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Computer simulations of spacecraft dynamics are widely used in industry and academia to

predict how spacecraft will behave during proposed mission concepts. Current technology and per-

formance requirements have placed pressure on simulations to be increasingly more representative

of the environment and the physics that spacecraft will encounter. This results in increasingly

complex computer simulations. Designing the software architecture in a modular way is a crucial

step to allow for ease of testing, maintaining, and scaling of the software code base. However, for

complex spacecraft modeling including flexible or multi-body dynamics, modularizing the software

is not a trivial task because the resulting equations of motion are fully-coupled nonlinear equa-

tions. In this dissertation, a software architecture is presented for creating complex fully-coupled

spacecraft simulations with a modular framework.

One obstacle when attempting to modularize spacecraft dynamics formulations is that de-

pending on the method used to derive the equations of motion, the state variables chosen, the choice

of coordinate frames, and the assumptions made dictate the final form. Therefore, there can be

an infinite number of ways to describe the equations of motion for a particular dynamics problem.

This poses a problem when implementing in software because determining a pattern to modularize

the equations can be difficult or sometimes impossible. This dissertation provides a solution to this

problem by defining a systematic approach and a general form for developing equations of motion

of spacecraft that will enable agreement between different dynamics problems and the final form

of the equations of motion. The development makes minimal assumptions to make the solution

applicable to a wide variety of problems commonly seen by spacecraft. Additionally, the approach

is shown to be applicable to Newtonian/Eulerian mechanics and Kane’s Method.

In addition to the general form for the equations of motion, this dissertation introduces a
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back-substitution method that analytically modularizes the equations of motion. A major issue

with dynamics problems from an software architecture standpoint, is that the second order state

derivatives are coupled resulting a non-diagonal system mass matrix. Breaking a part this coupling

while retaining the fully-couple nature of the problem is solved by analytically manipulating the

equations to solve the system mass matrix in a two-step process called the back-substitution method

which allows the math to computed in a modular fashion. Additionally, energy and momentum

conservation is a key tool to verify the equations of motion and software implementation are correct,

and this dissertation provides a modular form for the energy and momentum calculations.

Since the development of the equations of motion can result in an infinite number of solutions,

the literature is lacking on common dynamics problems solutions seen by spacecraft that agree with

a common form. This results in the necessity to re-derive the equations of motion for complex

problems which can be a time consuming task and is susceptible to analytical development errors.

This dissertation provides ready-to-implement solutions to prevalent spacecraft dynamics problems

that all conform to the general equation of motion form presented. Some examples are flexing

appended bodies, fuel slosh, and imbalanced VSCMGs.

The final contribution of this dissertation is introducing a modular software architecture

using the general equation of motion form, the back-substitution method, and the modularized

energy/momentum calculations. This architecture is introduced by UML class diagrams and pseudo

code to help explain the software implementation. The architecture allows for ease of testing,

maintaining and scaling that is usually cumbersome with regards to dynamics problems. This

architecture is implemented in the Basilisk astrodynamics software package and is a fully tested

example of the proposed software architecture.
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Chapter 1

Introduction

1.1 Motivation

Spacecraft are becoming more and more complex which results in spacecraft exhibiting com-

plicated dynamics. For example, spacecraft can have many appended bodies that have flexible

behavior, spacecraft structures are becoming large enough that a large portion of the structure can

no longer be assumed to be rigid, and robotic structures attached to spacecraft can have complex

interrelations between appendages. Figure 1.1 shows an illustrative example of a complex spacecraft

exhibiting such features. Furthermore, spacecraft mission performance requirements are becoming

more strict resulting in the need to have a more complete knowledge of the dynamics. For exam-

ple, some missions have extremely tight requirements on the fine pointing of the spacecraft, which

requires high fidelity simulations of the dynamics to show adherence to these tight requirements.

If the simulation is not high enough fidelity, the results might not be able to be trusted.

This increase in complexity results in a huge increase in the complexity of the governing

equations and the resulting software implementation of the equations. To implement simulation

code attempting to describe the motion of a spacecraft like the one shown in Figure 1.1, usually

results in massive interconnected code that is extremely difficult to test, maintain, and scale. For

example, for a project of that size, sometimes something as simple as adding or removing a flexible

solar panel to/from the equations of motion can take a lengthy amount of time to change in the

software and result in non-functioning code or bugs that result in disagreement between the code

and the underlying physics.
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Figure 1.1: Artist rendition of ATV docking with Russian Zvezda module, http://www.dlr.de

Additionally, the complexity of the underlying physics for the problems can result in lengthy

derivations, are prone to errors, and are sometimes spacecraft specific which results in re-derivation

for different spacecraft. There is a need to have general solutions to common physical phenomenon

that spacecraft encounter that can be applied to a wide range of spacecraft. Finally, computational

efficiency needs to be considered due to the length of simulation time required for spacecraft analysis,

and the complexity of the mathematics required to solve the dynamics. This dissertation is aimed

at developing general spacecraft Equations of Motion (EOMs) and developing a modular software

architecture to avoid these common problems.

1.2 Background

1.2.1 General Form for Spacecraft Specific Equations of Motion

An issue with multi-body dynamics is the EOMs can come in many different forms [1, 2]. This

is a drawback from a software implementation perspective because having such variability can lead

to disorganized and inconsistent implementation of different dynamical systems. The form of the

EOMs depends on the chosen state variables, the method used to develop the EOMs, the coordinate

frames chosen, and the assumptions used. This results in an infinite number of solutions available to

describe the motion of an individual dynamics problem. To give further context, a simple example
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shown in Figure 1.2 is used to show how different state variables and methods used to develop the

EOMs can lead to different results.

n̂2
<latexit sha1_base64="ZgGe/J2OT7kM+hFpENunOrtm9ng=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBByCrtB0GPAi8cI5iHJEmYnk2TIzOwy0yuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJVJY9P1vb2Nza3tnt7BX3D84PDounZy2bJwaxpsslrHpRNRyKTRvokDJO4nhVEWSt6PJ7dxvP3FjRawfcJrwUNGRFkPBKDrpsTemmOlZv9Yvlf2qvwBZJ0FOypCj0S999QYxSxXXyCS1thv4CYYZNSiY5LNiL7U8oWxCR7zrqKaK2zBbHDwjl04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqOhCCFZfXietWjXwq8H9VbleyeMowDlcQAUCuIY63EEDmsBAwTO8wptnvBfv3ftYtm54+cwZ/IH3+QPFSpBK</latexit><latexit sha1_base64="ZgGe/J2OT7kM+hFpENunOrtm9ng=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBByCrtB0GPAi8cI5iHJEmYnk2TIzOwy0yuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJVJY9P1vb2Nza3tnt7BX3D84PDounZy2bJwaxpsslrHpRNRyKTRvokDJO4nhVEWSt6PJ7dxvP3FjRawfcJrwUNGRFkPBKDrpsTemmOlZv9Yvlf2qvwBZJ0FOypCj0S999QYxSxXXyCS1thv4CYYZNSiY5LNiL7U8oWxCR7zrqKaK2zBbHDwjl04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqOhCCFZfXietWjXwq8H9VbleyeMowDlcQAUCuIY63EEDmsBAwTO8wptnvBfv3ftYtm54+cwZ/IH3+QPFSpBK</latexit><latexit sha1_base64="ZgGe/J2OT7kM+hFpENunOrtm9ng=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBByCrtB0GPAi8cI5iHJEmYnk2TIzOwy0yuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJVJY9P1vb2Nza3tnt7BX3D84PDounZy2bJwaxpsslrHpRNRyKTRvokDJO4nhVEWSt6PJ7dxvP3FjRawfcJrwUNGRFkPBKDrpsTemmOlZv9Yvlf2qvwBZJ0FOypCj0S999QYxSxXXyCS1thv4CYYZNSiY5LNiL7U8oWxCR7zrqKaK2zBbHDwjl04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqOhCCFZfXietWjXwq8H9VbleyeMowDlcQAUCuIY63EEDmsBAwTO8wptnvBfv3ftYtm54+cwZ/IH3+QPFSpBK</latexit><latexit sha1_base64="ZgGe/J2OT7kM+hFpENunOrtm9ng=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBByCrtB0GPAi8cI5iHJEmYnk2TIzOwy0yuEJV/hxYMiXv0cb/6Nk2QPmljQUFR1090VJVJY9P1vb2Nza3tnt7BX3D84PDounZy2bJwaxpsslrHpRNRyKTRvokDJO4nhVEWSt6PJ7dxvP3FjRawfcJrwUNGRFkPBKDrpsTemmOlZv9Yvlf2qvwBZJ0FOypCj0S999QYxSxXXyCS1thv4CYYZNSiY5LNiL7U8oWxCR7zrqKaK2zBbHDwjl04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqOhCCFZfXietWjXwq8H9VbleyeMowDlcQAUCuIY63EEDmsBAwTO8wptnvBfv3ftYtm54+cwZ/IH3+QPFSpBK</latexit>

n̂1
<latexit sha1_base64="U8M4NBLboXi6cBubYaeM4PtdHnI=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmIckS5idTJIhM7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4DThoaIjLYaCUXTSY29MMdOzftAvV/yavwBZJ0FOKpCj0S9/9QYxSxXXyCS1thv4CYYZNSiY5LNSL7U8oWxCR7zrqKaK2zBbHDwjF04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqORCCFZfXiety1rg14L7q0q9msdRhDM4hyoEcA11uIMGNIGBgmd4hTfPeC/eu/exbC14+cwp/IH3+QPDxpBJ</latexit><latexit sha1_base64="U8M4NBLboXi6cBubYaeM4PtdHnI=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmIckS5idTJIhM7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4DThoaIjLYaCUXTSY29MMdOzftAvV/yavwBZJ0FOKpCj0S9/9QYxSxXXyCS1thv4CYYZNSiY5LNSL7U8oWxCR7zrqKaK2zBbHDwjF04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqORCCFZfXiety1rg14L7q0q9msdRhDM4hyoEcA11uIMGNIGBgmd4hTfPeC/eu/exbC14+cwp/IH3+QPDxpBJ</latexit><latexit sha1_base64="U8M4NBLboXi6cBubYaeM4PtdHnI=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmIckS5idTJIhM7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4DThoaIjLYaCUXTSY29MMdOzftAvV/yavwBZJ0FOKpCj0S9/9QYxSxXXyCS1thv4CYYZNSiY5LNSL7U8oWxCR7zrqKaK2zBbHDwjF04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqORCCFZfXiety1rg14L7q0q9msdRhDM4hyoEcA11uIMGNIGBgmd4hTfPeC/eu/exbC14+cwp/IH3+QPDxpBJ</latexit><latexit sha1_base64="U8M4NBLboXi6cBubYaeM4PtdHnI=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmIckS5idTJIhM7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4DThoaIjLYaCUXTSY29MMdOzftAvV/yavwBZJ0FOKpCj0S9/9QYxSxXXyCS1thv4CYYZNSiY5LNSL7U8oWxCR7zrqKaK2zBbHDwjF04ZkGFsXGkkC/X3REaVtVMVuU5FcWxXvbn4n9dNcXgTZkInKXLNlouGqSQYk/n3ZCAMZyinjlBmhLuVsDE1lKHLqORCCFZfXiety1rg14L7q0q9msdRhDM4hyoEcA11uIMGNIGBgmd4hTfPeC/eu/exbC14+cwp/IH3+QPDxpBJ</latexit>

