attention in the lit-

erature is to explicitly control uncertainty by considering the effect of present and future control

decisions on the trajectory uncertainty evolution, referred to as stochastic guidance or stochastic

optimal control. Stochastic aerocapture guidance could directly incorporate an updated model of

density variability, and can be tuned to quantitatively balance nominal performance and perfor-

mance at the margin (e.g. 3σ values of a targeting parameter, where σ is standard deviation). This

motivates development of a stochastic guidance architecture for aerocapture that is efficient enough

12 Specifically, for bank angle modulated aerocapture
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to feasibly run onboard an flight vehicle. Specifically, because the defining source of uncertainty

for aerocapture is spatially-dependent variability in atmospheric density, stochastic aerocapture

guidance should include a method of accurately modeling an uncertain atmosphere and updating

this model based on noisy measurements. The development of high-fidelity onboard models

of uncertain atmosphere presented in Ch. 3 is directly motivated by the potential

for incorporation of this model into an autonomous stochastic guidance framework for

aerocapture.

Onboard guidance often does include some function for updating the predicted density profile

in-flight based on deceleration data. Typical approaches estimate either a physical parameter such

as atmospheric scale height or a density scale factor that is multiplied with the a priori nominal

profile [84, 85], possibly including a fading-memory filter applied to the estimated parameter. More

recent approaches include machine learning [86, 87] and ensemble filtering [88]; see Ch. 6 of Ref.

[63] for further discussion. What all of these approaches have in common is that they update the

expected value of density, without explicitly modeling the random variability present in the sys-

tem. Recent works have applied more advanced uncertainty propagation methods to aerocapture,

including analytical polynomial chaos expansion and other spectral methods [89, 90], the Perron-

Frobenius operator [91], and the stochastic Liouville equation [92]. A stochastic terminal point

control problem is solved in [93] for an uncertain atmosphere and entry state. The aforementioned

works are all limited, however, by only considering an exponential model of atmospheric density.

Several approaches to stochastic numerical predictor-corrector guidance are proposed in [94] using

the unscented transform for uncertainty propagation, and a similar stochastic retargeting method is

applied to aerocapture in [95] using a Gaussian mixture model for uncertainty propagation. Other

approaches focus on linearization and convexification techniques to obtain stochastic optimal so-

lutions in a local neighborhood [96, 97, 98]. See Sec. 7.3.1 for an extended discussion of

potential future work leveraging the recent developments in the literature and the

contributions of this dissertation to develop stochastic guidance for aerocapture.
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1.2.4 Co-Delivery

A number of interplanetary missions featuring a co-delivery architecture have been flown or

proposed. The Galileo and Cassini-Huygens missions each successfully delivered an atmospheric

probe along with a larger orbiter [99, 100]. The Deep Space 2 Mars Microprobes were delivered to

entry by the Mars Polar Lander [101], and the Russian Mars 96 mission included two small landers

plus two small penetrators all delivered by a larger orbiter [102]; unfortunately, these missions

all ended in failure, and the NASA failures scrapped plans for later Mars Surveyor landers and

accompanying Mars Micromissions [101]. The sample return missions of Genesis [103], Stardust

[104], Hayabusa [105], Hayabusa-2 [106], and OSIRIS-REx13 all successfully delivered sample return

capsules to Earth entry from a hyperbolic carrier [107], as will the Earth Entry System component

of the Mars Sample Return campaign [108]. Finally, the Pioneer Venus mission delivered four

probes (one large and three identical small probes) to entry at Venus from a single spacecraft bus

[109], flinging the small probes out toward their respective entry points by spinning up the main

bus [110].

Despite these mission precedents, it is difficult to provide a “state-of-the-art overview” for

interplanetary co-delivery concepts for the very reason that they have received little dedicated

systematic study before this dissertation, but rather a series of independent mission design studies

as needed. One exception is a 2013 study that demonstrates a unique method of co-delivery wherein

two Phoenix-class landers enter the atmosphere together and then separate, one lander with a drag

skirt and the other without [111]; however, this method requires separation between two flight

vehicles during hypersonic flight, a high-risk event. Recent work for the Aeolus mission concept

presents a design that co-delivers 20 probes to a global network on Mars from a single hyperbolic

carrier, but assumes that the carrier maneuvers after each probe deployment [112]; this assumption

is typical to previous studies of Mars network missions. One might expect the field of spacecraft

formation flying to provide a set of useful tools for co-delivery trajectory design up until atmospheric

13 NASA press release regarding successful return of OSIRIS-REx sample capsule on 9/24/23
14 Pioneer Venus image: NASA/Paul Hudson

https://www.nasa.gov/news-release/nasas-first-asteroid-sample-has-landed-now-secure-in-clean-room/
https://solarsystem.nasa.gov/missions/pioneer-venus-2/in-depth/
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Figure 1.9: Artist’s illustration of Pioneer Venus probes just after deployment from Multiprobe14

flight, but the existing literature is primarily concerned with motion about circular or near-circular

elliptical orbits [113]. While some relative motion descriptions do accurately model motion about

a highly-eccentric chief, they do not necessarily provide an intuitive representation in the way that

the evolution of the relative position vector in the rotating orbit frame does for a circular chief

[114]. Motivated by the lack of dedicated study of co-delivery as its own concept,

this dissertation provides a systematic investigation of co-delivery for missions that

combine a probe and orbiter via aerocapture (Ch. 4) or co-deliver multiple probes

(Ch. 5) and, furthermore, derives relative motion models that are more intuitive for

motion about a highly-eccentric orbit or entry trajectory (Ch. 6).
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1.3 Summary of Contributions

The driving motivation for this thesis is to advance the state-of-the-art for aerocapture and co-

delivery and to provide the first dedicated systematic study of co-delivery as a mission architecture;

chapters 2 – 6 each describe one contribution toward this overarching aim. In Ch. 2, an efficient

guidance algorithm is developed for a proposed smallsat aerocapture technology demonstration

at Earth, and through high-fidelity simulation is shown to equal the performance of the state-of-

the-art NPC solution while reducing computational demand. Because a defining characteristic of

aerocapture is the requirement to mitigate spatially-dependent uncertainty in atmospheric density,

in Ch. 3 multiple models are investigated and quantitatively compared for their ability to recreate

high-fidelity atmosphere models while remaining compact enough for onboard use. A methodology

is introduced for updating one of these onboard models according to incoming noisy estimates of

density. A method is then demonstrated for incorporating this model of environmental uncertainty

into approximate analytical predictions of state uncertainty. This model of uncertainty, combined

with a predictive model for a probabilistic future state, are motivated in part by the potential

for constructing a stochastic guidance scheme for aerocapture using these component parts. This

concept is beyond the scope of this dissertation but is addressed in an extended future work section.

Having described contributions related to single-vehicle aerocapture, the dissertation tran-

sitions to studies of co-delivery. In Ch. 4, a novel concept is defined for co-delivering a probe

and orbiter by using aerocapture for orbit insertion and designing the two vehicles to require the

same entry conditions. The feasibility of this concept is quantitatively assessed across a large trade

space for multiple planetary destinations, and a representative scenario is simulated in more detail

including closed-loop guidance implementation. In Ch. 5, the more common idea of co-delivering

a network of probes to the Martian surface also receives systematic treatment, and a linearized

targeting method is developed for maneuver design for regional networks. Motivated by these co-

delivery concepts, expressions for relative motion in the velocity frame are derived in Ch. 6 for both

exoatmospheric and hypersonic flight. This is shown to be a more intuitive way of understanding
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motion about a highly-eccentric chief than the traditional orbit frame solutions. The dissertation

concludes by outlining a case study evaluating the utility of a fly-ahead probe for aerocapture

at Uranus. While not a contribution of its own, this example serves to illustrates how the tools

developed by this thesis can be brought together to address a relevant problem.
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Chapter 2

Efficient Onboard Guidance for Drag-Modulated Aerocapture

2.1 Introduction

Aerocapture is a technology that could enable shorter transit times and lower total expended

mass for orbit insertion for a variety of interplanetary missions [17, 18, 19]. To perform aerocapture,

the spacecraft executes a single pass through the atmosphere of a planet or moon, dissipating enough

energy to reach the desired target orbit upon exit from the atmosphere. During the subsequent

pass through apoapsis the spacecraft performs a propulsive maneuver to raise periapsis out of

the atmosphere, and performs other correction maneuvers as necessary. For missions to the ice

giants Uranus and Neptune, aerocapture can potentially reduce cruise duration by 2–5 years while

reducing mass for orbit insertion by some 40% [25, 32]. Aerocapture also offers significant benefit to

small satellites (SmallSats) launched via rideshare with a primary mission, enabling orbit insertion

despite the lack of high-∆V systems at SmallSat scale and reducing sensitivity to primary mission

trajectory design [26, 38]. Although it has been proposed for a number of missions [22, 23, 24],

aerocapture has never been flown [19].

Variability in the spacecraft state at atmospheric entry, atmospheric density, aerodynamic

properties of the vehicle, and other day-of-flight dispersions require a spacecraft performing aero-

capture to autonomously control its trajectory through the atmosphere. During this hypersonic

flight phase, control is achieved by judiciously adjusting the aerodynamic forces acting on the vehi-

cle, and control approaches thus fall into two main categories: lift modulation and drag modulation.

Lift modulation involves changing the attitude of the vehicle to reorient the lift vector, typically ei-
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ther by banking about a fixed trim angle (bank angle modulation) or by independently modulating

angle of attack and side-slip angle (direct force control) [115, 116]. Note that direct force control

also involves changes in the drag and side force components, but the primary control authority

is obtained by modulating lift, and thus this technique is categorized with lift modulation for the

purposes of this discussion. Lift modulation, particularly bank angle modulation, is well-studied

in the literature [73, 65, 116, 54], and has relevant flight heritage from guided hypersonic entry

of blunt-body aeroshells including the Apollo [40], Orion [41], Mars Science Laboratory [42], and

Mars 2020 [43] missions, all of which relied on some form of closed-loop lift modulation.

Recent work has studied drag modulation as a potentially simpler method of achieving control

for aerocapture [63, 85]. Typically, a drag-modulated vehicle is assumed to be axisymmetric and

to fly at zero angle of attack, thus generating no lift. The trajectory is influenced by adjusting

the ratio of mass to effective drag area, termed ballistic coefficient; when this ratio is low, the

vehicle rapidly dissipates energy through drag, and vice-versa. This can take a variety of forms,

including devices that achieve continuously-variable drag [117], release of a trailing inflatable drag

device [118], and jettison of one or more rigid drag skirts [119]. Single-event jettison, defined here

as a single discrete change in ballistic coefficient caused by the jettison of a rigid drag skirt, is the

control architecture that will be the focus of this work. This represents a limiting case, because

after jettison the vehicle flies passively for the remainder of atmospheric flight and the vehicle lacks

any out-of-plane control. However, for a sufficiently large change in ballistic coefficient, single-

event jettison can achieve a total control authority comparable to lift modulation with heritage

blunt-body aeroshells [16]. Compared to lift modulation, single-event jettison drag modulation

may be less complex because the vehicle can be passively spin-stabilized, rather than requiring

a high-rate reaction control system that must operate during atmospheric flight [120]. Moreover,

ballast masses are not required to create an offset center of gravity, as is typically the case for

lift-modulated axisymmetric vehicles [42].

A limited number of guidance algorithms for single-event jettison drag-modulated aerocapture

exist in the literature. The simplest solution in terms of computational expense is to trigger jettison
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when the instantaneous value of a measured state exceeds some threshold, such as a velocity trigger

[121]. To reduce error caused by noisy measurements, the observed state can be filtered and jettison

can be triggered based on some polynomial function of the state. For example, the algorithm

implemented in [122] triggers jettison when the total integrated ∆V exceeds a polynomial function

of the filtered instantaneous or maximum sensed acceleration. The deceleration curve fit algorithm

used for Mars Pathfinder parachute deploy [123] and applied to drag-modulated aerocapture in

[124] also triggers based on deceleration measurements. In this case, two measurements are taken

a set time apart, and a pre-computed curve fit between the second deceleration measurement and

time until jettison is consulted to set a jettison timer. All of these approaches require only minimal

onboard computation and memory, but each is also shown to have poor performance when relevant

uncertainties are applied. The predictive trigger approach applied in [125] is more computationally-

intensive; in this case, the energy of the spacecraft at atmospheric exit is predicted by numerically

propagating the equations of motion, and jettison is commanded when the predicted final energy

is less than or equal to the desired final energy. Machine learning-based guidance schemes have

been successfully developed for entry and aerobraking problems [126, 127, 128, 129], but have yet

to be applied to single-event jettison drag-modulated aerocapture other than for the purpose of

atmospheric estimation [86, 87].

While the algorithms summarized above share the benefit of relatively low onboard com-

putational burden, the current state of the art guidance for drag-modulated aerocapture is the

numerical predictor-corrector (NPC) approach [85]. This algorithm also predicts the final state by

numerically propagating the equations of motion, then takes the additional step of making a cor-

rection to the jettison time. This two-step procedure is applied iteratively, such that the algorithm

should converge to an optimal jettison time each guidance call. NPC has two key differences with

the predictive trigger:

(1) The NPC solves for jettison time rather than directly commanding jettison, so the release

timing can operate at significantly higher resolution; this is under the assumption that a
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simple controller releases the drag skirt when the jettison time is reached, operating at a

higher rate than the guidance algorithm itself.

(2) The NPC is significantly more computationally expensive than the predictive trigger be-

cause multiple numerical propagations may be required in each step.

In summary, NPC guidance is significantly more accurate in the presence of uncertainties than the

other algorithms discussed here [85, 121, 124], but is also much more computationally demanding.

A more detailed description of the NPC algorithm is given in Sec. 2.3.

This work investigates a guidance algorithm for single-event jettison drag-modulated aero-

capture, with the goal of achieving the same level of accuracy as the NPC but with significantly less

computational demand. The reference mission for this study is an Earth flight test of aerocapture

with a SmallSat using a rigid deployable drag skirt; that is, the drag skirt is stowed during launch

and deployed during cruise, but does not change its shape during atmospheric flight. Assumptions

regarding modeling of dynamics and uncertainties are discussed, and key physical parameters de-

fined. The baseline NPC algorithm is described in detail, including an approach to the correction

step that improves computational efficiency, and targeting results under relevant uncertainties are

estimated. The proposed algorithm is also described, and compared directly with NPC. A param-

eter study is presented that gives insight into optimal tuning and tradeoffs between memory and

performance for the proposed algorithm. Finally, results are discussed along with a number of

avenues for potential future work.

2.2 Methodology

2.2.1 Reference Mission

Researchers from the NASA Jet Propulsion Laboratory (JPL), NASA Ames, and the Uni-

versity of Colorado Boulder have been studying drag-modulated aerocapture for small satellites

[38, 130], including concepts for an Earth flight test of the technology [124]. This idea is supported
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by the 2022 Strategic Framework1 released by the NASA Space Technology Mission Directorate,

which states that “an Earth-based aerocapture demonstration will reduce perceived risk and ma-

ture guidance and control methods” for aerocapture at other planetary destinations. Motivated

by these developments, single-event jettison drag-modulated aerocapture at Earth by a SmallSat

is the reference mission considered in this work. As summarized in Fig. 2.1, the spacecraft is

launched into a geosynchronous transfer orbit, then performs a maneuver to lower periapsis into

the atmosphere, achieving the desired entry state. Based on the JPL reference mission, the space-

craft targets an apoapsis of 5000 km and performs a maneuver at the next pass through apoapsis

to raise periapsis to 200 km. Autonomously raising periapsis during the first pass through apoapsis

in order to achieve a near-term stable orbit is a significant component of successful aerocapture;

however, specific consideration of the on-orbit maneuver guidance and control is beyond the scope

of this study.

The drag skirt in this study is modeled as the Adaptable Deployable Entry and Placement

Technology (ADEPT), an umbrella-like deployable structure for entry probes currently under devel-

opment at NASA Ames [131]. During launch, ADEPT is in the retracted configuration, significantly

reducing fairing volume required for the spacecraft and enabling stowage in the standard ESPA

envelope [131, 132]. The drag skirt is fully deployed between separation from the launch vehicle and

atmospheric entry, and remains rigidly deployed until it is jettisoned by the guidance algorithm.

The initial epoch for simulation of this mission is defined as 10 minutes before nominal

atmospheric entry, which is the time of the final orbit determination (OD) update to the spacecraft

from ground control. From this point onward, the navigated states are based on propagation with

only IMU data. The nominal entry state, defined at the atmospheric interface altitude of 125 km,

has a planet-relative velocity u of 9.9 km/s and flight-path angle γ of −4.6 ◦, where flight-path

angle is the angle between the planet-relative velocity vector u and the local horizontal plane. The

nominal entry point is at a geocentric latitude ϕ of −7.4◦ and longitude θ of 14.8◦ with a heading

of 118.9◦, where heading angle ψ is defined as the angle between the horizontal projection of the

1 https://techport.nasa.gov/framework

https://techport.nasa.gov/framework
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Figure 2.1: Aerocapture Earth Flight Test

velocity vector and a due-North vector in that same plane. These definitions are illustrated in Fig.

2.8, where the unit vector bases {n̂1, n̂2, K̂}, {Î , Ĵ , K̂}, and {ê1, ê2, ê3} define inertial, planet-fixed,

and position frames, respectively. The vector from the central body to the vehicle is denoted r,

and r̂ = r/r is the associated unit vector.

2.2.2 Problem Dynamics

2.2.2.1 Simulation

In this work, the performance of each guidance algorithm is quantified through testing in a

high-fidelity simulation environment implemented in the Dynamics Simulator for Entry, Descent,

and Surface Landing (DSENDS) software developed by the DARTS lab at NASA JPL [133]. The
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vehicle
position

(a) Latitude ϕ, longitude θ, and position vector r

vehicle
position

(b) Flight-path angle γ, heading angle ψ,
and flow velocity vector u

Figure 2.2: Frame definitions

gravity model includes point-mass and spherical harmonics of degree and order 8 for the Earth,

as well as point-mass gravity from the Moon and the Sun. Atmospheric density is modeled using

the Earth Global Reference Atmospheric Model (EarthGRAM) 2010 [134], such that the value of

density depends on 3D position and time.

The vehicle shape is a 60-degree sphere-cone both with and without the drag skirt, such

that the drag skirt extends the conical section at the same angle. The aerodynamics model used in

simulation includes drag and aerodynamic moments. No lift is modeled; the vehicle is axisymmetric

and passively-stabilized, such that the axis of symmetry remains approximately aligned with the

freestream velocity vector. Thus, while the simulation is 6 degree-of-freedom, oscillations in vehicle

attitude are small and have only a minor effect on the vehicle trajectory.

2.2.2.2 Predictor Model

Both guidance algorithms presented in this work rely on numerical propagation of the rele-

vant equations of motion to predict trajectories onboard. These equations constitute a simplified
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version of the dynamics modeled in the full “truth” simulation. Specifically, the modeled forces

include point-mass gravity, J2 oblateness, and drag, resulting in the following equation for inertial

acceleration [135]:

r̈ = − µ

r2
r̂ − 3µJ2R

2

2r4

((
1− 5

(
r̂ · K̂

)2)
r̂ + 2

(
r̂ · K̂

)
K̂

)
− ρu2

2β
û (2.1)

where r is the vector from the central body to the vehicle, µ is the gravitational parameter, J2 is the

oblateness coefficient, ρ is atmospheric density, R is the planetary equatorial radius, K̂ is the polar

axis unit vector, and β = m/(CDA) is the ballistic coefficient of the vehicle. The quantities m, CD,

and A are the mass, drag coefficient, and reference area of the vehicle, respectively. The quantity

u is the flow velocity, or the velocity of the spacecraft with respect to the planetary atmosphere,

which is assumed to be rotating with the planet with angular velocity ωp between initial time t0

and current time t,

u = ṙ − ωp × r, (2.2)

where ṙ is the inertial velocity vector. The predictor models density by linearly interpolating

from a table of density vs. altitude output by EarthGRAM that represents a nominal atmosphere

profile. Note that the predictor thus assumes the same density is experienced in the descending

and ascending portions of the aerocapture trajectory, other than as modified by the atmospheric

scale factor as discussed later, whereas the DSENDS simulation incorporates dependence of density

on latitude and longitude. A table of CD vs. dynamic pressure is similarly used by the predictor

to compute β. However, note that this latter step is likely higher-fidelity than necessary because

CD changes little in the relevant flight regime for this scenario; constant CD would be a reasonable

approximation. The values of µ, J2, and R used in both the predictor and simulation are provided

in Table 2.1. The average ballistic coefficient for each phase is also listed, where β1 and β2 are the

values pre- and post-jettison, respectively. The predictor uses fourth-order Runge-Kutta integration

to numerically propagate the equations of motion, with a fixed time step of 0.125 s.
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Table 2.1: Nominal Simulation Parameters

Parameter Value

µ 3.9860× 105 km3/s2

ωp 7.2921× 10−5 rad/s

J2 0.0010826

R 6378.1 km

β1 32 kg/m2

β2 137 kg/m2

2.2.3 Models of Uncertainty

The variability of atmospheric density is modeled by EarthGRAM, which has a built-in

Monte Carlo framework for generating realistic dispersions [134]. The vehicle aerodynamics are

dispersed based on experience with blunt-body aeroshells [136], resulting in a standard deviation

of about σ = 0.015 for CD near peak dynamic pressure, where σ is standard deviation and the

nominal value is 1.38. The entry state is dispersed according to a navigation assessment performed

at JPL that was then scaled to match the project requirement of entry flight-path angle delivery

error with a standard deviation value of 3σ = 0.2◦ at the atmospheric interface altitude of 125 km.

The time required for the drag skirt to fully separate from the capsule is assumed to be uniformly

dispersed along a range from 0.05 s to 0.14 s. The vehicle mass and area are not dispersed, nor are

gravitational parameters.

Importantly, the predictor does not operate on the true state of the spacecraft. Noisy mea-

surements from an inertial measurement unit (IMU) are modeled and fed into a navigation filter,

and the predictor operates on these filtered state estimates. The navigation filter uses the same

dynamics model as the predictor, Eq. (2.1).

2.3 Numerical Predictor-Corrector Guidance

NPC guidance is treated as the baseline solution in this work due to both its state-of-the-art

targeting performance and its previous application as part of the JPL SmallSat aerocapture project

[85, 38, 137]. The implementation discussed here is similar to that presented in [85], but with a
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more computationally-efficient correction method. The algorithm is summarized by Fig. 2.3 and

outlined in detail in this section; performance results are given in Sec. 2.5.

Figure 2.3: NPC Guidance Diagram

IMU measurements are used to generate an estimate of sensed acceleration (or g-load), ĝ,

and when this exceeds some threshold value gt the guidance routine is initiated. In the subsequent

step, nominal density at the navigation-estimated altitude is used with the navigation-estimated

state to compute an estimate of the dynamic pressure:

qest =
1

2
ρnom(r)u

2 (2.3)
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where the estimated dynamic pressure is used to obtain an estimate of the drag coefficient via

interpolation of stored data of CD vs. q. Next, the density is estimated from a re-arranged

expression for acceleration due to aerodynamic drag (which equals ĝ since the vehicle is assumed

to have no lift):

ρest = 2
m1ĝ

A1CD,1u2
= 2

β1ĝ

u2
(2.4)

where m1, A1, CD,1, and β1 are the pre-jettison values of those variables. The density estimate is

used to compute the ith density scale factor Fi:

Fi = ρest(ti)/ρnom(r(ti)) (2.5)

This value is then filtered via a low-pass filter:

F i = (1− k)F i−1 + kFi (2.6)

As the gain k is decreased, this filter will increasingly reject small disturbances. Sensible values of

k depend on the frequency of density scale factor measurement updates. Alternatively, the density

scale factor could also be filtered with a moving average filter, detailed below:

Fn =
1

n

n∑
i=1

Fi (2.7)

where n is a memory parameter, and again the chosen value of n should be tuned based on the

density scale factor update frequency. In this work, the low-pass filter is implemented with k = 0.05

for a guidance update rate of 8Hz. The nominal density profile is then re-scaled by Fi for all

subsequent numerical propagations within that guidance call, as follows:

ρpred(r) = F iρnom(r) (2.8)

This form of density re-scaling significantly improves targeting results compared to ignoring at-

mospheric estimation altogether [84], but is limited to linearly shifting the entire profile and thus

fails to capture the more complex atmospheric perturbations that occur in reality. Other methods,

such as exponentially correlating the scale factor, ensemble correlation filtering [88], machine learn-

ing [86, 87], or modeling density as a Gaussian random field [138] may improve the atmospheric

estimation component of NPC guidance.
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Once the density scale factor is computed, the navigation-estimated state is numerically

propagated until the altitude of the spacecraft either exceeds the atmospheric interface altitude or

decreases below some minimum. This prediction uses the jettison time computed by the previous

guidance call or, in the case of the first guidance call, a pre-defined initial guess, set to 700 s in

this case. The radius of apoapsis is then computed from the final state using Keplerian relations,

and error is computed as the difference between the predicted and desired apoapsis radii. In the

case of an escape trajectory, apoapsis radius is poorly-defined and the error is set equal to positive

infinity. In the case of an impact trajectory, in which the spacecraft reaches the surface instead

of exiting the atmosphere, the Keplerian apoapsis is computed from the final state as normal; the

value will badly undershoot the target and thus the guidance algorithm behaves as expected. As

an aside, note that for certain, more extreme mission scenarios an edge case is possible in which the

vehicle reaches the minimum altitude bound while still hyperbolic in terms of orbital energy, and

care should be taken to correctly categorize these cases as undershoots, despite their hyperbolic

Keplerian state.

The error magnitude is then compared against two tolerance values, ϵ1 and ϵ2, where ϵ1 >

ϵ2. The purpose of the dual tolerances is to direct the algorithm to an appropriate root-finding

subroutine for the correction step. If the error exceeds both tolerances, bisection method is selected;

if the error is between the two tolerance values, Newton’s method is selected; finally, if the error

is below both tolerances, no updates to jettison time are required and the algorithm skips the

correction step entirely. In this work, tolerances were defined as ϵ1 = 500 km and ϵ2 = 25 km,

selected based on a trial-and-error process in order to achieve a good balance between accuracy

and speed. These tolerances would need adjustment for a significantly different apoapsis target or

central body.

The bisection method subroutine begins with lower and upper bounds on the optimal jettison

time, selected a priori without any dependence on the solution from the previous guidance call.

These values should span the duration of the longest atmosphere pass that is expected based

on dispersions and are strongly scenario-dependent. For this work, bounds of 600 and 900 s are
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selected, noting that t = 0 is defined as 10 minutes prior to atmospheric entry. The jettison time

is then set equal to the midpoint of these bounds, and the predictor numerically propagates to the

final state and computes an apoapsis error. If the magnitude of this error is below the tolerance ϵ1,

the algorithm exits the bisection subroutine with a converged solution. Otherwise, the bounds on

jettison time are updated based on the sign of the error. In an overshoot case with positive error,

the upper bound is set equal to the current value of the jettison time; in the undershoot case, the

lower bound is similarly updated. The subroutine then repeats, using the updated midpoint as

the new jettison time, and continues until either the error magnitude is below the tolerance ϵ1 or

a maximum number of iterations is reached. The subroutine also includes logic to recognize cases

in which the jettison time converges against the original upper or lower bound. This can occur

in cases where, due to dispersions, the target state is unreachable and the best-case scenario is to

jettison as early or as late as possible.

Newton’s method begins by perturbing an initial guess for the jettison time by some pre-

determined amount; in this work, a perturbation of δtj = 0.5 s is used and the initial guess is

set to 700 s. For numerical consistency, the perturbation should be a multiple of the time step

used by the predictor for fixed-time step integration. The apoapsis radius corresponding to this

perturbed jettison time is then numerically predicted; note that this propagation is not explicitly

represented in Fig. 2.3. The derivative of the objective function, in this case the slope of apoapsis

radius as a function of jettison time r′a(tj), is then approximated via first-order finite differencing

as shown in Eq. (2.9). The updated jettison time is then computed via Eq. (2.10), which finds

the x-intercept of the tangent line. The apoapsis radius resulting from the updated jettison time

tj,i+1 is numerically predicted, and the error is computed and checked against the tolerance ϵ2. For

a sufficiently accurate linearization and a nonzero slope of ra(tj), the error should decrease each

step. The subroutine repeats until either converging within the tolerance ϵ2 or reaching a maximum
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number of iterations.

r′a(tj) ≈
ra(tj + δtj)− ra(tj)

δtj
(2.9)

tj,i+1 = tj,i −
ra(tj)

r′a(tj)
(2.10)

The advantage of combining these two root-finding methods in a single guidance algorithm

is that bisection method is robust but relatively slow, whereas Newton’s method tends to converge

more efficiently but requires a sufficiently-accurate initial guess. In particular, for a more typical

aerocapture scenario in which the initial orbit is hyperbolic, escape cases that are still hyperbolic

after exiting the atmosphere can be frequently encountered and may exist near the optimal solution

for a high-energy target orbit. In these cases apoapsis radius is poorly-defined and the elliptical

Keplerian equations would yield a negative value. Because the error no longer varies smoothly,

the gradient is poorly-behaved and Newton’s method fails to accurately converge to the solution.

Bisection method, on the other hand, can handle errors of ±∞ and thus behaves as desired when

escape cases are simply assigned an error of ∞. Once converged to a solution, however, the optimal

jettison time (as predicted based on the navigation-estimated states) tends to require only small

corrections in subsequent guidance calls. Because the initial guess is good, Newton’s method

can more efficiently compute these minor adjustments as long as the perturbation step is tuned

appropriately. Note that a possible alternative implementation of the NPC would, during a single

guidance update, call the Newton’s method subroutine after the bisection method reduces the

error to be between the two tolerance values. However, bisection method is typically only used

in either edge cases where the solution is unreachable or at times far from the optimal jettison

time, and therefore this modification would add computational expense with a negligible impact

on performance.

The output of this prediction-correction loop is a jettison time tj . In Fig. 2.3 the logic

to command jettison once this time is reached or exceeded is portrayed as part of the guidance

algorithm. However, note that this command is not necessarily limited to the update frequency of

the guidance algorithm. Instead, tj can be output by the guidance and a separate jettison controller
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can check the current time and command drag skirt jettison when tj is reached. This controller

is simple and can run at a higher rate than the guidance algorithm, enabling higher-resolution

commanding of jettison and a corresponding improvement in targeting accuracy. Finally, the

“guidance called” delay block in Fig. 2.3 reflects the fact that this process is called at a fixed rate

rather than constantly iterating.

A significant drawback of the NPC guidance algorithm is that the number of iterations

required to converge is indeterminate. That is, while an upper limit on the number of iterations

can be enforced, there is no guarantee on the resulting error magnitude once this limit is reached.

Each guidance call requires a minimum of one numerical propagation, used to determine whether or

not the current tj results in apoapsis error within the tolerances. The bisection subroutine requires

one additional propagation per iteration, and Newton’s method, while more efficient, requires two

propagations per iteration (one perturbed, one corrected). The end result is that the NPC is not

only computationally expensive due to the requirement of onboard propagation, but the number of

operations required for convergence is in general unknown. In practice the number of propagations

required for convergence can be approximately bounded through analysis with expected dispersions,

as shown in Sec. 2.5, but the lack of a theoretical guarantee can make validation of the NPC

approach difficult.

2.4 Energy Reference Guidance

The energy reference guidance (ERG) algorithm proposed in this work2 seeks to achieve

comparable performance to the NPC while reducing computational requirements. The algorithm

is summarized in Fig. 2.4 and outlined in detail in this section, with results provided in Sec. 2.5.

ERG is divided into two phases: a pre-compute phase that is executed after the final OD update

to the spacecraft is received, and an algorithm that is executed each time guidance is called during

the atmospheric flight phase.

During the pre-compute phase, a smoothly-varying family of reference trajectories is gener-

2 ERG is equivalent to the simplified form of the QIC algorithm proposed in [139].
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Pre-Compute

Every Guidance Call

Figure 2.4: Energy Reference Guidance Diagram

ated and stored for later use. The ith reference trajectory is computed by linearly re-scaling the

nominal density profile by some factor Ki, then solving for the optimal jettison time tj,i through an

iterative prediction-correction procedure. This jettison time optimization is equivalent to the New-

ton’s method subroutine from the NPC algorithm, and similarly relies on numerical propagation

from the navigation-estimated states. Figure 2.5 shows an example set of reference trajectories,
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Figure 2.5: Orbital energy vs. time for family of reference trajectories, where X marks optimal
jettison time

where the trajectories with earlier optimal jettison times correspond to denser atmospheres (larger

Ki values).

In this work a range of Ki ∈ [0.8, 1.2] is used based on trial and error; this range depends

on the expected dispersions, atmospheric and otherwise, and is pre-defined on the ground. The

smallest and largest Ki values correspond to the worst-expected overshoot and undershoot cases,

respectively, based on both expected dispersions (aleatory uncertainty) and a potential lack of data

at other planetary destinations (epistimic uncertainty), and can be conservative. The tradeoff for

conservatism in these values is an incremental increase in memory and CPU requirements, but this

has marginal effect on the CPU demand during the atmospheric flight phase. The number of Ki

values, N , and the resolution at which reference trajectory data are saved are treated as tuning

parameters and discussed in Sec. 2.5. It is important to note that this method of linearly re-scaling

density is not meant to be a good model of how density dispersions behave in real atmospheres,

in which dispersions vary with position and time. Additionally, note that it would be possible

to implement ERG with other methods of modifying density to generate a family of reference

trajectories, such as varying atmospheric scale height of an exponential model. In Subsection 2.5.2

ERG is tested against the higher-fidelity density dispersions provided by GRAM as described in

Subsection 2.2.3.

During the atmospheric flight phase, guidance is called periodically and is active while sensed



37

deceleration is above a threshold value, just like in the NPC guidance. Once a guidance call is

initiated, the algorithm determines the reference trajectory that most closely matches the vehicle

trajectory at the current time. This is accomplished via a heuristic distance parameter d:

di = c1 (ξ − ξi)
2 + c2

(
ξ̇ − ξ̇i

)2
(2.11)

where ξ and ξ̇ are the energy and energy rate computed from the current navigation-estimated

state, respectively, ξi and ξ̇i are the energy and energy rate along the ith reference trajectory at

the current time, and c1 and c2 are tuning parameters. Energy is specific orbital energy,

ξ =
|ṙ|2

2
− µ

|r|
, (2.12)

and energy rate is computed by differencing the current energy with the energy computed from a

prior state estimate. The values along the reference trajectory are approximated for the current

time by using the values at the time step immediately prior to the current time. See Sec. 2.5

for a discussion of why this method is chosen as opposed to interpolation, and for a discussion of

the values of c1 and c2. The motivation for this choice of distance parameter is that the target

orbit is associated with a particular energy value and, since the vehicle lacks any out-of-plane

control authority, the guidance objective can be posed as an energy-targeting problem without loss

of generality. The current energy of a trajectory gives information about the remaining energy

that must be dissipated, and the current energy rate of that trajectory gives information about

whether the vehicle is on track to reach the desired energy upon atmospheric exit as compared to

pre-optimized reference trajectories.

Once di is computed for each reference trajectory, the reference with the smallest distance

parameter is selected as the nearest match. Then, the algorithm simply updates the jettison time

tj to equal the jettison time that was computed for that nearest reference trajectory, tj,i. Like NPC

guidance, the algorithm outputs a jettison time that is monitored by a jettison controller that is

potentially running at a higher rate.

It should be noted that a family of guidance algorithms for aerocapture and entry relying

on profiles of energy along a reference trajectory already exist in the literature. Energy controller
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guidance was considered for the aeroassist flight experiment in the 1980’s and later studied for the

Mars sample return orbiter [79, 140]. In this algorithm, targeted final energy is used to analytically

compute a reference energy profile, assuming an exponential atmosphere and constant aerodynamic

coefficients. This reference energy is analytically converted into a reference bank angle profile which

is then tracked using a second-order controller. ERG shares with this algorithm the basic concept

of defining energy and energy rate along a reference trajectory optimized to reach the target final

apoapsis. A key difference, however, is that ERG generates a dispersed family of these trajectories,

chooses from among them based on current energy and energy rate, then flies that reference control

in open loop, as opposed to analytically computing and tracking a single reference.

To summarize, in ERG a family of optimized reference trajectories is generated during a pre-

compute step. Then, during atmospheric flight updates, the nearest reference is selected based on a

heuristic distance parameter and the commanded jettison time is updated to equal the jettison time

associated with that reference. ERG has a number of things in common with the NPC guidance

algorithm. Namely, both algorithms rely on onboard numerical propagation from a navigation-

estimated state, and both solve for optimal jettison time in a root-finding procedure that requires

an indeterminate number of iterations to converge. The key difference, however, is that in ERG the

numerical propagations occur in a pre-compute phase that occurs before atmospheric entry, and is

thus significantly less time-constrained. That is, whereas the NPC requires the prediction-correction

procedure to converge during a single guidance call (0.125 s in this case), ERG only requires that

the procedure converge for each reference in the time between OD cutoff and atmospheric entry.

In fact, if the link budget and timing of the mission design allow, the pre-compute step could be

performed on the ground and the relevant data could be uplinked along with the final OD update.

Moreover, OD cutoff could be shifted earlier if necessary to allow a longer time for the pre-compute

phase. An earlier OD cutoff does result in higher navigation error at entry, though, so this creates

a tradeoff between accuracy and onboard computation requirements.

Quantitatively comparing the computational demand of these two algorithms would require

hardware-in-the-loop simulation of a flight software-like implementation of each algorithm, which
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is beyond the scope of this study. While logged CPU time on a research computer is sometimes

used as a basis of comparison in the literature, this approach can result in misleading data. The

implementations of these two algorithms are developed as proofs-of-concept, not designed to emulate

a flight software implementation and optimized for efficiency; additionally, other processes can

draw from the same computing resource and affect the CPU time required. Nevertheless, the

ERG algorithm has two clear advantages over the NPC in terms of CPU demand. During the

atmospheric flight phase of ERG, no numerical propagation or iterative root-finding is required;

the algorithm simply evaluates a mathematical expression for the distance parameter associated

with each reference trajectory, then selects the minimum from among these values. It is clear

that, when the algorithms are tuned for comparable performance, ERG requires significantly fewer

computer operations per guidance call than the NPC and is less demanding of CPU capacity as

a result. A second important feature of the ERG algorithm is that it is computationally well-

posed, in that the number of individual operations required per guidance call can be predicted

exactly. In contrast, the NPC requires an indeterminate number of numerical propagations to

reach a given convergence tolerance as part of its root-finding procedure during each guidance call.

Reduced algorithmic complexity and an ability to closely theoretically constrain CPU demand are

significant advantages of the ERG over the NPC when it comes to verification and validation of

flight software, especially in the case of radiation-hardened avionics with limited capacity.

Although ERG is less demanding of CPU capability, this is traded-off by a higher memory

requirement compared to NPC. The time, energy, and energy rate at each point along each reference

trajectory must be stored in memory and remain accessible to the guidance algorithm. Thus, the

total memory required is a product of the number of reference trajectories, the number of datapoints

per trajectory, and the memory required per value (e.g. 64 bits for double-precision numbers).

In the following section, the relationship between targeting performance and required memory is

quantitatively explored.
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2.5 Results

2.5.1 NPC Performance

Figure 2.6 shows the histogram of apoapsis altitudes achieved using the NPC guidance in a

5001-trial Monte Carlo analysis, modeling the scenario and uncertainties as described in Sec. 2.2.

The mean and standard deviation apoapsis altitude achieved by NPC are 5057 km and 357 km,

respectively; recall that the target is 5000 km. The data are approximately Gaussian, with the

exception of a small right skew due to a small number of high-apoapsis outliers. Note that one cause

of these outliers is that the dispersions assumed in this work sometimes exceed the total control

authority of the vehicle. For example, in cases where the atmospheric density is below nominal and

simultaneously navigation errors result in delivery with a shallower entry flight-path angle than

desired, the vehicle may overshoot the target orbit even if the drag skirt is never jettisoned.
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Figure 2.6: Targeting results for NPC, 5001-trial Monte Carlo analysis

In order to roughly assess the computational demand of the NPC algorithm, the number

of propagations required per guidance call is counted and the maximum of this value is recorded

for each trial; denote this maximum pmax for convenience. In 88% of cases pmax = 7, and in all
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but 2 of the 5001 trials pmax ≤ 7; the maximum observed value was 11. Because the NPC lacks

guarantees on the number of iterations required for convergence, this type of numerical analysis

would be required to bound the required computational capacity. The statistics of pmax are affected

by the incoming trajectory, target orbit, assumed dispersions, tuning of the guidance algorithm,

and a number of other implementation details.

2.5.2 Baseline ERG Performance

The targeting performance for ERG under the same circumstances is shown in Fig. 2.7,

where N = 17 reference trajectories are generated. In this case the mean and standard deviation

apoapsis altitude are 5009 km and 355 km, respectively, as summarized in Table 2.2. Statistically

speaking, these targeting results are approximately equivalent; the ERG algorithm achieves tar-

geting performance almost identical to that of the baseline NPC algorithm. Though the mean

apoapsis altitude of the ERG has lower error than that of the NPC, this difference is insignificant

in the context of a 5000 km target apoapsis and standard deviation of more than 350 km. This is

remarkably good performance considering that ERG can only choose from a set of 17 options for

jettison time, whereas the NPC guidance refines jettison time to within a small tolerance.