x1<latexit sha1_base64="TAqVKqpdFiqmFZ5h2+PecSXNQ/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwPejYY=</latexit><latexit sha1_base64="TAqVKqpdFiqmFZ5h2+PecSXNQ/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwPejYY=</latexit><latexit sha1_base64="TAqVKqpdFiqmFZ5h2+PecSXNQ/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwPejYY=</latexit><latexit sha1_base64="TAqVKqpdFiqmFZ5h2+PecSXNQ/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIUI8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK908Db1CuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmlf1jy35t1dVRrVPI4inME5VMGDOjTgFprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwPejYY=</latexit>

x2<latexit sha1_base64="yN90uaktl3nFaUmh2efxDu71geg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAFYo2H</latexit><latexit sha1_base64="yN90uaktl3nFaUmh2efxDu71geg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAFYo2H</latexit><latexit sha1_base64="yN90uaktl3nFaUmh2efxDu71geg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAFYo2H</latexit><latexit sha1_base64="yN90uaktl3nFaUmh2efxDu71geg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUQY8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbuZ+55FrI2L1gNOE+xEdKREKRtFK90+D+qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t1dVhrVPI4inME5VMGDK2jALTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAFYo2H</latexit>

m1<latexit sha1_base64="ZxmZfD+Ae8vJ4Pff9F+484H5ZGM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmgckS5idTJIhM7PLTK8QlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4jThoaIjLYaCUXTSg+oH/XLFr/kLkHUS5KQCORr98ldvELNUcY1MUmu7gZ9gmFGDgkk+K/VSyxPKJnTEu45qqrgNs8WpM3LhlAEZxsaVRrJQf09kVFk7VZHrVBTHdtWbi/953RSHN2EmdJIi12y5aJhKgjGZ/00GwnCGcuoIZUa4WwkbU0MZunRKLoRg9eV10rqsBX4tuL+q1Kt5HEU4g3OoQgDXUIc7aEATGIzgGV7hzZPei/fufSxbC14+cwp/4H3+APMNjXs=</latexit><latexit sha1_base64="ZxmZfD+Ae8vJ4Pff9F+484H5ZGM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmgckS5idTJIhM7PLTK8QlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4jThoaIjLYaCUXTSg+oH/XLFr/kLkHUS5KQCORr98ldvELNUcY1MUmu7gZ9gmFGDgkk+K/VSyxPKJnTEu45qqrgNs8WpM3LhlAEZxsaVRrJQf09kVFk7VZHrVBTHdtWbi/953RSHN2EmdJIi12y5aJhKgjGZ/00GwnCGcuoIZUa4WwkbU0MZunRKLoRg9eV10rqsBX4tuL+q1Kt5HEU4g3OoQgDXUIc7aEATGIzgGV7hzZPei/fufSxbC14+cwp/4H3+APMNjXs=</latexit><latexit sha1_base64="ZxmZfD+Ae8vJ4Pff9F+484H5ZGM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmgckS5idTJIhM7PLTK8QlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4jThoaIjLYaCUXTSg+oH/XLFr/kLkHUS5KQCORr98ldvELNUcY1MUmu7gZ9gmFGDgkk+K/VSyxPKJnTEu45qqrgNs8WpM3LhlAEZxsaVRrJQf09kVFk7VZHrVBTHdtWbi/953RSHN2EmdJIi12y5aJhKgjGZ/00GwnCGcuoIZUa4WwkbU0MZunRKLoRg9eV10rqsBX4tuL+q1Kt5HEU4g3OoQgDXUIc7aEATGIzgGV7hzZPei/fufSxbC14+cwp/4H3+APMNjXs=</latexit><latexit sha1_base64="ZxmZfD+Ae8vJ4Pff9F+484H5ZGM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmgckS5idTJIhM7PLTK8QlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXlEhh0fe/vcLG5tb2TnG3tLd/cHhUPj5p2Tg1jDdZLGPTiajlUmjeRIGSdxLDqYokb0eT27nffuLGilg/4jThoaIjLYaCUXTSg+oH/XLFr/kLkHUS5KQCORr98ldvELNUcY1MUmu7gZ9gmFGDgkk+K/VSyxPKJnTEu45qqrgNs8WpM3LhlAEZxsaVRrJQf09kVFk7VZHrVBTHdtWbi/953RSHN2EmdJIi12y5aJhKgjGZ/00GwnCGcuoIZUa4WwkbU0MZunRKLoRg9eV10rqsBX4tuL+q1Kt5HEU4g3OoQgDXUIc7aEATGIzgGV7hzZPei/fufSxbC14+cwp/4H3+APMNjXs=</latexit>

m2<latexit sha1_base64="GKnNd4wIPEy0AaJNyzQeS7945G0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gNgh4DXjxGNImQLGF20psMmZldZmaFsOQTvHhQxKtf5M2/cfI4aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSNkmmGbZYIhL9GFGDgitsWW4FPqYaqYwEdqLxzczvPKE2PFEPdpJiKOlQ8Zgzap10L/v1frni1/w5yDoJlqQCSzT75a/eIGGZRGWZoMZ0Az+1YU615UzgtNTLDKaUjekQu44qKtGE+fzUKblwyoDEiXalLJmrvydyKo2ZyMh1SmpHZtWbif953czG12HOVZpZVGyxKM4EsQmZ/U0GXCOzYuIIZZq7WwkbUU2ZdemUXAjB6svrpF2vBX4tuLusNKrLOIpwBudQhQCuoAG30IQWMBjCM7zCmye8F+/d+1i0FrzlzCn8gff5A/SRjXw=</latexit><latexit sha1_base64="GKnNd4wIPEy0AaJNyzQeS7945G0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gNgh4DXjxGNImQLGF20psMmZldZmaFsOQTvHhQxKtf5M2/cfI4aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSNkmmGbZYIhL9GFGDgitsWW4FPqYaqYwEdqLxzczvPKE2PFEPdpJiKOlQ8Zgzap10L/v1frni1/w5yDoJlqQCSzT75a/eIGGZRGWZoMZ0Az+1YU615UzgtNTLDKaUjekQu44qKtGE+fzUKblwyoDEiXalLJmrvydyKo2ZyMh1SmpHZtWbif953czG12HOVZpZVGyxKM4EsQmZ/U0GXCOzYuIIZZq7WwkbUU2ZdemUXAjB6svrpF2vBX4tuLusNKrLOIpwBudQhQCuoAG30IQWMBjCM7zCmye8F+/d+1i0FrzlzCn8gff5A/SRjXw=</latexit><latexit sha1_base64="GKnNd4wIPEy0AaJNyzQeS7945G0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gNgh4DXjxGNImQLGF20psMmZldZmaFsOQTvHhQxKtf5M2/cfI4aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSNkmmGbZYIhL9GFGDgitsWW4FPqYaqYwEdqLxzczvPKE2PFEPdpJiKOlQ8Zgzap10L/v1frni1/w5yDoJlqQCSzT75a/eIGGZRGWZoMZ0Az+1YU615UzgtNTLDKaUjekQu44qKtGE+fzUKblwyoDEiXalLJmrvydyKo2ZyMh1SmpHZtWbif953czG12HOVZpZVGyxKM4EsQmZ/U0GXCOzYuIIZZq7WwkbUU2ZdemUXAjB6svrpF2vBX4tuLusNKrLOIpwBudQhQCuoAG30IQWMBjCM7zCmye8F+/d+1i0FrzlzCn8gff5A/SRjXw=</latexit><latexit sha1_base64="GKnNd4wIPEy0AaJNyzQeS7945G0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9gNgh4DXjxGNImQLGF20psMmZldZmaFsOQTvHhQxKtf5M2/cfI4aGJBQ1HVTXdXlApurO9/e4WNza3tneJuaW//4PCofHzSNkmmGbZYIhL9GFGDgitsWW4FPqYaqYwEdqLxzczvPKE2PFEPdpJiKOlQ8Zgzap10L/v1frni1/w5yDoJlqQCSzT75a/eIGGZRGWZoMZ0Az+1YU615UzgtNTLDKaUjekQu44qKtGE+fzUKblwyoDEiXalLJmrvydyKo2ZyMh1SmpHZtWbif953czG12HOVZpZVGyxKM4EsQmZ/U0GXCOzYuIIZZq7WwkbUU2ZdemUXAjB6svrpF2vBX4tuLusNKrLOIpwBudQhQCuoAG30IQWMBjCM7zCmye8F+/d+1i0FrzlzCn8gff5A/SRjXw=</latexit>
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Figure 1.2: Two degrees of freedom dynamics problem

In Figure 1.2, the problem represented is two masses, m1 and m2, connected by a spring with

linear spring constant k. The masses are constrained to move freely only along the n̂1 axis and

there are no external forces acting on the system. Since this system has two degrees of freedom,

two state variables are needed, at a minimum, to completely describe the motion. There are three

variables defined that could be used as state variables: the inertial position of m1, x1; the inertial

position of m2, x2; and the relative distance between m1 and m2, x.

For this example, there are three cases chosen to compare the form of the solutions. Case

1 uses the state variables x1 and x and the EOMs are derived using Newtonian mechanics. To

solve Case 1, Newton’s Second Law is evaluated on both m1 and m2 and the results can be seen in

Eqs. (1.1) and (1.2).

m1ẍ1 = kx (1.1)

m2(ẍ1 + ẍ) = −kx2 (1.2)

Putting these equations into State Space Representation [3] yieldsm1 0

m2 m2


ẍ1

ẍ

 =

0 k

0 −k


x1

x

 (1.3)
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Equation (1.3) is the matrix form of the differential equations that describe the motion of the two

masses for Case 1.

Case 2 uses the state variables x1 and x2, and Newtonian mechanics to derive the EOMs of

the system. Similar to Case 1, Newton’s Second Law is performed on both m1 and m2 and the

results can be seen in Equations (1.4) and (1.5).

m1ẍ1 = k(x2 − x1) (1.4)

m2ẍ2 = −k(x2 − x1) (1.5)

The equations are placed into State Space Representation and the results can be seen in following

equation: m1 0

0 m2


ẍ1

ẍ2

 =

−k k

k −k


x1

x2

 (1.6)

Lastly, Case 3 uses the same state variables used in Case 1, x1 and x, but uses Lagrangian

mechanics to develop the EOMs. First, the Lagrangian is defined:

L =
1

2
m1ẋ

2
1 +

1

2
m2(ẋ1 + ẋ)2 − 1

2
kx2 (1.7)

Next, Lagrange’s equation is performed on state variable x1:

∂L
∂x1
− d

dt

(
∂L
∂ẋ1

)
= (m1 +m2)ẍ1 +m2ẍ = 0 (1.8)

Similarly, Lagrange’s equation is performed on state variable x:

∂L
∂x
− d

dt

(
∂L
∂ẋ

)
= −kx−m2ẍ1 −m2ẍ = 0 (1.9)

Finally, Eqs (1.8) and (1.9) are placed into State Space Representation:m1 +m2 m2

m2 m2


ẍ1

ẍ

 =

0 0

0 −k


x1

x

 (1.10)

Comparing the forms of the solutions for Case 1, 2, and 3 in Eqs (1.3), (1.6), and (1.10), it

shows that each form is different with respect to the system mass matrix on the left hand side of the
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equations and the dynamics matrix on the right hand side of the equation. This is a simple example

but highlights the difficulty at arriving at a common form because there are an infinite number

of ways of representing the system dynamics. This non-conformity is an issue from a software

architecture perspective because the design has to incorporate the variability of the form of the

EOMs which can lead to disorganized and unmaintainable code, or a highly complex architecture.

In the literature on spacecraft dynamics, there is a strong history of development of solutions

for complex spacecraft dynamics. For example, flexible solar arrays is a common phenomenon

affecting spacecraft and their is a breadth of research presenting models of flexing solar arrays.

However, similar to the simple example provided, the models presented often vary in form and

there is not a standard way to arrive at the EOMs. For example References [4, 5, 6] present models

of spacecraft dynamics with appended solar panels but each have a different form. From a software

implementation stand point, this non-conformity provides difficulty because as new models are

added, they do not fit a specific pattern. This results in scalability issues[7] because adding new

models can result in losing functionality of the code and requiring major architectural changes.

One method to combat this is to auto-generate equations of motion using software packages.

Motion Genesis is a software package that uses Kane’s Method [8] to programatically find the EOMs

for complex multi-body dynamics [9]. MathWorks Simscape Multibody [10] can also generate EOMs

to be integrated and can output simulation code to Matlab or C code. However this approach has

a similar problem where each system will result in different equations depending on the spacecraft

and configuration, therefore implementing these equations into software can be time consuming

and not scalable [7]. Developing a software architecture surrounding one of the auto-generation

software packages that would allow for scalability would be a difficult task. Also, the product would

rely heavily on another code base that if changed could present maintainability [7] issues. Finally,

validation and verification of software models is an important aspect of the spacecraft design process

therefore the ease of testing [7] the code base can be a concern.

There is need to solve the issue of non-conformity between different dynamics problems

commonly affecting spacecraft. More specifically, there is a need to develop a standard structure
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for the EOMs that can be consistent for a wide variety of spacecraft configurations, assumptions

and derivations.

1.2.2 Development of Common Spacecraft Dynamics Problems Solutions

As discussed in the previous section, there is a rich history on complex dynamics problem

solutions for spacecraft, but the solutions provided come in many different forms, and because of

this when implementing a new simulation model in software, often times re-derivation is required

to fit in the form needed for the architecture.

In contrast to already developed solutions, there are systematic methods to develop EOMs for

complex mult-body systems. The field of multi-body dynamics has extensive research on modeling

dynamics but some of the EOMs presented in the literature are generalized for complex and diverse

problems [11, 12]. This results in re-derivation of equations because of generality [13, 14, 15, 16,

17, 18, 19]. These re-derivations can be very time consuming and error prone.

There is a need in the literature to have ready-to-implement solutions to common physical

phenomenon affecting spacecraft that have energy and momentum verification tools available. This

removes the need for re-derivation and testing which can be a time consuming task. Also using

a standard EOM form introduced in the previous section would allow for conformity between the

solutions and allow for ease of implementation into software.

1.2.3 Software Architecture for Spacecraft Dynamics Simulations

An important aspect when considering software design is the scalability, maintainability, and

testability of the software[7]. If the software is not designed well, adding complexity (scalability),

maintaining functionality amidst a changing code base (maintainability) and the ease of verifying

functionality (testability) can become extremely laborsome [20]. For complex simulations of space-

craft, this methodology needs to be considered to avoid these complications. However, multi-body

dynamics poses a difficult problem because of the coupled nature of the system through the non-

diagonal system mass matrix [1]. This mass matrix relates the dynamical effect of the second order
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state variables between all of the interconnected bodies.

Although multi-body dynamics is a complex challenge not only from an equation of mo-

tion (EOM) development perspective but from a software implementation perspective, there is an

abundant amount of open source software packages simulating multi-body dynamics. Bullet [21]

is an open source multi-body dynamics software package that utilizes the Gauss-Seidel Method

to solve the system mass inverse for diagonally dominant matrices [22]. Project CHRONO is an

open source multi-physics software package that utilizes parallel computing to solve multi-body

dynamics with a large number of degrees of freedom [23]. Rigid Body Dynamics Library is an open

source multi-body dynamics software package that utilizes the Articulated Body Algorithm and

Composite Rigid Body Algorithm for solving the dynamics [24]. Moby is a multi-body dynamics

software package that uses interior point quadratic solver to solve for constraints [25]. Although

these software packages are powerful for simulating a large number of bodies at a time, adding

spacecraft specific environmental factors and incorporating flight software into these open source

packages can be laborsome and is not the intended use of these software packages. Additionally,

validation and verification of the simulation is important for spacecraft missions and the capability

to provide the necessary information for that process is not always a key feature of these open

source packages.

In contrast to the open source packages, there are commercial software packages that are

solving multi-body dynamics problems. COMSOL is a multi-physics software package that has a

multi-body dynamics module for simulating multi-body dynamics [26]. As this is a commercial

software, the details of the software architecture and the method for solving the complex multi-

body dynamics is not readily available. MathWorks Simscape Multibody [10] can generate EOMs

to be integrated and can output simulation code to Matlab or C code. Motion Genesis uses

Kanes method[2, 18] to output simulation code to Matlab, C, or Fortran and includes energy

and momentum verification [9]. One downfall of these equation of motion generators is that the

equations are specific to that system which introduces scalability, maintainability, and testability

issues for software architecture. Additionally, these software packages, although general, present
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issues with computational efficiency.

Computer graphics also has a strong influence in physics engine software, even though being

visually realistic typically takes precedence over the dynamics accuracy. For example, Interactive

Computer Graphics has a library called Position Based Dynamics Library [27] that uses position

based dynamics. This method, which integrates position and velocity using kinematics, avoids

physical constraints but is focused on being visually realistic. This results in the dynamics being

not as accurate, but the computations being extremely fast. Indeed, the software can simulate a

very large number of degrees of freedom and is visually appealing[28, 29]. Additionally, Interactive

Computer Graphics has another physics engine called IBDS Physics Library which uses both for-

ward dynamics and position based dynamics [30, 31]. Not only is the loss of accuracy a downfall

of these methods with regards to spacecraft applications, but additionally energy and momentum

verification tools are not available which makes validating and verifying the code difficult.

In contrast to general multi-body dynamics software, there are software packages that focus

only on spacecraft simulation because of the unique environment that spacecraft encounter, and the

specific challenges that modeling spacecraft dynamics entails. STK SOLIS is a software package

for modeling spacecraft with both translational and attitude dynamics but does not model distur-

bances that can change the center of mass of the spacecraft, for example flexing solar arrays [32].

The Jet Propulsion Laboratory has a software package, Dynamics Algorithms for Real-Time Sim-

ulation (DARTS) [33]. This simulation software package utilizes spacial operator algebra for the

development of the multibody dynamics [34] to create the system mass matrix in a form that can

be solved efficiently with a recursive algorithm [35]. NASA’s open source software package named

42 [36], allows for spacecraft composed of multiple rigid or flexible bodies using tree-topology [16]

to formulate the dynamics resulting in a system mass matrix inversion solution. Orekit is an open

source software package for spacecraft simulations and flight software and models the spacecraft as

a rigid body and the dynamics are primarily focused on defining perturbations as external forces

and torques [37].

The spacecraft specific software packages described that involve multi-body dynamics have
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to populate a system mass matrix and either have to find the inverse of the matrix or use other

linear algebra techniques [34, 35]. Populating the system mass matrix while retaining a modular

software architecture is difficult because the system needs to know the locations of the states in

the system mass matrix and also know the relative locations of other coupled states. Additionally,

inverting the system mass matrix can be computationally expensive because the calculation scales

with N3, with N being the number of states.

Removing the need to invert the full system mass matrix to solve the fully-coupled dynamics

problem would greatly simplify the software architecture while retaining the full system dynamics.

Additionally, arriving at a modular software architecture would be easier because the second order

states would no longer be coupled in the system mass matrix. Additionally, energy and momentum

verification would still be available because the full solution is being calculated.

1.3 Research Goals

In summary, the overarching novel contribution from this dissertation is to standardize the

EOMs of spacecraft while being applicable to a wide range of spacecraft configurations, introduce a

back-substitution method to remove the need to invert the entire system mass matrix which results

in a modular form of the EOMs, and develop a modular software architecture that leverages the

modularized equations. While prior methods allow for general multi-body setups, this method is

specifically developed for common spacecraft configurations where there is a single rigid spacecraft

hub onto which additional bodies (both rigid and flexible) are attached. This assumption is a

key enabler that leads to an elegant modular framework that can be implemented in numerical

simulations without dropping any dynamical coupling between the components. This allows for

the underlying physics to be retained which enables energy and momentum conservation checks to

be completed.

Additionally, this dissertation aims to develop EOMs to common physical phenomenon seen

by spacecraft. This removes the need to re-derive EOMs for the chosen set of dynamics problems

which can be time a consuming and error prone task. The dissertation provides ready to implement
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solutions that fit the generalized form of the EOMs introduced in the dissertation and also provides

examples on the systematic approach for developing EOMs for the introduced modular software

architecture.

The resulting dynamics software architecture and the solutions to common dynamics prob-

lems provide a ready-to-implement solution that allows the user to rapidly configure a broad range

of spacecraft configurations without having to derive equations of motion or integrate auto-coded

equations. The modular form allows for new types of dynamic forces and torques to be added with-

out having to re-derive all the other spacecraft equations of motion, enabling a layered approach

to increase the simulation modeling capabilities.

In summary, below is a list of the research goals providing the scope of the research project:

(1) Modularization of Equations of Motion

• Introduce a generalized EOM form for spacecraft dynamics that applies to a wide

variety spacecraft applications

• Manipulate these generalized EOMs into a modular form using a method called the

back-substitution method

• Manipulate the energy and momentum calculations into a modular form

• Expand the modular EOMs to multiple spacecraft which can dock and detach

(2) Spacecraft Specific Equations of Motion Solutions

• Develop and provide ready-to-implement solutions for common phenomenon seen by

spacecraft that avoids the need for re-derivation and provides examples to arrive at

the general equation of motion form

• Provide examples that confirm Kane’s method can be used to also arrive at the gen-

eralized EOM form

(3) Modular Software Architecture for Spacecraft Dynamics Simulations



11

• Introduce a modular software architecture that will leverage the equations of motion

form and result in code that is easy to test, scale, maintain and is computationally

efficient

• Expand this architecture to allow for multiple spacecraft to dock and detach from one

another



Chapter 2

Modularization of Spacecraft Equations

There are an infinite number of ways to describe the motion of a system with EOMs. The

final form of the EOMs depend on the chosen assumptions, state variables, coordinate frames and

methods used to arrive at the solutions. In Section 1.2.1 the simple example seen in 1.2, three

different forms of the EOMs are shown depending on the state variables and the derivation method

used. This shows that when deriving EOMs for spacecraft, which can be much more complicated,

quickly there is a disagreement on the form of the EOMs for a single system. Additionally, when

considering a new system with different dynamics, the form of the EOMs can look even further

different.