Table 2.2: Apoapsis altitude statistics for baseline NPC and ERG

Algorithm Mean, km σ, km

NPC 5057 357

ERG 5009 355

Figures 2.8a and 2.8b provide a comparison that gives some insight into how ERG is able to

accurately target a final orbit. In both cases a single jettison time is chosen before atmospheric

entry and used in every trial. In Fig. 2.8a, tj is optimized a priori based on the nominal scenario,

whereas in Fig. 2.8b tj is optimized using simulations beginning from the navigation-estimated state

after OD cutoff 10 minutes prior to entry. Put differently, the former case is open-loop control and

the latter case is equivalent to ERG with only a single reference trajectory.

In the open-loop case shown in Fig. 2.8a, targeting performance is very poor. A significant
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Figure 2.7: Targeting results for ERG, 5001-trial Monte Carlo analysis
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(a) Jettison time optimized a priori, 1001-trial Monte
Carlo analysis
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(b) Jettison time optimized after OD cutoff, 1001-
trial Monte Carlo analysis

Figure 2.8: Targeting results for fixed-time jettison

number of cases either impact the planet or have apoapsis altitudes so low that the vehicle is

doomed to re-enter before having a chance to maneuver, with 13.3% of cases reaching an apoapsis
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below 200 km. There is also a high number of overshoot cases and a wide spread to the data. The

case in Fig. 2.8b, shown with the same x-axis scaling, stands in sharp contrast. With a standard

deviation of 971 km it is significantly worse than the case with 17 reference trajectories shown in

Fig. 2.7, but performs far better than the case in Fig. 2.8a, avoiding any impact cases or any

apoapsis altitudes above 8000 km.

This comparison serves to illustrate the following point. The state of the vehicle at atmo-

spheric entry is subject to two distinct types of dispersions: delivery error and navigation error. The

former is the difference between the pre-planned nominal entry state and true state, whereas the

latter is the difference between the onboard best-estimate of the state, based on filtered navigation

data, and the true state. Under the assumptions for this mission scenario, delivery error generally

exceeds navigation error; that is, the spacecraft is delivered to entry with limited accuracy, but

navigation filters produce a fairly accurate state estimate by the time of OD cutoff. The results

in Fig. 2.8a use a jettison time based on the nominal entry state and are thus subject to both

delivery and navigation errors. The Fig. 2.8b results, in contrast, use a jettison time based on

the navigated state at OD cutoff, which effectively removes most of the delivery error. Therefore,

it is clear that much of the benefit from the ERG algorithm is simply a result of re-computing a

reference trajectory (in this case, a jettison time) onboard the spacecraft using an updated state

estimate.

2.5.3 ERG Tuning

Recall that the ERG algorithm can be tuned by adjusting the values of c1 and c2 in the

distance parameter, Eq. (2.11). A parametric study was carried out to find values of these pa-

rameters that offer reasonable performance, with results shown in Table 2.3. In order to eliminate

other factors, these cases used 401 reference trajectories with 8000 datapoints per trajectory. A

tuning of c1 = 1, c2 = 10 is selected based on its minimum standard deviation result, and is used

for all following results as well as for the baseline case in Fig. 2.7. It is interesting to note that

the minimum-variance case occurs when c1 and c2 are of similar magnitude, and that when either
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Table 2.3: Apoapsis altitude statistics for varying distance parameter tuning

c1 c2 Mean, km σ, km

1 0 6034 601

100 1 5036 389

10 1 5033 382

1 1 5027 361

1 10 5019 338

1 100 5022 340

1 1000 5053 416

0 1 5121 578

parameter is set to zero performance degrades significantly. This highlights the fact that energy

and energy rate are both necessary for the best match with a reference trajectory.

2.5.4 Memory vs. Performance Trade-Offs

Although the ERG algorithm is significantly less demanding of CPU capability, it is signif-

icantly more demanding of memory space accessible to the guidance algorithm. It is therefore

of interest to quantify trade-offs between memory and performance for the ERG algorithm. The

storage required is estimated as the product 3 ×N ×M ×D where N is the number of reference

trajectories, M is the number of datapoints per reference trajectory, and D is the required memory

per datapoint, and where 3 is pre-multiplied because each reference trajectory requires storing time,

energy, and energy rate at each datapoint.

In Figure 2.9, the number of reference trajectories is varied from 1 to 401 and the apoapsis

altitude results are compared, with a 1001-trial Monte Carlo analysis performed in each case.

M = 8000 datapoints are recorded for each reference trajectory. The mean and standard deviation

of apoapsis altitude for these same trials are listed in Table 2.4. From these results, it is clear

that increasing the number of reference trajectories above 81 makes no discernable difference in

performance. From 81 to 17 there is a small increase in standard deviation, then from 17 to 9 a

larger increase in variability and the first noticeable change in the histogram. For fewer than 9

reference trajectories, performance significantly degrades. Note that the mean remains centered for
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all cases, as overshoot and undershoot cases increase at approximately the same rate as the number

of reference trajectories is decreased. Based on this analysis, a reasonable balance between memory

and performance seems to be N = 17 reference trajectories. Note that this inflection point may

change for differing mission scenarios.

A similar analysis is presented in Fig. 2.10 and Table 2.5, where in this case the number

of datapoints per trajectory is varied from 8000 to 500 while holding the number of reference

trajectories constant at 81. Note that the numerical propagation always occurs with a timestep of

0.125 s, meaning that for M = 4000 a datapoint is recorded every other step, for M = 2000 every

4 steps, etc., assuming propagation for 1000 s total.
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Figure 2.9: Performance comparison for varying number of reference trajectories, 1001-trial Monte
Carlo analysis

Whereas the data in Fig. 2.9 remain centered while the spread increases, in this case there

is a shift to the right combined with an increased spread each time that M is decreased. That is,

recording fewer datapoints results in a bias toward overshoot cases as well as increasing variability.

Moreover, in these results targeting performance begins to degrade immediately, without a clear

inflection point.
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Table 2.4: Apoapsis altitude statistics for varying number of reference trajectories

N Mean, km σ, km

401 5019 338

81 5020 338

17 5010 361

9 5008 415

5 5036 511

3 5210 914

1 5026 971
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Figure 2.10: Performance comparison for varying reference trajectory resolution, 1001-trial Monte
Carlo analysis

Table 2.5: Apoapsis altitude statistics for varying number of datapoints per reference trajectory

M Mean, km σ, km

8000 5020 338

4000 5076 345

2000 5190 365

1000 5425 433

500 5912 588

To understand these trends, recall that during the atmospheric flight phase the reference

energy and energy rate values are approximated by using data from the time step immediately
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prior to the current time. Thus, for a resolution of 500 datapoints, the values used to compute the

distance parameters are associated with a point on the trajectory up to two seconds earlier than

the current time. This effectively inflates the energy of every reference point, and the result is that

the matched trajectory has a higher density scale factor than it otherwise would, leading to an

earlier jettison time and ultimately the skew toward overshoot cases observed in Fig. 2.10. It may

seem as though using interpolation to compute energy and energy rate of the reference trajectory

at the current time would address this issue. However, energy rate changes as a step function at the

moment of drag skirt jettison. In short, interpolating across this discontinuity disrupts the ability of

the algorithm to successfully match with the reference trajectory that would actually yield optimal

performance. Therefore, in this work values from the previous time are used and the requirement

for high-resolution reference trajectory data is accepted; a value of M = 8000 is taken to be the

baseline configuration shown in Fig. 2.4. As a point of reference, if double-precision values of 64

bits each are assumed for this baseline configuration, a total of about 3.3 MB of memory would be

required. In comparison, the Sphinx avionics platform, which was developed at JPL for SmallSat

missions and now has flight heritage from the Lunar Flashlight spacecraft [141], includes 256 MB of

synchronous dynamic RAM [142] This suggests that the 3.3 MB requirement is well within reason.

Thus, while the tradeoff of reduced CPU demand for the ERG is increased memory requirement,

this increase is not likely to represent a significant detriment to the overall design.

2.6 Discussion

A notable limitation of both algorithms presented in this work is that path constraints, such

as peak heat flux and peak g-load, are not incorporated into the onboard logic. While other work

does provide a method to account for these constraints in NPC guidance for aerocapture and entry

[65, 143], there is currently no equivalent approach for ERG. The impact of this limitation strongly

depends on the mission scenario of interest. For the small satellite demonstration mission studied

here, the vehicle design is expected to have significant margin compared to the expected heating

and g-loads, and thus it is likely unnecessary for the onboard guidance to directly incorporate the
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associated constraints. In more stressing cases for which the nominal scenario is near the limits

of heating and g-loads, an additional outer loop could be added to the ERG algorithm to prohibit

executing jettison times that are predicted to have an unacceptably high likelihood of resulting in

path constraint violation.

The most likely barriers to implementation of this algorithm are the computation time re-

quired to generate the reference trajectories and the memory required to store the associated data.

Therefore, it would be of interest to extend the approach presented in this work to achieve the same

performance with fewer reference trajectories, or else improve performance with the same number.

A potential approach would be to interpolate between the reference trajectories in some

way, such that the commanded jettison time does not necessarily equal one of the reference jettison

times. Because the current vehicle state will generally not equal the state at that time along even the

nearest reference trajectory, the difference between the current and reference state could inform a

correction to the jettison time of that reference trajectory. One could accomplish this by computing

linear sensitivities of jettison time with respect to each relevant state component, then computing

the correction term as the product of this sensitivity and the state difference. The altitude, velocity

magnitude, and flight-path angle could be considered a sufficient set of state components since the

primary concern is planar motion. However, there are two significant issues with that approach.

First, this would require computing and storing sensitivity values at each time along each reference

trajectory, resulting in a major increase in CPU demand and, assuming three state sensitivities,

doubling the amount of memory required. Second, even setting aside the computational challenges,

the dynamics are nonlinear and the true state tends to diverge significantly from any of the reference

trajectories over time, leading to inaccurate linearization.

One possible workaround is the incorporation of quasi-initial conditions. These fully represent

the current state by back-propagating through a nominal model, effectively defining a nonlinear

coordinate transformation. Quasi-initial conditions have been shown to be a more linear state

representation than the state at a given time for aerocapture [144]. This state representation

also removes the requirement of computing sensitivities at each time, since they need only be
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computed once in quasi-initial condition space, although a single back-propagation per guidance

call is then required during atmospheric flight. Preliminary work by the authors incorporates

quasi-initial conditions into an extension of the ERG algorithm presented here [139]. While early

results are promising, it is difficult to guarantee reliable and accurate linearization in the presence

of dispersions, whereas the simpler approach presented here performs well. Furthermore, note that

while the computational burden of the quasi-initial condition approach is far less than a linearization

based on the current state, it does still require numerically computing three sensitivity values for

each reference trajectory, meaning that the number of numerical propagations during the pre-

compute phase increases by roughly a factor of four.

Another interesting avenue for future work is some method of nonlinear corrections to the

reference jettison time. This could be combined with the previous concept, such that some nonlinear

interpolation surface is generated in quasi-initial condition space during the pre-compute step and

then used to guide corrections during the atmospheric flight phase. This could potentially alleviate

issues related to inaccurate linearization, although it would likely require a commensurate increase

in computational cost.

2.7 Conclusions

It is worth returning here to the single-event jettison concept itself. This control architecture

inherently sacrifices performance in pursuit of simplicity. By relying on the jettison of a single

rigid drag skirt, the vehicle lacks any out-of-plane control authority, forgoes continuous control

and, perhaps most importantly, is coasting without any control authority for the remainder of

atmospheric flight once the drag skirt is jettisoned. A range of other approaches address one

or more of these shortcomings, including continuously-variable drag modulation [117], jettison of

multiple drag skirts [119], and lift modulation [115, 116]. However, each of these architectures adds

complexity in terms of flight hardware and, in most cases, flight software. The motivation to use

single-event jettison drag-modulation is not to achieve orbit insertion as accurately as possible;

rather, the goal is to reliably reach the target orbit within some reasonable error bounds while
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keeping the aerocapture subsystem as simple as possible. This is appropriate either for missions

that can tolerate a range of apoapsis altitudes or for cases where the spacecraft has sufficient

propellant to clean up the expected targeting errors.

This broader motivation should inform the choice of guidance algorithm and the interpre-

tation of results. In this work a guidance algorithm, ERG, is presented that achieves equivalent

targeting performance to the baseline NPC. Both algorithms have a standard deviation of about

355 km and in some outlier cases reach an apoapsis several thousand kilometers higher than the

target. However, the choice of an inherently limited control architecture limits the ability of any

guidance algorithm to accurately target a final orbit. The fact that the two distinct algorithms

achieve nearly-identical results could suggest that both are operating near the ceiling of perfor-

mance for this scenario. The ERG algorithm achieves this result with significantly reduced CPU

demand, albeit with an increased demand for accessible memory. The simplicity of the atmospheric

flight phase of the ERG algorithm aligns well with the broader motivation to reduce complexity for

this type of mission scenario.



Chapter 3

Onboard Modeling of Uncertain Atmospheres

3.1 Introduction

Hypersonic flight mechanics are characterized by nonlinear dynamics and high sensitivity to

variations in atmospheric density. Furthermore, the behavior of planetary atmospheres is complex

and difficult to predict. Appropriate modeling of density is thus key to the analysis of hyper-

sonic trajectories, including in the context of onboard modeling for closed-loop guidance schemes.

Autonomous guidance algorithms typically treat density as a known function of altitude, either

in analytical form as an exponential function of altitude or by interpolating from a table [145].

In-flight measurements of sensed acceleration can be converted to estimates of current density

(though this approach does treat aerodynamic properties as known), and these observations are

then incorporated by multiplying the nominal profile by the ratio of observed density to expected

density [84, 85]. Recent work contributes more sophisticated methods of incorporating in-flight

observations, such as machine learning or an ensemble correlation filter [86, 87, 88]. However, these

methods ultimately treat the density as known and update a nominal profile.

Recent and ongoing works propose stochastic approaches to closed-loop guidance with the

aim of being robust to uncertainties without taking an overly-conservative approach [96, 94], and

central to these methods is an onboard prediction of state and environmental uncertainty. Several

non-Monte Carlo uncertainty quantification (UQ) techniques, including polynomial chaos expansion

and linear covariance analysis [89, 146, 147], potentially enable onboard uncertainty propagation for

hypersonic flight vehicles. However, these methods generally require a parametric, low-dimensional
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representation of uncertainty [148, 149]. Recent studies have explicitly incorporated a probabilistic

atmosphere model into UQ approaches [150, 92, 93]; however, these approaches typically assume

an exponential form for density and incorporate uncertainty by dispersing the atmospheric scale

height and surface density, a method that always results in an exponential profile. The assumption

of exponential density significantly limits the ability of the model to capture more complex pertur-

bations due to its inability to capture short-period perturbations or other deviations of the density

profile from the idealized exponential shape [138]. Semi-empirical models such as the Global Refer-

ence Atmospheric Models (GRAMs) from NASA provide much higher-fidelity representations of the

atmosphere and its response to external factors, such as solar weather [151], but lack a convenient

low-dimensional and parametric form. Estimating uncertainty using these models typically requires

generating a large number of density profiles then computing statistics of the generated dataset,

rather than estimating variability directly. Thus, GRAMs and similar models are not feasible for

onboard uncertainty propagation purposes.

This motivates the development of a reduced-dimensionality model that retains the higher-

fidelity properties of models like GRAM, and a method for in-flight updates to this model. Previous

work treats density as a Gaussian random field with altitude the sole independent variable, and

demonstrates a Karhunen-Loève expansion (KLE) for density [138]. Reference [146] shows that

linear covariance analysis incorporating this model closely matches Monte Carlo results. This

study expands on these results in the following ways. Practical implementation of the KLE is

explored in greater detail, examining alternative methods of constructing the expansion. The KLE

models are also compared against variational autoencoder (VAE) models, which use deep neural

networks to achieve nonlinear dimensionality reduction as compared to the linear dimensionality

reduction attained by KLE models, and which enable representing non-Gaussian random processes.

A VAE is a generative model in that it learns and generates samples from the joint probability

density function of the data. The efficiency of each approach in capturing density variability is

compared both directly and through statistics of dispersed trajectories generated in Monte Carlo

analyses using each model. The aim of this work is not to claim that either the KLE or VAE
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modeling approach is better for this application; rather, this study provides a proof of concept

for each model type and discusses the benefits and drawbacks of each. New work outlining and

demonstrating an expansion on the KLE model to treat density as a function of multiple variables

(e.g. altitude, latitude, and longitude) is presented and its comparative utility is discussed. Finally,

an approach to updating the KLE based on sequential noisy density measurements is presented

and demonstrated, and the potential for onboard execution of this method is discussed.

3.2 Preliminaries

3.2.1 Review of Karhunen–Loève expansion

A random field is a function that maps a random outcome to a continuous function across

a (possibly multi-dimensional) domain in space. Somewhat more formally: for some measurable

space (Ω,F) of sample space Ω and σ-field F of subsets of Ω, a random field {Φ(z) : z ∈ Z ⊆ Rd} is

a collection of random variables (Xz)z∈Z with values that map Ω 7→ R [152]. A Gaussian random

field (GRF) Ψ(z) is a random field for which any finite linear combination of the random variables

Xz results in a Gaussian random variable; that is, at any point zi in the domain Z the probability

density function of the value of the field Ψ(zi) is Gaussian [153]. A GRF is fully characterized by

its mean function µ and covariance function Σ,

µ(z) = ⟨Ψ(z)⟩, (3.1)

Σ(z1, z2) = ⟨(Ψ(z1)− ⟨Ψ(z1)⟩)(Ψ(z2)− ⟨Ψ(z2)⟩)⟩, (3.2)

where ⟨⟩ is the expectation operator.

A Karhunen–Loève (also known as Kosambi-Karhunen–Loève) expansion represents a random

field through an infinite linear combination of orthogonal basis functions (a Fourier expansion), in

such a way that, when truncated to a fixed number of terms, the choice of the basis functions

minimizes the mean-square error [154, 155]. This definition is shown by Eq. (3.3) where Φ is the

random field, z is the independent variable, and λi and ϕi(z) are the eigenvalues and eigenfunctions

of the covariance function of the random field Σ(z1, z2), respectively, as shown in Eq. (3.4). Finally,
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each Yi is a random variable described by Eq. (3.5):

Φ(z) = ⟨Φ(z)⟩+
∞∑
i=1

√
λiϕi(z)Yi; (3.3)

∫ T

0
Σ(z1, z2)ϕi(z2)dz2 = λiϕi(z1); (3.4)

Yi =
1√
λi

∫ T

0
Φ(z)ϕi(z)dz. (3.5)

In practice, the eigenvalues and eigenfunctions are sorted by descending magnitude of the eigenval-

ues and then the sum in Eq. (3.3) is truncated after some dK number of sufficient terms. Determin-

ing the required dK is problem-dependent, but in general it is chosen such that the mean-square

norm of the approximation is within some relative error of the exact mean-square norm. Eq. (3.6)

gives one heuristic method, where k is some sufficiently large number and α is close to 1 based on

the desired level of permissible error (for a relative mean-square norm error of (1− α)× 100%).

dK = min

{
j :

∑j
i=1 λi∑j+k
i=1 λi

≥ α

}
(3.6)

In the case where Φ(z) is a GRF Ψ(z), the Yi’s are all independent and identically distributed

(i.i.d.) standard normal random variables:

Y1, Y2, ... ∼ N (0, 1) i.i.d. (3.7)

Often the probability density function of a random field is not known exactly, but some sufficiently

large dataset is available. In this case the sample covariance matrix is computed,

CZZ ≈ QZZ =
1

m− 1
FF T , (3.8)

where QZZ is the unbiased estimate of the sample covariance matrix CZZ , F ∈ Rn×m is a matrix

such that each column is an observation vector less the sample mean, n is the number of datapoints

per observation vector, andm is the number of observation vectors in the dataset. Having computed

a covariance matrix, it is straightforward to find the eigenvalues and eigenvectors of that matrix

and sort them according to descending order of the eigenvalues, and the results are the {λi} and
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{ϕi} in Eq. (3.3), respectively, where each ϕi is now a vector rather than a function. The discrete

KLE form of a GRF Ψ ∈ Rn is thus summarized below:

Ψ ≈ ⟨Ψ⟩+
dK∑
i=1

√
λiϕiYi, (3.9)

Yi, ..., Yd ∼ N (0, 1) i.i.d.

3.2.2 Review of Variational Autoencoder

An autoencoder is a type of latent variable model that provides a method of nonlinear dimen-

sionality reduction, consisting of an encoder and a decoder connected sequentially. The encoder

takes the input data and, through one or more neural network layers, converts the data into a lower

dimensional encoding vector – i.e., set of latent variables – representing some learned features of the

data. The decoder, through a symmetric set of neural network layers, then attempts to reconstruct

the original input from the latent variables. By forcing the input data through a bottleneck, the

autoencoder learns a latent space that can be used for compressed representation of the data. The

use of deep neural networks for the encoder and decoder enables the autoencoder to take advantage

of nonlinear relationships in the input data. In fact, it can be shown that a linear autoencoder

(one which lacks nonlinear activation functions in the neural networks) will learn the same latent

space as a KLE applied to discrete data, commonly known as principal component analysis [156].

While autoencoders are useful in applications such as denoising and anomaly detection, they

are limited in their utility as generative models. Because the latent space constructed by an

autoencoder is not necessarily smooth or continuous, interpolation or randomly sampling from

the latent space with the goal of generating new synthetic data can produce unrealistic results. A

variational autoencoder addresses this limitation by describing the encoder, decoder, and the latent

variables in terms of probability distributions rather than individual deterministic entities [157].

More specifically, a type of distribution is assumed a priori and then, given an input vector that is

not necessarily Gaussian, the encoder outputs encoding vectors for the parameters describing that

distribution; often, a Gaussian distribution is assumed, and the encoder thus outputs the mean
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vector and covariance matrix. During the reconstruction process, latent variables are drawn as

samples from these (potentially correlated) probability distributions before being passed through

the decoder.

This probabilistic description encourages local smoothness in the latent space, but without

additional constraints the distributions can become narrow and sparse, resulting in overfitting. To

compensate, VAEs incorporate Kullback-Leibler (KL) divergence as a regularization term. KL

divergence essentially measures the divergence between two probability distributions [158]. By

penalizing divergence between the learned latent variable distributions and a target distribution

(often the standard normal), the encodings are attracted toward the center of the latent space and

sufficient variance is encouraged. The loss function can then be written as the weighted sum of

these two terms,

L(x, x̂) + βKL

∑
j

KL(qj(z|x)||p(z)), (3.10)

where x is the input vector, x̂ is the reconstructed output vector, z is the latent variable, qj(z|x)

is the learned distribution for each dimension j of the latent space and p(z) is the assumed prior

distribution [159]. L() is the likelihood function penalizing reconstruction error, typically evidence

lower-bound (ELBO) [160], and KL() is the KL divergence acting as a regularizing term. Finally,

βKL determines the weight of the KL divergence term relative to the reconstruction loss, where the

subscript is used here to distinguish from ballistic coefficient.

To briefly summarize, a VAE is a probabilistic method of nonlinear dimensionality reduction

that is a popular choice for generative modeling. The derivation of a VAE can also be understood

as applying Bayesian variational inference to the latent variable distributions of an autoencoder.

For a more thorough mathematical treatment of VAEs, the reader is directed to Refs. [159, 160].
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3.3 Methodology

3.3.1 Simulation Description

This section briefly describes the methodology for trajectory simulation used in this study

and summarizes relevant vehicle parameters. Trajectories are simulated by numerically propagating

the three degree-of-freedom equations of motion for atmospheric flight about a rotating ellipsoidal

planet via explicit Runge-Kutta integration of order 4(5). Density is modeled using MarsGRAM

2010 [151], interpolating from a resulting table of density vs. altitude unless stated otherwise.

Mars is assumed to have gravitational parameter µ = 4.305 × 104 km3 s−2, equatorial radius R =

3397.2 km, oblateness spherical harmonic coefficient J2 = 0.001964, and a planetary rotation period

of ωp = 1.02595675 days [161]. Mach number is defined as the ratio of vehicle speed to the speed of

sound M = v/a, where sound speed a for the Martian atmosphere is interpolated from a nominal

tabular model [162]. Heat flux is modeled by computing convective heat flux q̇ at the stagnation

point assuming a fully catalytic surface using the Sutton-Graves expression shown in Eq. (3.11),

where ρ is density and a value of the heating coefficient k = 1.904× 10−4 kg0.5/m is used based on

nominal atmospheric composition at Mars [163]. Dynamic pressure q is defined by Eq. (3.12).

q̇ = k

√
ρ

Rn
V 3 (3.11)

q =
1

2
ρv2 (3.12)

There are two types of trajectories used as representative examples in this study. The first is a steep

direct entry trajectory at Mars for the Small High Impact Energy Landing Device, or SHIELD,

a small, mostly-passive probe under development at NASA JPL intended for low-cost access to

the Martian surface [164]. Once reaching subsonic conditions, SHIELD deploys a drag skirt, then

jettisons the heatshield shortly thereafter. The drag coefficient CD during each configuration varies

with Mach number and is linearly interpolated from tabular data provided by the JPL SHIELD

team. Ballistic coefficient β = m/(CDA) describes the ratio of inertial forces to aerodynamic forces,

where m is vehicle mass and A is reference area; the ballistic coefficient for SHIELD ranges from
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about 20 kgm−2 shortly after entry to around 5 kgm−2 near the surface after drag skirt deployment

and heatshield jettison. SHIELD has a lift-to-drag ratio of L/D = 0, and an assumed nose radius

of Rn = 0.85m. The trajectory considered in this study is defined by an entry velocity of 6 km/s

and an entry flight-path angle (EFPA) of −18 ◦ at the atmospheric interface altitude of 125 km,

entering due-East at 0 ◦ latitude and 0 ◦ longitude, where flight-path angle is defined as the angle

between the air-relative velocity of the vehicle and the local horizontal. The reference SHIELD

direct-entry trajectory is shown in Fig. 3.1a.
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(a) SHIELD direct-entry
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Figure 3.1: Dynamic pressure and velocity magnitude vs. altitude for reference trajectories. Note
identical y-axis scaling, different x-axis scaling.

The other trajectory considered here is aerocapture at Mars by a vehicle similar to the Mars

Science Laboratory (MSL) aeroshell. A ballistic coefficient of β = 130 kgm−2 and lift-to-drag ratio

of L/D = 0.24 are assumed [165], and the vehicle flies full-lift-up for the duration of the trajectory.

The entry is again due-East at 0 ◦ latitude and longitude, in this case with entry velocity of 5.8 km/s

and EFPA of −11 ◦. A nose radius of Rn = 1m is assumed, which conveniently normalizes the

value of q̇ for re-scaling to other vehicles. The reference aerocapture trajectory is shown in Fig.



59

3.1b.

3.3.2 VAE Architecture and Training

This section summarizes the architecture of the deep neural networks used to construct the

VAE models in this work, and describes the approach taken to training. It is not a claim of this

work that this particular architecture or training methodology is optimally suited to representing

atmospheric density; rather, confronted with a large number of tunable parameters, this is an

approach that was found to work well over the course of trial-and-error experimentation, and it is

detailed here for reproducibility.

The encoder is built from a 6-layer deep neural network with the following numbers of nodes:

256, 256, 128, 128, 64, and 64; the decoder is also 6 layers such that the order of dimensions

is reversed, going from 64 to 256. The latent space is limited to only 4 dimensions; this is the

dimensionality that directly corresponds to the number of terms in the KLE models. All neural

networks use the Gaussian Error Linear Unit (GELU) nonlinear activation function [166], and are

implemented using the open-source tool PyTorch [167, 168].

The models are trained with batch size 1024 for 100,000 epochs, long enough that the loss

curve was observed to plateau. A weighting parameter of βKL = 0.15 is selected, and the loss

function is normalized by the batch size. The learning rate is initially set to 1×10−3, and a learning

rate scheduler is implemented to reduce the learning rate after a period of time once the loss is

observed to plateau. Specifically, the learning rate is reduced by a factor of 0.9 if no improvements

are observed after 500 consecutive epochs, with a threshold for improvement of 1×10−5. Moreover,

a cooldown period of 2500 epochs is required to pass before resuming normal operations after each

time the learning rate is reduced1 .

1 ReduceLROnPlateau via PyTorch

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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3.4 Columnar Atmosphere Model Comparison

In this section, atmospheric density is approximated as a random field as a function of only

altitude. In reality, atmospheres vary across 3D position and time, and are affected by external

factors such as space weather. However, for applications like entry and aerocapture which traverse

tens of vertical kilometers within the atmosphere, the dominant factor in density change is altitude.

Thus, a columnar atmosphere model is assumed in this section, such that ρ(h, ϕ, θ, t) ≈ ρ(h) where

ρ is density, h altitude, ϕ latitude, θ longitude, and t elapsed time. See Section 3.5 for a discussion

of density variation with latitude and longitude.

While a random field is a theoretically appropriate choice for modeling density [138, 169,

170], it is an infinite-dimensional object. In contrast, the non-Monte Carlo methods for onboard

uncertainty propagation discussed earlier require a parametric, finite-dimensional representation of

density variability [148, 149]. Thus, some form of dimensionality reduction is required to go from

either raw data or a more complex model to a parametric, low-dimensional model appropriate for

onboard use. In this section, KLE and VAE approaches are both applied to construct density

models, and the results are compared for accuracy in their generative modeling as well as, crucially,

their accuracy in predicting quantities of interest such as peak heat flux.

Density exhibits approximately Gaussian probability with correlation structure across a spa-

tial domain; see Ref. [138] for detailed justification of this Gaussian assumption based on Mars-

GRAM 2010 data. Thus, a KLE can be constructed under the assumption that density is a GRF,

then truncated after an appropriate number of terms. The sample covariance matrix is formed

from any sufficiently large dataset of density values vs. altitude; typically, it is convenient to use

simulated data from a relevant model such as a GRAM. Note that, to avoid a nonzero probability

of producing a negative value, the density random field should in fact be treated as a truncated

Gaussian.

Figure 3.2 shows the result of constructing a KLE from a dataset of 5000 density profiles

output by MarsGRAM, denoted KLE-ρ for shorthand. For the sake of later comparison, a fixed
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number of dK = 15 terms is used for this and all subsequent KLE models in this section unless

noted otherwise. The horizontal axis of this plot shows normalized density perturbation δρ, as

defined in Eq. (3.13), rather than density itself because this captures variability better even as the

value of density changes by orders of magnitude across this altitude range:

δρ = ρ/ρ̄− 1. (3.13)

The thick dashed lines show the ±3σ bounds, where σ is standard deviation. In the case of

MarsGRAM these bounds are computed directly from the sample profiles; for the KLE, 5000

separate realizations are generated and evaluated, then standard deviation is computed from this

generated dataset. In addition, three sample profiles from each model are shown in the thin solid

lines.
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Figure 3.2: KLE vs. Mars-GRAM for KLE constructed from density values; thick dashed lines are
±3σ bounds, thin solid lines are sample profiles

Notably, the KLE 3σ bounds only align with the MarsGRAM bounds up to about 35 km,

badly underestimating variability at higher altitudes. This occurs because the value of density is

much greater at low altitudes: for Mars, about 1×10−2 kg/m3 at the surface, order of 1×10−5 kg/m3



62

at 50 km, and order of 1× 10−10−1× 10−9 kg/m3 at the atmospheric interface altitude of 125 km.

The KLE is truncated based on eigenvalue magnitude, and the variability at low altitudes where

density is high is prioritized as a result, even though as a percentage of nominal density varies more

at high altitudes. For this reason, a KLE based on density values is an inefficient way to capture

normalized density perturbations at high altitudes. A VAE model trained directly on density data

suffers even more from essentially the same issues; because of the widely-varying magnitudes of the

training data, the VAE fails to meaningfully learn density behavior at all except for at very low

altitudes.

This shortcoming can be addressed by constructing the models differently. While columnar

density remains the quantity of interest, the data can be pre-processed for model construction in

a variety of ways, with a converse post-processing step recovering density values. For example, a

model can be constructed from normalized density perturbation values in the following way. First,

compute δρ values corresponding to each value in the dataset. In the case of a VAE, then train

the model on this δρ data directly. In the case of a KLE, form a mean vector and covariance

matrix for these δρ data and construct a KLE using these summary statistics. Finally, treat the

outputs of this model as δρ values and re-arrange Eq. (3.13) to recover density values. The results

of constructing KLE and VAE models in this way are shown in Fig. 3.3, denoted KLE-δρ and

VAE-δρ, respectively.

Figure 3.3 shows a clear improvement in terms of capturing overall density variability, and

the sample profiles now look similar to the GRAM output. However, both models significantly

underestimate variability below 50 km in altitude. The specific case of the KLE-δρ model, shown in

Fig. 3.3a, does an especially poor job at capturing variability at low altitudes and also moderately

underestimates variability at altitudes above 50 km. These models in some ways suffer from the op-

posite problem as the KLE-ρ model: because normalized density perturbations are smaller near the

surface, this region is poorly captured, whereas the model performs relatively well at high altitudes.

That said, the KLE/VAE-δρ models are more compact, meaning that for a given dimensionality

they each give a better approximation of density variability with altitude than an equivalent model
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(a) KLE vs. Mars-GRAM
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(b) VAE vs. Mars-GRAM

Figure 3.3: Models constructed from normalized density perturbations; thick dashed lines are ±3σ
bounds, thin solid lines are sample profiles

trained directly on density values.

However, it is important to keep the application of interest in mind. The goal of these approx-

imations is not to model the atmosphere as well as possible; the real goal is to provide a compact

atmosphere model that results in accurate trajectory predictions when compared to trajectories

predicted using MarsGRAM directly. Recall that aerodynamic force scales with dynamic pressure

q. As seen in Fig. 3.1a, for a planetary entry trajectory dynamic pressure peaks at mid to low

altitudes, with the particular altitude depending on the vehicle and trajectory. Above this altitude

density is too low for significant dynamic pressure, and below this altitude the vehicle has slowed

down to the point that dynamic pressure greatly reduces. A similar phenomenon occurs in reverse

for launch vehicles. Therefore, it would be of interest for the model to prioritize density variation

where it matters most for a given trajectory of interest; that is, where dynamic pressure is highest.

To that end, a scaling vector kq is constructed based on dynamic pressure along the reference

SHIELD entry trajectory, with a value corresponding to each altitude step in the discretization of
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the original density data. In order for the resulting training data to have consistent magnitudes,

the actual dynamic pressure in Pascals is divided by 100 and the vector is further modified to have

a minimum of 1,

kq = max(q/100, 1). (3.14)

The training data are then generated by elementwise multiplying the vector of δρ values by the

scaling vector kq, and the output of the model is then correspondingly divided by kq before con-

verting the normalized perturbations back to density values. In effect, this informs the reduced-

dimensionality model which altitude range is most important to capture.

Figure 3.4 shows results for KLE and VAE models built from normalized density perturba-

tions that have been scaled based on reference dynamic pressure, denoted KLE-q and VAE-q, re-

spectively. As seen in Fig. 3.4a, the 3σ bounds computed by this KLE-q closely match GRAM from

about 60 km down to about 20 km, corresponding closely to the dynamic pressure pulse shown in

Fig. 3.1a. Given the fixed number of terms in the expansion, this comes at the expense of accuracy

outside of that altitude range, where this expansion underestimates variability. The corresponding

VAE-q model, shown in Fig. 3.4b, exhibits similar results except that, for altitudes outside of the

prioritized range the model overestimates variability in some altitude regions and underestimates

it in others.

In order to take a closer look at model performance at a specific altitude of interest, Fig. 3.5

shows histograms of the normalized density perturbation value predicted at 40 km altitude by the

KLE/VAE-q models compared with the value given by GRAM. There are two key takeaways from

this visualization. First, the KLE-q and VAE-q both do excellent jobs of recreating the empirical

distribution of the training data. Second, the training data are, by inspection, well-approximated by

a Gaussian distribution at this altitude. The highly-Gaussian nature of the training data explains

why the KLE, which assumes an underlying GRF, does just as well as the VAE at this altitude.

As previously mentioned, the true quality test for these density models is how well they

predict dispersed trajectories compared to GRAM. To that end, a 1000-trial Monte Carlo analysis



65

1.0 0.5 0.0 0.5 1.0
normalized density perturbation

0

25

50

75

100

125

150

175

200
al

tit
ud

e,
 k

m

GRAM
KLE

(a) KLE vs. Mars-GRAM

1.5 1.0 0.5 0.0 0.5 1.0 1.5
normalized density perturbation

0

25

50

75

100

125

150

175

200

al
tit

ud
e,

 k
m

GRAM
VAE

(b) VAE vs. Mars-GRAM

Figure 3.4: Models constructed from normalized density perturbations scaled by SHIELD dynamic
pressure profile; thick dashed lines are ±3σ bounds, thin solid lines are sample profiles
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Figure 3.5: Histograms of density at 40km altitude, generated by models constructed on normalized
density perturbations scaled by SHIELD dynamic pressure profile
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is performed for each of these models and for GRAM, where the only dispersed parameter in

each analysis is density. A violin plot comparing the statistics of peak heat flux for each case is

shown in Fig. 3.6. The KLE-ρ, KLE-δρ, and VAE-δρ models underestimate variability to varying

degrees. The KLE-q and VAE-q models have comparably good results, and both match well with

the statistics predicted by GRAM directly. These results demonstrate that scaling normalized

density perturbations based on reference dynamic pressure is the most compact of the modeling

approaches considered here.
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Figure 3.6: Peak heat flux statistics for SHIELD trajectories

A similar scaling approach can be applied based on the reference aerocapture trajectory.

This process is slightly more involved because during aerocapture the vehicle passes through each

relevant altitude twice, with differing dynamic pressures, and has a minimum altitude well above

the surface, as seen in Fig. 3.1b. Recall, however, that the reference dynamic pressure is simply

useful for re-scaling, and does not need to be dynamically valid. Thus, the following approach is

taken in this study to form the reference dynamic pressure. Above the minimum altitude of the

reference trajectory, the dynamic pressure during the descending portion of the trajectory is used
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for scaling. For another 10 km below the minimum altitude a constant value equal to the dynamic

pressure at the minimum altitude is used; this segment exists because some dispersed trajectories

will fly below the minimum altitude of the reference. Finally, a small but nonzero value (0.01 in this

case) is used for scaling at more than 10 km below the minimum altitude of the reference trajectory.

These values for q are then further modified according to Eq. (3.14) to obtain the kq scaling vector

for aerocapture. The density profiles predicted by the resulting models are summarized in Fig. 3.7,

and the corresponding peak heat flux results for Monte Carlo analyses of the aerocapture trajectory

are shown in Fig. 3.8.
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Figure 3.7: Models constructed from normalized density perturbations scaled by aerocapture dy-
namic pressure profile; thick dashed lines are ±3σ bounds, thin solid lines are sample profiles

Overall these results are similar to the corresponding results for SHIELD direct-entry, in that

the models capture density variation most efficiently near the altitude of peak dynamic pressure

and the KLE/VAE-q models perform best when predicting peak heat flux statistics. The altitude

range where the models accurately match the GRAM 3σ bounds is shifted up by about 10 km

compared to the SHIELD case due to peak dynamic pressure occurring at a higher altitude for the
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Figure 3.8: Peak heat flux statistics for aerocapture trajectories

aerocapture trajectory.

These results demonstrate that the models scaled based on reference dynamic pressure are

the most compact representations of the possibilities considered here, as measured by the ability to

predict statistics of peak heat flux. A relatively small number of terms (dK = 15) is used for each

KLE in order to highlight these differences and illustrate that some approaches are more compact

than others. However, note that any of the KLE models should perform well if the number of

included terms is sufficiently high, because the KLE representation of a GRF is exact for an infinite

number of terms. Note that the patterns that have been discussed here are somewhat tied to

the choice of random variable; because peak heat flux occurs at mid-altitudes near peak dynamic

pressure, the KLE/VAE-q models will be particularly efficient in capturing those statistics. The

most compact modeling approach, and the minimum dimensionality, thus somewhat depend on the

particular quantities of interest.

Having shown good performance by both KLE and VAE models of uncertainty in a columnar

atmosphere, a direct comparison of the two modeling approaches merits discussion. The VAE-
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q models achieve slightly better performance than the KLE-q models, despite each VAE model

having only four dimensions compared to 15 dimensions for each KLE model. The nonlinear

generative modeling of the VAE appears to, in this case, enable a more compact model than the

linear KLE modeling despite the approximately Gaussian nature of the training data. However,

the setup process for the VAE modeling approach is significantly more involved. Obtaining good

VAE results depends on careful tuning of neural network training parameters, which in general is

only possible through trial and error, whereas there only exists one KLE model for a given set of

input data and given expansion length. Moreover, as demonstrated in Section 3.6, updating a KLE

model based on noisy measurements of density is much more straightforward than an equivalent

measurement update would be for a VAE model. The benefits of the VAE modeling approach might

be expected to outweigh those of the KLE method if the random field of interest were significantly

non-Gaussian and sufficient samples of that field were available. Although it is still possible to

construct a KLE model for non-Gaussian data, the expansion coefficients can become complex for

generative sampling because the random variables Yi are no longer i.i.d. [171]. In contrast, the

VAE effectively uses the nonlinear transfer function defind by the decoder to absorb this complexity,

keeping the distributions of the latent variables simple. For data-rich non-Gaussian fields, VAEs

may thus offer advantages over KLEs, such as smaller latent variable dimensionality and a more

accurate representation of the quantity of interest. However, for this particular application, in

which the random process is approximately Gaussian, the KLE modeling approach has been shown

to perform adequately well, and has the appealing quality of a one-to-one relationship between

training data and model. Therefore, only KLE models are considered in subsequent sections, with

equivalent contributions for VAE models left for future work.