This section’s goal is to develop a standard form for spacecraft EOMs that is applicable

to a wide range of spacecraft. Using this standard form, a back-substitution method is used to

modularize the EOMs that removes the need to invert the full system mass matrix while retaining

the full solution. Finally, the modularized energy and momentum calculations are introduced that

provides an efficient way to verify the implementation of equations in software.

2.1 Spacecraft Specific Compact Equations of Motion Form

An important consideration when first developing the EOMs are the associated assumptions

because they will ultimately dictate how applicable the mathematical structure is to different

dynamical systems. Figure 2.1 shows an example spacecraft with flexing solar arrays and lumped

mass fuel slosh and will be the reference when discussing the assumptions[38]. Since both of these
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Figure 2.1: Complex spacecraft with multiple degrees of freedom

types of physical phenomena change the center of mass of the spacecraft, they are good examples

for the multi-body spacecraft problems. The common aspect the majority of spacecraft share is

that, at least, a small portion can be assumed to be rigid. In Figure 2.1 the rigid portion of the

spacecraft is the gray cylinder. This portion is called the rigid-body hub. The hub is assumed to

have a non-zero mass, mhub, a center of mass location, Bc and an inertia tensor defined about its

center of mass, [Ihub,Bc ].

The most important aspect of the rigid-body hub is that it is the object that the body frame,

B : {b̂1, b̂2, b̂3}, is attached to. To keep the formulation as general as possible, the body frame

origin, point B, does not have to be coincident with the hub’s center of mass, point Bc. It is

common to make the assumption that these two points are coincident, and makes the derivation of

the EOMs simpler [2, 8], however, allowing point B to be located at any location fixed with respect

to the rigid hub gives more generality. It is also common in spacecraft missions that a structure

frame is defined by the structural engineering team where its origin is not coincident with the rigid-

body hub’s center of mass. Therefore, it gives flexibility in where the body frame origin can be

defined. An additional assumption that keeps the formulation as general as possible, is the inertia

tensor [Ihub,Bc ] does not need to be diagonal when defined as a matrix in body frame components.

The formulation would be simpler but less general if a diagonal matrix were used. [8, 39, 40]
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Now that the rigid-body hub is defined, the state variables that define the state of the hub at

any given time are: the position of point B with respect to the origin of the inertial frame N , rB/N ,

the inertial velocity of point B with respect to point N , ṙB/N , the Modified Rodrigues Parameters

(MRPs) representation of the body frame B with respect to the inertial frame N , σB/N and the

inertial angular velocity vector of the body frame B with respect to the inertial frame N , ωB/N .

The MRPs are the chosen attitude parameterization set because its a minimal set of 3 parameters

with elegant non-singular implementations [39]. However, the dynamics are independent of the

chosen attitude parameterization, therefore any attitude description can be used. These 4 variables

represent the 6 degrees of freedom that the rigid-body hub exhibits and represents the 12 state

variables that are needed to implement a second order differential equation in software. These, at

a minimum, are the states required for the system. All of the additional degrees of freedom on the

system will be referenced to the body frame, B.

Now that the important parameters have been defined for the rigid-body hub, other degrees

of freedom need to be introduced and generalized. Figure 2.1 shows an example with flexing solar

panels and lumped mass fuel slosh as additional degrees of freedom as an example system. Each

of these models are labeled as “effectors”. Each effector is assumed to have a mass, meff, a center

mass location, Ec, and a position vector from point B to Ec, rEc/B. If the effector has inertia

properties, it also has a frame, E : {ê1, ê2, ê3}, and an inertia tensor, [Ieff,Ec ], that is defined about

its center of mass, Ec.

With the hub parameters and the effector parameters defined, the general form proposed

in this research for the hub’s EOMs is shown in Eqs. (2.1) and (2.2). This general form is for-

malized by using a systematic approach for multiple dynamics problem formulations including

flexible solar arrays[41], lumped mass fuel slosh[38], imbalanced reaction wheels[42], fully-coupled

mass depletion[43], and imbalanced variable speed control moment gyroscopes[44, 45]. The first
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equation proposed for this general form is the translational motion equation:

mscr̈B/N −mscc× ω̇B/N +

Neff∑
i=1

NDOF,i∑
j=1

vTrans,LHSij
α̈ij = Fext − 2mscωB/N × c′

−mscωB/N ×
(
ωB/N × c

)
+

Neff∑
i=1

vTrans,RHSi
(2.1)

The system parameters in Eq. (2.1) include the total mass of the spacecraft, msc, the vector from

point B to the instantaneous center of mass of the entire spacecraft, c, and the body frame relative

time derivative with respect to the body frame of c, c′. Neff is the number of effectors, NDOF,i

is the ith effector’s degrees of freedom, vTrans,LHSij
is a vector for the translational equation that

corresponds with the jth degree of freedom of the ith effector’s second order derivative of its state,

αij , and vTrans,RHSi
is the ith effector’s vector contribution to the forces on the right hand side of

Eq. (2.1). This proposed equation of motion form is general and common for any effector attached

to a spacecraft. Later in this dissertation specific formulations are illustrated for a select set of

effectors.

The rotational EOMs form are proposed to be of the following form

mscc× r̈B/N + [Isc,B]ω̇B/N +

Neff∑
i=1

NDOF,i∑
j=1

vRot,LHSij
α̈ij = LB − ωB/N ×

(
[Isc,B]ωB/N

)
− [I ′sc,B]ωB/N +

Neff∑
i=1

vRot,RHSi
(2.2)

where [Isc,B] is the inertia tensor of the total spacecraft (hub and effectors) about point B, [I ′sc,B] is

the time derivative with respect to the body frame of [Isc,B], vRot,LHSij
is a vector for the rotational

equation that corresponds with the jth degree of freedom of ith effector’s second order derivative of

its state, αij , and vRot,RHSi
is the ith effector’s vector contribution to the torques on the right hand

side of Eq. (2.2).

Finally, the individual effector degree of freedom EOMs are proposed to fit the following

form:

ajjiα̈ij +

NDOF,i∑
k=1;k 6=j

ajkiα̈ik = aαij · r̈B/N + bαij · ω̇B/N + cαij (2.3)
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where each effector has NDOF,i EOMs needed to fully describe the motion of that effector. If

NDOF,i = 1 for an effector, Eq. (2.3) simplifies to:

α̈i = aαi · r̈B/N + bαi · ω̇B/N + cαi (2.4)

Eqs. (2.1)-(2.4) are the generalized EOMs that can apply to a wide-variety of spacecraft.

Utilizing this common form yields consistent EOMs that enable the modular software architecture.

While looking at Eqs. (2.3) and (2.4), it should be pointed out that the ith effector EOM does not

include the second order state variables from other effectors, only the individual effectors and their

corresponding degrees of freedom. This is a key assumption that will allow for modularity between

all of the effectors attached to the rigid-body hub.

2.2 Multi-Rigidly Connected Spacecraft Equations of Motion Form

A goal of this dissertation is to allow for multiple spacecraft to simulated at a time and allow

for docking and detachment of spacecraft. A diagram depicting this multi-spacecraft architecture

can be seen in Figure 2.2. In the diagram the primary spacecraft has the primary hub frame P in

which all of the dynamics will be computed with respect to. However, this only corresponds to the

connected spacecraft. In Figure 2.2 the unconnected spacecraft will act just like the independent

spacecraft introduced in the previous section. An assumption with this research is that when the

spacecraft are attached, they are connected rigidly through their rigid-body hubs. This assumption

allows for the dynamics to retain a standard form. In other words, the resulting spacecraft system

has a larger rigid hub section but has the same form of the EOMs as presented in the previous

section. However, from a software architecture perspective, the EOMs of the system need to be

generalized. The translational equation is defined in Equation (2.5).

msysr̈P/N −msys[c̃P ]ω̇P/N +

Neff∑
i=1

NDOF,i∑
j=1

vTrans,LHSij
α̈ij = Fext − 2msc[ω̃P/N ]c′P

−msc[ω̃P/N ][ω̃P/N ]cP +

Neff∑
i=1

vTrans,RHSi
(2.5)
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<latexit sha1_base64="QaR97bKzqSRG9Zc+XyRfAa1iwKU=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsA9oh5LJZNrQTDIkmUIZ+iduXCji1j9x59+YaWehrRdCDuecS05OmHKmjed9O5Wt7Z3dvep+7eDw6PjEPT3rapkpQjtEcqn6IdaUM0E7hhlO+6miOAk57YXT+0LvzajSTIonM09pkOCxYDEj2Fhq5LrDUPJIzxN75WQxao/chtf0loM2gV+CBpRj/V/DSJIsocIQjrUe+F5qghwrwwini9ow0zTFZIrHdGChwAnVQb5MvkCXlolQLJU9wqAl+3sjx4kuwllngs1Er2sF+Z82yEx8F+RMpJmhgqweijOOjERFDShiihLD5xZgopjNisgEK0yMLatmS/DXv7wJutdN32v6jzeNVr2sowoXUIcr8OEWWvAAbegAgRk8wyu8Obnz4rw7HytrxSl3zuHPOJ8/ASqTyA==</latexit><latexit sha1_base64="QaR97bKzqSRG9Zc+XyRfAa1iwKU=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsA9oh5LJZNrQTDIkmUIZ+iduXCji1j9x59+YaWehrRdCDuecS05OmHKmjed9O5Wt7Z3dvep+7eDw6PjEPT3rapkpQjtEcqn6IdaUM0E7hhlO+6miOAk57YXT+0LvzajSTIonM09pkOCxYDEj2Fhq5LrDUPJIzxN75WQxao/chtf0loM2gV+CBpRj/V/DSJIsocIQjrUe+F5qghwrwwini9ow0zTFZIrHdGChwAnVQb5MvkCXlolQLJU9wqAl+3sjx4kuwllngs1Er2sF+Z82yEx8F+RMpJmhgqweijOOjERFDShiihLD5xZgopjNisgEK0yMLatmS/DXv7wJutdN32v6jzeNVr2sowoXUIcr8OEWWvAAbegAgRk8wyu8Obnz4rw7HytrxSl3zuHPOJ8/ASqTyA==</latexit><latexit sha1_base64="QaR97bKzqSRG9Zc+XyRfAa1iwKU=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsA9oh5LJZNrQTDIkmUIZ+iduXCji1j9x59+YaWehrRdCDuecS05OmHKmjed9O5Wt7Z3dvep+7eDw6PjEPT3rapkpQjtEcqn6IdaUM0E7hhlO+6miOAk57YXT+0LvzajSTIonM09pkOCxYDEj2Fhq5LrDUPJIzxN75WQxao/chtf0loM2gV+CBpRj/V/DSJIsocIQjrUe+F5qghwrwwini9ow0zTFZIrHdGChwAnVQb5MvkCXlolQLJU9wqAl+3sjx4kuwllngs1Er2sF+Z82yEx8F+RMpJmhgqweijOOjERFDShiihLD5xZgopjNisgEK0yMLatmS/DXv7wJutdN32v6jzeNVr2sowoXUIcr8OEWWvAAbegAgRk8wyu8Obnz4rw7HytrxSl3zuHPOJ8/ASqTyA==</latexit><latexit sha1_base64="QaR97bKzqSRG9Zc+XyRfAa1iwKU=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CS2CqzIjgi4LblxWsA9oh5LJZNrQTDIkmUIZ+iduXCji1j9x59+YaWehrRdCDuecS05OmHKmjed9O5Wt7Z3dvep+7eDw6PjEPT3rapkpQjtEcqn6IdaUM0E7hhlO+6miOAk57YXT+0LvzajSTIonM09pkOCxYDEj2Fhq5LrDUPJIzxN75WQxao/chtf0loM2gV+CBpRj/V/DSJIsocIQjrUe+F5qghwrwwini9ow0zTFZIrHdGChwAnVQb5MvkCXlolQLJU9wqAl+3sjx4kuwllngs1Er2sF+Z82yEx8F+RMpJmhgqweijOOjERFDShiihLD5xZgopjNisgEK0yMLatmS/DXv7wJutdN32v6jzeNVr2sowoXUIcr8OEWWvAAbegAgRk8wyu8Obnz4rw7HytrxSl3zuHPOJ8/ASqTyA==</latexit>

P
<latexit sha1_base64="U5boshghdtMIBd+mjSiSaMKodIQ=">AAAB6HicbVBNS8NAFHypX7V+VT16WVoETyURQY8FLx5bMG2hDbLZvrRrN5uwuxFK6C/w4kERr/4kb/4bt20O2jqwMMzMY9+bMBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhLVC6lGwSX6hhuBvVQhjUOB3XByO/e7T6g0T+S9maYYxHQkecQZNVZqtx6qdbfhLkDWiVeQOhSw+a/BMGFZjNIwQbXue25qgpwqw5nAWWWQaUwpm9AR9i2VNEYd5ItFZ+TcKkMSJco+achC/T2R01jraRzaZEzNWK96c/E/r5+Z6CbIuUwzg5ItP4oyQUxC5leTIVfIjJhaQpnidlfCxlRRZmw3FVuCt3ryOulcNjy34bWv6s1aUUcZzqAGF+DBNTThDlrgAwOEZ3iFN+fReXHenY9ltOQUM6fwB87nD5/5jLQ=</latexit><latexit sha1_base64="U5boshghdtMIBd+mjSiSaMKodIQ=">AAAB6HicbVBNS8NAFHypX7V+VT16WVoETyURQY8FLx5bMG2hDbLZvrRrN5uwuxFK6C/w4kERr/4kb/4bt20O2jqwMMzMY9+bMBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhLVC6lGwSX6hhuBvVQhjUOB3XByO/e7T6g0T+S9maYYxHQkecQZNVZqtx6qdbfhLkDWiVeQOhSw+a/BMGFZjNIwQbXue25qgpwqw5nAWWWQaUwpm9AR9i2VNEYd5ItFZ+TcKkMSJco+achC/T2R01jraRzaZEzNWK96c/E/r5+Z6CbIuUwzg5ItP4oyQUxC5leTIVfIjJhaQpnidlfCxlRRZmw3FVuCt3ryOulcNjy34bWv6s1aUUcZzqAGF+DBNTThDlrgAwOEZ3iFN+fReXHenY9ltOQUM6fwB87nD5/5jLQ=</latexit><latexit sha1_base64="U5boshghdtMIBd+mjSiSaMKodIQ=">AAAB6HicbVBNS8NAFHypX7V+VT16WVoETyURQY8FLx5bMG2hDbLZvrRrN5uwuxFK6C/w4kERr/4kb/4bt20O2jqwMMzMY9+bMBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhLVC6lGwSX6hhuBvVQhjUOB3XByO/e7T6g0T+S9maYYxHQkecQZNVZqtx6qdbfhLkDWiVeQOhSw+a/BMGFZjNIwQbXue25qgpwqw5nAWWWQaUwpm9AR9i2VNEYd5ItFZ+TcKkMSJco+achC/T2R01jraRzaZEzNWK96c/E/r5+Z6CbIuUwzg5ItP4oyQUxC5leTIVfIjJhaQpnidlfCxlRRZmw3FVuCt3ryOulcNjy34bWv6s1aUUcZzqAGF+DBNTThDlrgAwOEZ3iFN+fReXHenY9ltOQUM6fwB87nD5/5jLQ=</latexit><latexit sha1_base64="U5boshghdtMIBd+mjSiSaMKodIQ=">AAAB6HicbVBNS8NAFHypX7V+VT16WVoETyURQY8FLx5bMG2hDbLZvrRrN5uwuxFK6C/w4kERr/4kb/4bt20O2jqwMMzMY9+bMBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhLVC6lGwSX6hhuBvVQhjUOB3XByO/e7T6g0T+S9maYYxHQkecQZNVZqtx6qdbfhLkDWiVeQOhSw+a/BMGFZjNIwQbXue25qgpwqw5nAWWWQaUwpm9AR9i2VNEYd5ItFZ+TcKkMSJco+achC/T2R01jraRzaZEzNWK96c/E/r5+Z6CbIuUwzg5ItP4oyQUxC5leTIVfIjJhaQpnidlfCxlRRZmw3FVuCt3ryOulcNjy34bWv6s1aUUcZzqAGF+DBNTThDlrgAwOEZ3iFN+fReXHenY9ltOQUM6fwB87nD5/5jLQ=</latexit>

Bc = C
<latexit sha1_base64="i4HBdYXNKasDYvb9UZ/pURSb7ec=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoBeh2IvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1g0pj7nSdUmsfy0UwT9CM6kjzkjBorde4GjNySxqBcdWvuAmSdeDmpQo7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oycW2VIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5P2Zc1za97DVbVeyeMowhlU4AI8uIY63EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w+3WY5k</latexit><latexit sha1_base64="i4HBdYXNKasDYvb9UZ/pURSb7ec=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoBeh2IvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1g0pj7nSdUmsfy0UwT9CM6kjzkjBorde4GjNySxqBcdWvuAmSdeDmpQo7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oycW2VIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5P2Zc1za97DVbVeyeMowhlU4AI8uIY63EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w+3WY5k</latexit><latexit sha1_base64="i4HBdYXNKasDYvb9UZ/pURSb7ec=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoBeh2IvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1g0pj7nSdUmsfy0UwT9CM6kjzkjBorde4GjNySxqBcdWvuAmSdeDmpQo7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oycW2VIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5P2Zc1za97DVbVeyeMowhlU4AI8uIY63EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w+3WY5k</latexit><latexit sha1_base64="i4HBdYXNKasDYvb9UZ/pURSb7ec=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIoBeh2IvHCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53CxubW9k5xt7S3f3B4VD4+aes4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1g0pj7nSdUmsfy0UwT9CM6kjzkjBorde4GjNySxqBcdWvuAmSdeDmpQo7moPzVH8YsjVAaJqjWPc9NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oycW2VIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSE974GZdJalCy5aIwFcTEZP47GXKFzIipJZQpbm8lbEwVZcYmVLIheKsvr5P2Zc1za97DVbVeyeMowhlU4AI8uIY63EMTWsBgAs/wCm9O4rw4787HsrXg5DOn8AfO5w+3WY5k</latexit>

c
<latexit sha1_base64="wBob/CJ9MUfz0cz+Zm7QiJSWjVI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRoS4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4ZmY+qdbfhLoDWiVeQOhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1H51YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5Ca6NrPmEhSQwVZPhSlHBmJ8gpQyBQlhs8swUQxmxWRCVaYGFtUxZbgrX55nXQvG57b8O6u6q1aUUcZzqAGF+BBE1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPynDktQ=</latexit><latexit sha1_base64="wBob/CJ9MUfz0cz+Zm7QiJSWjVI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRoS4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4ZmY+qdbfhLoDWiVeQOhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1H51YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5Ca6NrPmEhSQwVZPhSlHBmJ8gpQyBQlhs8swUQxmxWRCVaYGFtUxZbgrX55nXQvG57b8O6u6q1aUUcZzqAGF+BBE1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPynDktQ=</latexit><latexit sha1_base64="wBob/CJ9MUfz0cz+Zm7QiJSWjVI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRoS4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4ZmY+qdbfhLoDWiVeQOhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1H51YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5Ca6NrPmEhSQwVZPhSlHBmJ8gpQyBQlhs8swUQxmxWRCVaYGFtUxZbgrX55nXQvG57b8O6u6q1aUUcZzqAGF+BBE1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPynDktQ=</latexit><latexit sha1_base64="wBob/CJ9MUfz0cz+Zm7QiJSWjVI=">AAAB9XicbVDLSgMxFL1TX7W+qi7dhBbBVZkRoS4LblxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7papkqQjtEcqn6AdaUM0E7hhlO+4miOA447QXTm9zvPVKlmRT3ZpZQP8ZjwSJGsLHSwzCQPNSz2F4ZmY+qdbfhLoDWiVeQOhRoj6pfw1CSNKbCEI61HnhuYvwMK8MIp/PKMNU0wWSKx3RgqcAx1X62SD1H51YJUSSVPcKghfp7I8OxzqPZyRibiV71cvE/b5Ca6NrPmEhSQwVZPhSlHBmJ8gpQyBQlhs8swUQxmxWRCVaYGFtUxZbgrX55nXQvG57b8O6u6q1aUUcZzqAGF+BBE1pwC23oAAEFz/AKb86T8+K8Ox/L0ZJT7JzCHzifPynDktQ=</latexit>

Figure 2.2: Multiple spacecraft diagram for multi-spacecraft dynamics

The total mass of the spacecraft system is labeled msys, the vector from point P to the center of

mass of the spacecraft system is defined as cP , and the time derivative with respect to the body

fixed frame P of cP , is c′P .

Similarly, the proposed rotational EOMs form can be seen in Eq. (2.6). [Isys,P ] is the inertia

of the spacecraft system about point P , and [I ′sys,P ] is the time derivative with respect to the body

frame of [Isys,P ].

msys[c̃P ]r̈P/N + [Isys,P ]ω̇P/N +

Neff∑
i=1

NDOF,i∑
j=1

vRot,LHSij
α̈ij = LP − [ω̃P/N ][Isys,P ]ωP/N

− [I ′sys,P ]ωP/N +

Neff∑
i=1

vRot,RHSi
(2.6)

Finally, the individual effector degree of freedom EOMs are similar to the EOMs in the
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previous section, but are now about the body frame origin of the system point P :

ajjiα̈ij +

NDOF,i∑
k=1;k 6=j

ajkiα̈ik = aαij · r̈P/N + bαij · ω̇P/N + cαij (2.7)

α̈i = aαi · r̈P/N + bαi · ω̇P/N + cαi (2.8)

These equations will be used in software when the spacecraft are attached to each other. r̈P/N and

ω̇P/N would only need to be found for one of the spacecraft, the primary spacecraft, with their

states being integrated using those accelerations. Once the states rP/N , ṙP/N , σP/N , ωP/N of the

primary spacecraft are found the states of the other attached spacecraft can be found by kinematic

relationships. This results in the minimum amount of math required to solve the problem while

retaining the full system dynamics.