3.5 Multi-Dimensional KLE Model

Although the columnar assumption is typical for onboard models of density as previously

discussed, in some cases it may be of interest to represent density as a random function of multiple

independent variables. The KLE approximation demonstrated in Section 3.4 can be straightfor-
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wardly extended to model longitudinal and latitudinal variations in density as well as in altitude.

Thus, in this section the necessary steps for constructing a multi-dimensional KLE are presented,

models are compared following the approach taken in Section 3.4, and finally there is a brief dis-

cussion of the potential utility of these models for onboard use.

Recall that the first step in forming a KLE approximation from some discrete dataset is

computing the sample covariance matrix as shown in Eq. (3.8). The data matrix Ψc is formed such

that each column is one observation vector with the sample mean subtracted. In the columnar

KLE model, the observation vectors are ordered such that they correspond with a reference altitude

vector. For the more general case, however, the indexing of the data matrix Ψc need not refer to

a single independent variable. Rather, the index corresponds to a specific variable being observed,

whether that be defined as density at 100 km or as density at 100 km, 20 ◦ E, and 40 ◦ N. Any

arbitrary set of points in a multi-dimensional domain can be uniquely identified via sequential

indexing, and then observations at these points can be reshaped into a column vector following

that ordering; this process is conceptually illustrated in Fig. 3.9. The process of computing the

covariance matrix and constructing and evaluating the KLE is unchanged. The original reshaping

is then reversed to reshape the column vectors produced by realizations of the KLE to a set of

values for each point in the multi-dimensional domain.

Figure 3.9: Illustration of reshaping between an arbitrary set of points in a multi-dimensional
domain and an observation vector

As an example, MarsGRAM is used to generate 1000 density values at each point in an
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evenly-spaced 2D grid going from 0 to 200 km in altitude, from 0 to 10 ◦ in longitude, and at 0 ◦

latitude. Figure 3.10a visualizes the resulting data as a heatmap of the +3σ value of δρ; in other

words, the heatmap values correspond to the right dashed line in figures like Fig. 3.2.
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Figure 3.10: 3σ values of normalized density perturbation for 2D density models

Figure 3.10b shows the equivalent statistics for a KLE approximation of the 2D MarsGRAM

data; in contrast to Section 3.4, in this case a value of α = 0.99 is used to truncate the KLE to dK =

884 terms. From visual inspection, the results shown in Fig. 3.10 are virtually indistinguishable

from each other.

As before, the real test of the KLE approximation is its ability to accurately predict trajectory

dispersions. To this end, Figs. 3.11 and 3.12 show the peak heat flux statistics and a portion of the

density profiles, respectively, resulting from 1000-trial Monte Carlo analyses of the same SHIELD

direct-entry trajectory previously considered. In each case except GRAM 1D, bivariate spline

approximation is used to compute density at the altitude and longitude of the vehicle based on a grid

of density values. Recall that the reference SHIELD trajectory is ballistic and enters due-East, so

the trajectory remains in the equatorial plane and thus, for this scenario, this approach is equivalent
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to computing density based on the 3D position of the vehicle. The GRAM 2D case interpolates

from a set of density samples output by MarsGRAM directly, whereas the KLE α = 0.99 case

interpolates from values produced by a realization of an 884-term KLE approximation. The KLE

dK = 50 case also uses a KLE approximation, but in this case the expansion is limited to 50 terms.

Finally, the GRAM 1D case interpolates from the same MarsGRAM data but always assumes a

longitude of 0 ◦, corresponding to a columnar assumption. This case should be exactly equivalent

to the GRAM results shown for SHIELD in Fig. 3.6, but is slightly different. This occurs due

to a quirk in how MarsGRAM density perturbations are computed. Thus, in this section the full

2D dataset is used but assuming a constant longitude of 0 ◦ in order to create an apples-to-apples

comparison.
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Figure 3.11: Peak heat flux statistics for SHIELD trajectories in 2D atmosphere models

From Fig. 3.11, it is clear that the peak heat flux statistics predicted by the 2D GRAM

and 2D KLE (α = 0.99) models are very similar, and Fig. 3.12 shows a characteristic similarity

between the density profiles predicted by these two models. These results and the direct comparison

of density values in Figs. 3.10a and 3.10b demonstrate the successful use of a multi-dimensional
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Figure 3.12: Density profiles on SHIELD trajectories for 2D density models

KLE to approximate density as a function of both altitude and longitude. In contrast, the 50-

term KLE approximation performs very poorly, significantly under-predicting both the mean and

uncertainty of peak heat flux. The expansion fails to capture much of the variability in density,

as is clear from Fig. 3.12. The KLE dK = 50 case performs worse than the KLE α = 0.99 case

because it has a much lower number of terms (50 vs. 884), and the expansion is truncated before

sufficiently capturing the modes of variability present in the multivariate data.

These comparisons merit a broader discussion of the columnar atmosphere approximation

for onboard density modeling. Figure 3.11 shows that the GRAM 1D case, which is equivalent to

a columnar atmosphere assumption, almost exactly matches the 2D GRAM case in predictions of

peak heat flux, and from Fig. 3.12 the sample density profiles themselves also appear to be very

similar. This is not surprising when considering Fig. 3.10a, which shows no significant horizontal

gradient to indicate changes in density variability with longitude. Note that, despite this unifor-

mity in longitude, the KLE requires roughly 10x as many terms to accurately predict dispersed

trajectories when constructed from the 2D density data as opposed to the columnar atmosphere
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case. This would require an increase in both memory and computational expense for onboard use.

Furthermore, to sample across the entire 2D grid in altitude and longitude requires 8505 datapoints

for the discretization used here, as compared to 405 datapoints for a columnar profile, further exac-

erbating the onboard computational burden. These results suggest that, based on the dataset used

here, a columnar atmosphere model is likely a good enough approximation for onboard use, and

is significantly less demanding of both memory and computational effort than a multi-dimensional

model.

This is decidedly not to say that regional variations in density can be neglected. Density

gradients occur due to a range of factors including gravity waves, time of day, and winds, and

are relevant for both vehicle performance prediction and trajectory reconstruction [172, 173, 9].

MarsGRAM data is used in this study as an example only, and is not necessarily well-suited

to capturing these types of regional density variation. Any hypersonic vehicle using closed-loop

guidance would need to be simulated in a wide range of possible atmospheric conditions, regardless

of the assumptions used for the onboard density model. The resulting vehicle performance, taken

together with the relevant computational limitations, is ultimately what determines whether or not

the onboard density model meets requirements.

Note also that, for a scenario where density is expected to change significantly along the

groundtrack of an entry trajectory, a columnar model could be constructed using data generated

along the reference trajectory. In other words, the raw data is generated along a 3D trajectory,

but is then treated as a function of only altitude in the KLE approximation. This approach begins

to fail if altitude is not monotonically decreasing, such as in the case of aerocapture. However, the

procedure for onboard measurement updates presented in the next section would potentially result

in different density predictions for the descending and ascending portions of the trajectory, and

this could partly mitigate the limitations of a columnar model.

Finally, note that a VAE model may provide better dimensionality reduction than a KLE

for the case of a density function varying across multiple dimensions. VAEs are well-suited for

applications to complex, multi-faceted data including images and music [174, 175], and may do
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a superior job of recognizing the strong correlations between density profiles at different lati-

tudes/longitudes/times, and then compressing the data based on these relationships. Applying

a multi-dimensional VAE density modeling in scenarios where variation across dimensions other

than altitude are important to trajectory prediction remains an interesting topic for future work.

3.6 Kalman Measurement Updates

During atmospheric flight, observations of estimated density ρ∗(hk) are typically available by

taking estimated sensed accelerations measurements from an accelerometer or inertial measurement

unit (IMU) and rearranging the equation for aerodynamic acceleration,

a(hk) =
v2(hk)

2β
ρ(hk) → ρ∗(hk) =

2βa∗(hk)

v2(hk)
, (3.15)

where estimates of the ballistic coefficient β and current velocity magnitude v(hk) are known. Thus,

for any onboard density model to be useful in practice, it should accommodate some method of

updating the model in real-time with noisy measurements. It is well-demonstrated in literature

and in practice that appropriate onboard density estimation can significantly improve targeting

performance [84].

The novel benefit of a KLE density model is the representation of both a nominal density

profile and the associated uncertainty. Therefore, it is desirable to formulate an approach that

updates both the mean and covariance represented by the KLE. Furthermore, this should be done

in a way that respects the correlation structure assumed in the pre-update model, as opposed to

replacing a single diagonal element of the covariance matrix. For clarity, this section returns to the

columnar atmosphere assumption.

In this work a Bayesian approach for sequential estimation is applied, such that the mean and

covariance of density from the previous update (or the initial model) form the prior, and these are

updated with the noisy density measurement to form the posterior mean and covariance of density.

The density estimates are assumed to be corrupted by additive white Gaussian noise, based on

the assumption that some pre-processing removes artifacts such as IMU drift; note that this also
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implies accurate estimates for ballistic coefficient and velocity magnitude. The state uncertainty

is also Gaussian based on the earlier assumption treating density as a Gaussian random process.

Finally, density estimates are assumed to arrive at altitude points included in the original a priori

density model, either by judiciously timing measurement updates or by interpolating multiple

measurements.

Based on the above assumptions, density can be optimally estimated by the Kalman measure-

ment update via the following formulation [176]. Take the series of density values at each altitude

to be the state vector. The dynamic equation is trivial, because the density profile is assumed

not to vary in time, so the state propagation step from the Kalman filter is unnecessary. The

measurement equation is simply a direct observation of a single state component and is thus linear.

Therefore, the optimal estimate of the vector of atmospheric density at each altitude ρ̂+ ∈ Rn

and its covariance P+
k ∈ Rn×n can be computed according to a scalar noisy density measurement

ρ∗k ∈ R according to the following equations:

ρ̂+ = ρ̂− +K(ρ∗k −Hkρ̂
−), (3.16)

P+ = P− −KHkP
−, (3.17)

K = P−H⊺
k

(
HkP

−H⊺
k +R

)−1
, (3.18)

Hk = [δ1k, δ2k, ..., δnk], (3.19)

where K ∈ Rn×1 is the Kalman gain matrix, Hk ∈ R1×n is the measurement matrix, R ∈ R1×1 is

the measurement noise covariance (generically a matrix, in this case a scalar), δij is the Kronecker

delta, n is the number of discrete altitudes considered, and k is the index of the altitude at which

density is currently being observed. Notably, because only one density is measured at a time the

bracketed term in Eq. (3.18) is a scalar, so taking its inverse is computationally inexpensive.

For notational clarity, consider an example where the discretization of density values is from

100 to 0 km in altitude steps of 0.5 km, in descending order, resulting in n = 201. Then ρ̂− and

ρ̂+ are the prior and posterior 201-vectors, respectively, containing density values at each altitude.

Assume the scalar density measurement ρ∗k is at an altitude of 80 km, such that k = 41 (indexing
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from 1 in this notation). Then, Hk becomes a row matrix with all elements equal to zero except

in the 41st column, which is equal to one.

Equations (3.16) – (3.19) can be applied to sequentially ingest noisy density measurements

and update the onboard model of the density profile and its covariance. By re-solving for the

eigenvalues and eigenvectors of the P+, the KLE representation can be updated accordingly. This

process is demonstrated in Figs. 3.13 and 3.13b; here, the prior mean and covariance are formed

from a dataset of 3000 density profiles from MarsGRAM, where density perturbations are nor-

malized by the sample mean and thus the normalized prior mean falls exactly along 0. The true

profile to be estimated is also computed by MarsGRAM, but is not included in the prior dataset.

Five density values are observed, corrupted by measurement noise with a standard deviation of

1 × 10−9 kg/m3, a value selected purely for illustrative purposes. In this example the assumed

measurement noise R is equal to the true noise value, but note that this can instead be treated as

a tuning parameter in practice and need not be the same value at each altitude.

Note that the posterior mean passes nearly through each observation (with one exception),

but reverts to the mean for altitudes above and below the observation altitudes. The posterior

uncertainty bounds are also only weakly affected at these higher and lower altitudes. This occurs

because the correlation structure in the prior covariance dictates the degree to which new informa-

tion at one altitude affects the estimated density at another altitude. Because in this model density

perturbation at 80 km is only weakly correlated with density perturbation at 50 km, the posterior

mean has reverted to nominal by that lower altitude. This can also be achieved by onboard esti-

mation of a corrective scale factor that is then exponentially decayed back to unity for altitudes

not near the measurement. However, the approach presented here has two advantages. First, the

correlation length is inferred from the prior model (MarsGRAM in this case) rather than defined

by the user, and second, the correlation length is not necessarily constant with altitude.

The reason that the posterior mean passes more closely through the lower three measurements

than the first two is related to how measurement noise was defined. Measurement noise is applied

to the density values directly and is constant across all altitudes, but the data is then converted to
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Figure 3.13: Mean and 3σ bounds for prior and posterior density profiles, given five sequential
noisy observations

normalized density perturbations for estimation and visualization. Thus, at higher altitudes where

nominal density is significantly lower, the measurement noise has a more significant effect, and the

filter tends to trust the prior. This is also observable by the much wider posterior uncertainty

bounds for the higher-altitude measurements. At lower altitudes the same measurement noise has

relatively less effect and the situation is reversed; because the actual measurement noise and the

value used by the filter are the same, this also means the lower-altitude measurements fall closer to

the true values. It should be reiterated that the assumption of a measurement noise constant with

altitude is made here for demonstration purposes and is not required.

The application of a Kalman measurement update demonstrated here provides a way of

updating the mean and covariance for atmospheric density based on noisy measurements, which

could inform onboard predictions of state uncertainty for the purpose of closed-loop guidance. A



79

significant drawback of this approach, however, is the requirement to re-solve the eigenvalues and

eigenvectors after each measurement update in order to obtain the updated KLE representation.

This adds significant computational expense to the update process, potentially to the point of

infeasibility for onboard computation, depending on the resolution of the density profile and the

choice of flight hardware. This motivates an approach that updates the eigenvectors and eigenvalues

directly in a way that approximates the result of the Kalman measurement update at a lower

computational expense. Such a method could take advantage of the fact that there is approximately

zero covariance between altitudes more than a certain distance apart. Approaches such as low-rank

partial Hessian approximations or sequential updates to singular value decompositions of a matrix

provide potential pathways to significant computational efficiency improvement [177, 178]; this

remains an area for future work. Another avenue for future work would be a method for onboard

upating of a VAE density model based on noisy measurements, without requiring onboard retraining

of the model. In this case, the model would be trained on the ground and then conditioned on

noisy measurements in flight, permitting computationally-efficient updates to the VAE.

3.7 Linear Covariance Analysis

This subsection summarizes another application of the KLE density model, linear covariance

analysis of guided aerocapture and entry trajectories in an uncertain atmosphere. Note that this

work was originally presented in reference [146], for which S. W. Albert was second author. Linear

covariance analysis approximates the uncertainty evolution of a nonlinear system by propagating

the mean and covariance of the linearized system. By including KLE terms as uncertain parameters,

the evolution of state covariance is approximated and shown to closely match the estimate provided

by a Monte Carlo analysis.

Consider a nonlinear dynamical system with state x ∈ Rn acting under the influence of q

uncertain parameters p0 ∈ Rq according to the dynamics

ẋ = f(t, x, u(t, x), p0) = fcl(t, x, p0), x(t0) = x0, (3.20)
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where u(t, x) is a closed-loop control. For generality, let the initial state x0 be included as an uncer-

tain parameter and define the new ℓ = n+ q dimensional parameter vector p as the concatenation

p =

x0
p0

 ∈ Rℓ. (3.21)

The following analysis, which is adapted from Ref. [179] Ch. 3, is concerned with approximat-

ing variations in trajectories of the system (3.20) as linear functions of variations of the parameter

vector p.

Let x(t, p) be the solution to (3.20) for a particular realization of the parameter vector p,

which is given as

x(t, p) = x0 +

∫ t

t0

fcl
(
τ, x(τ, p), p0

)
dτ. (3.22)

Taking the partial derivative of the trajectory x(t, p) with respect to the parameter p, obtain

∂x

∂p
(t, p) =

[
In 0n×q

]
+

∫ t

t0

{
∂fcl
∂x

(
τ, x(τ, p), p0

)∂x
∂p

(τ, p) +
∂fcl
∂p

(
τ, x(τ, p), p0

)}
dτ. (3.23)

Next, approximate the expression (3.23) about a given nominal parameter value p̄ = (x̄0, p̄0). Define

the matrix-valued functions of time

S(t) =
∂x

∂p
(t, p̄), Acl(t) =

∂fcl
∂x

(
t, x(t, p̄), p̄0

)
, C(t) =

∂fcl
∂p

(
t, x(t, p̄), p̄0

)
=

[
0n

∂fcl
∂p0

(
t, x(t, p̄), p̄0

)]
.

(3.24)

The matrix S(t) is known as the sensitivity function, since the trajectory x(t, p) can be approximated

to first order as

x(t, p) ≈ x(t, p̄) + S(t)(p− p̄). (3.25)

Furthermore, from (3.23), the sensitivity function is obtained as the solution to the ODE

Ṡ(t) = Acl(t)S(t) + C(t), S(t0) =

[
In 0n×q

]
. (3.26)

Suppose that the parameter vector p0 is Gaussian distributed as p0 ∼ N (p̄0, P0). If the initial

state x0 is uncorrelated with the parameters p0 and is also Gaussian distributed with covariance
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matrix X0, then the parameter p is also Gaussian distributed as

p ∼ N (p̄, P ), where p̄ =

p̄0
x̄0

 , P =

X0

P0

 , (3.27)

It then follows from the sensitivity equation (3.25) that the state x(t, p) is approximately Gaussian

distributed with mean x̄(t) = x(t, p̄) and covariance

X(t) = S(t)PS⊺(t). (3.28)

In summary, the state distribution can be approximated to first order about a nominal

trajectory x̄(t) by the following procedure: Integrate the nominal trajectory x̄(t) from (3.20) with

p0 = p̄0; compute the matrices Acl(t) and C(t) as functions of x̄(t) as in (3.24); integrate the

matrix-valued ODE (3.26); and, finally, compute the state covariance from (3.28).

Now take a dynamical system that depends on a GRF Ψ, which is approximated by a q-term

KLE Ψq:

ẋ = fΨ(t, x,Ψ(z(x))) ≈ fΨ(t, x,Ψq(z(x))) = fcl(t, x, p0), (3.29)

where the argument z of the field Ψ depends on the state x, and where p0 = (w1, . . . , wq) =

(Y1
√
λ1, . . . , Yq

√
λq) are the KLE coefficients in Eq. (3.9). The partial derivatives of the dynamical

system with respect to the uncertain parameters thus depend on the basis functions φi as:

∂fcl
∂p0

=
∂fΨ
∂Ψq

∂Ψq

∂p0
, (3.30)

where the partials

∂Ψq(z)

∂p0
=

[
∂Ψq(z)

∂w1
· · · ∂Ψq(z)

∂wq

]
and

∂Ψq(z)

∂wi
= φi(z), (3.31)

are evaluated at the nominal values z = z(x̄(t)).

The method of linear covariance approximation in a GRF is summarized as in Algorithm 1

[146]. In order to compute the sensitivity matrix and perform linear covariance analysis for the

closed-loop dynamical system, the matrices Acl(t) and C(t) must be derived according to (3.24).
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Algorithm 1 Linear covariance approximation procedure

1: Compute a q-term KLEmodel of Ψ by solving for the eigenvalues and eigenfunctions of Eq. (3.4).
2: Obtain a nominal trajectory x̄(t) for t ∈ [t0, tf ].
3: Compute the matrices A(t), B(t), and C(t) as in Eq. (3.24).
4: Integrate the sensitivity equation (Eq. (3.26)) from t0 to tf .
5: Obtain state covariance X(t) from Eq. (3.28).

The control input u, which is taken to be the cosine of the bank angle u = cosσ, is assumed to

follow the linear feedback law

u(t, x) = ū(t) +K(t)
(
x− x̄(t)

)
, (3.32)

for a given feedback gain matrix K(t). The closed-loop matrix Acl(t) can then be expressed as

Acl(t) =
∂fcl
∂x

=
∂f

∂x
+
∂f

∂u

∂u

∂x
= A(t) +B(t)K(t), (3.33)

where the matrices A(t) and B(t) are evaluated along the reference trajectory x̄(t) and ū(t). The

matrices A(t), B(t), and C(t) are provided for this dynamical system in Appendix B. This proce-

dure is applied to two numerical examples, Mars direct entry and Mars aerocapture, with results

summarized in the following subsections.

3.7.1 Guided Mars Entry

3.7.1.1 Problem Definition

Consider a Mars Science Laboratory (MSL)-like vehicle performing a guided entry at Mars.

The vehicle lift-to-drag ratio is E = 0.24, the ballistic coefficient is β = 130 kg/m2, and Mars is

assumed to have gravitational parameter µgrav = 4.2828× 1013 m3/s2 and surface radius rp = 3397

km; these parameters are listed in Table 3.1. At the initial time t0 = 0 the vehicle is nominally

at an altitude of 125 km with planet-relative velocity 5.8 km/s and flight path angle −15.5◦. The

vehicle state error from these nominal values is Gaussian distributed such that the 3σ errors of

velocity, flight path angle, and downrange distance are 20 m/s, 0.5◦, and 5 km, respectively; the

initial altitude is assumed to be exactly 125 km, by definition of the initialization condition at entry
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interface. Thus the initial state is Gaussian distributed as

x0 ∼ N (x̄0, P0), where x̄0 =



125 km + rp

5.8 km/s

−15.5◦

0


, P0 =



0

(20m/s /3)2

(0.5◦/3)2

(5 km /3)2


.

(3.34)

Both the nominal and samples of the dispersed atmospheric density are provided by Mars-GRAM

2010. The nominal bank angle is set as a piecewise-linear function of velocity, with the nodes

cos−1(ū) 70◦ 70◦ 45◦ 45◦ 10◦ 10◦

V̄ 6 km/s 5.5 km/s 2.5 km/s 1.1 km/s 1 km/s 0 km/s

. (3.35)

The resulting nominal entry trajectory is shown in Figure 3.14. Closed-loop range control is pro-

vided by the Apollo final phase guidance algorithm [40, 180], which is described in the following.
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Figure 3.14: Nominal entry trajectory
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Table 3.1: Vehicle and planetary parameters for entry and aerocapture examples

Parameter Value

Lift-to-Drag ratio, E 0.24
Ballistic Coefficient, β 130 kg/m2

Gravitational Parameter, µgrav 4.2828× 1013 m3/s2

Surface Radius, rp 3397 km

3.7.1.2 Apollo Final Phase Guidance

Let f(t, x, u, p0) be the right hand side of the equation (??), with control u = cosσ, and

define the system matrices

A(t) =
∂f

∂x

(
x̄(t), ū(t), 0

)
, B(t) =

∂f

∂u

(
x̄(t), ū(t), 0

)
, (3.36)

evaluated along the nominal trajectory x̄(t), nominal control ū(t), and with nominal density ρ̄(h)

(i.e., p̄0 = 0). The adjoint state (λ, λu) to the system (??) is defined as the solution to the backwards

ODE

d

dt

 λ(t)
λu(t)

 = −

A⊺(t) 0

B⊺(t) 0


 λ(t)
λu(t)

 ,
 λ(tf )
λu(tf )

 =

λf
0

 , (3.37)

where the boundary value λf is a user-defined vector determining the relative effects of the final

states on the final range error. For the Apollo final phase algorithm, this boundary value is set to

λf =

[
− cot γ̄(tf ) 0 0 1

]⊺
, (3.38)

and the state feedback gain is defined in terms of the adjoint values as

K(t) = −Koc
λ⊺(t)

λu(t)
, (3.39)

where Koc is a user-defined overcontrol gain. In this example, we set Koc = 4. Furthermore, we

assume that the (range) control effect is zero during the heading alignment phase, which begins

when the vehicle velocity decreases below 1.1 km/s. Thus the control matrix is set to B(t) = 0

when V̄ (t) ≤ 1.1 km/s.

The closed-loop bank angle cosine is thus given by the linear feedback law (3.32). In practice,

the nominal control ū, feedback gain K, and reference trajectory x̄ are all set as functions of
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velocity. But, for the purposes of linear covariance analysis, we assume these reference values are

set as functions of time. The closed-loop, linearized system is thus described by the state matrix

in (3.33).

3.7.1.3 Results

The closed-loop entry trajectory dispersions, due to both the initial state uncertainty and

the MarsGRAM-generated density variations, are computed using two methods: Monte Carlo, for

which 5,000 sample trajectories are integrated, each with a fixed MarsGRAM density profile sample;

and by linear covariance (LC) analysis, using a q = 50 dimensional KL representation of the density

profile. Sample Monte Carlo trajectories together with 3σ bounds as computed by both the Monte

Carlo and from LC are shown in Figure 3.15. The 3σ bounds from LC approximation is almost

exactly equal to the bounds computed from Monte Carlo.

3.7.2 Mars Aerocapture

The same MSL-like vehicle performs an aerocapture trajectory at Mars. For this scenario,

the desired final orbit is circular at 2, 000 km altitude.

For the aerocapture scenario the vehicle parameters, Mars properties, and atmospheric flight

dynamics are all identical to the entry scenario. The nominal initial altitude, planet-relative velocity,

and downrange distance are also identical to the entry case, with a shallower entry flight path angle

of −9.8◦. Smaller dispersions on the initial state are used for the aerocapture case, such that they

are Gaussian distributed about the nominal values with 3σ errors of 10 m/s and 0.2◦ for velocity

and flight path angle, respectively. Downrange distance is not particularly relevant to longitudinal

aerocapture dynamics so is not dispersed, and initial altitude is again assumed to be exactly 125
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Figure 3.15: Sample closed-loop entry trajectories with 3σ bounds computed from both 5,000 trial
Monte Carlo (MC) and linear covariance (LC).

km. Thus for aerocapture the initial state is Gaussian distributed as

x0 ∼ N (x̄0, P0), where x̄0 =



125 km + rp

5.8 km/s

−9.8◦

0


, P0 =



0

(10m/s /3)2

(0.2◦/3)2

0


. (3.40)

As a point of reference, MSL required entry flight path angle delivery within 3σ = 0.2◦ and entry

velocity knowledge of 3σ = 2.0 m/s [181]. Mars-GRAM 2010 was again used for the nominal and

dispersed atmospheric density profiles.
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The nominal bank angle profile is assumed to have a bang-bang form with a single transition

from lift-up to lift-down during the flight. To provide margin for feedback, the vehicle has an initial

bank angle of σ = 85◦ from entry until some switching time ts, then linearly increases the bank

angle over a duration of 30 sec until reaching a final bank angle of σ = 115◦, and finally the bangle

angle σ = 115◦ is held until atmospheric exit. The switching time ts is solved by a foot-finding

procedure so that the apoapsis after atmospheric exit equals a desired value. For this problem,

the switching time was found to be ts = 114.9 sec to meet a target apoapsis of 2, 000 km, and the

resulting nominal trajectory is described by Figure 3.16.
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Figure 3.16: Nominal areocapture trajectory

In many ways aerocapture is the same as guided entry but with a different final objective,

namely, targeting a Keplerian orbital state at atmospheric exit rather than a final range. Thus, we

adapt the Apollo final phase guidance algorithm for aerocapture. This method of terminal point

controller guidance for aerocapture is well-studied [72, 73]; the particular implementation used in

this work is briefly reviewed here.
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For this study, the closed-loop guidance during atmospheric flight is designed to target the

desired apoapsis after atmospheric exit ra, which is given as a function of the vehicle state xf =

(rf , Vf , γf , Rf ) at atmospheric exit by

ra =
|hf |
Va

, (3.41)

where hf is the specific angular momentum and Va is the velocity at apoapsis, which are given by

Va =
µgrav −

√
µ2grav + 2εf |hf |2

|hf |
, |hf | = rfVf cos γf , (3.42)

where,

εf =
V 2
f

2
− µgrav

rf
(3.43)

is the specific energy. Note that in (3.41)-(3.43) the states are inertial, not planet-relative; when

using the simplified longitudinal dynamics in (??), which assume a nonrotating spherical planet,

the inertial and planet-relative states become identical.

After the atmosphere pass, two maneuvers are required to ensure the spacecraft reaches

the desired final orbit. First, a periapsis raise maneuver is performed at first apoapsis along

the velocity direction and with magnitude ∆V1; this maneuver has some nonzero nominal value

because initially the periapsis will be below the atmospheric interface altitude. Second, an apoapsis

correction maneuver is performed at periapsis (at its new altitude) in either the posigrade (to raise

apoaisis) or retrograde (to lower apoapsis) direction and with magnitude ∆V2. Nominally ∆V2 = 0,

but the value of ∆V2 is uncertain as this maneuver corrects for any apoapsis error following the

atmospheric pass. Lateral dynamics, guidance, and a plane correction maneuver are all neglected

for the purpose of this study. The magnitudes of these maneuvers can be computed as shown,

where in this study the target orbit is assumed to be circular at some radius rc (the equations are

readily modified to eliminate this assumption). The magnitudes of the velocity at apoapsis after

the first maneuver V1 and the velocity at periapsis before the second maneuver V2 are given by

V1 =

√
2µgravrc
ra(ra + rc)

V2 =

√
2µgravra
rc(ra + rc)

, (3.44)
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where Vc is the circular velocity at the radius rc, given by

Vc =

√
µgrav
rc

. (3.45)

Finally, the total maneuver cost ∆V is computed as the sum

∆V = ∆V1 +∆V2 = (V1 − Va) + |Vc − V2|. (3.46)

Because of the absolute value sign in the expression for ∆V2, the partial derivatives become unde-

fined at the nominal value ∆V2 = 0. Therefore, in this work only ∆V1 is linearly predicted.

The aerocapture guidance algorithm consists of integrating the same dynamics for the adjoint

state (λ, λu) using the same open-loop system matrices A(t) and B(t) evaluated along the nominal

aerocapture trajectory. The state feedback gain matrix K(t) is also computed the same way

and user-defined overcontrol gain is again used, this time with a value Koc = 3. The first of

two differences in the guidance is that the control is active until t = 240 sec, at which point the

feedback control is set to zero, i.e. B(t) = 0 when t > 240 sec. This time was selected to correspond

approximately to when the energy stops decreasing in the reference trajectory, and was set so that

the Apollo guidance would remain well-behaved with minimal modifications.

The second difference between the aerocapture and entry guidance implementations is the

way the boundary value λf is computed. Following the terminal control theory, the terminal

condition is set equal to the partial derivative of a performance index Θ(t) with respect to the

state, evaluated at the final time [182]. In Ref. [[72]], total ∆V is used as the performance index;

in this study we use radius of apoapsis error, where the target apoapsis radius rc falls out of the

partial derivative given by

λ⊺f =
δΘ(tf )

δx(tf )
=

(
δra
δx

)
t=tf

. (3.47)

The construction of this control law implicitly assumes a constant bank angle [72] (even though

the reference bank profile is not necessarily constant), and therefore apoapsis targeting is a nearly-

equivalent proxy for ∆V optimization; a difference in the two solutions would only be expected for

steep entry flight path angles [65]. The partial derivatives of apoapsis radius, apoapsis velocity,
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and total ∆V , each with respect to the state, are provided in the appendix. The aerocapture

closed-loop guidance algorithm is implemented as in (3.36), (3.37), and (3.39)-(3.33), replacing the

boundary value in (3.38) with the value for apoapsis targeting in (3.47).

3.7.2.1 Results

As with the guided entry example in Sec. 3.7.1, dispersions are estimated using both a

5,000-trial Monte Carlo analysis and a linear covariance analysis using a q = 50 dimensional KL

representation of density variability. The trajectory dispersions are compared in Figure 3.17. Ad-

ditionally, histograms of the Monte Carlo results for apoapsis altitude, velocity at apoapsis, and

total ∆V are shown in Figure 3.18 with a Gaussian-fit probability density function estimated from

the linear covariance analysis superimposed.

3.7.3 Discussion

The numerical examples show a close match between the Monte Carlo estimates and linear

covariance approximations, as seen by the plots of standard deviation over time in Figures 3.15

and 3.17. This suggests that the implemented control laws keep the dispersed trajectories close

enough to the reference for the linearization to remain accurate, and the linear feedback nature

of these control laws enables estimating the full closed-loop system. It also suggests that the KL

expansion of density models the MarsGRAM density variability well enough to make accurate

predictions of this dynamical system. The aerocapture numerical example demonstrates how these

predictions can be translated into performance metrics, such as a histogram of apoapsis targeting

or 99th-percentile value of total ∆V , ∆V99.

The main purpose of these two numerical examples was to show that the Monte Carlo and

linear covariance analysis predictions matched, and this has been achieved. A next step would be

removing some of the simplifying assumptions regarding the dynamics and guidance algorithms to

implement this linear prediction in a more realistic simulation. Planetary rotation and nonspherical

gravity terms were neglected and, for aerocapture in particular, these can be important effects. Lat-



91

0 100 200 300 400 500 600
−10

0

10
A
lti
tu
de

er
ro
r(

km
)

0 100 200 300 400 500 600
−0.2

−0.1

0

0.1

0.2

Ve
lo
ci
ty

er
ro
r(

km
/s
)

LC ±3σ MC ±3σ

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1

FP
A
er
ro
r(

de
g)

0 100 200 300 400 500 600

−0.5

0

0.5

Sp
ec
ifi
c
en
er
gy

er
ro
r(

km
2 /

s2 )

0 100 200 300 400 500 600

−1

0

1

Time (s)

Ba
nk

co
sin

e
co
rr
ec
tio

n

100 120 140 160 180 200 220 240

−0.5

0

0.5

Time (s)

Ba
nk

co
sin

e
co
rr
ec
tio

n

Figure 3.17: Sample closed-loop aerocapture trajectories with 3σ bounds computed from both 5,000
trial Monte Carlo (MC) and linear covariance (LC).

eral dynamics and guidance were not accounted for, and though these are often handled somewhat

independently using bank reversals, the finite time spent reversing bank introduces a coupling be-

tween longitudinal and lateral guidance that is not considered here. The reference trajectory could

also be further optimized for both of these examples to improve targeting performance, and the

overcontrol could vary over the reference trajectory as a function of time, velocity, or energy. For

the aerocapture guidance, traditionally terminal point control implements the feedback table as a

function of energy instead of time as performed here.

One avenue for potential future work is to incorporate such predictions into an onboard
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guidance scheme. For example, a numerical predictor-corrector could be wrapped around the

linear feedback control, propagating the linear covariance and using ∆V99 as the error function

instead of propagating single deterministic trajectories. The linear predictions could also be used

to optimize the nominal trajectory and overcontrol value(s) to minimize ∆V99 with constraints on

control saturation. Overcontrol could become a function of time and apply differently to different

state errors as part of this process.

3.8 Conclusions

This work presents the mathematical foundation and practical implementation for modeling

density using either a KLE or a VAE. This approach to compact modeling of an uncertain environ-

ment could have value in a wide range of other applications, including rocket ascent and drone flight

planning. For the direct-entry and aerocapture scenarios considered here, a model constructed by

scaling normalized density perturbations by the reference dynamic pressure is shown to be the best

predictor of peak heat flux. Directly forming the model from density or normalized density pertur-

bations is less compact but also gives accurate predictions, and could be the more straightforward

approach if the necessary number of terms is allowable based on computational limitations. Be-

cause the data in this study are approximately Gaussian, the KLE modeling approach is shown to
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be adequate and has the advantage over VAE models of being simple to construct from the training

data.

A KLE formed over a multi-dimensional domain is demonstrated, but for the MarsGRAM

data considered here the gains compared to a columnar model are unlikely to outweigh the addi-

tional computational expense. Additionally, a Kalman measurement update is used to update the

density covariance matrix for a KLE model based on new density measurements, and the example

results show promising behavior. However, further work is necessary to improve the computational

efficiency of this approach for onboard implementation. Implementing a VAE density model over a

multi-dimensional domain and developing a method of conditioning a VAE model on noisy density

measurements are both promising avenues for potential future work. In the case of the former, a

VAE may outperform KLE models for dimensionality reduction of multi-dimensional density data,

but might require a modified network architecture or training approach. In the case of the latter,

retraining of the VAE onboard during flight would present an infeasible computational burden, so

the key innovation would be a method of conditioning the VAE on noisy data without requiring

further training.



Chapter 4

Co-Delivery of Direct-Entry Probe and Aerocapture Orbiter

4.1 Introduction

Co-delivery of a probe and an orbiter is a powerful architecture for a variety of interplanetary

missions. The Galileo and Cassini-Huygens missions are two famous examples, among many others,

of this approach. Given the infrequency of major planetary science missions, it is desirable to

maximize scientific return by gathering data from orbit as well as in-situ measurements from

the atmosphere or surface. Though interplanetary probe and orbiter missions have already been

accomplished a number of times, two technologies could be combined to enable a new type of

co-delivery architecture for planetary science missions.

The first technology is low-cost small satellites (smallsats), especially CubeSats, which have

accounted for an increasingly large share of satellites launched each year since around 2012 [33].

Technological innovations including the miniaturization of electronics and availability of commercial-

off-the-shelf hardware has led to a steady increase in the capabilities possible in these small form-

factors, and CubeSat missions have now moved beyond serving a primarily educational role to make

numerous notable scientific contributions [34]. A 2014 study sponsored by the Keck Institute for

Space Studies presented space science mission concepts “uniquely enabled by the small satellite

platform,” and recommended including small spacecraft as secondaries on all missions beyond low

Earth orbit [35]. NASA has also studied a variety of mission concepts through its Planetary Sci-

ence Deep Space SmallSat Studies program [36]. In November 2018 MarCO-A and MarCO-B, the

twin CubeSat communications relays accompanying the InSight Mars lander, successfully demon-
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strated the merit of smallsats in deep space applications [37]. Ongoing research is applying smallsat

innovation to entry, descent, and landing (EDL) by developing technologies including deployable

aeroshells and multifunctional EDL structures [183, 164]. Smallsat secondary spacecraft enhance

planetary science missions only if the secondary mission can minimize the additional mass, risk,

cost, and complexity to the primary mission.

The second technology is aerocapture, the often-studied technique of flying through a planet’s

atmosphere to reduce the spacecraft’s energy and capture into orbit, as shown in Figure 4.1. This

technique has been studied for decades, but not implemented in flight. In recent years, signifi-

cant work has contributed to the development of aerocapture and related technologies, including

development of advanced thermal protection systems [184], robust flight-control methods and guid-

ance algorithms [85, 116, 65], uncertainty quantification [185, 186, 187, 138], deployable decelerator

technology [188, 189, 183], and broad aerocapture technology studies [19, 26, 25] to list a few. A

2016 study at the NASA Jet Propulsion Laboratory concluded that while aerocapture technology

readiness is destination-dependent, no prior flight demonstration would be needed to implement

aerocapture at Titan, Mars, and possibly Venus [19]. Some of the renewed interest in aerocap-

ture can be attributed to recent concepts for missions to the ice giants (Uranus and Neptune) in

preparation for the Planetary Science Decadal Survey [30], because it is these destinations where

aerocapture can offer the most benefit compared to propulsive orbit insertion [18].

The concept that combines secondary smallsats and aerocapture is to design a probe and

an orbiter to reach their desired final states from a single approach trajectory and entry state,

illustrated in Fig. 4.2. The two vehicles travel together during cruise and separate shortly before

atmospheric entry, then diverge during atmospheric flight due to differences in their aerodynamic

properties and control strategies. The orbiter stays higher in the atmosphere, dissipating just

enough energy to perform aerocapture, while the probe continues deeper into the atmosphere until

reaching its desired target state, such as parachute deployment or surface impact. By designing the

probe and orbiter to target a single atmospheric entry state, the need for a critical divert maneuver

performed shortly before entry is avoided. For example, a satellite using lift-modulated aerocapture
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Figure 4.1: Diagram of the aerocapture process

to reach Mars orbit could release several small probes that follow ballistic trajectories down to the

surface. A jettison event is still required to physically separate the orbiter and probe and prevent

recontact in the atmosphere, akin to the mechanical separation of Mars Science Laboratory (MSL)

aeroshell from its cruise stage 10 minutes prior to atmospheric entry [181]. In general this co-

delivery approach can apply to missions with multiple probes or orbiters, but for simplicity this

study proceeds assuming only one of each. Some key terms as used in this study:

• “Co-delivery” refers to any two or more spacecraft that reach a shared destination via a

single interplanetary trajectory, such as the delivery of five separate probes by the Pioneer

Venus Multiprobe bus [190].

• “Probe” is used as a catch-all term including landers, impactors, deep atmospheric probes,

etc.

• “Secondary” refers to a smaller, ride-along addition to a larger, more expensive “primary”

craft, e.g. MarCO was a secondary mission for the InSight primary spacecraft. In the

context of the proposed co-delivery method, a primary orbiter could have a secondary
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Direct Entry (probe)

Atmospheric Entry Conditions
(identical for probe and orbiter)

Trajectories diverge in
atmosphere due to

aerodynamic & control
differences

Probe & orbiter separation

Figure 4.2: Conceptual diagram of co-delivery from a single entry state, shown as a close-up view
of the region in the dashed-line box in Fig. 4.1. Features exaggerated.

probe or the other way around, hence these terms are defined separately.

The primary motivation for targeting a single entry state for both orbiter and probe is to

avoid requiring a divert maneuver, and managing its associated error, shortly before entry. If

this maneuver is performed early, the probe would either require a propulsion subsystem and

navigation capability, or would be coasting without course-correction capability from separation

until entry. The later the orbiter performs the divert maneuver, the larger this maneuver becomes

and the less time there is to quantify and potentially mitigate maneuver execution error. This is

not to say that these other co-delivery architectures are not feasible; indeed, Galileo and Cassini-

Huygens successfully had probes coast passively for nearly 150 days and 20 days, respectively

[99, 100]. Rather, targeting a single entry condition is a solution to this tradeoff that reduces

maneuver complexity on approach and eliminates a source of navigation error. Furthermore, by co-

delivering the probe and orbiter, the secondary craft is able to benefit from the primary spacecraft’s

resources such as power, propulsion, and communications until shortly before atmospheric entry.
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This may significantly simplify the design of the secondary ride-along craft compared to separate

post-launch operations; for example, independent operations and navigation during cruise proved

to be a significant challenge for the MarCO CubeSats [191].

Reference [52] qualitatively discusses the challenges of the proposed co-delivery method in

detail. These challenges include the timing and dynamics of the separation event, post-separation

collision concerns, timing and observation geometry between the orbiter and probe, and the fea-

sibility of trajectories that deliver an orbiter for aerocapture and a probe for direct-entry from a

single entry state. The last of these is the focus of this study, with the remaining challenges left

for future work.

This study focuses on the feasibility of the flight mechanics associated with this co-delivery

strategy. A broad trade space is explored to understand the regions of feasibility for co-delivery from

a single entry state while quantifying relevant mission constraints. Earth, Mars, Venus, Titan, and

Neptune applications are considered. A single representative scenario is developed that implements

closed-loop guidance for both vehicles and also includes a passive ballistic probe, and illustrates

the performance of these vehicles under relevant uncertainties via Monte Carlo simulation.

4.2 Trade Study

The purpose of this section is to understand, at a high level, the combinations of trajectories

and vehicles for which co-delivery from a single entry state is a possibility. A wide range of entry

trajectories are simulated and classified by their final states, and a number of key constraining

parameters are computed. The goal of this study is to demonstrate the fundamental flight mechanics

feasibility of this co-delivery method at each destination and provide a starting point for further

investigation of any specific mission concept.
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4.2.1 Methodology

To simulate these trajectories, three degree-of-freedom equations of motion are numerically

integrated assuming a point-mass gravity with lift and drag forces acting on each vehicle1 [78].

Consistent with the flight of a blunt body in hypersonic continuum flow, constant aerodynamic

coefficients, constant mass, and zero thrust are assumed, as well as zero wind. The vehicle state

is propagated using a variable-step Runge-Kutta numerical integration method of order 5(4) [192].

The vehicle is initialized at the atmospheric interface altitude hatm. For each target destination, a

representative planet-relative entry velocity, VR,0, is defined based on entry velocities of previous

planetary entry missions or aerocapture mission studies [193, 56, 58]. Entry flight path angle

(EFPA) and ballistic coefficient are varied as part of the trade study. EFPA is the angle between

the vehicle’s planet-relative velocity vector and the local horizontal. The ballistic coefficient β is

effectively a ratio of inertial to aerodynamics forces on the vehicle and is defined in Eq. (4.1), where

m is vehicle mass, CD is hypersonic drag coefficient, and A is reference area. Note that while the

particular results described herein will vary as a function of entry velocity, the purpose of this work

is to demonstrate the conceptual feasibility of this co-delivery technique. The parameters used in

this analysis are listed in Table 4.1.

β =
m

CDA
(4.1)

Table 4.1: Relevant Planetary Constants

Central Body hatm, km VR,0, km/s k, kg0.5/m atm. composition by volume

Earth 125 [194]2 11 1.748× 10−4 78.1% N2, 20.9% O2 [162]
Mars 125 [165] 6 1.904× 10−4 2.59% N2, 95.1% CO2, 1.94% Ar [163]
Venus 135 [162] 11.5 1.897× 10−4 3.50% N2, 96.5% CO2 [162]
Titan 800 [162] 6 1.758× 10−4 97.7% N2, 2.30% CH4 [162]
Neptune 1000 [195] 27 7.361× 10−5 1.50% CH4, 79.6% H2, 18.9% He [196]3

Profiles of atmospheric density are taken from the nominal output of the Global Reference

Atmospheric Model (GRAM) for that planet/moon [197, 151, 198, 199, 200], where each GRAM

1 https://github.com/salbert21/petunia
2 Orion uses hatm = 400, 000 ft., which here is rounded up to 125 km to match convention
3 Particular values chosen to match NASA Space Science Data Coordinated Archive fact sheet for Neptune

https://github.com/salbert21/petunia
https://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html
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provides an engineering-level model that can produce both mean and dispersed atmospheric data.

The density profile is then linearly interpolated with altitude; although density varies approximately

exponentially with altitude, GRAM data is output every 0.1 km, so linear interpolation between

datapoints is sufficiently accurate for this application. To approximately characterize the effect of

density variability, results are shown for density profiles at plus or minus three standard deviations

from nominal, where these ±3σ profiles are directly output by GRAM.

Several potentially constraining quantities are calculated for each trajectory, one of which is

peak heat flux. Specifically, peak convective heat flux at the stagnation point for a fully catalytic

surface is estimated using the Sutton-Graves method [201]. The expression is shown in Eq. (4.2),

where q̇s is total convective heat rate at the stagnation point, ps and hs are the total stagnation

point pressure and enthalpy respectively, Rn is the effective nose radius, hw is the surface enthalpy,

and KSG is a coefficient. This expression is then converted to the more useful form shown in

Eq. (4.3) using a few assumptions for hypersonic flow. In hypersonic flow the surface enthalpy

hw is a negligible contribution to the total value, which can then be approximated as hs ≈ V 2
w/2

[202]. Using a Newtonian flow approximation, the pressure coefficient at the stagnation point is

Cp,s = 2, and freestream pressure makes a negligible contribution, so stagnation point pressure

becomes ps = 1/2 Cp,sρV
2
w + p∞ = ρV 2

w [202]. The modified Sutton-Graves coefficient is then

k = KSG/(2
√
101325)4 . The values used in this study for k, as well as the atmospheric compositions

used to compute them, are listed in Table 4.1.

q̇s = KSG

√
ps
Rn

(hs − hw) (4.2)

q̇s = k

√
ρ

Rn
V 3
w (4.3)

Radiative heating is not included in this analysis. Total integrated heat load is computed by

numerically integrating the stagnation point convective heat flux over time. An effective nose

radius of Rn = 1m is assumed, which allows easy scaling of these heating results for other nose

4 The 1/
√
101325 factor comes out of a unit conversion from atm to Pa.
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radius values. The maximum sensed acceleration in terms of Earth g’s is also calculated.

q̇s = k

√
ρ

Rn
V 3
R (4.4)

Each trajectory is categorized based on its exit state: if the trajectory intersects the surface

(or some minimum altitude) it is a probe, if the vehicle exits the atmosphere on an elliptical

orbit it is an orbiter, and if the vehicle exits the atmosphere on a hyperbolic orbit the trajectory is

categorized as escape. For the orbiter trajectories, apoapsis altitude is computed using the vehicle’s

post-atmospheric Keplerian state.

Three types of trajectories are described in the open-loop analysis presented in this study:

ballistic, full-lift-up and full-lift-down. These descriptors do not imply that the vehicle has no

additional control authority; rather, they represent nominal trajectories for which no lift- or drag-

modulation is required. A lift-to-drag ratio of L/D = 0.25 is selected based on the approximate

hypersonic trim L/D of MSL and Mars 2020 and the known capabilities of a 70 ◦ sphere cone

aeroshell [165]. While the results of this study provide insight into the consequences of increasing

or decreasing L/D from this value, quantitative analysis for vehicles with significantly different

L/D is left for future work. By showing these three cases, the set of trajectories approximately

accessible with a 70 ◦ sphere cone aeroshell is characterized for each scenario.

4.2.2 Results

The results at each planetary destination are summarized in Figs. 4.3 - 4.7. For each of

the three trajectory types, trajectories are simulated across a grid of varying EFPA and ballistic

coefficient. For each grid, at any given β there will be some EFPA value that delineates between

orbiters and probes. These EFPA values form the black line on each plot. Similarly, if the inertial

entry velocity exceeds escape velocity, there will be an EFPA value delineating between orbiters

and escape trajectories, and this is shown as the purple line. The shaded regions for each line

are bounded by the values of that line when the ±3σ profiles are used for density. Therefore, any

gridpoints left of the black line are probe trajectories, any gridpoints between the lines are orbiters
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(aerocapture), and to the right of the purple line are escape trajectories. Contours of apoapsis

altitude, peak g-load, peak heat rate, and total heat load are then overlaid for each plot. Note

that the contour values are not necessarily evenly incremented, and that the x-axis scale varies

significantly between destinations.

The interpretation of these plots is illustrated through the following example. By definition

the proposed co-delivery method is feasible where a probe trajectory and orbiter trajectory both

exist at the same EFPA for realistic ballistic coefficients. Because the vehicles share an entry

condition, co-delivery scenarios are identified in these plots with vertical cross-sections along a

single EFPA. As a simple example, a vertical line at −5.5 ◦ (not shown) for the Earth-ballistic plot

would pass through the middle of the black line. Here, ballistic coefficients less than 75 kgm−2 are

probes, and greater than 110 kgm−2 are orbiters. Thus, for 11 km/s entry at Earth with an EFPA

of −5.5 ◦, co-delivery from a single entry state is possible using only ballistic trajectories, just by

tuning the β values of the two vehicles.

The application of lift broadens this feasible range significantly. In Fig. 4.3 a light blue

vertical line is added at a nominal EFPA of 6.25 ◦. On the ballistic plot the line is entirely behind

the orbiters/probes cutoff, meaning all ballistic coefficients in the range considered (10 - 200 kgm−2)

result in probe trajectories. On the full-lift-up plot the line is entirely in front of the cutoff line, so

all β values result in orbiter trajectories. The initial apoapsis altitudes for these trajectories vary

with ballistic coefficient, and are shown in the dashed blue contour lines.

For the proposed co-delivery method to be plausible, the architecture should be robust to

a number of uncertainties, including navigation uncertainty. This can be described as an entry

corridor, a range of possible EFPA values. In Fig. 4.3 the dashed light blue vertical lines represent

an entry corridor of −6.25◦±0.5◦. As a result of this uncertainty the dashed lines now intersect the

black cutoff lines for ballistic and lift-up trajectories, and these intersection points give the ballistic

coefficient requirements for this scenario. For feasibility even with this large EFPA uncertainty the

orbiter β would need to be at least 40 kgm−2, and the probe coefficient no greater than 160 kgm−2.

The value of ±0.5◦ used here is only an example; the same process can be followed for any width
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entry corridor using the results in Figs. 4.3 - 4.7.

These ballistic coefficients might be further constrained by other requirements. Continuing

the example annotated in Fig. 4.3, to achieve an initial apoapsis altitude of at least 150 km, the

orbiter β should be at least 75 kgm−2. To keep the total heat load at the stagnation point below

20 kJ cm−2, the probe β should be no greater than 120 kgm−2. Additionally, note that the EFPA

range still does not intersect the cutoff line on the full-lift-down plot, so any ballistic coefficient

in range would result in a probe trajectory, although the peak g-loads are significantly higher for

lift-down trajectories. In addition to these flight mechanics constraints, packaging and vehicle

geometry considerations make some ballistic coefficients more feasible than others.

Alternatively, these plots can be used in the other direction to determine the tolerable amount

of uncertainty before the co-delivery architecture design fails to close entirely. Consider co-delivery

at Neptune for an orbiter flying full-lift-up and a deep atmospheric probe flying ballistically, each

with a ballistic coefficient of 150 kgm−2. Imagine, arbitrarily, that the orbiter is required to achieve

an initial apoapsis below 50.000 km, without other constraints on either vehicle. The theoretical

corridor width for the orbiter can then be determined by the intersection of the 150 kgm−2 horizon-

tal line with the shaded black region on the left and the dashed blue contour for 50.000 km apoapsis

on the right. This results, approximately, in a theoretical entry corridor of −13.875◦±0.375◦. Here,

theoretical corridor width represents a combination of navigation and aerodynamic uncertainties,

but atmospheric density uncertainty is already taken into account in the plot.

The examples above demonstrate how a mission designer can choose constraints on nominal

EFPA, entry corridor, apoapsis, etc. and then directly assess the feasibility of probe and orbiter

co-delivery from a single entry state for that mission scenario from the plots in Figs. 4.3 - 4.7.

4.2.3 Discussion

The feasibility assessment at each destination depends on the specific scenario and constraints,

making it challenging to compare the destinations in a general way. One heuristic approach is to

consider the EFPA range spanned by the probes/orbiters cutoff line, i.e. the difference between
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example nominal EFPA example  EFPA range

Figure 4.3: Feasibility space for Earth, 11 km s−1 relative entry velocity, shown with example
annotation
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nominal ballistic probe nominal lifting orbiter

Figure 4.4: Feasibility space for Mars, 6 km s−1 relative entry velocity, and nominal scenario used
in Section 4.3 marked in blue
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the probe/orbiter transition EFPAs at β = 200 kgm−2 and β = 10 kgm−2 for ballistic trajectories,

including the narrowing effect of the atmospheric uncertainty bars. In ascending order, this value is

approximately: 0.66 ◦ at Venus, 0.84 ◦ at Earth, 0.88 ◦ at Neptune, 1.22 ◦ at Mars, and 3.8 ◦ at Titan.

These values reflect the the ranges of usable EFPAs for two ballistic vehicles, meaning Titan is by

far the most flexible if no nominal lift is required. A similar heuristic parameter is the EFPA range

gained from a full-lift-up trajectory, defined as the difference between the probe/orbiter transition

EFPAs at β = 100 kgm−2 for full-lift-up and ballistic trajectories including the narrowing effect of

the atmospheric uncertainty bars. Again in ascending order, this value is approximately: 1.18 ◦ at

Neptune, 1.36 ◦ at Earth, 1.52 ◦ at Mars, 1.84 ◦ at Venus, and 1.9 ◦ at Titan. Titan again has the

widest range by this measure, though by a smaller margin. Notably, Venus had the smallest range

for ballistic-only trajectories but has the second-widest range by this measure of lift-effectiveness.

The small scale height of the Venusian atmosphere at aerocapture altitudes corresponds to rapid

density variations with altitude [56], resulting in narrow corridor widths but a large control authority

for lifting vehicles. Furthermore, all else being equal, high entry velocities lead to larger theoretical

corridor widths for lift-modulation aerocapture vehicles [16], and the representative entry velocity

chosen for Venus in this study is high relative to the planet’s mass. It is important to note that

these benefits are directly traded-off by high g-loads, heat rates, and heat loads at Venus; the high

entry velocity at Neptune, dictated by its large gravity well and the constraint of reasonable times

of flight from Earth, has similar drawbacks. Note that the particular values of these EFPA ranges

are tied to the choices of atmospheric interface altitudes listed in Table 4.1.

The results shown in Figs. 4.3 - 4.7 and discussed above are primarily in terms of ballistic

coefficient, which is a ratio and provides no information on the actual mass and volume of the

vehicle. The mechanical and aerodynamic design of specific aeroshells to meet a target ballistic

coefficient, fit within secondary smallsat mass and volume constraints, and accommodate a science

payload is beyond the scope of this study. That said, there is precedent for entry capsules in a

smallsat form factor. Most notably, the Mars Microprobes provide flight-heritage at Mars and

each probe had a ballistic coefficient of 35.6 kgm−2, an entry mass of 3.6 kg, and would have fit
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within a 35× 35× 27.5 cm box [203], well within the mass and volume constraints for a secondary

payload on an Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) ring [204].

The Adaptive Deployable Entry and Placement Technology (ADEPT) deployable aeroshell enables

aeroshell diameters of up to 1.7m to stow within an ESPA secondary payload volume and has an

expected ballistic coefficient in the range of 25-50 kgm−2 and entry mass of 75-150 kg for delivery

of a 12U CubeSat payload volume [183]. The notional design for the Small High Impact Energy

Landing Device (SHIELD) has a ballistic coefficient as low as 10 kgm−2 for an entry mass of 50 kg

and 6 kg payload mass [164, 205]. These example designs are included here to illustrate the fact

that, while detailed design is out of scope, the flight mechanics of the co-delivery method with

smallsat-class vehicles are feasible.

There are some key limitations to the approach taken in this study. For the sake of space,

only one entry velocity is considered for each destination. In general, increases in entry velocity

on the order of 1 km s−1 lead to an increase in lift-modulation control authority, increased g-loads,

and a compression of the available apoapsis radii in terms of EFPA, but the overall feasibility of

co-delivery is not dramatically affected. This is shown in Reference [206] through a comparison

of feasibility with 10, 11, and 12.5 km s−1 entry velocities at Earth. Another limitation is the

bounding case approach to lift-modulation. While it is possible to use 100% of available lift to bias

the nominal trajectory – Viking flew a full-lift-up trajectory with no guidance – in general some

control authority must be allocated to compensate for uncertainties in EFPA, atmospheric density,

vehicle parameters, etc. MSL, for example, used about 70% of its available lift to bias its nominal

trajectory, reserving 30% for control authority margin [165]. The ability of the results shown here

to capture these types of trajectories is limited. For example, for a lift-up trajectory at Earth,

11 km s−1, and an EFPA of −6 ◦, a ballistic coefficient of 50 kgm−2 results in an apoapsis altitude

of about 3000 km. Intuitively, a similar trajectory that instead uses only 70% of its lift for the

nominal trajectory would result in aerocapture with a lower apoapsis, but the results shown here do

not quantify this idea. Nonetheless, these results give bounding cases within which a vehicle could

reserve some control margin for uncertainties by targeting a lower apoapsis or increasing control
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authority by increasing L/D.

Another aerocapture trade reflected in these results is that, in general, more is gained from

the lift-up trajectories than from lift-down. From inspection of the example in Fig. 4.3, it is clear

that one appealing configuration is a lift-modulated orbiter with a ballistic probe trajectory. The

ballistic probe trajectory could be truly passive, such as for a simple penetrator probe mission, or

it could apply lift- or drag-modulation to the ballistic trajectory for the purpose of accommodating

uncertainties. Passive impactor or penetrator probes are already excellent candidates for co-delivery

due to their simplicity and small size, so this configuration stands out as a promising mission

architecture for multiple reasons.

4.3 Representative Scenario

The previous section explores a large trade space for probe and orbiter co-delivery by consid-

ering numerous point designs. Each of these trajectories is only passively controlled (full-lift-up or

-down, or ballistic) and has no accounting for random uncertainties. In order to further demonstrate

the fundamental feasibility of the proposed co-delivery method from a flight mechanics standpoint,

this section more closely examines a single representative mission scenario. A nominal scenario is

defined that makes use of bank-angle modulation lift control for the orbiter and guided probe while

also considering a passive ballistic probe. Representative uncertainties are then applied, and their

effect quantified through a Monte Carlo analysis.

4.3.1 Methodology

A general co-delivery scenario involves two vehicles, an aerocapture orbiter and a direct-entry

probe, each of which may implement some closed-loop guidance to control their atmospheric flight.

As noted in Subsection 4.2.3, a particular scenario of interest would involve a passive ballistic probe;

because this vehicle would be significantly simpler than an entry vehicle using active guidance and

control, it may be a better fit for ride-along probe missions. Thus, three vehicles are considered in

this section: a guided orbiter that performs aerocapture, a guided probe following a direct-entry
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trajectory, and a passive ballistic probe that follows a similar direct-entry trajectory.

Mars is chosen as the destination for this representative example scenario. The trajectories

are simulated using the same equations of motion as in Subsection 4.2.1, with the addition of

the J2 zonal term in the spherical harmonics gravity model, where J2 = 0.001964 [161]. For the

orbiter and guided probe, bank-angle modulation is used as the method of control, which updates

the orientation of the lift vector about the velocity vector without changing the angle of attack.

This method is selected here for its flight heritage on the Mars Science Laboratory and Mars 2020

missions [165, 207], but note that other control approaches such as drag-skirt jettison or direct-force

control would also be applicable.

Mode 1 of the Fully-Numerical Predictor-corrector Aerocapture Guidance (FNPAG) scheme

developed by Lu et. al [65] is implemented for the orbiter. This guidance algorithm assumes a bang-

bang structure to lift-modulation, wherein the vehicle uses Brent’s method [208] to numerically

predict a switching time from a lift-up angle 0 ≤ σi < 90 ◦5 to a lift-down angle 90 ◦ < σd ≤ 180 ◦.

This bang-bang structure targets the desired apoapsis while minimizing the total ∆V required for

the periapsis raise and apoapsis correction maneuvers. A number of simplifying assumptions are

made for the purpose of this demonstration.

(1) Only longitudinal guidance is implemented, meaning a final apoapsis radius is targeted

while ignoring the final inclination or wedge angle. Lateral guidance is normally achieved

separately from the modulation of the bank-angle magnitude through periodic bank re-

versals [65]. Assuming no plane change is desired during aerocapture, the feasibility of

achieving the desired apoapsis under uncertainties can be approximately assessed without

considering the lateral guidance component, even though for any real aerocapture mission

the lateral logic is an important part of the guidance scheme.

(2) The initial bank-angle is assumed to be σi = 0◦, and the initial guess for the final bank-

angle (which is updated during Phase 2 of FNPAG) is assumed to be σd = 150◦. Note that

5 called σ0 in [65], renamed here to distinguish from the FNPEG variable of the same name
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with σi = 0◦ there is neither lateral force nor lateral control authority during Phase 1, but

bank reversals could be performed during Phase 2.

(3) The guidance is run at a rate of 1Hz and the bank-angle is updated instantaneously,

neglecting the effect of a finite roll rate and acceleration for the vehicle.

(4) No additional trajectory constraints are imposed, such as limits on peak heat rate or g-load,

because the value of those limits would be strongly mission-dependent.

(5) No atmospheric estimation model is included in the guidance implementation as this was

found to be unnecessary to demonstrate fundamental feasibility for this scenario.

These simplifying assumptions are appropriate here because this section presents a proof-of-concept

demonstration; a dedicated mission analysis would iteratively tune σd, potentially assume a larger

value for σi, implement bank reversals and a finite roll rate and acceleration, and so on.

A similar approach is taken for the guided probe, which implements the Fully-Numerical

Predictor-corrector Entry Guidance (FNPEG) developed by Lu [143]. FNPEG assumes the bank-

angle magnitude profile is a linear function of e as shown in Eq. (4.5), where e is the negative

of the specific orbital energy as given in Eq. (4.6). The value of σ0 is then updated with each

guidance call in order to target a desired range and energy, where the desired energy is computed

by applying Eq. (4.6) to the desired radial distance and inertial velocity at the final time. Note that

because the target values for radius and velocity are combined into a single constraint, FNPEG

can result in small altitude and velocity errors, but in many applications (such as targeting range

at parachute deploy) this is acceptable [143]. At each guidance call, FNPEG uses the Golden-

Section method to minimize the error function Eq. (4.7) [208], where s(ef ) is the predicted great-

circle range at the target energy and s∗f is the target final range. The value of s(ef ) is predicted

numerically by including range s (in radians) in the equations of motion as ṡ = V cos(γ)/r and

propagating until the target energy is reached [143], where V and γ are both planet-relative values.

Similar assumptions are made here as for FNPAG. Lateral guidance is again neglected for the same
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reasons, instantaneous bank-angle updates are assumed with guidance run at a rate of 1Hz, and

no additional trajectory constraints are imposed. A value of σf = 60◦ is used for this study. As

with FNPAG, these assumptions are made for the sake of a proof-of-concept demonstration, and a

more detailed mission analysis would tune σf , implement finite roll rate and acceleration, etc.

|σ(e)| = σ0 +
e− e0
ef − e0

(σf − σ0) (4.5)

e =
µ

r
− v2

2
(4.6)

f(σ0) =
1

2

[
s(ef )− s∗f

]2
(4.7)

4.3.2 Nominal Scenario

A nominal scenario is constructed starting from the results shown in Fig. 4.4. As seen from

the full-lift-up plot in Fig. 4.4, a lifting vehicle with β = 130 kgm−2 can achieve aerocapture with a

low apoapsis from an EFPA of −12 ◦. As seen in the ballistic plot, a probe with β = 35 kgm−2 can

follow a direct-entry trajectory from the same EFPA, either as a ballistic probe or a lifting vehicle

dedicating some or all of its control authority to mitigating uncertainties. The orbiter ballistic

coefficient was chosen to be similar to that of MSL [165], and the probe ballistic coefficient to be

similar to that of the Mars Microprobe capsules [203]. As in the trade study, the guided vehicles

have a lift-to-drag ratio of L/D = 0.25, whereas the passive probe is ballistic (L/D = 0). As before,

the entry state is defined at the atmospheric interface altitude with a planet-relative entry velocity

or VR,0 = 6km s−1, with a due-East initial heading angle at 18.38 ◦ latitude. The nominal values

of key parameters are listed in Table 4.2 in the Mean column.

For the orbiter, the target final orbit is defined to be a 250 km altitude circular orbit. By

running an FNPAG trajectory once with no dispersions (a perfect predictor), the switching time

required to reach this apoapsis from the entry state described above is found to be approximately

152.6 s. This nominal trajectory results in a nominal total ∆V cost of 74m s−1, as shown in Table

4.3. This total ∆V is computed as the sum of the ∆V for a periapsis raise maneuver performed at
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Figure 4.8: Nominal trajectories for the orbiter, guided lifting probe, and passive ballistic probe

the initial apoapsis (∆V1) and the ∆V for a subsequent apoapsis correction maneuver performed at

the new periapsis (∆V2). This cost is computed as in Eq. (4.8), where ra and rp are the apoapsis and

periapsis radii of the post-atmospheric state, respectively, and r∗a and r∗p are the desired apoapsis

and periapsis radii, respectively.

∆V = ∆V1 +∆V2 =
√

2µ

∣∣∣∣∣
[√

1

ra
− 1

ra + r∗p
−

√
1

ra
− 1

ra + rp

]∣∣∣∣∣
+
√
2µ

∣∣∣∣∣
[√

1

r∗p
− 1

r∗a + r∗p
−
√

1

r∗p
− 1

ra + r∗p

]∣∣∣∣∣
(4.8)

For the guided probe, the target altitude and velocity are set to 15 km and 300m s−1, respec-

tively, and the target range is approximately 700.8 km. This target state corresponds to a Mach

number of 1.3 and a dynamic pressure of 175Pa, where the speed of sound at Mars is found by

interpolating from the table provided in [162]. Depending on the specific mission design, the final

state targeted by FNPEG could represent parachute deployment, retrorocket ignition, or simply

a shift to some other guidance method as the entry capsule continues down to the surface. The

main purpose here is to give FNPEG something to aim for so that the effect of uncertainties can

be understood, rather than to design a full EDL sequence. With these target values and a perfect

predictor, FNPEG computes an initial bank-angle magnitude of approximately σ0 = 139.3 ◦. This
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Table 4.2: Input dispersions

Parameter Mean Dispersions

EFPA −12 ◦ 3σ = 0.2 ◦

Entry Velocity 6 km s−1 3σ = 10m s−1

Orbiter β 130 kgm−2 ±5%
Probe β 35 kgm−2 ±5%
Orbiter L/D 0.25 ±5%
Guided Probe L/D 0.25 ±5%
Density Mars-GRAM 2010 Mars-GRAM 2010

nominal trajectory results in zero range error, but has altitude and velocity errors of 441m and

−5.5m s−1, respectively. As mentioned in Subsection 4.3.1, here FNPEG undershoots the target

velocity and overshoots the target altitude in such a way that the final energy is still correct, but

these errors are relatively small and could also be further reduced by optimization of the reference

trajectory. The discrepancy is mainly notable because a bias can be expected in the results under

uncertainty due to these nonzero errors for the nominal trajectory.

Lastly, the passive ballistic probe has no target state because it has no variable control

authority during atmospheric flight. In order to compare results with the guided probe, the passive

probe’s trajectory is always terminated at 15 km altitude, and the errors are defined as differences

compared to the nominal velocity and range values at this altitude: 353.1m s−1 and 735.0 km,

respectively. Note that this means there are no performance results for altitude for the passive

probe. This corresponds to a Mach number of 1.6 and a dynamic pressure of 242Pa.

The nominal trajectories for these three vehicles are shown in Fig. 4.8, where the blue

dot shows the point along the orbiter’s trajectory where it switches from lift-up (σi) to lift-down

(σd). The orbiter trajectory and either of the two probe trajectories constitute one representative

scenario at Mars; a similar process could be followed for any of the feasible regions of the trade

space identified in Section 4.2.
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4.3.3 Performance Under Uncertainty

Having designed nominal trajectories for a guided orbiter, guided probe, and passive probe,

the performance of these vehicles is assessed under representative uncertainties in the entry state,

vehicle aerodynamics, and atmospheric density. A 1500-trial Monte Carlo analysis is performed.

The mean and dispersions for each randomized input are listed in Table 4.2, where 3σ = X indicates

a Gaussian distribution with zero mean and standard deviation σ, and ±Y% indicates the bounds

for a uniform distribution relative to the mean. The input parameter is computed by adding the

mean and a dispersion value randomly generated from the associated probability distribution.

Variation in the entry state is simulated by independently normally dispersing the planet-

relative EFPA and planet-relative entry velocity magnitude. Because the orbiter and probe are

assumed to share a delivery state, the same randomly-selected entry state is used for all three

vehicles for each trial. The numerical predictor component of FNPAG and FNPEG is given perfect

state knowledge, including of the entry state, so the EFPA and velocity dispersions represent

guidance performance under a range of initial conditions, as opposed to performance with an

imperfect predictor or error between the navigated and true states. The EFPA dispersion is set

equal to the delivery requirement for MSL, and the entry velocity dispersion is set to 5x the MSL

requirement for the navigation knowledge accuracy used for EDL guidance system initialization

[181]. The larger entry velocity dispersion is used in this study to generate a wider range of

potential entry states for illustrative purposes.

Uncertainty in the vehicles’ aerodynamic properties is modeled by independently uniformly

dispersing ballistic coefficient and L/D. Because the orbiter and probe are separate vehicles, their

aerodynamic properties are dispersed separately. However, because the passive probe is included

for direct comparison to the guided probe, its ballistic coefficient is always set equal to the actual

value of the guided probe’s ballistic coefficient; there is no dispersion on the passive probe’s L/D

because it always equals zero. Unlike the entry state, the numerical predictor guidance always uses

the nominal values for β and L/D, whereas the true state is propagated using the dispersed values
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for each trial, resulting in an imperfect predictor. The uniform ±5% dispersion for these vehicle

parameters represents modeling uncertainty associated with computational fluid dynamics analysis

and ballistic range testing, and is based on values used in previous studies [38].

Finally, atmospheric density variability at Mars is modeled using Mars-GRAM 2010, which

has a built-in capability to output randomly-perturbed correlated density profiles in a Monte Carlo

sense [151]. Because the orbiter and probe would arrive simultaneously and experience the same

atmosphere, the same dispersed density profile is used for all three vehicles in each trial. Differences

in the density encountered at a given altitude due to different paths through the atmosphere are

assumed negligible for this study. As with the aerodynamics dispersions, the guidance algorithm

always uses the nominal density profile in its predictions, whereas the true state is propagated

according to the dispersed density profile. The Mars-GRAM 2010 settings are generally kept at

their default values, including a perturbation scale of 1 and solar radio flux at 10.7 cm of 68 sfu

[151], using a date of Feb. 18 2021.

Table 4.3: Performance Results Under Uncertainty

Parameter Nominal Mean Standard Deviation

Orbiter Apoapsis Error 0 km 30.87 km 65.05 km
Orbiter Total ∆V Cost 73.73m s−1 86.75m s−1 16.85m s−1

Guided Probe Altitude Error 441.1m 466.9m 338.4m
Guided Probe Range Error 0 km −0.1821 km 1.076 km
Guided Probe Velocity Error −5.486m s−1 −5.840m s−1 4.250m s−1

Passive Probe Range Error 0 km 0.1483 km 9.984 km
Passive Probe Velocity Error 0m s−1 0.1006m s−1 11.45m s−1

The results of this 1500-trial Monte Carlo analysis are summarized in Table 4.3, and his-

tograms of error and cost parameters are shown in Figs. 4.9 – 4.12. The purpose of this analysis is

to demonstrate feasibility for this mission scenario and to compare the performance of the guided

and passive probes, not to precisely estimate the performance metrics of the vehicles. By numer-

ically examining the convergence as the number of trials was increased, the quantities of interest

listed in Table 4.3 are found to converge to within roughly ±5%. The mean range error for both

probes and mean velocity error for the passive probe are exceptions to this statement, because as
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quantities with nominal values of zero and mean values near zero their percent errors are poorly

behaved. The guided probe range error converges to within roughly 0.05 km, the passive probe

range error to roughly 0.2 km, and the passive probe velocity error to roughly 0.5m s−1.

The orbiter achieves aerocapture with a 100% success rate despite a relatively large range

in entry states, although some cases do significantly overshoot the desired apoapsis as seen in Fig.

4.9. Note that Fig. 4.9b is a close-up view of Fig. 4.9a in order to better see those high-error cases.

These errors also lead to a positive skew in the total ∆V results shown in Fig. 4.10a, with the

worst cases exceeding twice the nominal cost. Note that the total ∆V results are centered nearly

one standard deviation above the nonzero nominal value. Although these errors are significant,

they are not unexpected considering the relatively large entry state dispersions and the use of

an imperfect predictor in the guidance algorithm. The large overshoot cases are often a result

of saturation in Phase 2 of FNPAG, meaning the vehicle flies full-lift-down but is still unable to

sufficiently reduce its energy, resulting in an apoapsis that is higher than desired. With better

tuning of the σd parameter, robustness could be improved and a reduction in the high-error cases

may be achieved. The performance could also be improved by adding some adaptive atmospheric

estimation capability to the guidance implementation [65, 88].
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Figure 4.9: Apoapsis results for orbiter
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(b) Histogram of altitude error for guided probe

Figure 4.10: ∆V cost for orbiter and altitude error for guided probe
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Figure 4.11: Target range error histograms for guided and passive probes

The altitude performance for the guided probe is shown in Fig. 4.10b, and the range and

velocity performance is compared between the guided and passive probes in Figs. 4.11 and 4.12,

respectively. As expected, the altitude and velocity errors for the guided probe are centered near the

nonzero nominal error values. While the specific requirements for this delivery accuracy would be

mission-dependent, in general FNPEG shows good performance. Particularly notable for this study

is the comparison of range and velocity errors between the guided and passive probes. As expected,
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Figure 4.12: Target velocity error histograms for guided and passive probes

the passive probe does perform much worse than the guided probe; in terms of standard deviation,

the passive probe has roughly double the velocity error and roughly an order of magnitude more

range error compared to the guided probe. That said, a delivery uncertainty on the order of ±50 km

range and ±25m s−1 velocity at 15 km altitude may well be acceptable for some applications. For

example, if the probe were a small secondary ride-along payload targeting a broad surface region

either by parachute or as an impactor, perhaps these error ranges would be sufficient.

The Monte Carlo analysis results are included to demonstrate two main conclusions. First,

aerocapture and direct-entry trajectories from the same entry state are feasible even under sig-

nificant navigation, vehicle, and atmospheric dispersions if the orbiter is provided some control

authority and closed-loop guidance capability. Second, the probe can target a specific final state

if also provided control authority and closed-loop guidance, though the final state dispersions for

a passive ballistic probe may already be sufficient for some applications. The performance results

presented in this section are intended to serve as a proof-of-concept for one representative scenario

at Mars under uncertainty.
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4.4 Conclusion

The proposed co-delivery method is an architecture for smallsat ride-along missions to in-

terplanetary destinations. This co-delivery architecture is shown to be feasible for wide ranges of

vehicle and trajectory parameters at Earth, Mars, Venus, Titan, and Neptune, subject to mission-

specific heating and g-load constraints that are quantified across this trade space. An example

scenario is developed using FNPAG and FNPEG closed-loop guidance for the orbiter and probe,

respectively, and the vehicles’ performance under uncertainty is shown to be adequate through a

Monte Carlo analysis. Based on the trade space analysis and the uncertainty quantification results,

passive ballistic impactor or penetrator probes as a secondary mission on an orbiter delivered by

a lift-modulated aerocapture trajectory is shown to be a particularly promising configuration. A

number of challenges remain for implementation, including separation design, timing and observa-

tion geometry, packaging, and tight volume and mass constraints.



Chapter 5

Co-Delivery of a Martian Probe Network

5.1 Introduction

Entry, descent, and landing (EDL) systems for Mars missions are complex, and typically

involve multiple mission-critical subsystems that must operate autonomously in harsh conditions

[20]. Bringing the risks associated with these subsystems down to acceptable levels is a significant

engineering challenge, and this is one reason why, as the size and complexity of payloads to the

Martian surface have increased over time, mission costs have also increased [209]. The top priority

for Mars surface missions in this decade is Mars Sample Return (MSR), a multimission campaign

with high cost and requiring significant technology development [210]. It is in this context that a

community of planetary scientists and engineers is seeking lower-cost mission concepts and delivery

vehicles to enable a sustained program of Mars surface exploration during and after MSR, as

outlined in a recent report from the Keck Institute for Space Studies (KISS) [50].

One mission category examined by the KISS study as a potential pathway to reduced cost

is networks of small, fixed landers without requirements for surface mobility and with tolerance

for relatively high g-loads at landing [50]. These network missions are of growing interest for

a variety of investigations, including atmospheric science and seismology [211, 50, 212, 213]. In

some cases, relevant instruments can be built at small size (5-15 kg) and high g-load tolerance

(1,000-2,000 Earth g’s) [214, 215]. In general, for these mission concepts the probes must be

delivered to a surface arrangement with roughly the right size and shape but precision landing

is unimportant. Notionally, a probe network would consist of 4-8 probes delivered to Mars by
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a single carrier spacecraft, and networks of regional (10’s of km), mid-range (100’s of km), and

global sizes are all potentially of interest. A wide variety of network missions for Mars have been

proposed [216, 217, 102, 218, 219, 220, 221], but none have come to fruition. In most cases, these

missions were cancelled early in development due to high-level budgetary and programmatic issues,

influenced in part by the failures of the Mars Observer and Mars Polar Lander missions [50]; see

Appendix A.3 of Ref. [50] for a brief history of Mars network mission concepts. The Mars ’96

and Mars Microprobes technical failures are notable exceptions. A significant reduction in the cost

and complexity of a Martian probe network could therefore improve the likelihood of selection and

successful development of such a mission.

Probe network missions characterized by miniaturized instruments, high g-load tolerance,

and the lack of a requirement for precision landing enable the use of small, simplified landing

platforms with minimal flight-control requirements. The Small High Impact Energy Landing Device

(SHIELD), illustrated in Fig. 5.1 [222], is a vehicle concept under development at the NASA Jet

Propulsion Laboratory (JPL) that would meet these needs [164]. The purpose of SHIELD would

be to deliver payloads of about 5 kg to the Martian surface at greatly reduced cost and complexity

[164]. These reductions would be achieved by eliminating EDL subsystems wherever possible,

relying entirely on a passive aeroshell-only entry system followed by a hard landing attenuated by

crushable material, notionally resulting in landing decelerations on the order of 1,000 Earth g’s

[164]. As a point of comparison, the expected landing g-load for the Mars Microprobes, a pair of

small probes designed to penetrate the Martian surface upon impact, was 30,000 g’s [203].

Mission complexity may be further reduced if all of the probes could be co-delivered by a

single carrier spacecraft onto their uncontrolled entry trajectories without requiring intervening

translational maneuvers between probe deployments. The carrier spacecraft provides necessary

resources to the probes during cruise and eliminates the need for attitude control or propulsion

subsystems on the probes. The timing, magnitude, and direction of each probe’s separation from

the carrier spacecraft is an aspect of mission design faced with competing requirements. In the case

of late probe separation, the impact of probe jettison execution error is reduced, and less battery
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Figure 5.1: SHIELD concept image [222]

life is required for the probe to survive between separation and landing. In contrast, for an early

probe separation, the required jettison speed is smaller and there is more time to estimate and

correct any execution error.

Delivery of a passive probe to entry from a carrier spacecraft on a hyperbolic approach

trajectory is not inherently a new architecture. The Galileo and Cassini-Huygens missions both

successfully delivered probes to entry trajectories before performing orbit insertion [99, 100]. The

sample return missions of Genesis [103], Stardust [104], Hayabusa [105], Hayabusa-2 [106], and

OSIRIS-REx1 all successfully delivered sample return capsules to Earth entry from a hyperbolic

carrier [107], as will the Earth Entry System component of the Mars Sample Return campaign

[108]. The upcoming DAVINCI mission will also include a passive probe delivered by a carrier

spacecraft [223]. What all of these examples have in common, however, is that only a single probe

is delivered in each case.