2.3 Back-Substitution Method

A product of multi-body dynamics is the dynamic coupling between the second order state

variables that results in a non-diagonal system mass matrix [8]. This can be troublesome in at-

tempting to integrate the EOMs in software. When integrating EOMs the form that is beneficial

is Ẋ = f(X, t) where X is the state vector, Ẋ is the time derivative of X, and f(X, t) is a

function of the current state and time, t. When there is a system mass matrix, [M ], present, the

form changes to [M ]Ẋ = f(X, t). Therefore, a system mass matrix needs to be inverted to solve

this complex problem. This results in two problems with inverting a system mass matrix. Firstly,

inverting a matrix can be computational inefficient because the calculation scales with cube of the

number of states. Secondly, the modularization of the dynamics from software implementation

perspective is a difficult task because the system needs to know the location of each effector within

the system mass matrix and locations relative to the other effectors. A back-substitution method

is developed to solve this problem.

To visualize the impact of the EOMs generalized form, the spacecraft seen in Figure 2.3 is

used as an example. The spacecraft has panels modeled as two interconnected rigid-bodies with a
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single rotational degree of freedom each. Figure 2.3 only shows 2 sets of dual-connected solar panels,

but the example is generalized to Ns number of sets. If the EOMs were put into the generalized

form from the previous section, the dynamical coupling of this complex system would be visualized

in the following schematic of the resulting coupled differential equations:

3× 3 3× 3 3× 1 3× 1 3× 1 3× 1 . 3× 1 3× 1

3× 3 3× 3 3× 1 3× 1 3× 1 3× 1 . 3× 1 3× 1

1× 3 1× 3 1× 1 1× 1 0 0 . 0 0

1× 3 1× 3 1× 1 1× 1 0 0 . 0 0

1× 3 1× 3 0 0 1× 1 1× 1 . 0 0

1× 3 1× 3 0 0 1× 1 1× 1 . 0 0

. . . . . . . . .

1× 3 1× 3 0 0 0 0 . 1× 1 1× 1

1× 3 1× 3 0 0 0 0 . 1× 1 1× 1





r̈B/N

ω̇B/N

θ̈11

θ̈12

θ̈21

θ̈22

.

θ̈Ns1

θ̈Ns2



=



3× 1

3× 1

1× 1

1× 1

1× 1

1× 1

.

1× 1

1× 1



(2.9)

Eq. (2.9) shows the form of the second order state variable coupling that results from this config-

uration. It confirms that the individual degrees of freedom for the sets of solar panels are coupled

with each other, but are not directly coupled through second order state derivatives with the other

sets of panels. This is a key insight and is exploited in the following back-substitution method.

O

N

ŝi1,3
ĥi1,3

ŝi1,1

ĥi1,1

ĥi1,2 = ŝi1,2

Sc,i1

Bc

C

c

✓i1
Hi

b̂3

b̂2b̂1

B

mspi1

ĥi1,3

✓i2

Sc,i2

ŝi2,3

ŝi2,2

ŝi2,1

ĥi2,1

Figure 2.3: Dual-hinged rigid-bodies frame and variable definitions
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Looking further into Eq. (2.9), all of the solar panel second order state derivatives are present

in the hub translational and rotational equations. On the other hand, the hub translational and

rotational second order state variables are present in the individual solar panel EOMs. This dynamic

coupling through the hub is another key insight that the back-substitution method will use to

modularize the EOMs.

This section of the dissertation expresses the vector equations shown in the past section as

matrix equations. These equations do not specify a frame in which the matrix components are

expressed with respect to but one must use a single frame when implementing these equations in

software. A common frame to express the equations in would be the body frame, B. Since these

equations are matrix equations the following notation will be used: the cross product is expressed

as [ã]b, is expressed as aTb and the outer product is expressed as abT .

The back-substitution method is presented for effectors that have NDOF,i = 1 for this section

but is extended to effectors with multiple degrees of freedom in Section 3.1.6. The first step in

the back substitution method is to substitute Eq. (2.4) into both the translational and rotational

EOMs for the rigid-body hub. First, the substitution into the translational motion for NDOF,i = 1

is shown in the following equation:

mscr̈B/N −msc[c̃]ω̇B/N +

Neff∑
i=1

vTrans,LHSi

[
aTαi
r̈B/N + bTαi

ω̇B/N + cαi

]
= Fext

− 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c+

Neff∑
i=1

vTrans,RHSi
(2.10)

Simplifying and combining like terms yields the translational EOM that has been decoupled from

the other effector accelerations:

[
msc[I3×3] +

Neff∑
i=1

vTrans,LHSi
aTαi

]
r̈B/N +

[
−msc[c̃] +

Neff∑
i=1

vTrans,LHSi
bTαi

]
ω̇B/N = Fext

− 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c+

Neff∑
i=1

[
vTrans,RHSi

− vTrans,LHSi
cαi

]
(2.11)
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Following the same pattern for the rotational hub EOM, Eq. (2.2), yields:

[
msc[c̃] +

Neff∑
i=1

vRot,LHSi
aTαi

]
r̈B/N +

[
[Isc,B] +

Neff∑
i=1

vRot,LHSi
bTαi

]
ω̇B/N = LB

− [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N +

Neff∑
i=1

[
vRot,RHSi

− vRot,LHSi
cαi

]
(2.12)

The following matrices are defined to yield a more compact notation:

[A] = msc[I3×3] +

Neff∑
i=1

vTrans,LHSi
aTαi

(2.13)

[B] = −msc[c̃] +

Neff∑
i=1

vTrans,LHSi
bTαi

(2.14)

[C] = msc[c̃] +

Neff∑
i=1

vRot,LHSi
aTαi

(2.15)

[D] = [Isc,B] +

Neff∑
i=1

vRot,LHSi
bTαi

(2.16)

vTrans = Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c+

Neff∑
i=1

[
vTrans,RHSi

− vTrans,LHSi
cαi

]
(2.17)

vRot = LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N +

Neff∑
i=1

[
vRot,RHSi

− vRot,LHSi
cαi

]
(2.18)

Using these definitions, the coupled translation and rotation hub EOMs are written compactly as[A] [B]

[C] [D]


 r̈B/N
ω̇B/N

 =

vTrans

vRot

 (2.19)

Equation (2.19) represents a system of 6 equations, that can be solved using the Schur complement

matrix formulation[46] for the partitioned form of the hub system mass matrix:

ω̇B/N =
(

[D]− [C][A]−1[B]
)−1

(vRot − [C][A]−1vTrans) (2.20)
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r̈B/N = [A]−1(vTrans − [B]ω̇B/N ) (2.21)

This shows that the back-substitution method only requires two 3 × 3 matrix inverses. The ad-

ditional degree of freedom second order state derivatives are found by back-substituting these

solutions into Eqs. (2.3) and (2.4).

This back-substitution method, by leveraging the pattern of the system mass matrix, has

provided a way to avoid inverting the full system mass matrix, and perform the minimum amount

of math required to solve the fully-coupled problem. Energy and momentum tools are still available

because no compromising assumptions were made. The second order state variables are no longer

coupled in the system mass matrix which will allow for a modular software architecture. This allows

the software to not need to manage the interrelations between different effectors in the system mass

matrix. This will be further explained in Section 4.

2.4 Back-Substitution Method Computational Performance

The resulting formulation for the back-substitution method removes the necessity of inverting

the system mass matrix and only requires two 3 × 3 matrix inversions using the Schur matrix

formulation seen in Eqs. (2.20) and (2.21). This form of the solution is the same no matter what

system is being considered as long as the system adheres generalized EOM form introduced in this

dissertation. This results in a fixed size matrix implementation in software. In contrast, in solutions

having to populate a full system mass matrix the mass matrix can change in size which will result

in dynamically sized matrices and can impact computational performance.

To analyze these effects with respect to computational performance, a simulation was created

to attach a varying number of fuel slosh particles and flexing appended bodies [38] to see how the

performance scales with respect to the number of degrees of freedom. Both the back-substitution

method introduced in this paper for this system and the full system matrix solution is considered in

this analysis. The specific spacecraft parameters for the hub, fuel slosh and flexing appended bodies
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Figure 2.4: Computational efficiency of back-substitution method

are not included here because the computational performance is independent to those parameters.

The associated mathematical operations are the critical component, not the numerical values being

computed.

A computationally efficient C++ library named Eigen [47] is used for all of the matrix algebra.

Eigen has different methods included on how to solve a system of equations and one of these methods

is called QR decomposition. This method does not require the solution of the system mass matrix

inverse, but rather solves directly for the solution to the system which will increase the speed of

calculations. The method also leverages the pattern of the matrix being solved [47] and therefore is

more applicable to diagonally dominant matrices which is common in dynamics formulations [34].

Because the back-substitution method is solving the full solution, the QR decomposition method

was chosen because other methods can affect the accuracy of the solution.

The computational performance results are illustrated in Figure 2.4. The quantity used to

define the performance is the times longer for the system mass matrix solution. Therefore, the

higher the number the more efficient the back-substitution method is. Also, it should be noted that

the figure uses an interpolation function to try and smooth the curves between the different data

points. The data points are discrete integer values with respect the number of fuel slosh particles
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and solar panels and so the discontinuities are expected. The results shows that at a minimum

the back-substitution method is 3 times as fast and the speed improvements positively scale with

the number of attached fuel slosh particles and flexing appended bodies. When there are 10 fuel

slosh particles and 10 appended flexing bodies, the system mass matrix solution takes 8 times

longer to compute the solution. The back-substitution method is always more efficient because a

dynamically allocated size matrix is not required for this solution. The reason that the number

of solar panels does not scale as quickly as fuel slosh particles is because of the complexity of the

EOMs. There are more calculations required when implementing the flexing equations than the

fuel slosh equations, therefore the speed up is not as high as the fuel slosh. These results quantify

the expected computational performance of the the back-substitution method and furthers the

applicability of the back-substitution method for complex spacecraft simulations.

2.5 Modularization of Energy and Momentum Calculations

A key part of EOM development is expressing the total energy and momentum of the space-

craft for verification purposes. This section describes the proposed method for how the energy

and momentum is calculated and modularized for each effector to add their contributions to the

overall total energy. It is advantageous to define energy and momentum of the center of mass

of the spacecraft (orbital) and about its center of mass (rotational). This is because the orbital

and rotational energies typically have different orders of magnitude and so separating these terms

will avoid numerical issues in the verification process, and both quantities should be conserved in

applicable scenarios.

First, the orbital energy is analytically expressed to be in terms of the state variables. The

total orbital kinetic energy (i.e. kinetic energy of the center of mass) of the spacecraft is

Torb =
1

2
mscṙC/N · ṙC/N (2.22)

Expanding ṙC/N to be in terms of ṙB/N and ċ results in

Torb =
1

2
msc(ṙB/N + ċ) · (ṙB/N + ċ) (2.23)
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This simplifies to the final desired equation

Torb =
1

2
msc(ṙB/N · ṙB/N + 2ṙB/N · ċ+ ċ · ċ) (2.24)

Each effector contributes to c and ċ, but does not have direct individual contributions. Additionally,

in this form each effector does not need to know about the center of mass location of the spacecraft

which is advantageous from a modularity perspective.

The total orbital potential energy depends on what type of gravity model is being used or if

other conservative external forces are acting on the spacecraft. For simplicity, the orbital potential

energy due to point gravity is included here but spherical harmonics and other higher order effects

could be included.

Vorb = − µ

|rC/N |
(2.25)

It is convenient to combine the kinetic and potential energies into one term, Eorb, because

the total orbital energy of the spacecraft must be conserved when there are no non-conservative

external forces and torques acting on the spacecraft. This is shown in the following equation.