1 NASA press release regarding successful return of OSIRIS-REx sample capsule on 9/24/23

https://www.nasa.gov/news-release/nasas-first-asteroid-sample-has-landed-now-secure-in-clean-room/
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Recent work for the Aeolus mission concept presents a design that co-delivers 20 probes to a

global network on Mars from a single hyperbolic carrier, but assumes that the carrier maneuvers

after each probe deployment [112]; this assumption is typical to previous studies of Mars network

missions. A 2013 study demonstrates a unique method of co-delivery wherein two Phoenix-class

landers enter the atmosphere together and then separate, one lander with a drag skirt and the

other without [111]. This creates a discrete change in ballistic coefficient for both vehicles and is

shown to achieve a 3000 km separation on the surface [111]. However, this method requires separa-

tion between two flight vehicles during hypersonic flight, a potentially risky event, and assumes a

significantly larger landed mass than will be considered in this study. Broadening scope from plane-

tary probes to include defense applications, missiles armed with multiple independently-targetable

reentry vehicles are capable of delivering multiple warheads to separate locations from a single

carrier vehicle on a suborbital trajectory [224]. Due to limited publicly-available information and

significant differences in mission scenarios, defense applications are not further considered here.

In terms of planetary entry missions, the Pioneer Venus Multiprobe provides the most relevant

example. One large probe and three small probes were delivered from a single spacecraft bus during

hyperbolic approach, with the small probes accurately targeted to pre-determined entry locations

separated by 8,800 to 10,400 km [109]. The Multiprobe bus first released the large probe, then

performed a small maneuver, reoriented, and increased its rate of spin to 48.5 rpm [110]. The

three small probes were then released simultaneously, achieving their desired separation due to

the tangential velocity provided by the spinning bus [110]. This represents a unique approach to

probe co-delivery without intervening maneuvering, and provides a degree of flight heritage for the

concept. However, the Pioneer Venus mission design does not amount to a systematic study of co-

delivery trajectory design. Recent work does provide a systematic study of co-delivery trajectories

[225], but considers co-delivery of a probe with an orbiter performing aerocapture rather than

multiple probes forming a network.

The purpose of this study is to broadly investigate the probe network co-delivery problem,

assuming no intervening translational maneuvers and using SHIELD as an example probe design.
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While literature related to specific probe networks does exist, as summarized earlier in this intro-

duction, this article provides a more systematic study of the co-delivery problem under a set of

assumptions relevant to missions of current-day interest. This work begins by presenting a flight-

mechanics analysis for the SHIELD probe, considering event timing, landing accuracy, and the

effect of varying entry flight-path angles. The problem of co-delivering probes to form a surface

network is then considered, first for regional networks within 100 km of a central point followed

by results for larger-scale networks. A linearized targeting method, inspired by B-plane targeting,

is introduced for the design of regional networks and its limitations are quantified. Monte Carlo

analyses are performed for both regional and large-scale networks to capture the impact of relevant

uncertainties, including probe jettison execution error, on the feasibility of the computed co-delivery

trajectories.

5.2 Models and Assumptions

An assumed design goal in this work is that precision landing is not required, but the network

should approximate a desired distribution and location on the surface. Additional assumptions

regarding probe co-delivery include:

• Each probe is a ballistic rough lander, and is passive other than drag skirt deployment and

heatshield jettison.

• The probes approach Mars on a single carrier spacecraft on an entry trajectory, and the

separation events do not change the carrier’s trajectory and no other maneuvers are per-

formed. However, changes in carrier attitude between separation events are allowed.

• The probes separate from the carrier mechanically.

• Probe jettisons occur between 0.25 and 20 days before atmospheric entry.

• The carrier spacecraft has an approach trajectory such that the magnitude of the planet-

relative velocity at the atmospheric entry interface altitude of 125 km is 6 km/s.
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Approach trajectories in this study are defined by their state at atmospheric entry interface,

that is, the position and velocity of the carrier spacecraft at 125 km altitude. This state is defined

by altitude h, longitude θ, latitude ϕ, planet-relative velocity V , flight-path angle γ, and heading

angle ψ; flight-path angle is the angle between the velocity vector and local horizon, and heading

angle is the angle between the horizontal projection of the velocity vector and a due-North vector in

that same plane (e.g. a 90◦ heading angle is due-east). Figure 5.2 provides a visualization for these

definitions, where the ı̂ basis vectors form a planet-fixed frame, ê1 is aligned with the position vector

of the spacecraft, and ŝ3 is aligned with the planet-relative velocity vector. The central landing

site is then the point on the surface where a SHIELD probe would nominally land after continuing

on this trajectory. Two things should be noted about this convention. First, because of the probe

jettison velocities, each probe will actually enter the atmosphere with different states, potentially

resulting in significantly different entry flight-path angle and entry velocity values. Second, the

carrier spacecraft would not itself be a SHIELD probe and could perform a divert maneuver or

intentionally burn up in the atmosphere; the carrier’s entry state and central landing site are

simply convenient ways to define the approach trajectory and a reference point on the surface,

respectively.

Separation events are assumed to impart an impulsive change in velocity to the probe, where

the jettison velocity Vj is defined as the velocity of the probe relative to the carrier the moment

after separation, and jettison speed is defined as the magnitude Vj = |Vj |. This notation is used to

distinguish from impulsive ∆V because, while they are theoretically equivalent events, this study

assumes jettisons occur mechanically (e.g. a spring jettison) rather than propulsively.

Though mostly passive, SHIELD does go through three different configurations from atmo-

spheric interface to surface. First, in its entry configuration, SHIELD is entirely within its protected

aeroshell, and this configuration is maintained through the hypersonic and high-heating portion of

the flight. Next, SHIELD enters the descent configuration soon after beginning subsonic flight

by deploying a drag skirt, the purpose of which is to reduce the terminal velocity of the vehicle.

Shortly thereafter, the landing configuration is initiated with jettison of the heatshield. SHIELD
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Figure 5.2: Frame definitions

is assumed to fly at a trim zero angle of attack and has an axisymmetric shape with balanced

center of mass, resulting in a lift-to-drag ratio of L/D = 0. The drag properties of SHIELD are

linearly interpolated based on Mach number from tabular data provided by the JPL SHIELD team,

resulting in ballistic coefficients ranging from about 20 kgm−2 in the entry configuration down to

around 5 kgm−2 in the landing configuration. Ballistic coefficient describes the ratio of inertial to

aerodynamic forces and is defined as β = m/(CDA), where m is mass, CD is drag coefficient, and

A is aerodynamic reference area. SHIELD is assumed to have a nose radius of Rn = 0.85m.

Table 5.1 summarizes the relevant uncertainties applied throughout this study. Uncertainty in

the approach trajectory of the carrier spacecraft is modeled by dispersing the state at atmospheric

entry interface for each trial, then back-propagating the dispersed state to the time of first jettison.

Interplanetary navigation to Mars has advanced to the extent that its contribution to the landing

error is small compared to the impacts of atmospheric variability and aerodynamic modeling errors,2

even for unguided entry. For example, the navigation-only errors for the Mars Exploration Rovers

2 Note, however, that this statement assumes significant Deep Space Network coverage during approach, which
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Table 5.1: Monte Carlo analysis input dispersions

Parameter Dispersion

entry interface flight-path angle γ0 3σ = 0.2◦

entry interface velocity magnitude V0 3σ = 2m/s
atmospheric density ρ MarsGRAM 2010
probe ballistic coefficient β ±5%
jettison speed Vj ±10%

(MER) were 3.3 km for Spirit and 9.7 km for Opportunity [226]. Furthermore, the large majority

of landing error is in the downrange direction; the final landing ellipses predicted for MER due

to all error sources had crossrange components below 5 km, compared to approximately 60 km in

downrange [226], indicating high accuracy in heading angle at entry. The driving requirement for

approach navigation is precise targeting of the entry interface flight-path angle [226, 181, 165], γ0,

because even small variations can have a significant effect on the altitude-velocity entry profile

[78]. The velocity magnitude at entry interface, V0, is also relevant because of its impact on

key quantities like peak heat flux and peak deceleration. These two entry state components are

dispersed independently according to Gaussian distributions centered at the nominal value and

with some standard deviation, σ. For this study, the 3σ value for γ0 is set equal to the requirement

on delivery error for MSL, and the 3σ value for V0 is set equal to the required knowledge accuracy

at EDL guidance system initialization for MSL [181]. In contrast, minor errors in entry position

and heading angle have very little impact on the altitude-velocity profiles of the probes, and thus

primarily contribute a small center error for the network without adding significant shape error.

Recall that it is an assumption of this study that small errors in network center are unimportant

compared to the distribution of the probes. Therefore, the longitude, latitude, and heading angle

at entry interface are not dispersed in this study.

Variability of atmospheric density is modeled by using random profiles of density vs. altitude

that are generated using the 2010 version of the Mars Global Reference Atmospheric Model (Mars-

GRAM 2010) [151]. For a given trial, the dispersions on atmosphere, γ0, and V0 are applied once,

may potentially be a limiting factor for small missions.
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such that all probes experience the same atmosphere and carrier spacecraft trajectory.

The ballistic coefficient of each probe is dispersed along a uniform distribution with bounds

at ±5% of the nominal value. This value is representative of the confidence level provided by

computational fluid dynamics and ballistic range testing, and is chosen based on previous studies

[38, 225]. The lift-to-drag ratio always remains at its nominal value of zero, assuming that axisym-

metric spin removes the effect of any small, unintended lift force. Finally, the magnitude of the

jettison event is dispersed along a uniform distribution with bounds at ±10% of the nominal value

under the assumption that a separation mechanism could be designed to within this uncertainty

level; through discussions with mission engineers, this was judged to be a conservative assumption.

The direction of the jettison velocities are assumed to be nominal for the purpose of this study.

These two dispersions are applied independently to each probe for each trial. Finally, note that

although carrier entry longitude, latitude, and heading angle are not dispersed, individual probes

may have off-nominal values of these parameters due to jettison speed dispersions, and these effects

are accounted for.

Trajectories are computed via numerical propagation of the three degree-of-freedom equations

of motion for a rotating ellipsoidal planet using explicit Runge-Kutta integration of order 4(5) with

relative and absolute tolerances equal to 1 × 10−11 [78]. Mars is assumed to have gravitational

parameter µ = 4.305×104 km3 s−2, equatorial radius R = 3397.2 km, oblateness spherical harmonic

coefficient J2 = 0.001964, and a planetary rotation period of T = 1.02595675 days [161]. The speed

of sound for the Martian atmosphere, which is used to compute Mach number, is interpolated from

a nominal tabular model[162]. Heat flux is modeled by computing convective heat flux q̇ at the

stagnation point assuming a fully catalytic surface using the Sutton-Graves expression shown in

Eq. (5.1) [201], where ρ is density and a value of the heating coefficient k = 1.904 × 10−4 kg0.5/m

is used based on nominal atmospheric composition at Mars [163].

q̇ = k

√
ρ

Rn
V 3 (5.1)

Finally, sensed deceleration (or g-load) is computed as g =
√
L2 +D2/g0 where L and D are the



132

accelerations due to lift and drag, respectively, and g0 is the standard acceleration due to gravity

at the Earth’s surface.

5.3 SHIELD Flight Mechanics

Before investigating co-delivery of networks, a flight mechanics analysis is presented for the

atmospheric flight of a single SHIELD probe in order to determine feasible nominal values for drag

skirt deployment and heat shield jettison. This analysis also assesses the robustness to uncertainty

of time-triggered configuration changes and the possibility of using drag skirt deployment timing

as a method of control. Analysis is performed at several representative entry interface flight-path

angles: −12◦, −18◦, and −24◦.

First, EDL event timing is considered. Drag skirt deployment and heatshield jettison are

constrained by three parameters: maximum Mach number at drag skirt deployment, maximum

impact velocity, and minimum time between deployment and jettison. The assumed values3 for

these requirements are summarized in Table 5.2. The combined result of these parameters defines

an acceptable range for the timing of each event for any entry trajectory, and the nominal event

times can then be selected from within this range. The resulting bounds on event timing were

computed for γ0 = −18◦, and were found to be 105.7 seconds after entry (denoted E+105.7 s)

for earliest deployment and E+170.9 s for latest jettison, where in this context entry is defined as

the point at which sensed deceleration first exceeds one Earth g. Nominal event times of E+140

s and E+150 s were then selected on the basis of being well-within this acceptable range, and the

resulting trajectory is shown in Fig. 5.3. Similar analysis was performed for the other values of γ0,

with results summarized in Table 5.3.

EDL events are often triggered by processed sensor data, such as commanding parachute

deployment using either a velocity trigger or range trigger [227]. For SHIELD, however, the goal of

eliminating subsystems wherever possible motivates the following question: would a simple onboard

timer be sufficient to trigger drag skirt deployment and heatshield jettison without violating the

3 based on discussions with the SHIELD team at JPL
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Table 5.2: Summary of SHIELD EDL requirements

Parameter Requirement

Mach number at drag skirt deployment ≤ 0.9
Time between drag skirt deployment and heatshield jettison ≥ 4 s
Impact velocity ≤ 50m/s
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Figure 5.3: Nominal trajectory, with event timing annotated, for a SHIELD entry at −18◦.

assumed requirements when relevant uncertainties are applied? If so, this could simplify EDL for

SHIELD even further.

A 1000-trial Monte Carlo analysis is performed at each of the γ0 values of interest to capture

the impact of relevant uncertainties on SHIELD flight-mechanics. In each trial, drag skirt deploy-

ment and heatshield jettison are triggered once the nominal time after entry is reached, but the

conditions at those points along the trajectory vary due to the input dispersions. Figure 5.4 shows

the resulting Mach numbers at deployment; as can be seen from the histogram, none of the cases

for any of the γ0 values exceeded the 0.9 maximum. The requirement on impact velocity was also

met, with the maximum value for any of the 3000 total trials being 45.9 m/s; in fact, impact ve-

locity varied so little that the histograms become unhelpful visualizations and are thus not shown.
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Table 5.3: EDL event timing, in terms of seconds after entry

γ0 Earliest Deployment Latest Jettison Nominal Deployment Nominal Jettison

−12◦ 193.9 s 258.2 s 225 s 235 s
−18◦ 105.7 s 170.9 s 140 s 150 s
−24◦ 76.9 s 132.8 s 105 s 115 s

This is because the probes always proceeded through the EDL stages on time to reach terminal

velocity, which only varied slightly. Thus, a simple timer is sufficient to trigger EDL events while

meeting requirements under the assumptions on this study, but further work would be necessary to

determine if this result holds under larger uncertainties and more realistic Mars surface modeling.
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Figure 5.4: Monte Carlo results for Mach number at drag skirt deployment at varying γ0 values.

Another relevant constraint, peak heat flux, is reported in Fig. 5.5a. As expected, steeper γ0

values result in higher heating as deceleration occurs more rapidly. No requirement on peak heat

flux is assumed for SHIELD in this study, but these values are well-within the capabilities of modern

thermal protection systems such as SLA-561V, which has heritage for Mars entry missions and has

demonstrated good performance at heat fluxes up to 240W/cm2 [228]. Additionally, histograms of

landing error are shown in Fig. 5.5b, where error is defined as the distance between the nominal and
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actual landing sites. Note that there is a major decrease in landing error as the entry flight-path

angle gets steeper from −12◦ to −18◦, and that while there is a further decrease for γ0 = −24◦ the

returns are diminishing after some point. Table 5.4 summarizes the results of these Monte Carlo

analyses, where σ is standard deviation.
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Figure 5.5: Monte Carlo results at varying γ0 values

Finally, this study also examined the possibility of using drag skirt deployment and heatshield

jettison as a method of range control. By carefully timing these events based on the difference

between the nominal and estimated states for the current time, the vehicle could in theory control

its in-plane terminal range during entry. In practice, however, the requirement that the drag skirt

deploy in subsonic conditions severely limits the total achievable control authority, to the extent

that this approach has little or no merit for this application. This is because by the time the

vehicle reaches subsonic speeds it has already dissipated almost all of its energy and is at a low

altitude (about 10 km in this case), leaving little time or energy for the change in ballistic coefficient

to significantly impact the landing site. Specifically, for two trajectories at γ0 = −18◦, one with

the earliest permissible deployment and jettison times and the other with the latest permissible
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Table 5.4: Summary of Monte Carlo results for EDL of a single SHIELD probe

Deployment Mach Impact Velocity, m/s Peak Heat Flux, W/cm2 Error, km

γ0 Mean σ Mean σ Mean σ Mean σ

−12◦ 0.748 0.0115 44.6 0.801 30.9 0.777 8.29 6.06
−18◦ 0.719 0.00672 44.7 0.792 44.7 0.962 1.70 1.27
−24◦ 0.701 0.00636 44.6 0.783 52.7 1.04 1.12 0.829

times, the two trajectories land only about 3 km apart. This represents the maximum possible

control authority yielded by this method, and because this is well below the expected landing

site dispersions the approach is discarded as a method of flight-control. If the drag skirt could

be deployed at supersonic or hypersonic speeds the control authority would increase substantially

and this method would merit reexamination. Indeed, jettison of a drag skirt during hypersonic

flight has been shown in the literature to be an effective method of range control for entry at Mars

[229, 230]. However, the drag skirt for the current SHIELD concept would not structurally or

thermally withstand such conditions4 .

5.4 Regional Probe Networks

This section investigates probe jettison velocity design and performs uncertainty quantifica-

tion for regional networks, which are loosely defined as having all probes within 100 km of the

central landing site. Because the changes in trajectory to achieve these separations are relatively

small, the relationship between separation time and separation distance, as well as that between jet-

tison speed and separation distance, is roughly linear[231]. A linearized numerical targeting method

is therefore developed and employed to design probe jettisons for a reference network. These tra-

jectories are then subjected to relevant uncertainties to quantify the impact of these dispersions on

probe landing locations.

4 based on discussions with the SHIELD team at JPL
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5.4.1 Linearized Targeting Method

The linearized targeting method for regional networks is summarized as follows. Assume

xθϕ = [θ, ϕ]T to be the landing site coordinates and V = V (t) to be the velocity of the probe at

some time prior to landing. Apply a Taylor series expansion to xθϕ about the trajectory of the

carrier spacecraft, x∗
θϕ, as a function of velocity, then neglect terms of second order or higher:

xθϕ = x∗
θϕ +

∂xθϕ

∂V

∣∣∣∣
∗
(V − V ∗) + H.O.T.s (5.2)

∆xθϕ ≈
∂xθϕ

∂V

∣∣∣∣
∗
Vj = [J ]Vj (5.3)

[J ] =

 ∂θ
∂Vx

∂θ
∂Vy

∂θ
∂Vz

∂ϕ
∂Vx

∂ϕ
∂Vy

∂ϕ
∂Vz


∗

(5.4)

where the jettison velocity is the velocity of the probe minus the velocity of the carrier spacecraft

at the moment after jettison, Vj = V − V ∗. The Jacobian matrix [J ] can then be evaluated for

any value of jettison time to represent the sensitivity of landing site coordinates to velocity at that

time. By inverting the Jacobian, the Vj vector required to achieve a desired change in landing

location, ∆xθϕ, can be linearly approximated. Because the Jacobian in this case is not square, the

least-norm solution is selected to minimize the Vj magnitude.

Vj = [J ]T ([J ][J ]T )−1∆xθϕ (5.5)

For the purpose of this study, [J ] is numerically approximated using first-order forward finite

differencing; Eq. (5.6) gives an example for the first element of the matrix,

∂θ

∂Vx
=
θp − θ∗

∆Vx
, (5.6)

where ∆Vx is a small velocity perturbation in the x-axis direction and θp is the landing site longitude

that results from applying a jettison velocity of [∆Vx, 0, 0]
T then propagating to surface impact.

In this study, a perturbation value of ∆Vx = ∆Vy = ∆Vz = 1 × 10−4ms−1 was selected based on

trial and error. Numerically computing the Jacobian [J ] according to Eqs. 5.4 and 5.6 allows one

to linearly approximate the jettison velocity vector Vj required to achieve a shift in longitude and
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latitude equal to ∆xθϕ = [∆θ,∆ϕ]T for a given separation time. To consider a different jettison

time, the Jacobian is simply re-evaluated by applying perturbations at that time.

5.4.2 Reference Network Design

This linearized targeting method is employed to design probe jettisons for a regional network.

As a motivating example, the reference science mission is a seismology network deployed to Cerberus

Fossae, a region of known seismicity on Mars [232, 233]. A regional network in such an area can

obtain useful geophysical measurements using significantly lower-sensitivity seismometers than a

global network would require by relying on its proximity to seismic events, thereby bringing the

required payload mass down to the range of 2–3 kg per lander5 [234]. Shock-tolerant seismology

payloads have been developed that can survive 15,000 g’s at impact [235], and precision landing of

probes is significantly less important than achieving a network geometry that permits observability.

To target Cerberus Fossae, the central state at atmospheric entry interface is defined to have

a longitude of 150◦ East, latitude of 7.25◦ North, flight-path angle of γ0 = −12◦, and heading angle

of 80◦ (slightly northward of due-east). The network consists of three pairs of probes such that

each pair is targeted with equal and opposite jettison velocities ±Vj , resulting in a symmetrical

network of six probes. The nominal configuration is shown to-scale in Fig. 5.66 . Note that the

distance corresponding to the angular separation, shown on the top and right axes of Fig. 5.6, is

computed as the great-circle distance according to Eq. (5.10) and assumes a spherical planetary

surface. Because Mars is not perfectly spherical, this distance differs from the true distance along

the surface and should be treated as approximate for large separations; specifically, for separation

angles larger than 15◦ the difference could exceed 5 km.

The direction of the probe jettison velocities is not constrained to be equal, and thus changes

in attitude may be required between probe jettisons. Because the separations are assumed to

occur mechanically, designing for a uniform jettison speed is likely more desirable than an outright

5 This assumption on total payload mass for a seismometer of the required sensitivity is based on the short-period
instrument aboard the InSight lander and private communications with Mark Panning, Dec. 2021.

6 The surface image is a mosaic created from data acquired from the Context Camera aboard NASA’s Mars
Reconnaissance Orbiter and generated using MarsTrek, trek.nasa.gov/mars

https://trek.nasa.gov/mars/
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minimization of jettison speed. In order to deploy the network using a single jettison speed for

all three separations, targeting is performed along a range of separation times to provide trends

of required Vj ; these results are shown in Fig. 5.7. As would be expected, required jettison speed

increases dramatically as time between separation and entry approaches zero. A jettison speed of

10 cm s−1 is selected as a relatively low value that intersects all three curves between 0.5 and 5 days

before entry; note that iterating between these results and the design of the network allows for

flexibility in selection of the nominal jettison speed. A root solver is used to compute the precise
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Figure 5.6: Nominal landing locations for example network, with downrange direction shown by
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jettison time for each probe that targets the desired landing location and results in a jettison speed

equal to the desired value, with the approximate intersections of the curves with the dashed line

in Fig. 5.7 providing good initial guesses for the solver. Specifically, Brent’s method7 is applied

to within numerical precision with a maximum of 10 iterations[236, 237]. The resulting separation

times are 0.7613, 1.6529, and 3.1697 days before entry.

7 scipy.optimize.brentq

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html
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Figure 5.7: Required Vj vs. separation time for the three chosen nominal landing sites

5.4.3 Error Parameters

The assumed mission goal is to deploy a network in approximately the correct geometry

and location, rather than to precisely target each probe. Thus, the separate statistics of landing

error for each probe do not directly relate to the performance requirements. To better characterize

network delivery performance, two error parameters are defined, center error εc and shape error εs.

Center error describes off-nominal location of the center of the network, and shape error describes

off-nominal distribution of probes around that center. Define center error for any given trial as

follows:

εc =
√

(θ̄∗ − θ̄)2 + (ϕ̄∗ − ϕ̄)2 (5.7)

where θ̄∗ and ϕ̄∗ are the average longitude and latitude, respectively, across all probe locations for

the nominal network design, and θ̄ and ϕ̄ are the average longitude and latitude of the actual probe

landing sites. This error is computed in radians and can be converted to distance by multiplying by

the planet’s radius. To calculate the shape error, compute the great circle distance between every

unique pair of landing sites, yielding d = N(N−1)/2 distances for N probes, and label these values
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δ∗i and δi for the nominal and actual landing sites, respectively. The shape error is then defined as

the root sum squared of the differences between the nominal distance and actual distance for each

unique pair of landing sites, divided by the total number of probes N :

εs =

√
(δ∗1 − δ1)2 + . . .+ (δ∗d − δd)2

N
, d =

N(N − 1)

2
(5.8)
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Figure 5.8: Three example networks, illustrating center error εc vs. shape error εs

A more intuitive representation of these parameters is provided by Fig. 5.8, which shows a

generic nominal network in blue circles. The orange squares have the correct network shape but

all points are shifted to the right, resulting in εc = 2 and εs = 0. The green triangles are centered

correctly but the entire geometry has been reduced in size, resulting in εc = 0 and εs = 2.

5.4.4 Dispersion Analysis

The results of applying relevant uncertainties to this reference scenario in a 1000-trial Monte

Carlo analysis are shown in Fig. 5.9. As expected based on intuition and the earlier flight mechan-

ics analysis, the probes experience large dispersions in landing site, primarily in the downrange

direction. However, it turns out that these dispersions are highly-correlated between probes for

any given trial, because all dispersions except jettison speed and ballistic coefficient apply to the
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Table 5.5: Statistics of error parameters

Parameter Mean 3σ

center error εc, km 7.391 16.573
shape error εs, km 3.335 3.555
min. separation, km 22.029 2.569
max. separation, km 119.370 22.554
avg. separation, km 52.491 8.126

trial as a whole and affect all of the probes in more or less the same way. For this scenario, disper-

sions on jettison speed have relatively little effect because the nominal speeds are low enough to

be within the regime of roughly linear sensitivity for these trajectories. As a result of all this, the

network shifts back-and-forth in downrange but its shape deforms relatively little. This is reflected

in the statistics of center and shape error, summarized in Table 5.5; the minimum, maximum, and

average distances between every unique pair of landing sites are computed for each trial and the

statistics of these values are also shown in Table 5.5. The landing locations for the trial with the

largest shape error are shown in the red pentagons in Fig. 5.9. It can be seen by inspection that

the network shape in this trial is qualitatively similar to the nominal shape, but with an offset

in the positive downrange direction. The key takeaway is that, for the example regional network

considered here, the probes can be delivered to roughly the desired arrangement on the surface

despite large dispersions for each individual probe, so long as roughly ±25 km downrange shifts of

the entire network can be tolerated.

5.4.5 Limits of Linearization

The linear approach to targeting applied in this section is a good approximation only within

some local region of the reference trajectory, that is, near the approach trajectory of the carrier

spacecraft leading to the central entry point. Thus, it is important to quantify the limits of

applicability for the linearization. To do so, the linearized targeting method is applied to compute

a probe jettison velocity targeting progressively greater offsets from the central point in both

the downrange and crossrange directions, assuming separation one day before entry along the
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Figure 5.9: Nominal and random trial landing locations shown against to-scale Martian surface.

approach trajectory defined in Subsection 5.4.2. A trajectory is then simulated for each probe

jettison, and the great-circle distance between the achieved landing site and the targeted offset

defines the error. Figure 5.10 shows this error along with the jettison speed computed by the

linearized targeting. The x-axis shows the targeted offset in terms of the separation distance (top),

which is essentially the great-circle distance, and the corresponding separation angle (bottom), e.g.

separation distance = separation angle× planetary radius. From these results, it is clear that after

about 100 km of desired separation distance, the approximation error due to linearization begins to

increase rapidly. By about 300 km of desired separation, the targeting error is of similar magnitude

to the desired separation and thus, under these assumptions, the linearized targeting method has
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no utility beyond this point.

0 100 200 300 400
target separation distance, km

0 1 2 3 4 5 6 7
target separation angle, deg

0

100

200

300

400

500

er
ro

r, 
km

0

1

2

3

4

5

6

7

8

V j
, m

/s

downrange error
downrange Vj

crossrange error
crossrange Vj

Figure 5.10: Error and required Vj for linearized targeting for varying downrange and crossrange
spacing. After the desired change in angle exceeds 6.5◦, both cases begin to miss the planet entirely.

5.5 Large-Scale Probe Networks

The linearization method presented in the previous section fails for networks that extend

beyond about 100 km from the central point, requiring a different approach. In this section a

numerical nonlinear optimization tool is applied to design probe jettisons for large-scale networks

of co-delivered probes, and a similar uncertainty quantification analysis is performed.

5.5.1 Nonlinear Optimization Procedure

The quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS8 ) is used to

numerically perform unconstrained optimization of a scalar cost function by iteratively approxi-

mating the Hessian matrix [236, 238], where the design variables are the three components of the

jettison velocity. Each trajectory is propagated until either reaching the surface or reaching a final

time, where the final time is defined to be much later than the nominal time at target. The cost

function being minimized is nominally the great-circle distance d along the surface between the

8 scipy.optimize.BFGS

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.BFGS.html
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target and achieved landing locations, assuming a spherical planet. In certain cases, this can result

in erroneous convergence to a flyby or skip-out trajectory that never reaches the surface, but is at

the correct latitude and longitude at the final time. To account for this possibility, the altitude of

the spacecraft at the final time is added to the cost function. Equation 5.9 gives the resulting cost

function, where (θt, ϕt) and (θf , ϕf ) are the target and achieved landing coordinates, respectively,

and rf is the radial distance of the spacecraft at the final time. The tolerance is 1 km, meaning that

the computed probe jettison velocity delivers the probe to within 1 km, or approximately 0.0169◦,

of the target landing location.

J(rf ,vf ) = d+ rf −R (5.9)

d = R cos−1 (sinϕf sinϕt + cosϕf cosϕt cos(|θt − θf |)) (5.10)

5.5.2 Targeting Results

For these scenarios a generic entry interface state of 0◦ longitude, 0◦ latitude, and 90◦ (due-

east) heading angle is assumed, such that downrange and crossrange are directed east-west and

north-south, respectively. downrange and crossrange separations are treated separately in this

analysis based on the significant difference in required jettison speed, as shown in Fig. 5.10; this is

also intuitive from orbital mechanics, wherein changing the plane of motion in general takes greater

effort than changes of similar magnitude within the plane of motion.

Figure 5.11 explores the relationships between desired separation, required jettison speed, and

entry flight-path angle for both downrange and crossrange separations, with separation performed

three days before entry. As expected, larger separations tend to require larger jettison speeds. This

relationship takes a roughly linear form for crossrange separations, as shown in Fig. 5.11b, despite

the breakdown of the linearization method based on finite-differencing from small perturbations.

Furthermore, γ0 of the approach trajectory has very little effect on the required jettison speed. In

sharp contrast, the jettison speed required for downrange separations asymptotically approaches

a fixed value beyond 30◦ of separation, and is strongly affected by approach trajectory γ0. Note
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that the y-axis of Fig. 5.11a is normalized with respect to the required jettison speed of the largest

separation, highlighting the similarity in shape between the different γ0 cases despite their offset

values, whereas Fig. 5.11b shows non-normalized speeds.
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Figure 5.11: Required jettison speed vs. desired landing separation, for separation 3 days before
entry and varying γ0 values

The reason for the plateau in jettison speed shown in Fig. 5.11a is that downrange separations

larger than 15◦ are achieved via either long coast phases in the atmosphere or skip-out trajectories,

in which the vehicle exits the atmosphere on a suborbital arc and then re-enters farther downrange.

This can be seen in Fig. 5.12, which shows trajectories targeting downrange separation for the

γ0 = −18◦ case, where Fig. 5.12a plots planet-relative motion in the altitude vs. downrange

plane and Fig. 5.12b shows trajectories in the planet-centered inertial frame. The three cases

with smallest separations can be seen to follow similarly-shaped trajectories down to the surface,

separated due to offsets in their exoatmospheric trajectories and incremental changes in their entry

interface states. The rest of the trajectories, however, enter the atmosphere on nearly the same

trajectory and then achieve separation during atmospheric flight, with each subsequent trajectory
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coasting for longer in the atmosphere until eventually skip-out trajectories are realized. Sensitivity

of the landing separation with respect to the state at entry interface increases dramatically for

these long coast or skip-out trajectories. The use of increasingly long atmospheric flight phases to

achieve downrange separation is also the reason that the entry flight-path angle of the approach

trajectory significantly impacts the required jettison speed. In contrast, crossrange separation is

achieved primarily by modifying the exoatmospheric trajectory, and is thus insensitive to approach

trajectory γ0.

0 2000 4000 6000 8000 10000
downrange, km

0 50 100 150 200
downrange, deg

0

50

100

150

200

250

al
tit

ud
e,

 k
m

atm interface

(a) Altitude vs. downrange

4000 2000 0 2000 4000
x, km

4000

2000

0

2000

4000

y,
 k

m

(b) Viewed down from North pole, inertial

Figure 5.12: Probe trajectories for downrange separations ranging from 5◦ (purple) to 180◦ (red)

All of the large-scale network results thus far assume a separation time of three days before

entry. Therefore, it is instructive to consider the relationship between separation time and required

jettison speed, particularly for crossrange separation since the required speeds are larger in those

cases. To this end, Fig. 5.13a compares the required jettison speed vs. desired separation for

separation events 3 and 18 days before entry. The required speeds for 18 days before entry are not

only lower, but also increase at a slower rate compared to separation 3 days beforehand. Figure

5.13b shows how required jettison speed changes with varying separation timing for a 5◦ crossrange
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separation; one can imagine this as representing the continuum between the leftmost points of the

two lines in Fig. 5.13a. The required jettison speed decreases monotonically and nonlinearly as the

time between separation and entry increases, as is the case for regional networks as shown in Fig.

5.7.
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Figure 5.13: Comparisons of required jettison speed at varying separation times, for γ0 = −18◦

5.5.3 Dispersion Analysis

The preceding results demonstrate the ability to use nonlinear numerical optimization to

design probe jettisons to co-deliver large-scale probe networks. To understand the practicality of

these trajectories, however, the impact of relevant uncertainties must be considered. A 1000-trial

Monte Carlo analysis is performed for this purpose, assuming γ0 = −18◦ and using the same input

dispersions as in the previous section. In this case, eight total probes are considered. Four probes

target downrange separations of 5◦, 10◦, 15◦, and 30◦ and separate from the carrier 3 days before

entry. The other four probes target crossrange separations of the same magnitudes and separate

from the carrier 18 days before entry; the later separation time is selected to reduce the jettison
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speeds required to reach crossrange separations. The resulting nominal γ0 values are, in order of

increasing separation, −15.15◦, −12.79◦, −11.27◦, and −9.91◦ for the downrange separations and

−17.82◦, −17.92◦, −18.54◦, and −19.04◦ for the crossrange separations. Figure 5.14 shows the

resulting landing error for these 8 probes, and Fig. 5.15 shows the resulting dispersed γ0 values. It

should be reiterated that γ0 of the central approach trajectory, which is the same for all cases, is

distinct from the actual flight-path angle of each probe upon entering the atmosphere.
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Figure 5.14: Monte Carlo results for large-scale network

From Fig. 5.14a, it is clear that landing error increases substantially with each increase in

nominal downrange separation. The landing dispersions for the 10 and 15 degree cases are large but

bounded, such that they would conceivably still suffice if the probes were targeting a broad region

on the surface. In contrast, the 30◦ case has such large landing error that 80% of the trials have

greater than 500 km error, and in 31% of trials, the spacecraft skips out of the atmosphere while still

on a hyperbolic trajectory. This large jump in error statistics is the result of the plateau in required

jettison speed observed in Fig. 5.11a. Because very small changes in jettison speed result in large

changes in landing separation, the ±10% jettison speed dispersion is sufficient to radically degrade
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Figure 5.15: Actual entry flight-path angles for probe trajectories

targeting. Clearly, under the assumed scenario and dispersions, the 30◦ downrange separation is

not a viable trajectory, nor are the trajectories with greater downrange separation.

To get a sense of to what extent the error results from jettison speed dispersions, Fig. 5.16

shows the results of an equivalent Monte Carlo analysis but without jettison speed dispersions. All

probe trajectories show marked improvement, including the 30◦ case, and no trajectories remain

hyperbolic. However, the 30◦ case still has dramatically greater landing error than the other three

cases, with the large majority of trials exceeding 100 km of error and 31% of trials exceeding 500 km

of error. This is because the extended coast phase, as seen in Fig. 5.12, results in a trajectory that

is fundamentally more sensitive to variations. That is, even when perfect probe jettison execution

is assumed, small variations have a major impact due to the shallow entry flight-path angle and

close proximity to other trajectories in the solution family that extend much further in downrange.

Turning to crossrange separations, the landing error with dispersed jettison speed also in-

creases substantially as desired separation increases, with the 30◦ case again performing much worse

than the other three probes, but this time without any errors exceeding 500 km. However, in con-



151

0 20 40 60 80 100
landing error, km

0

50

100

150

200

250

300

350
fr

eq
ue

nc
y

86% of 30° cases

nominal separation:
5°
10°
15°
30°

(a) downrange separations

0 2 4 6 8 10
landing error, km

0

10

20

30

40

50

60

fr
eq

ue
nc

y

nominal separation:
5°
10°
15°
30°

(b) crossrange separations

Figure 5.16: Monte Carlo results for large-scale network without jettison speed dispersions

trast to the downrange cases, the landing error results for the Monte Carlo analysis without jettison

speed dispersions are relatively small and seemingly insensitive to desired separation. The differing

behavior comes down to nominal entry flight-path angle for each probe. As desired downrange

separation increases, the nominal γ0 becomes shallower9 and, as shown in Fig. 5.15a, the variation

in γ0 increases. In contrast, crossrange trajectories all have a nominal γ0 near −18◦ similar to the

central approach trajectory, but the dispersions on γ0 still increase with desired separation, as seen

in Fig. 5.15b. As desired separation increases, so does required jettison speed, and thus the jettison

speed dispersions have greater effect. Thus, when probe jettison execution error is removed from

the assumed dispersions, all crossrange trajectories enter at about −18◦ and experience landing

errors consistent with the single-probe flight mechanics analysis shown in Fig. 5.5b. The larger

γ0 dispersions resulting from probe jettison execution error for the 30◦ crossrange case are what

account for the much greater landing site dispersions seen in Fig. 5.14b; although this case is

benign compared to the largest downrange separation case, it still is most likely too much error for

9 Note, though, that this trend plateaus as separations greater than 30◦ are targeted, because the differences in
entry interface states for these trajectories are very small.
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practical application.

5.6 Conclusions

Networks of co-delivered probes on the Martian surface would be scientifically valuable at a

range of scales, and this study examines some of the relevant flight mechanics and mission design

considerations. It is shown that regional networks within about 100 km of the central point can be

co-delivered with a small mechanical jettison within five days of atmospheric entry. Larger networks

are considered and trajectories are successfully identified using numerical nonlinear optimization.

However, the long coast and skip-out trajectories identified in this study are too sensitive to er-

ror to be practical beyond a certain separation distance, even under reduced targeting accuracy

requirements. For the scenario considered here, this cutoff occurs beyond roughly 15◦ of desired

separation, corresponding to a maximum separation of approximately 890 km along the surface in

either direction. Several alternative approaches could potentially enable larger separations. For in-

stance, the strict co-delivery assumption could be relaxed to allow the carrier spacecraft to perform

multiple maneuvers during approach, including between separation events. Also, the probe jettisons

could be performed much earlier, enabling different targeting geometries with much lower required

jettison speeds compared to similar geometries for separation within 20 days of entry. The target-

ing optimization process itself could be constrained to solutions with a desired entry flight-path

angle, potentially resulting in larger probe jettison speeds but avoiding highly sensitive trajectories.

An even more constrained approach would be to first define states at atmospheric entry interface

that meet requirements and result in the desired landing locations, and then to design maneuvers

targeting those entry states, effectively decoupling the exoatmospheric and atmospheric trajectory

design processes. This decoupled approach would enable guaranteeing desirable properties of the

nominal atmospheric flight trajectories, at the expense of potentially further increasing required

jettison speed.



Chapter 6

Relative Motion in the Velocity Frame for Atmospheric Entry Trajectories

6.1 Introduction

In studies of spacecraft formation flying it is common to represent the relevant dynamics using

relative motion models centered on one spacecraft [239]. This central spacecraft is labelled as the

chief and all other neighboring spacecraft are labelled deputies. These models can take the form of

exact or linearized relative equations of motion (EOMs), which may admit analytical solutions, and

a wide variety of solutions have been studied [113]. Such relative motion models provide a degree

of analytical insight, reduce the computational complexity for simulation, and supply a dynamics

representation more amenable to onboard control and estimation methods. Notably, the choice of

state representation (Cartesian coordinate frame, relative orbit elements, etc.) has a significant

impact on the utility of these models [240].

Existing formation flying literature is primarily concerned with motion about circular or

slightly-eccentric elliptical orbits, such as the well-known works by Hill [241], Clohessy andWiltshire

[242], and Tschauner and Hempel [243]. In contrast, relative motion about highly-eccentric elliptical

or hyperbolic chief orbits has received little dedicated attention. Carter presents a state transition

matrix (STM) applicable for Keplerian orbits with any eccentricity in terms of Cartesian coordinates

in a rotating frame with true anomaly as the independent variable [244], and a time-explicit STM

is given by Dang [245]. A direct solution of the STM for any non-parabolic Keplerian orbit is

given by Reynolds in terms of inertial states [246]. Dang and Zhang present linearized relative

equations of motion in terms of orbit element differences that are valid about a hyperbolic orbit
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[247]; the work by Willis et. al gives a second-order solution in terms of time and true anomaly

of the chief [248], and Melton shows that this model holds true for hyperbolic orbits [249]. While

the aforementioned approaches provide accurate models of relative motion about a highly-eccentric

chief, they do not necessarily present an intuitive representation in the way that the Clohessy-

Wiltshire-Hill equations do in a Cartesian rotating frame for motion about a circular chief. This is

because all prior work expresses the Cartesian relative motion coordinates in the rotating orbit (or

Hill) frame of the chief. This frame is not as convenient for highly-eccentric chief orbits, as even the

simplest formation, the lead-follower formation in which there is only a difference in true anomaly,

results in a two-dimensional trajectory in the orbit frame. The relative motion in a lead-follower

formation is primarily in the velocity direction, which is not along an orbit frame unit vector for

non-circular orbits. This is illustrated in Fig. 6.1, which shows relative motion for a lead-follower

formation about a hyperbolic chief in both the Hill and velocity frames, where the y-axis of the

latter is defined as the velocity direction of the chief; see the following section for detailed frame

definitions. This paper explores relative motion expressed in the rotating chief velocity frame rather

than the orbit frame. Although the velocity frame is commonly used in astrodynamics, a direct

formulation of relative motion in this frame is a novel contribution.
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Figure 6.1: Relative motion about hyperbolic chief shown in Hill and velocity frame components

Velocity frame relative motion is of particular interest in scenarios where force due to at-

mospheric drag is significant, because drag is purely along the anti-velocity direction. Examples
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range from the small perturbing acceleration due to drag in low-Earth orbit, to aerobraking in

which the spacecraft repeatedly passes through the upper atmosphere to reduce orbital energy, to

aerocapture and direct-entry scenarios in which the vehicle flies deep into the atmosphere and drag

becomes the dominant force. An intuitive and accurate model of relative motion is relevant to all

of these scenarios. For example, propulsionless satellites can achieve orbit phasing and adjustment

by changing attitude to modulate the amount of drag on each spacecraft, as has been demonstrated

on orbit [250]. A similar method of control can be used during aerobraking [251]. In a mission

deploying two or more satellites into orbit via aerobraking, understanding the relative motion as

affected by atmospheric drag would be critical. Relative motion is also relevant to various aerocap-

ture and entry scenarios. The Galileo and Cassini-Huygens missions each delivered a probe from

an orbiter [99, 100], and the Pioneer Venus mission deployed multiple probes from a single bus on

an entry trajectory [109]. Future missions could involve delivering an entry probe from a mother-

craft that then enters the atmosphere to perform aerocapture [225], simultaneous aerobraking of a

satellite constellation [252], or deployment of multiple probes to a regional surface network from a

single entry vehicle [231]. Intuitive relative motion models could aid in early reference trajectory

design for such missions, and could also enhance onboard control and state estimation between

the multiple spacecraft. Moreover, aerobraking, aerocapture, and entry trajectories are typically

highly-elliptical or hyperbolic, further motivating representation in the velocity frame. Thus, at-

mospheric entry trajectories, including aerobraking, are considered as a set of motivating examples

in this study.

The contributions of this work are an exploration of relative motion models in the velocity

frame and the application of these models to Keplerian formation flying, differential drag during

aerobraking, and atmospheric entry trajectories. The relative equations of motion in the velocity

frame are presented, the linearized approximation is developed, and the non-dimensional form

is also provided. In addition, descriptions of velocity frame relative motion in terms of orbit

element differences are derived for both elliptical and hyperbolic chief orbits. Expressions for

including differential drag as a perturbing acceleration are developed. Relative motion during
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atmospheric flight is also considered by linearizing the Allen-Eggers solution for ballistic entry[253].

The Keplerian and atmospheric flight models are then combined to create a model of relative motion

about an entry vehicle, and the approximate models are validated against numerical propagation of

the full dynamics for several representative example scenarios. Relative motion models as described

above would benefit an analyst designing trajectories for multiple co-delivered entry vehicles for

applications such as a planetary probe network[231] or probe delivery by a carrier spacecraft on an

entry trajectory[225], as well as for multiple independently-targetable reentry vehicles[224]. These

models also could be incorporated into onboard guidance, navigation, and control algorithms.

6.2 Keplerian Motion in the Velocity Frame

6.2.1 Reference Frame Definitions

Let N : {n̂1, n̂2, n̂3} be a generic inertial frame. The orbit frame, also known as the Hill

or LVLH frame, is defined through the base vectors O : {ôr, ôθ, ôh}. Here ôr is along the orbit

radial direction and ôh is along the angular momentum vector of the spacecraft h = r × v, where

r and v are the position and inertial velocity vectors for the spacecraft, respectively. Lastly, ôθ

completes the right-handed set and is referred to as the along-track direction. The velocity frame

is defined through the base vectors V : {v̂n, v̂v, v̂h} where v̂v is directed along the inertial velocity,

v̂h = ôh, and v̂n completes the right-handed set. Flight-path angle γ is defined as the angle from the

along-track direction ôθ to the velocity direction v̂v. Finally, true anomaly f is the angle between

the position vector and the eccentricity vector, the latter of which is inertially fixed for Keplerian

motion, such that the angular velocity between the Hill and inertial frames is ωO/N = ḟ ôh. Figure

6.2 summarizes these frame definitions, where ôh is directed out of the page.

6.2.2 Exact Relative Equations of Motion

The chief spacecraft position vector is defined as

rc = rcôr = xcv̂n + ycv̂v, (6.1)
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Figure 6.2: Hill and velocity frames

where rc is the current orbit radius of the chief spacecraft, and noting that, under the assumption

of Keplerian motion, the chief has no position component in the orbit-normal direction. As the

orbit and velocity frame only differ by a rotation about ôh, the out-of-plane motion description is

identical in both the orbit and velocity frame. This allows the following development to focus on

the in-plane relative motion.

The deputy spacecraft position vector is then written in terms of the relative orbit position

vector ρ as

rd = rc + ρ = (x+ xc)v̂n + (y + yc)v̂v + zv̂h, (6.2)

noting that here x, y, and z are defined as velocity frame components, a break from the common

use of these variables as Hill frame components.

The velocity frame rotates with respect to the inertial frame with an angular velocity of

ωV/N , which expands as

ωV/N = ωV/O + ωO/N = (ḟ − γ̇)v̂h. (6.3)

The time derivative of this vector with respect to the inertial frame, ω̇V/N , is similarly written as

ω̇V/N = ω̇V/O + ω̇O/N = (f̈ − γ̈)v̂h. (6.4)

Applying transport theorem[239] twice to Eq. (6.2) to find the second time derivative with

respect to the inertial frame yields the following kinematic expression for the deputy spacecraft
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acceleration vector:

r̈d =
(
ẍ+ ẍc − 2(ḟ − γ̇)(ẏ + ẏc)− (f̈ − γ̈)(y + yc)− (ḟ − γ̇)2(x+ xc)

)
v̂n

+
(
ÿ + ÿc + 2(ḟ − γ̇)(ẋ+ ẋc) + (f̈ − γ̈)(x+ xc)− (ḟ − γ̇)2(y + yc)

)
v̂v + z̈v̂h.

(6.5)

An expression for the chief spacecraft acceleration vector r̈c is similarly derived, and in this case

is equal to the Keplerian acceleration vector −(µ/r3c )rc, where µ is the gravitational parameter of

the central body. Equating the vector components in the resulting expression for r̈c = −(µ/r3c )rc

yields the following equations:

ẍc − 2(ḟ − γ̇)ẏc − (f̈ − γ̈)yc − (ḟ − γ̇)2xc = − µ

r3c
xc (6.6a)

ÿc + 2(ḟ − γ̇)ẋc + (f̈ − γ̈)xc − (ḟ − γ̇)2yc = − µ

r3c
yc (6.6b)

The vectors ωV/N and ω̇V/N are conveniently expressed as [239]:

ωV/N = (ḟ − γ̇)v̂h =
α

ζ
ḟ v̂h, (6.7)

ω̇V/N = (f̈ − γ̈)v̂h =

(
α

ζ
f̈ −

e
(
e2 − 1

)
sin f

ζ2
ḟ2

)
v̂h, (6.8)

where the dimensionless quantities α and ζ are defined for ease of notation:

α = (e cos f + 1), (6.9)

ζ = (e2 + 2e cos f + 1). (6.10)

Auxiliary variables defined for concise notation are collected in Appendix 6.7 for easy ref-

erence. The chief orbit angular momentum magnitude h is constant for Keplerian motion, and

setting its time derivative equal to zero yields an expression for true anomaly acceleration [239]:

h = r2c ḟ (6.11)

ḣ = 0 = 2rcṙcḟ + r2c f̈ (6.12)

Finally, the acceleration acting on the deputy spacecraft is written as the sum of Keplerian

acceleration plus an arbitrary perturbing acceleration vector u = uxv̂n + uyv̂v + uzv̂h,

r̈d = − µ

r3d
rd + u, (6.13)
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where rd =
√
(x+ xc)2 + (y + yc)2 + z2c is the orbit radius of the deputy spacecraft.

Substituting Eq. (6.6)–(6.8) and (6.12) into Eq. (6.5) gives a kinematic expression for accel-

eration of the deputy spacecraft; equating this with the kinetic acceleration defined in Eq. (6.13)

and simplifying yields the exact nonlinear relative equations of motion in terms of velocity frame

components:

ẍ+ ḟ
α

ζ

[
y

(
2
ṙc
rc

− ḟ e(1− e2) sin f

αζ

)
− 2ẏ − x

ḟα

ζ

]
− µxc

r3c
= − µ

r3d
(xc + x) + ux (6.14a)

ÿ − ḟ
α

ζ

[
x

(
2
ṙc
rc

− ḟ e(1− e2) sin f

αζ

)
− 2ẋ+ y

ḟα

ζ

]
− µyc

r3c
= − µ

r3d
(yc + y) + uy (6.14b)

z̈ = − µ

r3d
z + uz (6.14c)

Note that the flight-path angle of the chief spacecraft is written as [239]

tan γ =
e sin f

1 + e cos f
=
e sin f

α
. (6.15)

Therefore, Eqs. (6.14a) and (6.14b) can also be written as:

ẍ+ ḟ
α

ζ

[
y

(
2
ṙc
rc

− ḟ(1− e2)

ζ
tan γ

)
− 2ẏ − x

ḟα

ζ

]
− µxc

r3c
= − µ

r3d
(xc + x) + ux (6.16a)

ÿ − ḟ
α

ζ

[
x

(
2
ṙc
rc

− ḟ(1− e2)

ζ
tan γ

)
− 2ẋ+ y

ḟα

ζ

]
− µyc

r3c
= − µ

r3d
(yc + y) + uy (6.16b)

It is worth briefly noting how the relative equations of motion are correctly initialized for

propagation. A typical scenario is that the position and inertial velocity vectors of the chief and

deputy spacecraft are known at the initial time, and the relative state must be computed. The

relative position vector, ρ, is computed according to Eq. (6.2) and rotated into the velocity frame,

providing initial values for x, y, and z. To complete the full state, relative velocity components ẋ,

ẏ, and ż are also required, but these comprise a vector defined as the time derivative of the relative
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position as seen by the velocity frame. Using the transport theorem yields

V
ẋ

ẏ

ż

 ≡
Vd

dt
(ρ) = ρ̇− ωV/N × ρ, (6.17)

where ρ̇ = ṙd− ṙc is the difference between the inertial velocities of the deputy and chief spacecraft.

6.2.3 Linearized Relative Equations of Motion

In order to linearize Eqs. (6.14a)–(6.14c), assume that the distance between the chief and

deputy spacecraft is small compared to the chief orbit radius, (x, y, z) ≪ rc. By taking a first-order

Taylor series expansion about x = y = z = 0, rd is approximated as

µ

r3d
≈ µ

r3c
(1− 3κ) (6.18)

where

κ =
xcx+ ycy

r2c
. (6.19)

Substituting Eq. (6.18) into the vector expression on the right-hand side of Eq. (6.13) and neglecting

terms that are quadratic in terms of x, y, or z results in a further simplification:

− µ

r3d

V
x+ xc

y + yc

z

 ≈ − µ

r3c

V
x+ xc − 3κxc

y + yc − 3κyc

z

 (6.20)

Additionally, note that µ/r3c can be expressed as the following identities [239]:

µ

r3c
=
rc
p
ḟ2 =

ḟ2

α
. (6.21)

Substituting Eqs. (6.20) and (6.21) into Eqs. (6.14a)–(6.14c) gives the linearized relative

equations of motion in terms of velocity frame components:
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ẍ+ ḟ
α

ζ

[
y

(
2
ṙc
rc

− ḟ e(1− e2) sin f

αζ

)
− 2ẏ − x

ḟα

ζ

]
+
ḟ2

α
(x− 3κxc) = ux (6.22a)

ÿ − ḟ
α

ζ

[
x

(
2
ṙc
rc

− ḟ e(1− e2) sin f

αζ

)
− 2ẋ+ y

ḟα

ζ

]
+
ḟ2

α
(y − 3κyc) = uy (6.22b)

z̈ +
ḟ2

α
z = uz (6.22c)

6.2.4 Non-Dimensional Relative Equations of Motion

In the case of relative motion in the Hill frame, the linearized equations of motion take on an

elegant form when non-dimensionalized by the chief orbit radius rc and differentiated with respect

to the chief orbit true anomaly f instead of time [239]. These are known as the Tschauner-Hempel

equations [243], and a variety of solution approaches exist in the literature [244]. For completeness,

the equivalent non-dimensional forms of the linearized relative EOMs in terms of velocity frame

components are presented here.

Define the non-dimensional relative orbit coordinates (u, v, w) as

u =
x

rc
v =

y

rc
w =

z

rc
(6.23)

Unlike the Tschauner-Hempel equations in the Hill frame, the velocity frame equations require

similarly defining non-dimensional coordinates for the chief spacecraft:

uc =
xc
rc

vc =
yc
rc

wc =
zc
rc

(6.24)

Denote the derivative with respect to chief orbit true anomaly as

()′ ≡ d()

df
(6.25)

The following identities relate time derivatives of (x, y, z) to derivatives of (u, v, z) with respect to
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true anomaly [239]:

ẋ

rc
= u′ḟ + u

ṙc
rc

ẍ

rc
= u′′ḟ2 + uḟ2

(
1− rc

p

)
(6.26a)

ẏ

rc
= v′ḟ + v

ṙc
rc

ÿ

rc
= v′′ḟ2 + vḟ2

(
1− rc

p

)
(6.26b)

ż

rc
= w′ḟ + w

ṙc
rc

z̈

rc
= w′′ḟ2 + wḟ2

(
1− rc

p

)
(6.26c)

Dividing Eq. (6.22) by rc and substituting Eq. (6.26) gives the following non-dimensional

linearized relative equations of motion in terms of velocity frame components:

u′′ +

[
1− α2

ζ2
− 3

rc
p
u2c

]
u− 2

α

ζ
v′ −

[
e(1− e2) sin f

ζ2
+ 3

rc
p
ucvc

]
v =

ux

rcḟ2
(6.27a)

v′′ +

[
1− α2

ζ2
− 3

rc
p
v2c

]
v + 2

α

ζ
u′ +

[
e(1− e2) sin f

ζ2
− 3

rc
p
ucvc

]
u =

uy

rcḟ2
(6.27b)

w′′ + w =
uz

rcḟ2
(6.27c)

6.2.5 Relative Orbit Element Description

A disadvantage of the relative equations of motion discussed thus far is that, for a general

orbit, describing the relative motion requires solving the differential equations. As an alternative

approach, a direct mapping between orbit element differences and the Cartesian relative position

vector ρ would provide analytical insight into the relative orbit geometry. This is provided in

Ref. [254] in terms of Hill frame components. An equivalent mapping between orbit element differ-

ences and velocity frame components can be found by pre-multiplying that result by the direction

cosine matrix (DCM) relating the two frames, Vρ = [V O]Oρ, where [VO] is [239]:

[V O] =


α√
ζ

− e sin f√
ζ

0

e sin f√
ζ

α√
ζ

0

0 0 1

 (6.28)

A brief derivation of the equations relating orbit element differences and Cartesian velocity

frame position components is given here, with additional detail provided in Appendix C closely

following sections 14.4.1 and 14.6.1 of Ref. [239].
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Define the orbit element vector as oe = (a, e, i,Ω, ω,M)T , consisting of semi-major axis,

eccentricity, inclination, right ascension of the ascending node, argument of periapsis, and mean

anomaly, respectively. The orbit element difference vector is then defined as deputy orbit element

vector minus the chief orbit element vector,

δoe = oed − oec = (δa, δe, δi, δΩ, δω, δM)T (6.29)

A linearized mapping between orbit element differences and Cartesian relative position is

provided by Eq. (6.30):

Oρ =


δr

r(δθ + cos iδΩ)

r(sin θδi− cos θ sin iδΩ

 (6.30)

To obtain a more intuitive description that does not rely on δθ, Eq. (6.30) is reformulated

to instead rely on differences in mean anomaly M (or, in the case of a hyperbolic chief, mean

hyperbolic anomaly N), which will remain constant if δa = 0 for Keplerian motion [239]. The

derivations of each first-order variation are provided in Ref. [254] and included in Appendix C

with the exception of difference in mean hyperbolic anomaly δN , which is added here to include

expressions that are valid for a hyperbolic chief. The derivations of δM and δN only differ slightly

and are therefore shown here in parallel.

Take the definitions of mean anomalies M and N in terms of eccentric anomaly E and

hyperbolic anomaly H:

M = E − e sinE (6.31a)

N = e sinhH −H (6.31b)

and take the first variations of these expressions:

δM = (1− e cosE)δE − sinEδe (6.32a)

δN = (e coshH − 1)δH + δe sinhH (6.32b)
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Note the orbit identities relating E and H with f [239],

tan
f

2
=

√
1 + e

1− e
tan

E

2
(6.33a)

tan
f

2
=

√
e+ 1

e− 1
tanh

H

2
, (6.33b)

and take the first variations:

δE =
η

α
δf − sin f

αη
δe (6.34a)

δH =
ηh
α
δf +

sin f

αηh
δe (6.34b)

where η =
√
1− e2 and ηh =

√
e2 − 1.

Additionally, note the following orbit identities [239]:

sinE =
η sin f

α
cosE =

e+ cos f

α
(6.35a)

sinhH =
ηh sin f

α
coshH =

e+ cos f

α
(6.35b)

Substituting Eqs. (6.34) and (6.35) into Eq. (6.32), simplifying, and rearranging provides

expressions for δf in terms of δM and δN :

δf =
α2

η3
δM +

sin f(2 + e cos f)

1− e2
δe (6.36a)

δf =
α2

η3h
δN − sin f(2 + e cos f)

e2 − 1
δe (6.36b)

Substituting the orbit identities given in Eqs. (C.7) – (C.15) and (6.36) into Eqs. (6.30), pre-

multipliying by [V O], and simplifying yields the desired mapping, where Eq. (6.37) and Eq. (6.38)

correspond to elliptical and hyperbolic chief orbits, respectively.

x =
(1− e2)√

ζ
δa−

a
((
e2 + 1

)
cos f + 2e

)
α
√
ζ

δe− re sin f√
ζ

(δω + δΩcos i) (6.37a)

y =
re sin f

a
√
ζ
δa+

2a sin f√
ζ

δe+
p√
ζ
(δω + δΩcos i) +

a
√
ζ

η
δM (6.37b)

z = r (sin θδi− sin i cos θδΩ) (6.37c)
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x =
(1− e2)√

ζ
δa−

a
((
e2 + 1

)
cos f + 2e

)
α
√
ζ

δe− re sin f√
ζ

(δω + δΩcos i) (6.38a)

y =
re sin f

a
√
ζ
δa+

2a sin f√
ζ

δe+
a(1− e2)√

ζ
(δω + δΩcos i)− a

√
ζ

ηh
δN (6.38b)

z = r (sin θδi− sin i cos θδΩ) (6.38c)

By sweeping chief true anomaly values through a single full revolution, the corresponding

relative orbit geometry can be analytically computed according to Eq. (6.37). In the case of an

invariant orbit, where δa = 0 and the dynamics are fully Keplerian, this describes the complete

relative orbit geometry. It is important to note that in the case of a hyperbolic chief, the equations

should only be evaluated for physically-reachable values of true anomaly as defined by the range

(−f∞, f∞) where f∞ is the asymptotic true anomaly:

cos f∞ = −1

e
(6.39)

Note that it is possible for α to equal 0 and cause a singularity in Eq. (6.38) for hyperbolic orbits

if this constraint is ignored, but that this singularity is never encountered as long as the physical

limitation of −f∞ < f < f∞ is respected.

In order to fully describe the spacecraft state, velocity is also necessary, and this can be

obtained by differentiating Eqs. (6.37) and (6.38) with respect to time. The only time-varying

quantities appearing in these equations are true anomaly of the chief f and either difference in

mean anomaly δM or difference in mean hyperbolic anomaly δN , respectively. The conservation

of angular momentum of the chief spacecraft, given by Eq. (6.11), can be rearranged to give an

expression for ḟ ,

ḟ =
h

r2c
. (6.40)

To find expressions for δṀ and δṄ , take the first variation of Kepler’s equation,

δM = δM0 −
3

2

δa

a
(M −M0) (6.41a)

δN = δN0 −
3

2

δa

a
(N −N0). (6.41b)
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Taking the time derivative of Eq. (6.41) gives the desired expressions,

δṀ = δṄ = −3

2

δa

a
n, (6.42)

where n =
√
µ/a3 is the mean motion.

Eqs. (6.43) and (6.44) give the resulting mappings, for elliptical and hyperbolic chief orbits

respectively, from orbit element differences to components of the time derivative of the relative

position vector with respect to the velocity frame. Note that the inertial velocity of the deputy can

be recovered from the relative velocity components by rearranging Eq. (6.17).

ẋ =
ehα sin f

arζ3/2
δa+

h sin f
[(
e2 + 1

)
(ζα− e cos f(α+ ζ))− 2e2(α+ ζ)

]
p (1− e2) ζ3/2

δe

−
eh
(
ζα cos f + e sin2 f(α+ ζ)

)
pζ3/2

(δω + δΩcos i)

(6.43a)

ẏ =

(
eh
(
ζα cos f + e sin2 f(α+ ζ)

)
apζ3/2

− 3n
√
ζ

2η

)
δa+

2hα
(
ζ cos f + e sin2 f

)
r (1− e2) ζ3/2

δe

+
ehα sin f

rζ3/2
(δω + δΩcos i)− ehα sin f

rη3
√
ζ
δM

(6.43b)

ż =
h

p
(e cosω + cos θ)δi+

h

p
sin i(e sinω + sin θ)δΩ (6.43c)

ẋ =
ehα sin f

arζ3/2
δa+

h sin f
[(
e2 + 1

)
(ζα− e cos f(α+ ζ))− 2e2(α+ ζ)

]
p (1− e2) ζ3/2

δe

−
eh
(
ζα cos f + e sin2 f(α+ ζ)

)
pζ3/2

(δω + δΩcos i)

(6.44a)

ẏ =

(
eh
(
ζα cos f + e sin2 f(α+ ζ)

)
apζ3/2

+
3n

√
ζ

2ηh

)
δa+

2hα
(
ζ cos f + e sin2 f

)
r (1− e2) ζ3/2

δe

+
ehα sin f

rζ3/2
(δω + δΩcos i)− ehα sin f

rη3h
√
ζ
δN

(6.44b)

ż =
h

p
(e cosω + cos θ)δi+

h

p
sin i(e sinω + sin θ)δΩ (6.44c)

6.3 Application to Differential Drag

The relative motion models developed thus far assume a chief spacecraft governed only by

Keplerian dynamics. For low-altitude orbits, one of the most important perturbing forces is aero-

dynamic drag. While in some cases drag is an undesirable consequence of operating at low altitude,
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drag can also be utilized as a method of orbit adjustment. Examples include passive end-of-life

deorbiting for satellites [255], constellation phasing [250], and aerobraking [8]. The exact and lin-

earized relative equations of motion can be straightforwardly extended to simulate the effect of

differential drag using the perturbing acceleration vector u. The chief spacecraft is simulated ac-

cording to the full dynamics model, including the acceleration due to drag directed opposite the

atmosphere-relative velocity vector. The perturbation term on the deputy then approximates the

differential drag between the deputy and the chief; that is, if the chief and deputy spacecraft are

identical in mass, aerodynamic properties, and attitude, this term should go to zero. Following this

reasoning, the magnitude of the perturbation u = |u| is constructed as

u =
1

2
ρc |ṙc|2

(
1

βd
− 1

βc

)
, (6.45)

where ρc is atmospheric density at the altitude of the chief and β is ballistic coefficient,

β =
m

CDA
, (6.46)

where m, CD, and A are the mass, drag coefficient, and aerodynamic reference area of the vehicle,

respectively. Ballistic coefficient can be understood as the ratio of inertial to aerodynamic forces on

the vehicle, and will be treated as constant, which is generally a good approximation for hypersonic

flight [256].

The drag force on the deputy spacecraft is directed opposite the atmosphere-relative veloc-

ity vector of the deputy. However, if the chief and deputy are close together, this direction is

approximately aligned with the atmosphere-relative velocity of the chief. Furthermore, for most

applications the rotational period of the central body is slow enough that the inertial velocity direc-

tion is a good approximation of the atmosphere-relative velocity. Making these two approximations,

the perturbing acceleration due to differential drag can be treated as entirely in the −y direction

of the chief spacecraft velocity frame. Thus, the full and linearized relative motion EOMs (Eqs.

(6.14) and (6.22), respectively) are implemented for differential drag by defining the velocity-frame
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components of the perturbing acceleration vector u as:

ux = 0, uy = −1

2
ρc |ṙc|2

(
1

βd
− 1

βc

)
, uz = 0 (6.47)

It is important to note that in this case, because of the approximations summarized above, the

full relative EOMs are no longer an exact representation of the dynamics. However, they avoid

making the additional approximations of the linearized EOMs and should thus be expected to be

more accurate.

6.4 Application to Atmospheric Entry Trajectories

For trajectories that pass deep within the atmosphere, such as for landing or aerocapture,

aerodynamic drag goes from being a small perturbation to being the dominant force acting on the

vehicle. In this section, Keplerian relative motion models are combined with an analytical approx-

imation of hypersonic flight mechanics to make predictions of relative motion about atmospheric

entry trajectories. The exoatmospheric portions of entry trajectories are typically either hyperbolic

(in the case of sample return or planetary exploration) or highly elliptical (in the case of suborbital

defense or rapid transport applications), and therefore the velocity frame descriptions of relative

motion are well-suited for these applications. Relevant example missions include probe delivery by

a carrier spacecraft on an entry trajectory [225], co-delivery of a probe network [231], or multiple

independently-targetable reentry vehicles [224].

6.4.1 Enhanced Allen-Eggers Equations

The Allen-Eggers equations were developed in the 1950’s and provide an analytical, closed-

form description of ballistic (nonlifting) entry under certain assumptions relevant to the missile

applications for which they were originally derived [253, 257]. Namely, these assumptions include:

• Ballistic entry, meaning a lift-to-drag ratio of L/D = 0

• Constant flight-path angle, γ̇ = 0
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• Gravity is negligible compared to drag force, D ≫ g sin γ

• Zero thrust and constant mass, T = ṁ = 0

• Nonrotating planet, such that inertial and planet-relative velocity and flight-path angle are

identical

Additionally, atmospheric density ρ is assumed to be an exponential function of altitude h,

ρ(h) = ρref exp

(
href − h

H

)
, (6.48)

where ρref and href are reference density and altitude (typically defined at sea level), respectively,

and H is atmospheric scale height. Note that throughout this section the subscript x0 refers to

the value at entry, defined as reaching the atmospheric interface altitude h0 = r0 −R, whereas the

subscript xi refers to the value at some earlier exoatmospheric initial state.

In the original development of the Allen-Eggers equations, flight-path angle is assumed to

be constant at its value at entry, γ∗ = γ0 [253]. This is a good approximation for steep entries,

but for shallow entry trajectories an alternate value can improve accuracy [258]. The closed-form

expression given in Ref. [259], described below, is used to compute γ∗ in this study and was found

to improve prediction accuracy in the examples shown later in this section. Let V0, γ0, and ρ0 be

the velocity, flight-path angle, and density at entry, respectively. Additionally, let VC =
√
gR be

circular velocity where g is acceleration due to gravity at the surface and R is planetary radius.

Then, γ∗ is computed as

sin γ∗ = sin γ0(2F
∗ − 1) (6.49a)

F ∗ =

√
1 +

H
R tan2 γ0

{
C
V 2
C

V 2
0

+

(
V 2
C

V 2
0

− 1

)
ln

(
1− β sin γ0

Hρ0

)}
(6.49b)

C = Ei(1)− Γ ≈ 1.3179 (6.49c)

where Ei(x) is the exponential integral

Ei(x) = −
∫ ∞

−x

e−y

y
dy (6.50)
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and Γ ≈ 0.57722 is the Euler-Mascheroni constant.

The original Allen-Eggers equations do not include a closed-form expression for range, mean-

ing distance along the planetary surface from the point of atmospheric entry to landing. However,

Putnam and Braun develop such an expression in an extension and enhancement of the Allen-

Eggers equations by directly integrating the simplified equations of motion and without making

any additional assumptions [259]. Range s between the entry radius r0 and current radius r can

thus be estimated as:

s =
ln(r)− ln(r0)

tan γ∗
R (6.51)

An expression for the offset in range between the chief and deputy landing locations (where

r = R) can be derived by taking the first variation of Eq. (6.51) with respect to the entry radius

and constant flight-path angle:

δs(r = R) = −R
(

δr0
r0 tan γ∗

+
ln(R)− ln(r0)

sin2 γ∗
δγ∗
)

(6.52)

Note that in Eq. (6.52) δr0 = rd − rc and δγ∗ = γ∗d − γ∗c are both computed at the moment when

the chief vehicle reaches atmospheric interface, rc = r0.

6.4.2 Methodology

By combining the relative orbit element expressions with Eq. (6.52), the range offset between

landing locations due to a maneuver during exoatmospheric approach can be predicted analytically.

This subsection gives an overview of the step-by-step procedure combining these relative motion

models.

First, define the state of the chief and deputy vehicles at an initial time prior to atmospheric

entry, and compute the relative orbit elements δoe. In this work the chief state is computed by

defining a state at atmospheric interface, computing Keplerian orbital elements, then changing

the mean anomaly to a value of M = −90◦ to obtain a state on that same orbit earlier in time.

The Cartesian chief state is then computed and rotated into the velocity frame, and the deputy

state is defined by adding a maneuver defined in the velocity frame. That is, the chief and deputy
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have identical position and different velocity vectors at the initial time. The deputy state is then

converted to orbit elements and used to compute δoe.

Second, the true anomaly of the chief vehicle at atmospheric interface altitude is computed

via Eq. (C.11):

f0 = cos−1

(
a(1− e2)

r0e
− 1

e

)
(6.53)

Third, the relative orbit element equations (Eqs. (6.37) and (6.43) for an elliptical chief or Eqs.

(6.38) and (6.44) for a hyperbolic chief) are applied to compute the relative state of the deputy

vehicle in the velocity frame at the epoch when the chief is at atmospheric entry.

Fourth, compute the radial position r, velocity magnitude V , and flight-path angle γ of both

the chief and deputy. This requires converting the chief Keplerian state to inertial Cartesian vectors,

as well as converting the velocity frame relative deputy state to an inertial absolute state. Fifth,

compute δr0 and δγ∗. Note that when evaluating Eq. (6.49) for the deputy the values used for γ0,

V0, and ρ0 are those at the time of chief entry, which for the general case is not identical to the

state of the deputy at entry. Sixth, compute δs from Eq. (6.52); this is the range offset at landing

predicted due to differences in entry states of the two vehicles. The predicted bearing of this offset

is assumed to equal the heading angle of the chief at entry, ψB = ψ0,c, where heading angle ψ is

the angle between the projection of the velocity vector onto the plane normal to the radius vector

and a due-North vector in that same plane (e.g. a 90◦ heading angle is due-East).

The procedure could stop here, but tends to be more accurate with an additional step. Due

to the assumptions of the Allen-Eggers relations, Eq. (6.52) is poor at modeling cases such as

a lead-follower, where δr0 and δγ∗ are nonzero at the time of chief entry but the actual range

offset will be very small, due only to the rotation of the planet between chief and deputy entries.

Furthermore, Allen-Eggers assumes planar motion and is therefore unable to capture range offset

due to out-of-plane relative motion between the chief and deputy. Thus, the seventh and final step

is to compute range offset at time of chief entry δs0 and geometrically combine δs0 with δs to find

the final prediction for range offset on the surface, δsf . To do so, use the latitude and longitude
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of the deputy at time of chief entry along with the predicted range offset magnitude and bearing

to compute an offset pair of coordinates. Then, compute the range and bearing angle from the

coordinates of the chief at entry to the pair of coordinates just computed; this provides the final

estimate of range and bearing between the chief and deputy landing locations. For convenience,

Appendix D lists the equations required for this final step.

6.5 Numerical Results

In this section, the velocity frame relative motion models are applied to three relevant sce-

narios: two-body problem (Keplerian) dynamics about Earth, aerobraking at Mars, and ballistic

entry at Earth. In each case, numerical simulation is used to compare the approximate models

against the expected behavior, where the latter is determined via standard, individual simulation

of the spacecraft dynamics; see Ref. [78] for the relevant equations of motion.

6.5.1 Simulation Methodology

The three degree-of-freedom equations of motion are numerically propagated using the Runge-

Kutta method of order 5(4) via the open-source scipy.integrate.solve ivp tool [192, 236], with relative

and absolute error tolerances of 1× 10−12. The values assumed for physical constants are summa-

rized in Tables 6.1 and 6.2, where Tp is the rotation period of the central body. Point-mass gravity

is assumed in all cases. When applicable, atmospheric density in the truth simulation is calculated

by linearly interpolating from a table output by the 2010 Global Reference Atmospheric Models

for Earth and Mars [197, 151]; the data are sufficiently dense that linear interpolation is accurate

despite the approximately exponential nature of density. In every case, the truth model makes the

same assumptions about the underlying dynamics as the relative motion models (e.g., the effect of

J2 is also neglected in the truth models), but makes no additional approximations.
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Table 6.1: Physical constants for Earth

Parameter Value

µ 3.986× 105 km3/s2 [161]
R 6378.14 km [161]
g 9.81m/s [161]
Tp 0.9973 days [161]
H 8.5 km [260]
ρref 1.215 kg/m3 [260]
href 0 km [260]

Table 6.2: Physical constants for Mars

Parameter Value

µ 4.305 km3/s2 [161]
R 3397.2 km [161]

6.5.2 Keplerian Relative Motion

The results in this subsection demonstrate relative motion behavior in the velocity frame for

purely Keplerian dynamics via two examples. Table 6.3 summarizes the chief orbit parameters and

orbit element differences for each scenario, and Figs. 6.3 and 6.4 show the results for Scenarios A and

B, respectively. In these figures “absolute” refers to separate simulation of the Keplerian dynamics,

“relative” refers to propagation of the exact relative EOMs, “linearized” refers to propagation of

the linearized relative EOMs, and “oe differences” refers to sweeping through the relative orbit

element equations for all relevant true anomaly values.

Table 6.3: Orbital parameters for example scenarios

Scenario a e i Ω ω δa δe δi δΩ δω δM0

A −7000 km 1.2 0 0 0 0 0 0 0 0 0.5◦

B −7000 km 1.2 0 0 0 0 0.005 0 0 0 0

Scenario A is a lead-follower formation. As mentioned in the introduction, almost all of

the relative motion is along the velocity direction, with only a small component along v̂n. The

linearization ignores this v̂n component and traverses down and back up along v̂v. These results
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Figure 6.3: Relative motion for Scenario A

also show perfect agreement between the absolute and relative EOMs, as is expected in the absence

of any approximations or non-Keplerian accelerations. Scenario B captures the behavior of a deputy

spacecraft offset only in eccentricity. The lower-right plot intuitively shows how the deputy begins

ahead of the chief, comes closer as the two spacecraft approach periapsis, and is behind the chief

after periapsis.

6.5.3 Aerobraking

Aerobraking is the process of repeatedly passing through the upper atmosphere in order to

reduce orbital energy and lower apoapsis. By utilizing atmospheric drag in place of propulsive

maneuvers, this process enables mass-efficient transfer from an initial high-energy, highly-eccentric

orbit to a lower-energy near-circular science orbit. Thus, aerobraking provides a relevant scenario

for which drag acts as a perturbing acceleration and the chief orbit is highly-eccentric. In this

subsection, a chief orbit is defined based loosely on the aerobraking campaign for the 2001 Mars

Odyssey mission [8], then the behavior of a deputy that is initially offset only in phase and attitude



175

0 250 500 750 1000 1250 1500

50

75

100

x

absolute
relative
linearized

0 250 500 750 1000 1250 1500
time, s

50

0

50

di
st

an
ce

, k
m

y

50 100
x, km

100

75

50

25

0

25

50

75

100

y,
 k

m

relative EOMs
linearized EOMs
oe differences

Figure 6.4: Relative motion for Scenario B

is simulated using the expressions for u developed in Sec. 6.3.

The initial chief orbit is defined by apses with altitudes of 100 km and 10 000 km, and the

deputy is initially offset by δM = 0.5◦. Both spacecraft are assumed to have mass of 426 kg and

aerodynamic reference area of 11m2, similar to Mars Odyssey [8]. During aerobraking, the attitude

of the solar panels with respect to the velocity vector can be adjusted in order to dissipate more or

less kinetic energy each pass. For the purpose of this example, the deputy spacecraft is assumed

to be in a slightly higher-drag configuration than the chief, resulting in drag coefficients of 2.2 and

2 for the deputy and chief, respectively; these values are based on past aerodynamic analysis for

a similar scenario [251]. Lift and side force are neglected for both vehicles. Figure 6.5 shows the

results from simulating this relative motion scenario for a duration equal to five periods of the

initial chief orbit.

As mentioned in Sec. 6.3, in this case the relative EOMs already include some level of ap-

proximation, and indeed Fig. 6.5 shows that there is small but significant disagreement, especially

near periapsis. The linearized relative EOMs perform well even across five orbits, although during
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Figure 6.5: Velocity frame relative motion about aerobraking trajectory

the fourth and fifth passes through periapsis (near 22 and 28 hours, respectively) the lineariza-

tion misses important behavior in the x−axis direction. Note, however, the significantly different

magnitudes between motion in the x− and y−directions.

6.5.4 Entry Trajectories

The procedure for analytically estimating range offset is applied to three ballistic entry ve-

hicles and trajectories, chosen to serve as representative examples and to align with the examples

selected in Ref. [259]. The first scenario is based on the sample return capsule for the NASA

Stardust mission [261, 262], which entered Earth’s atmosphere on a hyperbolic return trajectory.

A second scenario is constructed as a modified version of the Stardust scenario with a steeper entry

flight-path angle. The third scenario is a “high ballistic coefficient vehicle on a steep, high-energy

suborbital trajectory[259]”; this case is referred to as strategic and is representative of a ballistic

missile re-entry trajectory [263]. The parameters for each scenario are summarized in Table 6.4. In

every case, the radius at entry is defined as the atmospheric interface altitude r0 = 125 km, with
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entry longitude θ0 and latitude ϕ0 set to 0◦ and an entry heading angle of ψ0 = 70◦. The chief

orbit is fully defined by the entry state, but the semi-major axis, eccentricity, and final range are

also included for reference.

Table 6.4: Entry trajectory chief orbit descriptions

Scenario V0, km/s γ0, deg. β, kg/m2 a, km e sc, km

Stardust 12.8 -8.2 60 -7554. 1.848 805.064
Steep Stardust 12.8 -15 60 -7593. 1.815 375.745
Strategic 7.2 -30 10000 6136. 0.477 213.991

For each chief orbit scenario, three different deputy orbits are considered. In each case the

chief is initialized with a mean anomaly of M = −90◦, the deputy is initialized at the identical

position, and the velocity vector of the deputy at the initial time is modified by a maneuver with

∆V = 10m/s. The three deputy scenarios correspond to directing this maneuver along each of the

unit vectors of the velocity frame of the chief spacecraft. Thus, nine total scenarios are considered

in this section.

Figure 6.6 and Table 6.5 summarize the comparison between predicted and simulated range

offset for each of the nine scenarios under consideration. Figure 6.6 shows the magnitude of the

percent error, meaning normalized by the simulated range offset, whereas Table 6.5 reports the

absolute values. Table 6.6 compares the predicted and simulated bearing of the offset between

chief and deputy landing locations in each scenario, and shows that the predicted bearing was

approximately correct in all cases.

Table 6.5: Simulated and analytically predicted range offsets, km

v̂n v̂v v̂h

Scenario truth pred. truth pred. truth pred.

Stardust 287.737 334.617 58.484 81.031 13.059 12.772
Steep Stardust 69.809 78.490 14.660 16.537 12.808 12.497
Strategic 5.780 5.565 1.880 1.903 2.934 2.547

In the cases of maneuvers along the v̂n and v̂v directions, the predictions are consistently
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of 10m/s maneuver during approach

Table 6.6: Simulated and analytically predicted offset bearing, deg

v̂n v̂v v̂h

Scenario truth pred. truth pred. truth pred.