Eorb = Torb + Vorb (2.26)

Next, there is the expression of the rotational energy. The total rotational and deformational

kinetic energy (i.e. kinetic energy about the center of mass) of the spacecraft is

Trot =
1

2
ωB/N · [Ihub,Bc ]ωB/N +

1

2
mhubṙBc/C · ṙBc/C

+

Neff∑
i=1

(1

2
ωEi/N · [Ieff,Ec,i

]ωEi/N +
1

2
meffṙEc,i/C · ṙEc,i/C

)
(2.27)

Expanding and combining like terms results in

Trot =
1

2
ωB/N · [Ihub,Bc ]ωB/N +

1

2
mhubṙBc/B · ṙBc/B +

Neff∑
i=1

[1

2
ωEi/N · [Ieff,Ec,i

]ωEi/N

+
1

2
meffṙEc,i/B · ṙEc,i/B

]
−
[
mhubṙBc/B +

Neff∑
i=1

meffṙEc,i/B

]
· ċ+

1

2

[
mhub +

Neff∑
i=1

meff

]
ċ · ċ (2.28)
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Performing a final simplification yields the desired result where each effector adds its contributions

to the rotational energy

Trot =
1

2
ωB/N · [Ihub,Bc ]ωB/N +

1

2
mhubṙBc/B · ṙBc/B

+

Neff∑
i=1

[1

2
ωEi/N · [Ieff,Ec,i

]ωEi/N +
1

2
meffṙEc,i/B · ṙEc,i/B

]
− 1

2
mscċ · ċ (2.29)

This form is advantageous because each effector does not need to know the location of the center

of mass of the spacecraft but rather they define their contributions with respect to point B. From

software architecture stand point, this form will prove to be desirable.

The total rotational potential energy is specific to each effector. For example, the spring joint

potential energy for a hinged rigid-body is shown in the following equation.

Vrot =
1

2
kθθ

2 (2.30)

Each effector might not have a potential energy contribution, however each effector will have the

ability to add their contribution to the total potential energy. Since the total rotational energy of

the system is conserved when there are no non-conservative internal or external forces or torques

acting on the system, it is convenient to combine the kinetic and potential energies into one term,

Erot. This is shown in the following equation.

Erot = Trot + Vrot (2.31)

The total orbital angular momentum of the spacecraft about point N is

Horb,N = mscrC/N × ṙC/N (2.32)

Expanding in terms of the state variables yields

Horb,N = msc(rB/N + c)× (ṙB/N + ċ) (2.33)

The final form of this equation which does not have direct contribution from effectors outside of

their contributions to c and ċ is

Horb,N = msc

[
rB/N × ṙB/N + rB/N × ċ+ c× ṙB/N + c× ċ

]
(2.34)
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The total rotational angular momentum of the spacecraft about point C is

Hrot,C = [Ihub,Bc ]ωB/N +mhubrBc/C × ṙBc/C +

Neff∑
i=1

[
[Ieff,Ec,i

]ωEi/N +meffrEc,i/C × ṙEc,i/C

]
(2.35)

Expanding these terms yields

Hrot,C = [Ihub,Bc ]ωB/N +mhub(rBc/B − c)× (ṙBc/B − ċ)

+

Neff∑
i=1

[
[Ieff,Ec,i

]ωEi/N +meff(rEc,i/B − c)× (ṙEc,i/B − ċ)
]

(2.36)

Distributing this result and simplifying yields the final equation

Hrot,C = [Ihub,Bc ]ωB/N +mhubrBc/B × ṙBc/B

+

Neff∑
i=1

[
[Ieff,Ec,i

]ωEi/N +meffrEc,i/B × ṙEc,i/B

]
−mscc× ċ (2.37)

Again, this form is desirable because the effectors define their contributions with respect to the

body fixed point B as opposed to the commonly used center of mass location point C which is

varying and depends on the other effectors. This will be leveraged in the modular form of the

software architecture.

The results seen in Eqs. (2.26), (2.31), (2.34), and (2.37) are the modularized equations for

energy and momentum where effectors provide contributions to orbital terms through c and ċ and

to rotational terms through direct contributions. This form is vital to retain the modularity of the

system, and also validate the software implementation of the dynamics.



Chapter 3

Spacecraft Equations of Motion Solutions

Since EOMs come in many different forms, the literature involving dynamics solutions for

spacecraft varies widely on the form of the solutions. This section aims to develop EOMs for

common phenomenon affecting spacecraft. This will remove the need to re-derive EOMs for the

provided problems and are tested, ready to implement solutions. The solutions all conform the

generalized EOM form introduced in Section 2, and provide examples on using the systematic

approach to arrive at the generalized EOM form and can be readily implemented in the modular

software architecture presented in Section 4.

This dissertation develops EOMs for spacecraft with a variety of effectors attached to it, and

extend this to multi-rigidly connected spacecraft where each spacecraft can have general number

of effectors attached to them and spacecraft can detach and dock to one another. These solutions

are developed in a frame independent and compact vector notation, which is beneficial for both

analytical development and when implementing in software. Additionally, the EOMs are derived

in a fully-coupled manner meaning that the dynamics retains the ability to check for energy and

momentum conservation when applicable. Having energy and momentum checks is a crucial tool

when developing the equations for simulations.

When developing EOMs of multi-body systems, an important consideration is determining

what analytical method to use to arrive at the EOMs. Lagrangian mechanics [1, 2, 48, 49, 50],

Newtonian and Eulerian Mechanics [39, 40], and Kane’s Method [8, 51] are the three most common

methods for spacecraft. Each have their advantages and disadvantages [2], and in some situations
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a certain method can be more beneficial than the others. For example, the Lagrangian mechanics

approach is a desirable method based on the simple form of the method, however special identities

and algebraic manipulation are required to convert from generalized coordinates and generalized

coordinate rates to the desired angular velocity vector form [49, 50]. The EOMs developed in this

section can be found by using both Newtonian/Eulerian mechanics and Kane’s Method and both

methods are included to show agreement.

3.1 Development of Spacecraft Equations of Motion

For single spacecraft it is proposed to develop general models for flexing solar arrays or ap-

pended bodies, spring mass damper based fuel slosh, pendulum based fuel slosh, thruster based

mass depletion, imbalanced reaction wheels, and imbalanced variable speed control moment gyro-

scopes. These are common physical phenomenon affecting many spacecraft and the derivations to

arrive at these solutions can be time consuming and error prone.

3.1.1 Hinged Rigid-Bodies

3.1.1.1 Introduction

Spacecraft designs include a range of shapes and sizes, as well as deployable structural com-

ponents such as large solar panels or antennas. Typically these components are connected to the

spacecraft as cantilevered elements, therefore they are susceptible to flexing behavior. In many

situations, this behavior needs to be included in the dynamics. Consider the scenario of perform-

ing an orbit insertion about a planet where the attitude is controlled with the primary thrusters

off-pulsing and the attitude thrusters control the rotation about the primary thrust axis. In this

common scenario the on-off behavior of the thrusters provides sharp impulses to the spacecraft

system which can excite flexing. The spacecraft is typically assumed to be a rigid-body in ini-

tial modeling, but this assumption degrades the fidelity of the simulation if there are components

that flex. Flexing impacts both the translational and rotational motion (and associated stability
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margins) of the spacecraft, as well as sensor modeling such as accelerometers and rate gyros. For

simulation and analysis purposes flexing is very important because it can impact performance,

requirements and success of the mission.

There are many different ways to model flexible dynamics [12]. One method is to assume

that the primary impact will be on the attitude dynamics of the spacecraft so the translational

motion coupling is ignored [40]. Also, in some scenarios the effects of flexing can be assumed to

only impact one plane of motion [40, 48, 1]. These methods are helpful in the early stages of a

mission, but lack fidelity and are limited in application in that they do not allow general three-

dimensional closed loop dynamics to be considered. In the orbit insertion problem it is critical to

model scenarios where vehicle is tumbling after a fault and needs to recover aggressively to apply

the needed burn during in the insertion time window. Here the spacecraft would be performing a

general three-dimensional rotation, and the general cross-coupling terms between the flexing and

rigid hub must be considered.

The field of multi-body dynamics has extensive research on modeling flexible dynamics and

the equations of motion presented are generalized for complex and diverse problems [11, 12]. This

results in re-derivation of equations because of generality [13, 14, 15, 16, 17, 18, 19]. These methods

are required for unique and complex systems because the equations of motion depend on how many

joints are interconnected. For example, in robotic systems, the number of interconnected joints

varies widely, and the equations of motion are specific to that system [52, 53]. Since there are

many spacecraft that have similar designs with appended rigid-bodies, there is a need to develop

equations of motion that could be readily applied to these spacecraft. However, as is illustrated in

this dissertation, deriving complete equations of motion for a general spacecraft configuration is a

challenging and time consuming task.

Related to the work in this dissertation, multiple publications present models of spacecraft

dynamics with appended solar panels [4, 5, 6]. However, this previous research is mainly focused on

the deployment of solar panels and how the deployment affects the dynamics of the spacecraft [4,

5, 6]. Also, the previous research on deployable solar panels are specific to solar panels that are
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composed of interconnected bodies. This dissertation considers systems where the solar panels are

single rigid-bodies.

There is a need for a general solution to model flexing behavior of spacecraft that can be

readily implemented into software and be computationally efficient. This dissertation introduces

a solution for modeling the flexible dynamics of the solar panels by assuming that the hub of the

spacecraft and the solar panels are rigid-bodies, but the solar panels are connected to the hub

by single degree-of-freedom torsional springs. This is a first-order approximation to the actual

structural deflection phenomenon, but from a simulation and analysis purposes this approximation

is beneficial to computational speed and control system performance analysis. The torsional spring

constants can be attenuated to match the natural first-order frequencies of the solar panels found

from Finite Element Analysis or testing.

ŝi,3
ĥi,3

ŝi,1

ĥi,1

ĥi,2 = ŝi,2

Si

Bc

b̂3

b̂2b̂1

c

B

✓i

Hi

C

di

n̂1 n̂2

n̂3

N

Figure 3.1: Components, variables and coordinate frames used for this derivation.

3.1.1.2 Problem Statement

A goal of this dissertation is to develop differential equations of motion describing a general

spacecraft configuration with flexible appendage dynamics that can be readily integrated into a

computer simulation. This avoids the need of deriving equations of motion for future spacecraft

mission concepts. This formulation is developed in a general manner that applies to a wide range

of spacecraft configurations and panel locations. The description of the spacecraft, components,
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coordinate frames and variables are introduced in Figure 3.1.

The particular spacecraft in Figure 3.1 is composed of a rigid-body hub connected to two

solar panels by one degree-of-freedom joints. These joints are modeled as torsional hinges with

a linear spring constant of ki, and an angular rate damping term, ci. Two panels are shown for

simplicity, however, the following formulation assumes there are Ns number of solar panels, each

with a general location and hinge axis.

There are four coordinate frames defined for this formulation. The inertial reference frame

is indicated by N : {n̂1, n̂2, n̂3} and is the reference frame that the dynamics are developed with

respect to. The body fixed coordinate frame, B : {b̂1, b̂2, b̂3}, is defined with its origin, B, which

can be located anywhere fixed to the hub and the B frame can be oriented in any configuration.