Stardust 70.163 69.985 70.357 70.124 -18.103 -16.553
Steep Stardust 70.005 69.964 70.766 70.613 -18.945 -18.603
Strategic 70.187 70.137 72.119 71.773 -18.575 -18.321

most accurate for the strategic scenario and least accurate for the Stardust scenario. This is as

expected; the steep flight-path angle and high ballistic coefficient of the strategic scenario mean the

Allen-Eggers assumptions are much more accurate than in the case of Stardust, despite the higher

entry speed of the latter. Most of the error present in the range predictions for these cases is due to

the disparity between the true entry trajectories and the Allen-Eggers approximations. The cases

corresponding to a maneuver along v̂h appear to present an exception to this trend based on Fig.

6.6, but examination of Table 6.5 reveals that the actual error is similarly small (within 0.5 km)

in all cases. Maneuvering along v̂h primarily serves to offset the orbital plane of the deputy. As
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a result, the difference in r0, γ
∗, and V0 is negligibly small, but the deputy enters at a different

location and with a different heading angle. Thus, in the v̂h cases almost all of the final range

offset is due to existing offset at entry, as accounted for by step 7 of the prediction procedure.

Finally, note that while the percent error values are relatively high in some cases, the errors are

small compared to the total range covered by the chief (sc in Table 6.4): less than 6% in all cases.

6.6 Conclusions

Describing relative motion in terms of velocity frame components is an intuitive model for

motion about highly-eccentric chief spacecraft, and provides a complementary alternative to tradi-

tional descriptions in the Hill frame. The equations of motion and orbit element difference equations

developed in this work give a direct approach that could be appropriate for onboard use, such as

within a navigation filter or for the design of reference trajectories. Results for several simple sce-

narios about a hyperbolic chief show good agreement between the linearized and exact solutions

and develop a more intuitive understanding of the types of relative motion possible about flyby,

aerobraking, or atmospheric entry trajectories. The procedure developed in this work for analyti-

cally predicting the offset in final range for an atmospheric entry trajectory extends the range of

application of these relative motion models to include steep ballistic entry vehicles, such as plan-

etary probes. This method would enable rapid onboard estimation of the impact of a maneuver

during approach on the entry, descent, and landing profile of ballistic probes.
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6.7 Auxiliary Variables List

ζ = (e2 + 2e cos f + 1) (6.54)

α = (e cos f + 1) (6.55)

κ =
xcx+ ycy

r2c
, (6.56)

η =
√
1− e2 (6.57)

ηh =
√
e2 − 1 (6.58)



Chapter 7

Conclusions

7.1 Looking Ahead: Uranus Aerocapture with Fly-Ahead Entry Probe

In this final section, the results and methods contributed by this dissertation are applied

to investigate the utility of a fly-ahead probe for aerocapture at Uranus. An in-depth study of

pathfinder probes, including detailed mission design and full exploration of the trade space, is out

of scope and remains an interesting topic for future work. Rather, this coda serves to illustrate how

the range of tools developed in the preceding chapters can be used together to address a relevant

problem while also providing novel insight into the fly-ahead probe concept.

7.1.1 Introduction

Missions to explore the ice giants Uranus and Neptune present the most promising, yet

perhaps also the most challenging, potential applications for aerocapture [18]. The duration of

interplanetary cruise and the mass available for science payload on orbit are severely limiting factors

for these missions due to the large heliocentric distances of the two planets (roughly 20 AU and 30

AU, respectively). At Uranus, the highest-priority destination for new planetary science missions in

this decade [29], aerocapture could reduce the total mass required for orbit insertion by an estimated

40% while reducing transit time by 2-5 years (15-30% of total transit time) [32, 25, 18]. However,

aerocapture at the ice giants is also uniquely challenging. The large gravity well of Uranus leads to

high minimum entry speeds, and this issue is exacerbated by the fact that trajectories with shorter

trip times generally increase the hyperbolic excess velocity of arrival [19, 264]. Worse, very little is
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known about the atmosphere. During its flyby of Uranus in 1986 the Voyager 2 probe performed

radio occultation experiments and took measurements in infrared and ultraviolet wavelengths [27],

and optical wavelength stellar occultations provide some information about the atmosphere at very

high altitudes [19], but there is still high epistemic uncertainty regarding the Uranian atmosphere

and its variability over time. In previous studies, this has typically been mitigated by requiring

higher control authority in the atmosphere (that is, a mid-L/D of 0.4-0.5) than would be necessary

for aerocapture at Titan or the inner planets [58, 19]. However, this would require the development

and flight qualification of novel aeroshells, an expensive and time-consuming process.

A potential alternative strategy for mitigating this high epistemic uncertainty is to send an

entry probe into the Uranian atmosphere some time in advance of the arrival of the orbiter for

aerocapture. The probe would take measurements during its descent through the atmosphere, then

relay data back to the orbiter, possibly via an accompanying relay smallsat. The orbiter could

adjust parameters for onboard guidance and navigation accordingly, and potentially perform a

corrective maneuver. This concept, referred to as a “fly-ahead probe” or “pathfinder probe,” has

been proposed a number of times for ice giants aerocapture [19, 71]; however, there has not been a

quantitative investigation of to what extent this would actually improve targeting performance for

the orbiter. Whether a probe is included specifically for this purpose or the concept of operations

for a scientific probe is modified in order for it to double as a pathfinder probe, the fly-ahead

probe adds complexity and contributes to the overall cost and risk of the mission. Therefore, it

would be critical for a proposal team or mission manager to address a few basic questions about

the concept. Most importantly: to what extent is targeting performance, in terms of the ∆V

required for correction maneuvers or the overall probability of successful aerocapture, improved

by the addition of a fly-ahead probe? Numerous secondary questions also arise; for example, how

much further benefit is gained by the addition of a second/third/fourth probe? Also, the greater

the time elapsed between probe and orbiter entry, the more the planet rotates and the more the

atmospheric density profile potentially changes. However, a significant communication delay and

limited bandwidth would mean that, if the time between entries is below a certain threshold, then
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the orbiter would need to perform its update autonomously, without the benefit of ground-in-the-

loop. Because we do not know the true aleatory variability of the Uranus atmosphere, any answers

to these questions will be approximate, but without a quantitative estimate of the benefit conferred

by a fly-ahead probe it is impossible to objectively consider whether or not its addition would be

a net benefit.

7.1.2 Methodology

The aerocapture scenario described in Ref. [265] is used as the example reference mission for

this study, with key parameters and their associated uncertainties repeated in Table 7.1. However,

unlike in that study, here the probe is assumed to enter the atmosphere only three days before

the orbiter. The target apoapsis for this scenario is set to 550 000 km, or approximately 21 Uranus

radii. Bank angle modulation is assumed as the control mechanism for the orbiter, and so the

fully-numerical predictor-corrector aerocapture guidance (FNPAG) algorithm in Mode 1 (apoapsis

targeting), as described in Sec. 2.3, is implemented as the baseline solution. In order to leave suffi-

cient margin for mitigating uncertainties, the initial and final bank angle parameters are initialized

as 45◦and 135◦, respectively. Longitudinal guidance via deadbanding is not implemented for this

example, and the bank angle is commanded instantaneously according to the guidance commands;

both of these simplifications results in somewhat better apoapsis targeting performance than is

realistic. The nominal switching time is 240 seconds after entry at the atmospheric interface al-

titude of 1000 km above the 1 bar pressure level, which has a radial distance of 25 559 km and is

treated as the “surface” for the purpose of computing altitude as an input to the density model.

In this implementation of FNPAG, the predictor uses nominal values of the vehicle aerodynamics

and a nominal density profile, but does maintain perfect knowledge of the state and uses the same

dynamics model as the truth simulation. A next step would be to add white noise to the value of

the state used by the predictor, simulating navigation error.

UranusGRAM is used to produce a nominal profile of density for use by the FNPAG predictor,

and profiles of perturbed density for the truth simulation Monte Carlo trials are generated by
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Table 7.1: Aerocapture scenario parameters

Parameter Mean Dispersions

EFPA −10 ◦ 3σ = 0.3 ◦

Entry Velocity 29 km s−1 3σ = 3ms−1

Orbiter β 146 kgm−2 ±5%
Orbiter L/D 0.24 ±5%
Density UranusGRAM UranusGRAM

UranusGRAM using the same settings. In this example, FNPAG does not include an atmospheric

estimation component. Thus, in the absence of an update, the guidance algorithm will repeatedly

make incorrect predictions about the future state because of the modeling error between the nominal

and actual density profiles.

To approximate the benefit gained by a fly-ahead probe, the nominal density profile used by

FNPAG is updated using the Kalman measurement update equations as shown in Sec. 3.6. For

these preliminary results, the true density profile experience by the probe is assumed to equal the

true density profile experienced by the orbiter; this reflects the assumption that the probe enters the

atmosphere only a few days before the orbiter and at a similar location. This short time between

probe and orbiter entry requires that the update be performed autonomously onboard, but the key

benefit is that the expected difference between the atmosphere experienced by the probe and that

experienced by the orbiter is smaller. The probe is assumed to make measurements of density every

20 km, and Gaussian white noise with a standard deviation of 0.02 is applied to the normalized

perturbations of the observed densities. The noise is applied to the normalized values rather than

raw density values to create a consistent dispersion magnitude across the full altitude range. The

Kalman measurement equations use this same value for the assumed measurement noise, reflecting

an assumption of an accurately-calibrated accelerometer or inertial measurement unit.

7.1.3 Results

Figure 7.1 shows the prior and posterior mean (nominal) and uncertainty bounds obtained by

following the approach described above, in terms of normalized density perturbations. As shown,
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Table 7.2: Apoapsis altitude targeting results, N = 100

Scenario Mean Standard Deviation

No Update 681 556 km 2 202 310 km
Update 548 867 km 24 258 km

even with measurement noise and 20 km gaps between observations the posterior mean is far more

accurate to the true profile than the prior model, which is normalized by itself and is thus simply

zero at all altitudes. In the Monte Carlo analysis comparisons, the dashed blue line represents

the nominal density profile used by the orbiter in the no-update case, and the dashed orange line

represents the nominal profile after incorporating an update based on the probe measurements.

Clearly, the latter model of the environment is significantly more accurate, and a corresponding

improvement in guidance targeting performance should be expected.

The summary results for apoapsis altitude targeting, shown in Table 7.2, strongly confirm

this intuition. In a comparison of Monte Carlo analyses, the mean apoapsis altitude for the updated

scenario is incrementally better than that without the update, but the standard deviation is a full

two orders of magnitude lower. This is due in part to the fact that, in the scenario without the

update, there are some failure cases skewing the results whereas with the update no failures occur.

This clearly shows the benefit of a fly-ahead probe, and by translating expected apoapsis targeting

performance into expected correction maneuver ∆V costs the utility of adding a fly-ahead probe

for aerocapture can be readily quantified with these results.

7.1.4 Discussion

The use of the Kalman update equations to improve the performance of the FNPAG algorithm

demonstrates some of the key contributions of this dissertation. In doing so, intuition – that

measurements obtained by a fly-ahead probe should improve aerocapture targeting performance

– is confirmed and quantified. That said, an in-depth treatment of the fly-ahead probe concept

is beyond the scope of this dissertation, but these preliminary results illuminate a number of

interesting possible avenues.
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Figure 7.1: Prior nominal density updated by noisy probe measurements of true density via Kalman
equations

For one, the ballistic coefficient of the probe could be constrained in order to use AeroDrop,

as described in Chapter 4, to deliver the probe to entry with approximately the same entry flight-

path angle and entry velocity as the orbiter uses for aerocapture, but earlier in time. This would

potentially reduce the magnitude of, or even eliminate entirely, the divert maneuver required of
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the orbiter after releasing the pathfinder probe shortly before entry. The relative orbit element

relationships derived in Chapter 6 could then be applied to compute the magnitude and direction

of any required divert maneuver. With a fully-designed probe trajectory, a density profile cor-

responding to that time and location of entry could be used for probe observations rather than

using the simplifying assumption that the density experienced by the probe is the same as the true

density that the orbiter will encounter.

Atmospheric estimation within the guidance algorithm would be expected to significantly

improve targeting performance, especially in the no-update scenario. A simple linear scale factor

could be estimated as described in Sec. 2.3. However, note that the true profile of density shown

in Fig. 7.1 oscillates between more or less dense than the nominal; this is typical of density

perturbations as modeled by GRAM. Thus, just because the orbiter is encountering densities that

are higher than expected does not mean that it is helpful to assume the rest of the profile is also

denser than the nominal. To account for this, one could add an exponential correlation function to

the scale factor, such that the correction decays back to one (i.e., regresses toward the prior mean)

for densities at altitudes more than some correlation length away. An interesting extension would

be to estimate this correlation length on board using the posterior covariance matrix after each

Kalman update. The value would need to be estimated, rather than computed exactly, because

the true correlation structure in the data output by GRAM does not follow an exponential kernel,

and indeed is not stationary.

7.2 Summary of Contributions

The aspiration of this thesis is to advance the state of the art for aerocapture so that it may

be incrementally closer to readiness for implementation by the missions that would most benefit

from it. The preceding chapters summarize several different but interrelated contributions to this

overarching aim. For single-event jettison drag-modulated aerocapture of small satellites, simpler is

better. The guidance algorithm that could reasonably be considered state of the art for this appli-

cation, a numerical predictor-corrector, is robust and accurate but is computationally challenging.
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By shifting the main burden of computation to between final navigation update and atmospheric

entry, and then by relying on arithmetic calculations on a large family of pre-computed reference

trajectories, the guidance algorithm proposed in this work is able to match the performance of the

state of the art while improving on the computational demand.

An emerging class of stochastic guidance algorithms, further discussed below, motivates the

ability to rapidly and accurately predict future state uncertainty onboard a spacecraft. However,

many of the existing approaches rely on an overly-simplified model of the atmosphere, ignoring

one of the most important and complex sources of uncertainty for aerocapture. In this disserta-

tion, both linear and nonlinear dimensionality reduction techniques are applied to this problem to

produce compact models of an uncertain atmosphere. The linear model can readily be updated

in flight based on new measurements and can be incorporated into linear covariance analysis to

make accurate predictions of the future state uncertainty. This is enabling for rapid trade space

exploration in addition to stochastic guidance.

This dissertation also provides the first systematic study of co-delivery as a possible archi-

tecture for multi-vehicle missions. The feasibility of AeroDrop, the method of designing a probe

and aerocaptured-orbiter to seek the same entry conditions, is assessed at a range of destinations

across the solar system. Linear and nonlinear methods are developed for designing co-delivery

trajectories for an entire network of ballistic surface probes, and both are employed to design an

example mission to form a seismic network in the Cerberus Fossae region of Mars. In support of

these co-delivery studies, relative motion expressions are derived that provide better insight into the

behavior of spacecraft formations than the standard orbit frame for highly-elliptical chief motion.

These expressions are combined with first-order variations of the extended Allen-Eggers solutions

for steep ballistic atmospheric entry, and the combined model is able to accurately analytically

predict landing location offset from a maneuver ∆V applied during the approach phase.

Finally, fly-ahead probes for aerocapture are considered as a motivating case study. Quanti-

tatively addressing this problem illustrates how the various contributions of this thesis can jointly

enable straightforward design and modeling of interesting multi-vehicle scenarios involving aero-
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capture or entry.

7.3 Notes on Future Work

A number of avenues exist for potentially extending the contributions of this dissertation. In

some cases, initial progress has already been made. The following subsections summarize some of

these ideas with the aim of enabling the future researcher.

7.3.1 Stochastic Guidance for Aerocapture and Entry

As has been discussed at length, autonomous closed-loop guidance is a key capability for ae-

rocapture and entry vehicles, and in order to be successful this guidance must adequately mitigate

uncertainties due to the atmosphere, vehicle state at entry, etc. Flight-heritage and state-of-the-art

guidance algorithms for aerocapture and entry, including those presented in Chapter 2, generally

treat the problem as deterministic. The guidance implicitly controls uncertainty by repeatedly

updating commands based on new estimates of the current state and environment, and the ef-

fectiveness of this approach is estimated in uncertainty quantification studies of the closed-loop

dynamics, namely via Monte Carlo analyses. An alternative approach would be to explicitly con-

trol uncertainty by considering the effect of present and future control decisions on the trajectory

uncertainty evolution; this is broadly referred to as stochastic guidance. A valuable aspect of

stochastic guidance is that nominal performance (e.g. mean ∆V ) and performance at the margin

(e.g. 99th-percentile ∆V ) can be quantitatively balanced. This is in contrast to the more typ-

ical approach of designing guidance to control the nominal performance then adding margin as

necessary to account for performance at the margin, which can result in unnecessary conservatism.

At the risk of oversimplification, the necessary ingredients for stochastic guidance are: 1)

models of relevant uncertainties, including the state and environment; 2) a method for predicting

a future state and its associated uncertainty (e.g. mean and covariance); and 3) an algorithm for

making updated control decisions based on these predictions. Importantly, all of these components

must be efficient enough to plausibly execute repeatedly on a limited-capacity onboard computer.
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Chapter 3 develops relatively compact, high-fidelity models of atmospheric density variability for

onboard use. In Sec. 3.7, linear covariance analysis is demonstrated as a method of incorporating

a KLE representation of density into accurate approximate predictions of the future mean and

covariance of the vehicle state. Thus, this dissertation includes many of the relevant ingredients

for applying stochastic guidance to aerocapture and entry problems, but stops short of developing

a closed-loop stochastic guidance algorithm. The rest of this section reviews the relevant literature

and summarizes recent work, including by the authors, related to this final algorithmic component.

The high-level task of a stochastic guidance algorithm is to solve a stochastic optimal control

problem that can be summarized as follows: given the estimated current vehicle state and proba-

bility distribution functions that model the relevant uncertainties, compute a control policy that

minimize some cost function subject to chance constraints. Chance constraints enforce an upper

bound on the probability of some event occurring, and must replace deterministic constraints in

cases where uncertainties are unbounded (e.g. Gaussian distributed).

The general stochastic optimal control problem (nonlinear dynamics, arbitrary probability

distributions, arbitrary chance constraints, etc.) can be solved via either the Hamilton-Jacobi-

Bellman partial differential equation (for continuous-time systems) or dynamic programming (for

discrete time) [266, 267]. In either case, however, the general problem is intractable to solve

numerically because all possible states must be visited and the state space grows exponentially

with the number of dimensions, thus suffering from the curse of dimensionality [268]. Therefore,

the typical approach and the one taken here is to turn to techniques that address the stochastic

optimal control problem in more computationally-tractable ways, motivated by the general problem

statement above.

A wide range of approaches to stochastic optimal control exist in the literature, with varying

sets of assumptions or approximations1 . One set of techniques, referred to as robust optimal control,

handles dynamics under the influence of dispersions but requires a bounded description of system

uncertainties [269]. However, many practical applications, including the aerocapture and entry

1 This literature review benefited greatly from the introduction provided in [98].
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problems, involve probabilistic descriptions of uncertainties such as Gaussian distributions, and are

thus not naturally suited to a robust optimal control approach. Differential dynamic programming

and stochastic differential dynamic programming offer significant computational improvements to

standard dynamic programming [270, 271], though they require analytical second-order derivatives

of the dynamics and cost function. Model predictive control and, more recently, stochastic model

predictive control have been applied successfully to a range of problems [272, 273, 269]. These tech-

niques rely on repeatedly solving an open-loop optimal control problem online, providing implicit

feedback by solving from an updated state estimate. For the nonlinear stochastic systems common

in aerospace, however, the optimal control problem may be too computationally expensive to solve

repeatedly onboard, and the area of stochastic nonlinear model predictive control is very new [269].

Recent works have applied advanced uncertainty propagation methods to aerocapture, in-

cluding analytical polynomial chaos expansion and other spectral methods [89, 90], the Perron-

Frobenius operator [91], and the stochastic Liouville equation [92]. A stochastic terminal point

control problem is solved in [93] for an uncertain atmosphere and entry state. The aforementioned

works are all limited, however, by only considering an exponential model of atmospheric density.

Several approaches to stochastic numerical predictor-corrector guidance are proposed in [94] using

the unscented transform for uncertainty propagation, and a similar stochastic retargeting method

is applied to aerocapture in [95] using a Gaussian mixture model for uncertainty propagation.

The approach that forms the focus of this section is to linearize the dynamics about a ref-

erence trajectory, then jointly optimize the nominal control (and thus reference trajectory) and

feedback gains for a linear state feedback control law while minimizing a cost function and meet-

ing chance constraints. This technique is known as covariance steering and was developed in the

1980s for the infinite-horizon problem [274]. It has seen renewed attention in recent years with

successful application to the finite-horizon problem and with the insight that optimal covariance

control for stochastic linear systems can be cast as a deterministic convex optimization problem

[275, 276, 277, 278, 279]. Applications of covariance steering to aerospace problems, which are

typically characterized by nonlinear dynamics and nonconvex constraints, rely on successive con-
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vex programming and other convexification techniques to reformulate the problem as necessary

[280, 281, 96, 98, 97].

The linearization of the true dynamics about some reference trajectory, whether obtained

analytically or numerically, is only valid within some local neighborhood of the reference. Thus,

covariance steering for nonlinear systems is typically performed in an iterative sense, where the

optimal solution of the current iteration becomes the reference trajectory for the subsequent it-

eration. The process repeats until some termination criteria are met, often that the current and

previous solutions differ by less than some tolerance. The iterative covariance steering procedure

is summarized in Algorithm 2 [96], and is detailed in Appendix E.

Algorithm 2 Iterative Covariance Steering Procedure

input: Initial state mean and covariance and initial guess for the reference nominal control
output: Nominal control and feedback gains for each time in the discretization

1: while Termination criteria are not met do
2: Numerically propagate the (nonlinear) nominal trajectory (E.2)
3: Linearize the system dynamics (e.g., evaluate analytical expressions for the necessary Jaco-

bians) (E.7)
4: Discretize the system (E.13)
5: Solve the convex optimization problem (E.28)
6: Set nominal control equal to the obtained optimal solution

A limitation of iterative covariance steering as it is typically implemented (and as presented

in Appendix E is the treatment of the perturbation term as a Weiner process; effectively, the dis-

turbances are modeled as Gaussian white noise. As detailed in Chapter 3, atmospheric density

variability is better modeled by a Gaussian Random Field, including spatial correlation structure

and uncertainty bounds that change with altitude. Recent work by Ridderhof et. al (2022) suc-

cessfully applied iterative covariance steering to the aerocapture problem with density variability

defined by a GRF [96]. Note that the derivation in Appendix E models disturbances as a function

of only time, and that state-dependent uncertainty changes the assumptions and invalidates the

covariance steering method. The work by Ridderhof et. al addresses this by evaluating the covari-

ance function along the nominal trajectory, thus providing a mapping from the spatially-varying

uncertainties to temporally-defined Gaussian disturbance values at each discretization step [96]
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as visualized in Fig. 7.2. However, the solution relies on state history feedback to convexify the

problem as described by Eq. (E.16), potentially increasing the problem scale beyond the point of

feasibility for repeated onboard computation for aerocapture or entry applications. A vehicle could

instead directly implement the resulting feedback law as the onboard guidance, but this approach

is potentially subject to poor performance if the vehicle deviates far enough from the reference

trajectory that linearization is no longer a good approximation. Existing applications that do relax

the covariance equation to an inequality as shown in Appendix E, such as the recent contribution

by Benedikter et. al (2022)2 [98], do not also incorporate more complex disturbance models such

as a GRF, assuming instead that disturbances are independent from each other. Furthermore,

none of the contributions mentioned here explicitly incorporate a method of updating the onboard

uncertainty model using noisy measurements.

Ψ(z)

Ψ̂(t)

x̂(t)

φ

Figure 7.2: From [96]: Mapping a state-dependent random field Ψ to the time-dependent random
process Ψ̂ by evaluating along the nominal trajectory x̂

Figure 7.3 summarizes a proposed novel guidance architecture. An iterative covariance steer-

ing procedure is solved via successive convex programming, incorporating a GRF model of un-

certainty and using the change of variables to keep the computational effort low enough that this

2 Note that since initial publication it has become clear that the relaxation used in Ref. [98], while numerically
very accurate for the applications tested in that work, is not lossless in general; see the published comment in Ref.
[282] and the authors’ response in Ref. [283].
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optimization could feasibly be run repeatedly onboard. This stochastic guidance runs at a relatively

low rate and serves as a re-planner for a lower-level controller that simply applies the linear feedback

control law, such that the nominal control and feedback gains for each time are updated every time

the guidance returns a solution. Both the stochastic guidance and lower-level controller operate

on the current navigation estimate of the state. Furthermore, the vehicle maintains an onboard

belief state of the relevant environmental uncertainties (e.g. density), represented as a KLE and

periodically updated with noisy measurements as described in Sec. 3.6. Thus, the solution to the

covariance steering problem evolves as the vehicle state deviates from the expected reference and as

new information is gathered about the random field describing environmental uncertainties. A wide

range of practical problems could benefit from this kind of online stochastic guidance, including

rocket ascent or drone path planning.

KLE belief state

Stochastic 
guidance

Linear state 
feedback control

Reference trajectory and 
feedback gains

Estimated density mean 
and covariance vs. altitude

current state 
estimate

Control actions

Current density 
estimate

Figure 7.3: Summary of Proposed Guidance and Control Architecture

In order to ensure feasibility of the guidance solutions, additional problem-relevant constraints

would need to be included, which in general will require identifying a suitable convexification ap-

proach. For example, aerocapture and entry trajectory optimizations should incorporate constraints

on peak heat flux, total heat load, and peak sensed acceleration. Another useful constraint would

be limiting the rate of change for the control, such that instantaneous changes in attitude are not
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assumed by the guidance algorithm; this has a noticeable effect if the crossrange targeting of the

vehicle is simultaneously being controlled. The performance of the proposed guidance architecture

would then need to be quantified and compared with existing solutions. The behavior of the vehicle

when faced with significant modeling error, such that the a priori assumptions about uncertainty

levels poorly match the truth, is of particular interest. Two versions of the stochastic guidance, one

with active onboard replanning as summarized in Fig. 7.3 and the other simply flying the result-

ing feedback law after an online optimization as proposed in Ref. [96], would need to be directly

compared in addition to testing against existing methods such as NPC guidance or terminal-point

control.

Initial progress has been made toward this goal. Figure 7.4 shows results from a simple

covariance steering example on a discrete linear time-invariant system, a one-dimensional double

integrator. The solid lines labelled cvx show the mean and standard deviation as represented by

the parameters of the convex program; the dashed/dotted lines labelled MC show the mean and

covariance as estimated based on 10,000 Monte Carlo trials numerically propagating the true system

with randomly generated disturbances. The mean state is constrained to begin and end at rest while

going from a position of 20 to the origin, and the final state covariance is constrained to be equal

to 0.1 times the initial state covariance. Following the methods outlined in Appendix E, in this

example the disturbance term is assumed to be Brownian motion and the covariance propagation

equation is relaxed to an inequality via a slack variable. The cost function is of the form shown in

Eq. (E.28a) and penalizes state variance more than control variance. Chance constraints on both

the state and control are implemented at each time node, and as seen in Fig. 7.4 these constraints

are respected. The example is implemented in python3 using the cvxpy package [284, 285], and

could form the starting point for an iterative covariance steering module.

3 thanks to G. Rapakoulias for significant help troubleshooting this new implementation
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Figure 7.4: Covariance steering example for discrete double integrator

7.3.2 Rapid Uncertainty Propagation via Polynomial Chaos Expansion

Non-intrusive polynomial chaos expansion (PCE) offers a promising method for rapid uncer-

tainty propagation for aerocapture and entry trajectories. In contrast to linear covariance analysis,

which propagates Gaussian probabilities through linearized dynamics to predict only the first and

second moment of the resulting distribution, PCE enables the creation of a surrogate model that
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can readily estimate higher-order moments as well as provide sensitivity analysis. In Ref. [138],

PCE was applied to the aerocapture problem via compressed sensing and modeling atmospheric

uncertainty using a Karhunen-Loève expansion (KLE); see Appendix F for a description of the

method employed in that work. In Ref. [286], a two-stage approach is taken to capture the unique

multi-model distributions that result for aerocapture when input uncertainties are high.

A limitation of this work to date, however, is that generally 15-20 stochastic dimensions

are required to include a reasonably high-fidelity KLE plus dispersed initial state and vehicle

aerodynamics. While greatly reduced from the original problem, this dimensionality is often still

too high for PCE to significantly outperform Monte Carlo or other random sampling techniques

such as Latin hypercube sampling. Thus, after the preliminary results presented in Ref. [138], the

PCE approach was largely dropped from this research plan in favor of linear covariance analysis.

The variational autoencoder (VAE) results presented in Sec. 3.2.2, which were conltributed

near the end of this degree plan, have potentially changed this situation. The VAE model enables

comparable modeling accuracy with a stochastic dimensionality (i.e. number of latent variables) of

only four. This may lower the total dimensionality of an entry or aerocapture trajectory simulation

to the point that non-intrusive PCE can significantly outperform Monte Carlo. To be sure, this

cannot be said of the very high-fidelity simulations written in simulation environments like POST2

or DSENDS and used by NASA JPL or NASA Langley on post-Phase A flight projects. However,

the ability to rapidly propagate uncertainty for a low-to-medium-fidelity simulation is still valuable

for early trade space exploration or onboard guidance and navigation.

In particular, an intriguing possibility would be to essentially develop a nonlinear parallel to

the stochastic guidance framework described in the preceding section. Rather than using a KLE

to model density uncertainty as Gaussian and propagating through linearized dynamics, a VAE

density model and PCE uncertainty propagation could provide nonlinear, not-necessarily-Gaussian

equivalents. In the linear Gaussian case, it is straightforward to use the Kalman update equations

to incorporate new information, as shown in Sec. 3.6. The equivalent step of conditioning a

VAE density model on noisy measurements onboard a spacecraft without requiring new training is
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something that would require dedicated investigation.
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Mart́ınez, C. P. McKay, R. Navarro-González, A. Vicente-Retortillo, C. R. Webster, and M.-
P. Zorzano, “Seasonal Variations in Atmospheric Composition as Measured in Gale Crater,
Mars,” Journal of Geophysical Research: Planets, vol. 124, no. 11, pp. 3000–3024, 2019.

https://ntrs.nasa.gov/citations/20070032693


211

[164] N. Barba, T. Komarek, R. Woolley, L. Giersch, V. Stamenković, M. Gallagher, and C. D.
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Appendix A

Equations of Motion Derivation and Useful Coordinate Relations

A.1 Assumptions

This appendix derives equations of motion in the spherical coordinates common in EDL

practice, and provides some useful coordinate relationships. Make the following assumptions about

the dynamics of the problem:

• Gravity is modeled by point-mass plus the J2 oblateness perturbation; other gravitational

terms are neglected.

• Lift and drag are modeled assuming constant aerodynamic coefficients. This equates to

assuming constant angle-of-attack and zero side-slip angle, and that the vehicle remains in

hypersonic continuum flow. This is a reasonable approximation for many hypersonic entry

problems. However, this assumption is not required to use these EOMs: if higher fidelity

is desired, a table of aerodynamics coefficients (usually vs. Mach number and angle-of-

attack) can be interpolated at each integration time step and then used in the same EOMs

developed here.

• The vehicle has constant mass and zero thrust.

• There is negligible wind and no atmospheric rotation relative to the surface of the central

body.

• Attitude dynamics are not modeled in these 3 DOF EOMs, but the orientation of the lift
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vector is prescribed through the bank angle σ (defined later). This angle does not need to

be constant, but the EOMs do not describe how it evolves. Since attitude dynamics are

not modeled, aerodynamic moments are ignored.

A.2 State Representation

The state representation used in this derivation is defined as x = [r, θ, ϕ, U, γ, ψ] where r is

radius (distance from the center of the planet to the vehicle), θ is planetocentric longitude, and

ϕ is planetocentric latitude. The latter three components relate to the air-relate velocity of the

vehicle, such that U is airspeed, γ is flight-path angle, and ψ is heading angle. These two angles

are described in more detail below, but γ is the angle between the air-relative velocity vector and

the local horizontal plane, and ψ is the angle between the horizontal projection of the air-relative

velocity vector and a due-North vector in that same plane (i.e., a due-East entry has ψ = 90◦).

Note that, since the atmosphere is assumed to rotate with the surface of the planet, air-relative

velocity, planet-relative velocity, and surface-relative velocity all refer to the same quantity U .

A.3 Frames

Define the following reference frames:

A.3.1 Planet-Fixed Frame I : {ı̂1, ı̂2, ı̂3}

• ı̂1 is in the equatorial plane and through the prime meridian, such that it has zero latitude

and zero longitude

• ı̂3 is through the North pole, i.e. orthogonal to the equatorial plane

• ı̂2 completes the set
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A.3.2 Inertial Frame N : {n̂1, n̂2, n̂3}

Define an inertial frame that is equal to the planet-fixed frame at initial time t0. The planet-

fixed frame then rotates relative to the inertial frame about their shared third axis at a constant

rate ωp:

ωI/N = ωpı̂3 (A.1)

• {N} = {I} at time t = 0

• ωI/N = ωpı̂3 = const.

A.3.3 Position Frame E : {ê1, ê2, ê3}

Define the position frame such that the first basis vector aligns with the position vector of the

spacecraft, r̂ = ê1. This can be defined as a sequence of two principal rotations from the planet-

fixed frame: first, a rotation about the north pole ı̂3 by the longitude θ, and second, a negative

rotation about the (rotated) ı̂2 by the latitude ϕ. Thus, the DCM to rotate from the planet-fixed

frame to the position frame can be assembled as the product of two principal rotation matrices:

[EI] = [M2(−ϕ)][M3(θ)], defined below. The orientation of the position frame with respect to the

planet-fixed and inertial frames is illustrated in Fig. A.1.

vehicle
position

Figure A.1: Relating the inertial, planet-fixed, and position frames
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All three principal rotation matrices are defined below:

[M1(θ)] =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (A.2)

[M2(θ)] =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (A.3)

[M3(θ)] =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (A.4)

Thus:

[EI] = [M2(−ϕ)][M3(θ)] =


cosϕ cos θ cosϕ sin θ sinϕ

− sin θ cos θ 0

− sinϕ cos θ − sinϕ sin θ cosϕ

 (A.5)

Furthermore, note that by a property of DCMs[IE] = [EI]−1 = [EI]T :

[IE] = [EI]T =


cosϕ cos θ − sin θ − sinϕ cos θ

cosϕ sin θ cos θ − sinϕ sin θ

sinϕ 0 cosϕ

 (A.6)

The angular velocity of the E frame w.r.t. the I frame is:

ωE/I = θ̇ı̂3 − ϕ̇ê2 (A.7)

or, equivalently:

ωE/I = θ̇ sinϕê1 − ϕ̇ê2 + θ̇ cosϕê3 (A.8)

In summary:
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• r̂ = ê1

• From {I}, rotate about ı̂3 by θ, and then rotate negatively about the rotated ı̂2 by ϕ.

• [EI] = [M2(−ϕ)][M3(θ)]

• ωE/I = θ̇ sinϕê1 − ϕ̇ê2 + θ̇ cosϕê3

A.3.4 Velocity Frame S : {ŝ1, ŝ2, ŝ3}

Define the velocity frame such that the third basis vector aligns with the air-relative velocity,

Û = ŝ3. This is defined as a sequence of two principal rotations from the position frame: first,

a negative rotation about the position vector ê1 by the heading angle ψ, and second, a rotation

about the (rotated) ê2 by the (planet-relative) flight path angle γ. Thus, the DCM to rotate from

the position frame to the velocity frame can be assembled as the product of two principal rotation

matrices: [SE] = [M2(γ)][M1(−ψ)]. The orientation of the velocity frame w.r.t. the position frame

is illustrated in Fig. A.2.

Drag is always directed exactly opposite the air-relative velocity vector. Additionally, note

that the lift vector is directed orthogonal to the air-relative velocity, and for a full-lift-up condition

is aligned with the ŝ1 vector. To capture out-of-plane components of lift, define the bank angle σ

as the rotation of the lift vector about the velocity vector, such that for σ = 0 L̂ = ŝ1 (full-lift-up)

and for σ = 90L̂ = ŝ2 (lift-starboard). The direction of lift is thus always in this ŝ1 − ŝ2 plane,

rotated by the bank angle, as illustrated in Fig. A.3.

[SE] = [M2(γ)][M1(−ψ)] =


cos γ − sin γ sinψ − sin γ cosψ

0 cosψ − sinψ

sin γ cos γ sinψ cos γ cosψ

 (A.9)

Again, write out [ES] = [SE]T for later convenience:
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vehicle
position

Figure A.2: Relating the position and velocity frames

Figure A.3: Relating velocity, lift, and drag in the velocity frame

[ES] = [SE]T =


cos γ 0 sin γ

− sin γ sinψ cosψ cos γ sinψ

− sin γ cosψ − sinψ cos γ cosψ

 (A.10)

The angular velocity of the S frame w.r.t. the E frame is:

ωS/E = −ψ̇ê1 + γ̇ŝ2 (A.11)

Or, equivalently:

ωS/E = −ψ̇ cos γŝ1 + γ̇ŝ2 − ψ̇ sin γŝ3 (A.12)
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In summary:

• Û = ŝ3

• D̂ = −ŝ3

• L̂ = cosσŝ1 + sinσŝ2

• [SE] = [M2(γ)][M1(−ψ)]

• ωS/E = −ψ̇ cos γŝ1 + γ̇ŝ2 − ψ̇ sin γŝ3

A.3.5 Finding Unit Vectors Without DCMs

ê1 = r/r (A.13)

ê2 = (ı̂3 × ê1)/|ı̂3 × ê1| (A.14)

ê3 = ê1 × ê2 (A.15)

(A.16)

ŝ1 = ŝ2 × ŝ3 (A.17)

ŝ2 = (ŝ3 × ê1)/|ŝ3 × ê1| (A.18)

ŝ3 = u/u (A.19)

A.4 Kinematic Equations

The position vector is trivially written as

r = rê1 (A.20)

Air-relative velocity is defined as

U ≡
Id

dt
r (A.21)
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where this notation indicates the time derivative of the position vector with respect to the planet-

fixed frame. Via transport theorem:

Id

dt
(r) =

Ed

dt
(r) + ωE/I × r (A.22)

The first term of Eq. (A.22) evaluates to

Ed

dt
(r) = ṙê1 (A.23)

and the second term evaluates to

ωE/I × rê1 = rθ̇ cosϕê2 + rϕ̇ê3 (A.24)

Thus:
Id

dt
(r) = ṙê1 + rθ̇ cosϕê2 + rϕ̇ê3 (A.25)

Now consider the left-hand side of Eq. A.21. In the velocity frame this expression is trivial:

U = U ŝ3 (A.26)

Rotating into the position frame gives:

U = sin γU ê1 + cos γ sinψU ê2 + cos γ cosψU ê3 (A.27)

Equating the left- (Eq. (A.27)) and right- (Eq. (A.25)) hand sides of Eq. A.21 and solving

the time derivative of each state component gives the desired kinematic equations:

ṙê1 + rθ̇ cosϕê2 + rϕ̇ê3 = sin γU ê1 + cos γ sinψU ê2 + cos γ cosψU ê3 (A.28)

ṙ = U sin γ (A.29)

θ̇ =
U cos γ sinψ

r cosϕ
(A.30)

ϕ̇ =
U cos γ cosψ

r
(A.31)
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A.5 Kinetic Equations

Now apply Newton’s second law:

ΣF

m
= r̈ (A.32)

where ΣF is the sum of external forces acting through the center of mass of the vehicle, m is the

vehicle mass, and r̈ is shorthand for the second time derivative of the position vector with respect

to an inertial frame, r̈ ≡ Nd2

dt2
r. Likewise, write the inertial velocity as ṙ ≡ Nd

dt r.

A.5.1 Inertial Acceleration Vector

At this point it might be tempting to start with the position vector and take its time derivative

w.r.t. the inertial frame twice. However, although that would yield a correct expression, we want

to take a different path here. Recall that our objective is to write EOMs in terms of our state

variables, and our state components associated with velocity are defined based on the air-relative

(planet-relative) velocity vector, not the inertial velocity. Therefore, what we actually want here is

to write the inertial acceleration vector in terms of the planet-relative velocity.

First, write the inertial velocity vector in terms of the planet-relative velocity vector by

applying transport theorem to get from the I frame to the N frame then substituting in the

definition of U from Eq. A.21:

ṙ ≡
Nd

dt
(r) =

Id

dt
(r) + ωI/N × r = U + ωI/N × r (A.33)

Recall that ωI/N = ωpı̂3. Write ı̂3 in terms of E frame basis vectors

ı̂3 = sinϕê1 + cosϕê3 (A.34)

ωI/N × r = ωp (sinϕê1 + cosϕê3)× rê1 = rωp cosϕê2 (A.35)

then relate ṙ and U as below:

ṙ = U + rωp cosϕê2 (A.36)

Next, take the inertial derivative of the right-hand side of Eq. (A.36) to find the inertial

acceleration in terms of the air-relative velocity.
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A.5.1.1 Term 1

Recall that U = U ŝ3. Then,

Nd

dt
(U) =

Sd

dt
(U) + ωS/N ×U (A.37)

The first term evaluates to:
Sd

dt
(U) = U̇ ŝ3 (A.38)

To evaluate the second term, note that:

ωS/N = ωS/E + ωE/I + ωI/N (A.39)

and, equivalently,

SωS/N = SωS/E + [SE]EωE/I + [SE][EI]IωI/N (A.40)

Thus, Eq. (A.37)is equal to:
Nd

dt
(U) = U̇ ŝ3 + ωS/N × U ŝ3 (A.41)

A.5.1.2 Term 2

Using transport theorem,

Nd

dt
(rωp cosϕê2) =

Ed

dt
(rωp cosϕê2) + ωE/N × (rωp cosϕ)ê2 (A.42)

Noting again that ω̇p = 0,

Ed

dt
(rωp cosϕê2) =

(
ṙωp cosϕ− rϕ̇ωp sinϕ

)
ê2 (A.43)

The angular velocity ωE/N is found with nearly the same expression as Eq. A.39, just without the

first term:

ωE/N = ωE/I + ωI/N (A.44)

The right-hand side of Eq. (A.42) is then written as:

Nd

dt
(rωp cosϕê2) =

(
ṙωp cosϕ− rϕ̇ωp sinϕ

)
ê2 + ωE/N × (rωp cosϕ)ê2 (A.45)
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A.5.1.3 Combining Terms

Combining terms yields the expression:

r̈ =

[Nd
dt

(U)

]
+

[Nd
dt

(rωp cosϕê2)

]
=
[
U̇ ŝ3 + ωS/N × U ŝ3

]
+
[(
ṙωp cosϕ− rϕ̇ωp sinϕ

)
ê2 + ωE/N × (rωp cosϕ)ê2

] (A.46)

A.5.2 Acceleration Due to Forces

Now evaluate the gravity, lift, and drag forces one at a time, then write their sum in the S

frame.

A.5.2.1 Acceleration Due to Gravity

Derive an expression for the gravitational acceleration due to the two-body plus J2 zonal

perturbation in terms of the ê1 and ê3 directions. Several dot products of basis vectors will be

useful in this derivation. Note that from the previously defined DCMs:

ı̂3 = sinϕê1 + cosϕê3 (A.47)

Thus, ı̂3 · ê1 = sinϕ and ı̂3 · ê3 = cosϕ. Note also that ı̂3 · ê2 = 0, ê1 · ê1 = 1, and ê1 · ê2 = ê1 · ê3 = 0.

Finally, note that ê1 ≡ r̂.

These preliminaries established, start with an expression for the gravitational potential func-

tion based on Eq. 11.63 from [239]:

U(r) =
µ

r

(
1− J2R

2

2r2
(
3 sin2 ϕ− 1

))
(A.48)

where R is the equatorial radius of the central body and J2 is the corresponding spherical harmonic

coefficient. Eq. A.48 includes the effects of the point-mass gravity plus the J2 zonal term from

spherical harmonics.

To find the acceleration from the potential function, take the gradient:

r̈grav = ∇U(r) (A.49)
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First, substitute (ê1 ·ı̂3) = sinϕ into Eq. A.48, then multiply by a factor of r inside the parenthetical

to convert ê1 to r, multiplying by a factor of 1/r2 outside the parenthetical to compensate:

r̈grav = ∇
[
µ

r

(
1− J2R

2

2r2

(
3

r2
(r · ı̂3)2 − 1

))]
(A.50)

Distribute the gradient operator (written now as a partial vector derivative):

r̈grav =
∂

∂r

[µ
r

]
− ∂

∂r

[
µJ2R

2

2r5
3 (r · ı̂3)2

]
+

∂

∂r

[
µJ2R

2

2r3

]
(A.51)

Moving constants outside of the gradient expressions:

r̈grav = µ
∂

∂r

[
1

r

]
− 3µJ2R

2

2

∂

∂r

[
1

r5
(r · ı̂3)2

]
+
µJ2R

2

2

∂

∂r

[
1

r3

]
(A.52)

Now take the gradient of each term of Eq. A.52 one at a time. Make use of an expansion of

the partial vector derivative as below:

∂

∂r
=

∂

∂r

∂r

∂r
(A.53)

In addition, note the below identity, which can be readily verified by expanding the unit vector and

magnitude in terms of their components r = [x, y, z]T :

∂r

∂r
= r̂ (A.54)

Turning now to the first term of Eq. A.52, take the scalar portion of the derivative:

∂

∂r

[
1

r

]
= − 1

r2
(A.55)

The full gradient of this term is then found simply by multiplying Eq. A.55 by the unit vector:

∂

∂r

[
1

r

]
= − 1

r2
ê1 (A.56)

Next, take the second term of Eq. A.52 and expand via chain rule:

∂

∂r

[
1

r5
(r · ı̂3)2

]
=

∂

∂r

[
1

r5

]
(r · ı̂3)2 +

1

r5
∂

∂r

[
(r · ı̂3)2

]
(A.57)

The first term of Eq. A.57 is another application of the scalar derivative times the unit vector:

∂

∂r

[
1

r5

]
= − 5

r6
ê1 (A.58)
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The second term of Eq. A.57 is resolved by noting the derivative of the parenthetical is simply ı̂3:

∂

∂r

[
(r · ı̂3)2

]
= 2 (r · ı̂3) ı̂3 (A.59)

Going back now to Eq. A.52, consider the third term. Again, we apply the identity from Eq.

A.54:

∂

∂r

[
1

r3

]
= − 3

r4
ê1 (A.60)

With this, plug in the derivatives and simplify. Substituting Eqs. A.56, A.58, A.59, and A.60

into Eq. A.52:

r̈grav = µ

[
− 1

r2
ê1

]
− 3µJ2R

2

2

[
− 5

r6
(r · ı̂3)2 ê1 +

2

r5
(r · ı̂3) ı̂3

]
+
µJ2R

2

2

[
− 3

r4
ê1

]
(A.61)

Pull the r factor back out of the r vectors to form ê1 and collect terms by basis vector:

r̈grav = − µ

r2

[
1 +

3J2R
2

2r2

(
1− 5 (ê1 · ı̂3)2

)]
ê1 −

µ

r2

[
3J2R

2

2r2
2 (ê1 · ı̂3)

]
ı̂3 (A.62)

Finally, substitute ê1 · ı̂3 = sinϕ and Eq. A.47 back into Eq. A.62 to get an expression entirely in

terms of E frame basis vectors:

Fgrav

m
= − µ

r2

[
1 +

3J2R
2

2r2
(
1− 3 sin2 ϕ

)]
ê1 −

µ

r2

[
3J2R

2

2r2
2 sinϕ cosϕ

]
ê3 (A.63)

As desired, Eq. A.63 gives the acceleration due to gravity in terms of basis vectors of a single

reference frame, where gravity is modeled as a point mass plus the oblateness perturbation.

A.5.2.2 Acceleration Due to Drag

Define the magnitude of the drag force and assign it to the variable D for simplification:

FD

m
≡ D =

1

2m
ρU2CDA =

ρU2

2β
(A.64)

where β = m/(CDA) is the ballistic coefficient of the vehicle, which can be understood as a ratio of

the inertial forces to aerodynamics forces acting on the vehicle. Write the vector form of acceleration

due to drag, which is always directed opposite the air-relative velocity:

FD

m
= −Dŝ3 (A.65)
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A.5.2.3 Acceleration Due to Lift

Similarly, define the magnitude of the lift force and assign it to the variable L:

FL

m
≡ L =

1

2m
ρU2CLA =

ρU2

2β
L/D = D · L/D (A.66)

where L/D is the lift-to-drag ratio of the vehicle. To write the vector form of acceleration due to lift,

consider the bank angle. In the S frame, full-lift-up is directed along ŝ1 whereas full-lift-starboard

is along ŝ2. It is straightforward to go from this and Fig. A.3 to the vector expression below:

FL

m
= (L cosσ) ŝ1 + (L sinσ) ŝ2 (A.67)

A.5.2.4 Combining Terms

Combining terms:

ΣF

m
=

Fgrav

m
+

FD

m
+

FL

m
(A.68)

A.5.3 Equate, Substitute, and Solve

Equate ΣF /m and r̈ as below:

1

m
(Fgrav + FD + FL) =

[
U̇ ŝ3 + ωS/N × U ŝ3

]
+
[(
ṙωp cosϕ− rϕ̇ωp sinϕ

)
ê2 + ωE/N × (rωp cosϕ)ê2

] (A.69)

A.5.4 Results

Finally, substitute the kinematic equations (Eqs. A.29 - A.31) into Eq. A.69 and its compo-

nent terms and solve:

ṙ = U sin γ (A.70a)

θ̇ =
U cos γ sinψ

r cosϕ
(A.70b)

ϕ̇ =
U cos γ cosψ

r
(A.70c)
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U̇ = −D − gr sin γ − gϕ cos γ cosψ

+ ω2
pr cosϕ (cosϕ sin γ − sinϕ cos γ cosψ) (A.71a)

γ̇ =
1

U

[
L cosσ + cos γ

(
U2

r
− gr

)
+ gϕ sin γ cosψ + 2ωpU cosϕ sinψ

+ ω2
pr cosϕ (cosϕ cos γ + sinϕ sin γ cosψ)

]
(A.71b)

ψ̇ =
1

U

[
L sinσ

cos γ
+
U2

r
tanϕ cos γ sinψ + gϕ

sinψ

cos γ

− 2ωpU (cosϕ tan γ cosψ − sinϕ) +
ω2
pr

cos γ
cosϕ sinϕ sinψ

]
(A.71c)

L =
ρU2

2β
L/D (A.72a)

D =
ρU2

2β
(A.72b)

gr ≡ |r̈grav · ê1| =
µ

r2

[
1 +

3J2R
2

2r2
(
1− 3 sin2 ϕ

)]
(A.72c)

gϕ ≡ |r̈grav · ê3| =
µ

r2

[
3J2R

2

2r2
2 sinϕ cosϕ

]
(A.72d)

A.6 Coordinate Conversion

A.6.1 Inertial and Planet-Relative Velocity Conversion

It is important to note that inertial vs. planet-relative velocity and spherical vs. Cartesian

coordinates are two separate choices, and their permutations give 4 ways to express the state. This

is illustrated by Table A.1. All four locations in this grid are equally valid and all are used in the

literature. Often, planet-relative velocity is used with spherical coordinates and inertial velocity

with the Cartesian vectors. If a non-rotating planet and atmosphere is assumed with no wind, the

two columns of Table A.1 collapse as identical.

Converting from the inertial Cartesian vectors in the upper-left of Table A.1 to the planet-

relative spherical coordinates in the lower-right, and back again is a simple application of transport
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theorem:

ṙ = U + ωI/N × r (A.73)

U = ṙ − ωI/N × r (A.74)

where ωI/N = ωpı̂3 = ωpn̂3 = const.

A.6.2 Spherical to Cartesian Conversion

Define the [NI] DCM using a single-axis rotation about the 3-axis by an angle of Ω =

ωp(t− t0), where (t− t0) is the time elapsed since simulation start in seconds:

[NI] =


cosΩ − sinΩ 0

sinΩ cosΩ 0

0 0 1

 (A.75)

Then,

Nr = r[NI][IE]Eê1

= r


cosϕ cos θ cosΩ− cosϕ sin θ sinΩ

cosϕ cos θ sinΩ + cosϕ sin θ cosΩ

sinϕ


(A.76)

Follow a similar process for the inertial velocity vector:

NU = U [NI][IE][ES]Sŝ3

= U


cos(Ω + θ) cosϕ sin γ − sin(Ω + θ) cos γ sinψ − cos(Ω + θ) cos γ cosψ sinϕ

cos(Ω + θ) cos γ sinψ + sin(Ω + θ) cosϕ sin γ − sin(Ω + θ) cos γ cosψ sinϕ

sin γ sinϕ+ cos γ cosϕ cosψ


(A.77)

Inertial Velocity Planet-Relative Velocity

Cartesian vectors r, ṙ r,U

Spherical — r, θ, ϕ, U, γ, ψ

Table A.1: Some possible state representations
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A.6.3 Cartesian to Spherical Conversion

Converting from Cartesian vectors to spherical coordinates involves a bit more visualiza-

tion/geometry. Note that this process is again agnostic as to which velocity vector is used, but

here denote velocity as U under the assumption planet-relative velocity is being used. Plugging in

ṙ would result in the correct expressions for spherical coordinates using inertial velocity.

Find the first two state elements by simply taking the magnitude of the position and velocity

vectors:

r = |r| (A.78)

U = |U | (A.79)

Next, find longitude θ. Figure A.4 visualizes the projection of the position vector in the

equatorial plane (note that the solid orange vector is not labeled because it is this projection, not

the full position vector r). Longitude θ is then the angle between the ı̂1 basis vector and this

projection:

Figure A.4: Finding longitude from the position vector

θ = tan−1

(
r · ı̂2
r · ı̂1

)
(A.80)
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Find the latitude ϕ through a similar process, starting with Fig. A.5. The dotted black vector

is defined as orthogonal to the ı̂3 basis vector and is thus in the equatorial plane. The latitude ϕ

is defined as the angle between this plane and the position vector r:

Figure A.5: Finding latitude from the position vector

ϕ = sin−1

(
r · ı̂3
r

)
(A.81)

Flight-path angle and heading angle are now found in much the same way as longitude and

latitude. Flight-path angle is visualized in Fig. A.6 and given by the expression below:

Figure A.6: Finding flight-path angle from the velocity vector

γ = sin−1

(
U · ê1
U

)
(A.82)
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Finally, heading angle is visualized in Fig. A.7 and given by the expression below. Note

that, as visualized here, heading angle is measured down from the y-axis as opposed to up from

the x-axis like longitude.

Figure A.7: Finding heading angle from the velocity vector

ψ = tan−1

(
U · ê2
U · ê3

)
(A.83)



Appendix B

Partial Derivatives

The following partial derivatives are assumed to be evaluated along a nominal trajectory as

a function of time, but explicit dependence on time is suppressed for notational simplicity.

B.1 Common Terms

The equations of motion are rewritten below in the form ẋ = f(t, x, u(t, x), p0) = (fr, fV , fγ , fR)

as

ṙ = fr = V sin γ, (B.1a)

V̇ = fV = −ρV
2

2β
− µgrav sin γ

r2
, (B.1b)

γ̇ = fγ =
ρV

2β
L/D cosσ −

(
µgrav
r2

− V 2

r

)
cos γ

V
, (B.1c)

Ṙ = fR = V cos γ. (B.1d)

Each component of the A matrix, defined by (3.24), is given below for atmospheric flight. Note

that these sensitivities make use of the atmospheric density scale height H defined such that

∂ρ/∂h = −ρ/H, but this is not equivalent to assuming an exponential atmosphere, and H can be

numerically estimated at each altitude for any density profile. Thus:

∂fr
∂r

= 0,
∂fr
∂V

= sin γ,
∂fr
∂γ

= V cos γ,
∂fr
∂R

= 0, (B.2)

∂fV
∂r

=
ρV 2

2Hβ
+

2µgrav sin γ

r3
,

∂fV
∂V

= −ρV
β
,

∂fV
∂γ

= −µgrav cos γ
r2

,
∂fV
∂R

= 0, (B.3)



242

∂fγ
∂r

= − ρV

2Hβ
L/D cosσ +

(
2µgrav
r3

− V 2

r2

)
cos γ

V
,

∂fγ
∂V

=
ρ

2β
L/D cosσ +

cos γ

r

(µgrav
V 2r

+ 1
)
,

(B.4a)

∂fγ
∂γ

=

(
µgrav
r2

− V 2

r

)
sin γ

V
,

∂fγ
∂R

= 0, (B.4b)

∂fR
∂r

= 0,
∂fR
∂V

= cos γ,
∂fR
∂γ

= −V sin γ,
∂fR
∂R

= 0. (B.5)

Each component of the B matrix, defined by Eq. (3.36), is given below for atmospheric flight

where the control is u = cosσ:

∂fr
∂u

= 0,
∂fV
∂u

= 0,
∂fγ
∂u

=
ρV

2β
L/D,

∂fR
∂u

= 0. (B.6)

The C matrix is computed based on the terms in the KL expansion of density variability,

following (3.30) and (3.31) where the GRF in this case is density ρ(z). The partial derivatives of

the dynamics with respect to density are given by (B.7), and the partial derivatives of density with

respect to the uncertain parameters p0 are given by (B.8) below

∂fr(t)

∂ρ(h)
= 0,

∂fV (t)

∂ρ(h)
= −V

2

2β
,

∂fγ(t)

∂ρ(h)
=
V u

2β
L/D,

∂fR(t)

∂ρ(h)
= 0, (B.7)

∂ρ(h)

∂p0
=

[
∂ρ(h)

∂w1
· · · ∂ρ(h)

∂wq

]
, where

∂ρ(h)

∂wi
=
√
λiϕi(h). (B.8)

As per (3.24), the ith row of the C matrix is then built by multiplying ∂fi(t)/∂ρ(h) (a scalar) by

∂ρ(h)/∂p0 (a 1× q matrix), then prepending n zeros to the row, such that the dimensions of C are

n× (n+ q).

B.2 Aerocapture

The aerocapture guidance law uses the partial derivative of apoapsis radius at the final state

(at or after atmospheric exit) to compute the adjoint state terminal condition. Partial derivatives

of the apoapsis velocity and ∆V1 with respect to the final state are also used during analysis. The

states in the following equations must be inertial, meaning either a nonrotating planet is assumed

or the full state is converted from planet-relative to inertial before these expressions are evaluated.
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Begin by noting that downrange distance has no impact on any of these derivatives.

∂ra
∂Rf

= 0,
∂Va
∂Rf

= 0,
∂∆V1
∂Rf

= 0. (B.9)

Next, note that the circular (final) orbit velocity is not impacted by the final states and so

this term drops out of the ∆V partial derivative:

∂Vc
∂rf

= 0,
∂Vc
∂Vf

= 0,
∂Vc
∂γf

= 0. (B.10)

Now write the partial derivatives of energy and magnitude of angular momentum with respect

to the states,

∂εf
∂rf

=
µgrav
r2f

,
∂εf
∂Vf

= Vf ,
∂εf
∂γf

= 0, (B.11)

∂|hf |
∂rf

= Vf cos γf ,
∂|hf |
∂Vf

= rf cos γf ,
∂|hf |
∂γf

= −rfVf sin γf . (B.12)

The states affect the velocity at apoapsis through the energy and the magnitude of angular

momentum, so take its partial derivatives with respect to these quantities.

∂Va
∂|hf |

= −

 Va
|hf |

+
2εf√

µ2grav + 2εf |hf |2

 ,
∂Va
∂εf

= −
|hf |√

µ2grav + 2εf |hf |2
. (B.13)

The partial derivatives of velocity at apoapsis with respect to the states can then be found

via chain rule using the partial derivatives we’ve already computed.

∂Va
∂rf

=
∂Va
∂|hf |

∂|hf |
∂rf

+
∂Va
∂εf

∂εf
∂rf

,
∂Va
∂Vf

=
∂Va
∂|hf |

∂|hf |
∂Vf

+
∂Va
∂εf

∂εf
∂Vf

,
∂Va
∂γf

=
∂Va
∂|hf |

∂|hf |
∂γf

+
∂Va
∂εf

∂εf
∂γf

.

(B.14)

Now make use of those derivatives in a similar chain rule expression for the derivatives of

apoapsis radius, where the derivatives of ra with respect to |hf | and Va were included directly in

the expressions below.

∂ra
∂rf

=
1

Va

∂|hf |
∂rf

−
|hf |
V 2
a

∂Va
∂rf

,
∂ra
∂Vf

=
1

Va

∂|hf |
∂Vf

−
|hf |
V 2
a

∂Va
∂Vf

,
∂ra
∂γf

=
1

Va

∂|hf |
∂γf

−
|hf |
V 2
a

∂Va
∂γf

. (B.15)

The states affect the velocity at apoapsis after maneuver 1, V1, only through the apoapsis

radius ra, so we take that derivative below.

∂V1
∂ra

= −µgravrc(2ra + rc)

V1r2a(ra + rc)2
(B.16)
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Now use chain rule to find the derivatives of V1 with respect to the states.

∂V1
∂rf

=
∂V1
∂ra

∂ra
∂rf

,
∂V1
∂Vf

=
∂V1
∂ra

∂ra
∂Vf

,
∂V1
∂γf

=
∂V1
∂ra

∂ra
∂γf

, (B.17)

Finally, combine the velocity partial derivatives to get the partial derivatives of ∆V1 with

respect to the states.

∂∆V1
∂rf

=
∂V1
∂rf

− ∂Va
∂rf

,
∂∆V1
∂Vf

=
∂V1
∂Vf

− ∂Va
∂Vf

,
∂∆V1
∂γf

=
∂V1
∂γf

− ∂Va
∂γf

. (B.18)



Appendix C

Relative Orbit Elements Derivation Detail

In addition to the Hill frame of the chief spacecraft O, define D as the Hill frame of the

deputy spacecraft. Thus, Drd =
D
(rd, 0, 0)

T , and recall that Ord =
O
(x+ xc, y + yc, z)

T . The

deputy position vector is mapped from the deputy Hill frame to the chief velocity frame via the

inertial frame as

Vrd = [V O][ON ][ND]Drd (C.1)

As before, assume that the distance between deputy and chief is much less than the chief

radius, (x, y, z) ≪ rc. Taking the first variations of [ND] and rd about the chief spacecraft gives

the following first-order approximations [239]

[ND] ≈ [NO] + [δNO] (C.2)

rd ≈ rc + δr (C.3)

Substituting these approximations into Eq. (C.1) yields

Vrd = [V O] (I3 + [ON ][δNO])


rc + δr

0

0

 (C.4)

where I3 is the 3x3 identity matrix.
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Note that the deputy position vector can be written as

Vrd = Vρ+ [V O]

O
rc

0

0

 (C.5)

Substituting Eq. (C.5) into Eq. (C.4), dropping the second-order terms associated with

[δNO](δr, 0, 0)T , and simplifying, the following expression is obtained

Vρ = [V O]


O
δr

0

0

+ [ON ][δNO]

O
rc

0

0



 (C.6)

Ref. [239] shows that the parenthetical in the right-hand side of Eq. (C.6) is equivalent to Oρ and

can be expressed as Eq. (6.30), repeated here for convenience:

Oρ =


δr

r(δθ + cos iδΩ)

r(sin θδi− cos θ sin iδΩ


The variation of orbit radius is expressed as [239]

δr =
r

a
δa+

Vr
Vt
rδθ − r

p
(2aq1 + r cos θ)δq1 −

r

p
(2aq2 + r sin θ)δq2, (C.7)

where

Vr = ṙ =
h

p
(q1 sin θ − q2 cos θ) (C.8a)

Vt = rθ̇ =
h

p
(1 + q1 cos θ + q2 sin θ), (C.8b)

q1 = e cosω (C.9a)

q2 = e sinω, (C.9b)
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and

θ = f + ω. (C.10)

Note also the orbit identities:

r =
p

α
(C.11)

p = a(1− e2) (C.12)

Taking the first-order variations of Eqs. (C.9) and (C.10) gives expressions for their corre-

sponding orbit element differences:

δq1 = cosωδe− e sinωδω (C.13)

δq2 = sinωδe+ e cosωδω (C.14)

δθ = δf + δω (C.15)



Appendix D

Useful Coordinate Relationships

Let θ and ϕ be longitude and latitude, respectively, and model the central body as a perfect

sphere for the purpose of these equations. The range (great circle distance) between points (θ1, ϕ1)

and (θ2, ϕ2) is

d = R cos−1 (sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos(|θ2 − θ1|)) (D.1)

and the bearing between them (e.g. the heading angle of the great circle arc connecting the points)

is

ψB = tan−1

(
cosϕ2 sin(θ2 − θ1)

cosϕ1 sinϕ2 − sinϕ1 cosϕ2 cos(θ2 − θ1)

)
(D.2)

In the case where the coordinates of point 1 are known, along with the great circle distance and

bearing between it and point 2, the coordinates of the second point can be computed as

θ2 = θ1 + tan−1

(
sinψB sin (d/R) cosϕ1
cos (d/R)− sinϕ1 sinϕ2

)
(D.3a)

ϕ2 = sin−1 (sinϕ1 cos (d/R) + cosϕ1 sin (d/R) cosψB) (D.3b)



Appendix E

Notes on Iterative Covariance Steering

This appendix summarizes the key steps to take a chance-constrained nonlinear dynamical

system influenced by stochastic perturbations and, through linearization and convex relaxation,

reformulate it into a sequence of convex optimization problems. These notes follow closely from

from Refs. [96, 287, 288].

Begin with the nonlinear stochastic system

dx = f(x,u, t)dt+ g(x,u)dw (E.1)

on the the interval t ∈ [t0, tf ], where x ∈ Rn is the state vector, u ∈ Rm is the control vector, and

w(t) is an n-dimensional Brownian motion. Assume that the state at the initial time x(t0) = x0

is Gaussian distributed with known mean and covariance. For a reference control input û(t), the

reference state x̂(t) is the solution to the deterministic system

˙̂x(t) = f(x̂(t), û(t), t), (E.2)

noting that the disturbance term does not appear in the reference because it has zero mean.

Linearize the unperturbed dynamics function f(x,u, t) by taking a first-order Taylor series

expansion about the reference to obtain

f(x(t),u(t), t) ≈ f(x̂(t), û(t), t) +
∂f

∂x
(x(t)− x̂(t)) +

∂f

∂u
(u(t)− û(t)). (E.3)

Define the Jacobian matrices

A(t) =
∂f

∂x

∣∣∣∣
x̂,û

B(t) =
∂f

∂u

∣∣∣∣
x̂,û

(E.4)
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evaluated at the reference (x̂(t), û(t)), define the perturbed dynamics evaluated along the reference

as

D(t) = g(x̂(t), û(t)), (E.5)

and let the vector c(t) be defined as

c(t) = f(x̂(t), û(t), t)−A(t)x̂(t)−B(t)û(t). (E.6)

Using this condensed notation, the linearized system dynamics are written as

dx = [A(t)x(t) +B(t)u(t) + c(t)] dt+D(t)dw. (E.7)

Equation (E.7) approximates the true dynamics Eq. (E.1) as a continuous-time linear time-

varying system. To convert to a discrete-time system, let t0 < t1 < · · · < tN = tf be a discrete

time partition of the interval [t0, tf ] with N nodes. Make the zero-order hold (ZOH) assumption

that the control is piecewise constant between time nodes,

u(t) = uk, ∀t ∈ [tk, tk+1), k = 0, . . . , N − 1, (E.8)

where the subscript k denotes xk = x(tk), uk = u(tk), etc. Make use of the ZOH assumption to

integrate Eq. (E.7) from time tk to time tk+1 to find a solution to the linearized system,

xk+1 = Φ(tk+1, tk)xk +

∫ tk+1

tk

Φ(tk+1, t) [B(t)uk + c(t)] dt+

∫ tk+1

tk

Φ(tk+1, t)D(t)dw(t) (E.9)

where Φ(t2, t1) is the state transition matrix from t1 to t2,

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = In, (E.10)

where In is the n× n identity matrix. Define the discrete-time system matrices Ak and Bk, along

with the discrete-time vector ck, as

Ak = Φ(tk+1, tk), (E.11a)

Bk =

∫ tk+1

tk

Φ(tk+1, t)B(t)dt, (E.11b)

ck =

∫ tk+1

tk

Φ(tk+1, t)c(t)dt. (E.11c)
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Following the previous assumption of Brownian motion w(t), let wk a sequence of n-dimensional

independent and identically distributed standard normal variables. Then, define Dk such that the

vector Dkwk has covariance

Cov(Dkwk, Dkwk) =

∫ tk+1

tk

Φ(tk+1, t)D(t)D⊺(t)Φ⊺(tk+1, t)dt = DkD
⊺
k. (E.12)

Note that to obtain a value Dk from Eq. (E.12) one can first evaluate the integral in the middle

term, then take the Cholesky decomposition to isolate a valid Dk matrix. Substituting Eqs. (E.11)

and (E.12) into Eq. (E.9), the stochastic difference equation

xk+1 = Akxk +Bkuk + ck +Dkwk (E.13)

provides an exact discretization of the continuous-time linearized system Eq. (E.7) [287].

Assume a linear state feedback law,

uk = Kk(xk − µk) + νk. (E.14)

For a quadratic cost function in the absence of chance constraints, this is the optimal form of the

control [289]. The resulting mean and covariance propagation equations are then

µk+1 = Akµk +Bkνk + ck, (E.15a)

Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)
⊺ +DkD

⊺
k. (E.15b)

From Eqs. (E.15a) and (E.15b), it is apparent that the nominal control steers the mean while

the feedback gain steers the covariance; this is a key insight for covariance steering [290, 291].

However, as shown below, the chance constraints depend on both the mean and covariance of the

state. This motivates a joint optimization over the nominal control ν and feedback gains K at each

discretization point.

The products of decision variables K and P in Eq. (E.15b) make the problem nonconvex.

One approach to addressing this issue is to implement state history feedback of the form

uk =

k∑
ℓ=0

Kk,ℓ(xℓ − µℓ) + νk, (E.16)
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which is equivalent to disturbance history feedback and ultimately results in a convex formulation

[292, 293]. The trade-off of this approach, however, is that the number of decision variables in the

convex optimization problem then grows as O(N2) as opposed to O(N), where N is the number of

time nodes in the discretized problem.

Instead, a change of variables can be used to implement a convex relaxation and transform

the problem into a linear semidefinite program. First, define the new variable

Yk ≡ KkPk. (E.17)

The covariance dynamics (Eq. (E.15b)) can then be written in a relaxed form as

YkP
−1
k Y ⊺

k − Φk ⪯ 0, (E.18a)

AkPkA
⊺
k +BkYkA

⊺
k +AkYkB

⊺
k +BkΦkB

⊺
k +DkD

⊺
k − Pk+1 = 0, (E.18b)

where Φk acts similarly to a slack variable and, crucially, its trace at all time nodes except the final

time,
∑N−1

k=0 tr(Φk), is penalized in the cost function. Equation (E.18a) can be expressed as a linear

matrix inequality using the Schur complement:Pk Y ⊺
k

Yk Φk

 ⪰ 0. (E.19)

This has been shown to be a lossless relaxation [289, 288]. Note that the value of the slack variable

Φk when the true covariance dynamics are respected (that is, when Eq. (E.18a) is satisfied at

equality), the slack variable takes on a value of Φk = YkP
−1
k Y ⊺

k = KkPkK
⊺
k . This is equivalent to

the covariance of the control input.

Now consider chance constraints on the state and control of the form

P
(
a⊺
kxk ≥ αmax

)
≤ pxk, (E.20a)

P
(
b⊺kuk ≥ βmax

)
≤ puk , (E.20b)

where the probability that the scalar a⊺
kxk equals or exceeds αmax is constrained to stay within

pxk and likewise for the control constraints. The probability of constraint violation pxk or puk is
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typically set to 0.05 or less, such that constraints can be nearly guaranteed to be respected, but,

for unbounded perturbations such as Brownian noise, deterministic constraints cannot readily be

imposed. Under the assumption that the initial distribution of the state is Gaussian and a linear

feedback law is employed, the scalar random variables a⊺
kxk and b⊺kuk are Gaussian with mean and

covariance as follows [294]:

⟨a⊺xk⟩ = a⊺µk, (E.21a)

⟨b⊺uk⟩ = b⊺νk, (E.21b)

Cov(a⊺xk) = a⊺Pka, (E.21c)

Cov(b⊺uk) = b⊺KkPkK
⊺
kb = b⊺YkP

−1
k Y ⊺

k b. (E.21d)

Using these properties, Eqs. (E.20) are converted to

normcdf−1(1− pxk)
√

a⊺Pka+ a⊺µk − αmax ≤ 0 (E.22a)

normcdf−1(1− puk)
√
b⊺YkP

−1
k Y ⊺

k b+ b⊺νk − βmax ≤ 0 (E.22b)

where normcdf−1(·) is the inverse cumulative distribution function of the normal distribution.

Additionally, note that if the disturbances are not assumed to be Gaussian then normcdf−1(·) can

be conservatively replaced using Cantelli’s concentration inequality with Q(1 − p) =
√
p/(1− p)

[288, 295]. Substitute Eq. (E.17) into Eq. (E.22b) to obtain the relaxed form

normcdf−1(1− puk)
√
b⊺Φkb+ b⊺νk − βmax ≤ 0. (E.23)

Linearize these constraints around some reference values of Pk and Φk, using the tangent line

as a linear global overestimator of the square root function:

√
x ≤ 1

2
√
xr
x+

√
x0
2
, ∀x, x0 > 0 (E.24)

As a result of the square roots of Pk and Φk, the constraints in Eqs. (E.22a) and (E.23) are

nonconvex. A conservative approximation can be obtained by linearizing the constraints around
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some reference values Pr and Φr for a given problem as follows:

normcdf−1(1− pxk)

(
1

2
√
a⊺Pra

a⊺Pka+
1

2

√
a⊺Pra

)
+ a⊺µk − αmax ≤ 0 (E.25a)

normcdf−1(1− puk)

(
1

2
√
b⊺Φrb

b⊺Φkb+
1

2

√
b⊺Φrb

)
+ b⊺νk − βmax ≤ 0 (E.25b)

This approximation is convex and, because it is conservative, will always satisfy the true, nonconvex

constraints as well [288].

Finally, note that for lower bound chance constraints,

P
(
a⊺
kxk ≤ αmin

)
≤ pxk (E.26a)

P
(
b⊺kuk ≤ βmin

)
≤ puk , (E.26b)

a similar set of equations applies:

−normcdf−1(1− pxk)

(
1

2
√
a⊺Pra

a⊺Pka+
1

2

√
a⊺Pra

)
+ a⊺µk − αmin ≤ 0 (E.27a)

−normcdf−1(1− puk)

(
1

2
√
b⊺Φrb

b⊺Φkb+
1

2

√
b⊺Φrb

)
+ b⊺νk − βmin ≤ 0 (E.27b)

The finite-horizon constrained covariance steering problem can then be written in convex

form as below:

min
Pk,Yk,Φk,µk,νk

J =
N−1∑
k=0

tr(QPk) + tr(RΦk) + µ⊺
kQµk + ν⊺

kRνk (E.28a)

where the matrices Q ⪰ 0 and R ≻ 0 tune the penalization of the state and control, respectively,

and such that, for all k = 0, . . . , N − 1,

Akµk +Bkνk + ck − µk+1 = 0 (E.28b)

µ0 − µi = 0, µN − µf = 0 (E.28c)

YkP
−1
k Y ⊺

k − Φk ⪯ 0 (E.28d)

AkPkA
⊺
k +BkYkA

⊺
k +AkYkB

⊺
k +BkΦkB

⊺
k +DkD

⊺
k − Pk+1 = 0 (E.28e)

P0 − Pi = 0, PN − Pf ⪯ 0 (E.28f)

±normcdf−1(1− pxk)

(
1

2
√
a⊺Pra

a⊺Pka+
1

2

√
a⊺Pra

)
+ a⊺µk − (αmax|αmin) ≤ 0 (E.28g)

±normcdf−1(1− puk)

(
1

2
√
b⊺Φrb

b⊺Φkb+
1

2

√
b⊺Φrb

)
+ b⊺νk − (βmax|βmin) ≤ 0 (E.28h)
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where, here, the notation (αmax|αmin) indicates αmax when the first term of the left-hand side is

positive and αmin when that term is negative, and likewise for (βmax|βmin).



Appendix F

Notes on Polynomial Chaos Expansion

Polynomial chaos expansion works by representing the QoI u = u(y) of a system as a gener-

alized Fourier series expansion in a multi-dimensional polynomial basis orthonormal with respect

to the joint probability distribution of the inputs y, Py,

û(y) =

P∑
j=0

cjψj(y)
m.s.−−→ u(y), as P → ∞, (F.1)

where in Eq. (F.1) u has finite variance and the approximation converges in the mean-square sense

to the exact QoI value as the number of terms P + 1 approaches infinity. The Fourier coefficients

cj are given by Eq. (F.2),

cj = ⟨u(y)ψj(y)⟩. (F.2)

The orthonormal basis functions that form this approximation space are chosen based on the

probability measure of the random inputs, Py. Assume here that the random inputs to this problem

are d i.i.d. Gaussian random variables; in this case, the basis functions are orthonormal Hermite

polynomials [49]. Note that other probability distributions can be represented using other choices

of polynomials. Letting ψjk(yk) index these 1D polynomials in yk by their degree, jk = 0, 1, . . . for

k = 1, . . . , d, the d-dimensional polynomials are defined by Eq. (F.3),

ψj(y) =
d∏

k=1

ψjk(yk). (F.3)

Then, the expansion is truncated to a basis of total order p, by considering only those indices jk

for which
∑d

k=1 jk ≤ p. With this truncation method, the expansion will have P +1 total terms as
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given by Eq. (F.4), noting that the number of expansion terms then grows exponentially with the

number of dimensions d.

P + 1 =
(p+ d)!

p!d!
(F.4)

It is important to note that the quality of the approximation in Eq. (F.1) depends on the regu-

larity of the QoI u(y) with respect to the dispersed inputs y. For an infinitely smooth u(y) the

convergence is exponential, but for non-smooth behavior the convergence can become slow or fail

to converge, and is susceptible to Gibbs phenomenon.

The preceding steps provide a method for approximating the QoI, but have not covered how

to compute the coefficients cj beyond providing Eq. (F.2), which may be inefficient or infeasible

to compute directly. Two fundamentally different approaches exist for solving for these coeffi-

cients: intrusive and non-intrusive methods. Intrusive methods such as Galerkin projection can

be highly efficient [48], but by definition they require modifying the deterministic simulation code

for the system of interest. This would also require modification whenever fidelity is added to the

model or additional dispersed inputs are included. Thus, non-intrusive methods, which treat the

deterministic solver as a black-box, are desirable.

There are a variety of non-intrusive methods to solve for the unknown PCE coefficients [296].

The basic approach is to generate some number of realizations of the QoI, then use these pilot trials

to estimate the coefficients. For N samples of the QoI, Eq. (F.1) can be arranged in matrix form

as shown in Eq. (F.5). Note that the dimensions of the measurement matrix Ψ are N × (P + 1).
ψ0(y1) · · · ψP (y1)

...
. . .

...

ψ0(yN ) · · · ψP (yN )




c0

...

cP

 ≈


u(y1)

...

u(yN )

⇒ ΨC ≈ U (F.5)

Solving the matrix equation in Eq. (F.5) via the standard least squares provides an estimate

of the coefficients vector C for an overdetermined problem, where the number of samples exceeds

the number of coefficients (N > (P + 1)). However, because the number of coefficients grows

rapidly with the dimensionality as shown in Eq. (F.4), for high-dimensional problems this may
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require sufficiently many samples that the PCE convergence is no better than standard Monte

Carlo, especially if a high truncation order p is required. This makes it desirable to apply methods

to solve Eq. (F.5) for the underdetermined problem. In this case, however, there are infinitely

many solutions, and the minimum ℓ2-norm solution becomes unstable under truncation error. This

reveals a need for regularization of the problem.

Compressed sensing (also known as compressive sampling) provides one solution to this prob-

lem [297, 298, 299]. This approach enforces sparsity of the coefficient vector by applying appropriate

norms. Initially, the solution with minimum ℓ0-norm is considered, where ||C||0 = #{j : cj ̸= 0}:

Ĉ = argmin
C

||C||0 s.t. ΨC = U . (F.6)

However, a number of issues arise here. The optimization is nonconvex, the solution is not always

unique, and this minimum is NP-hard to compute. A number of heuristic workarounds have

been developed to address the complexity of finding this sparsest approximation. The approach

summarized here is convex relaxation via ℓ1-minimization. This solution seeks instead the minimum

ℓ1-norm solution as defined in Eq. (F.7), where ||C||1 =
∑P

j=0 |cj |:

Ĉ = argmin
C

||C||1 s.t. ΨC = U . (F.7)

Eq. (F.7) is now a convex optimization problem, and may be solved using standard linear programs.

Under some conditions, the minimum ℓ1-norm solution is unique and identical to the sparsest

solution [300].

In practical implementation, there is truncation error, so quadratic programming can be

employed to solve Eq. (F.8) for some tolerance δ > 0. For this study, δ is selected by defining

δ = σ||U ||2, where U is a vector of N samples of the QoI u and σ is tuned manually.

Ĉ = argmin
C

||C||1 s.t. ||ΨC −U ||2 ≤ δ (F.8)

A number of tools exist for ℓ1-minimization. The tool used for generating initial results is

the basis pursuit denoise (BPDN) problem solver provided by SPGL1: Spectral Projected Gradient
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for L1 minimization [301], a Python port of the original MATLAB solver [302] and based on the

theory outlined by van den Berg and Friedlander [303].

Once the PCE coefficients are known or estimated, the mean and variance of the QoI can be

trivially computed as shown in Eqs. F.9 and F.10.

⟨u⟩ ≈ ⟨û⟩ = c0 (F.9)

σ2 ≈
P∑
i=1

c2i (F.10)

Further stochastic properties of the QoI such as its cumulative distribution function or probability

density function can be estimated by inexpensively sampling Eq. (F.1) now that the coefficients

are known. Furthermore, sensitivity analysis is a natural byproduct of a PCE solution, and Sobol

indices can be easily determined from the coefficients [304, 305].
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