The ith solar panel frame, Si : {ŝi,1, ŝi,2, ŝi,3}, has its basis vectors oriented in the same direction

as the principle axes of the solar panel and its origin is coincident with the ith hinge joint, Hi.

The Si frame is oriented such that ŝi,1 points anti-parallel to the center of mass of the solar panel,

Si, and the variable di defines the distance between points Hi and Si. The ŝi,2 axis is defined as

the rotation axis that would yield a positive θi using the right-hand rule. The ith hinge frame,

Hi : {ĥi,1, ĥi,2, ĥi,3}, is a frame fixed with respect to the body frame, and is equivalent to the

respective Si frame when the solar panel is undeflected. As it can be seen in Figure 3.1, ŝi,2 = ĥi,2,

therefore θi defines a single axis rotation of the Si with respect to the Hi frame.

The location C is the center of mass location of the entire spacecraft, and Bc is the body-fixed

center of mass location of the the rigid-body hub. The vector c points from the origin of the body

frame to the center of mass of the spacecraft. It is important to acknowledge that points B, Bc

and C are not necessarily coincident and this assumption can be very useful when defining the

spacecraft parameters. Simulation teams typically work very closely with structural engineering

teams to define the spacecraft mass properties and the general point B assumption gives much

more flexibility in this technical interchange.
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3.1.1.3 Derivation of Equations of Motion

Next the equations of motion (EOMs) are derived using Newtonian and Eulerian mechanics.

This approach allows for a general set of rigid hub attitude coordinates to be used while still

describing the hub rotation rate through the convenient body angular velocity vector. EOMs are

required for the translational, rotational, and solar panel motion.

3.1.1.4 Spacecraft Translational Equations of Motion

The derivation of the hub translational equations of motion begins with Newton’s second law

for the center of mass of the spacecraft

r̈C/N =
Fext

msc
(3.1)

where rC/N defines the vector pointing from point N to point C, Fext is the sum of the external

forces acting on the spacecraft and msc is the total mass of the spacecraft. Finding the hub EOM

requires describing the acceleration of the origin of the body frame, point B

r̈B/N = r̈C/N − c̈ (3.2)

where the center of mass vector, c is

c =

mhubrBc/B +
Ns∑
i=1

mspi
rSi/B

msc
(3.3)

with the total mass of the spacecraft defined as

msc = mhub +

Ns∑
i=1

mspi
(3.4)

To find the inertial time derivative of c, it is first convenient to find the time derivative of c

with respect to the body frame. A time derivative of a vector v with respect to the body frame

B is denoted by v′; the inertial time derivative is labeled as v̇. The first and second body-relative

time derivatives of c are shown in Eqs. (3.5) and (3.6).

c′ =

Ns∑
i=1

mspi
r′Si/Hi

msc
(3.5)
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c′′ =

Ns∑
i=1

mspi
r′′Si/Hi

msc
(3.6)

The variable rSi/Hi
is easily defined using the ŝi,1 axis

rSi/Hi
= −diŝi,1 (3.7)

To populate Eqs. (3.5) and (3.6), the first and second time derivatives with respect to the body

frame of rSi/Hi
are taken

r′Si/Hi
= diθ̇iŝi,3 (3.8)

r′′Si/Hi
= di

(
θ̈iŝi,3 + θ̇2

i ŝi,1

)
(3.9)

Substituting these results into Eqs. (3.5) and (3.6) yields

c′ =

Ns∑
i=1

mspi
diθ̇iŝi,3

msc
(3.10)

c′′ =

Ns∑
i=1

mspi
di

(
θ̈iŝi,3 + θ̇2

i ŝi,1

)
msc

(3.11)

The transport theorem [39] maps the time derivative of a vector v as seen by one frame B into the

time derivative as seen by another frame N through

Ndv

dt
= v̇ =

Bdv

dt
+ ωB/N × v = v′ + ωB/N × v (3.12)

Using the transport theorem the inertial second derivative c̈ is expressed in terms of body relative

derivatives of c as

c̈ = c′′ + 2ωB/N × c′ + ω̇B/N × c+ ωB/N ×
(
ωB/N × c

)
(3.13)

where ωB/N is the angular velocity vector of frame B with respect to frame N . Substituting

Eq. (3.13) into the translational equations of motion in Eq. (3.2) results in

r̈B/N = r̈C/N − c′′ − 2ωB/N × c′ − ω̇B/N × c− ωB/N ×
(
ωB/N × c

)
(3.14)



35

It is evident by looking at Eqs. (3.11) and (3.14) that the angular acceleration of the body,

ω̇B/N , and the angular acceleration of each solar panel angle, θ̈i, are coupled with the translational

acceleration, r̈B/N . Because these are accelerations of state variables and will ultimately populate

a system mass matrix, Eq. (3.14) is rearranged with the second order state variable terms isolated

on the left-hand side of the equation. The mass of the spacecraft msc is multiplied on both sides

of the equation which results in the substitution of the sum of the external forces applied on the

spacecraft seen in Eq. (3.1).

It is also convenient to replace the cross products with the matrix equivalent skew symmet-

ric matrix. Here the vector equation a × b is equivalent to the matrix expression [ã]b of these

vectors [39].

mscr̈B/N −msc[c̃]ω̇B/N +

Ns∑
i=1

mspi
diŝi,3θ̈i = Fext − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c−
Ns∑
i=1

mspi
diθ̇

2
i ŝi,1 (3.15)

This equation describes the translational motion of the body frame point B with respect to the

inertial frame and is in terms of the rotational motion and solar panel motion. This equation

conforms with the general translational EOM form introduced in Eq. (2.1).

3.1.1.5 Spacecraft Rotational Equations of Motion

Next the EOM for the hub rotational motion is developed. The rigid-body rotational motion

is most conveniently expressed by separating the kinematic and kinetic differential equations. This

allows for any choice of attitude coordinates to be used to describe the orientation, while the con-

venient use of the quasi-velocity vector ωB/N is retained. In this dissertation the three-dimensional

hub attitude is expressed using the Modified Rodrigues Parameters (MRPs) σB/N [54, 55, 56].

Combined with their shadow sets the MRPs form a convenient non-singular 3-parameter descrip-

tion with a discontinuity at 180 degrees principal rotations [57, 58]. The associated MRP differential
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kinematic equations of motion are given by [39]

σ̇B/N =
1

4
[B(σB/N )]BωB/N (3.16)

where

[B(σ)] = (1− σTσ)[I3×3] + 2[σ̃] + 2σσT ] (3.17)

and BωB/N is the B-frame matrix representation of the ωB/N vector. The following derivations are

not tied to the use of MRPs, and other rigid-body attitude coordinates could readily be substituted.

The kinetic rotational EOM derivation starts with Euler’s equation when the body fixed

coordinate frame origin is not coincident with the center of mass of the body [39]

Ḣsc,B = LB +mscr̈B/N × c (3.18)

Here the vector LB is the total external torque about point B. The definition of the angular

momentum vector of the spacecraft about point B is:

Hsc,B = [Ihub,Bc ]ωB/N +mhubrBc/B × ṙBc/B

+

Ns∑
i=1

(
[Ispi,Si ]ωB/N + θ̇iIsi,2ĥi,2 +mspi

rSi/B × ṙSi/B

)
(3.19)

The solar panel frame Si is assumed to be a principle frame such that the solar panel inertia

tensor about its center of mass is

[Ispi,Si ] =

Si
Isi,1 0 0

0 Isi,2 0

0 0 Isi,3

 (3.20)

The inertial time derivative of Eq. (3.19) is evaluated again using the Transport Theorem [39]

to related vector derivatives as seen by different rotating frames and yields

Ḣsc,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N +mhubrBc/B × r̈Bc/B

+

Ns∑
i=1

(
[I ′spi,Si

]ωB/N + [Ispi,Si ]ω̇B/N + ωB/N × [Ispi,Si ]ωB/N

+ θ̈iIsi,2ĥi,2 + ωB/N × θ̇iIsi,2ĥi,2 +mspi
rSi/B × r̈Si/B

)
(3.21)
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The terms r̈Bc/B and r̈Si/B are also found using the Transport Theorem and taking advantage of

rBc/B being fixed with respect to the body frame.

r̈Bc/B = ω̇B/N × rBc/B + ωB/N × (ωB/N × rBc/B) (3.22)

r̈Si/B = r′′Si/B
+ 2ωB/N × r′Si/B

+ ω̇B/N × rSi/B + ωB/N × (ωB/N × rSi/B) (3.23)

Incorporating Eqs. (3.22) and (3.23) into Eq. (3.21) and simplifying the extensive algebra results

in the intermediate result:

Ḣsc,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N +mhubrBc/B × (ω̇B/N × rBc/B)

+mhubrBc/B×
[
ωB/N ×(ωB/N ×rBc/B)

]
+

Ns∑
i=1

(
[I ′spi,Si

]ωB/N +[Ispi,Si ]ω̇B/N +ωB/N × [Ispi,Si ]ωB/N

+ θ̈iIsi,2ĥi,2 + ωB/N × θ̇iIsi,2ĥi,2 +mspi
rSi/B × r′′Si/B

+ 2mspi
rSi/B × (ωB/N × r′Si/B

)

+mspi
rSi/B × (ω̇B/N × rSi/B) +mspi

rSi/B × [ωB/N × (ωB/N × rSi/B)]

)
(3.24)

Applying the matrix tilde operator to replace the vector cross product, and using the inertia tensor

parallel axis theorem [39] the following are defined:

[Ihub,B] = [Ihub,Bc ] +mhub[r̃Bc/B][r̃Bc/B]T (3.25)

[Ispi,B] = [Ispi,Si ] +mspi
[r̃Si/B][r̃Si/B]T (3.26)

[Isc,B] = [Ihub,B] +

P∑
i

[Ispi,B] (3.27)

[I ′sc,B] =

Ns∑
i=1

[
[I ′spi,Si

]−mspi

(
[r̃′Si/B

][r̃Si/B] + [r̃Si/B][r̃′Si/B
]
)]

(3.28)

[I ′spi,Si
] needs to be defined and is conveniently expressed by leveraging the assumption that the

inertia matrix is diagonal and can be written in terms of its base vectors:

[Ispi,Si ] = Isi,1 ŝi,1ŝ
T
i,1 + Isi,2 ŝi,2ŝ

T
i,2 + Isi,3 ŝi,3ŝ

T
i,3 (3.29)

Taking the body time derivative of Eq. (3.29) results in

[I ′spi,Si
] = Isi,1 ŝ

′
i,1ŝ

T
i,1 + Isi,1 ŝi,1ŝ

′T
i,1 + Isi,2 ŝ

′
i,2ŝ

T
i,2 + Isi,2 ŝi,2ŝ

′T
i,2 + Isi,3 ŝ

′
i,3ŝ

T
i,3 + Isi,3 ŝi,3ŝ

′T
i,3 (3.30)
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The B-frame relative time derivatives of ŝi,j are

ŝ′i,j = ωSi/B × ŝi,j = θ̇iŝi,2 × ŝi,j ; j = 1, 2, 3 (3.31)

Substituting Eq. (3.31) into Eq. (3.30) and simplifying results in the following body-relative time

derivative expression of the solar panel inertia tensor.

[I ′spi,Si
] = θ̇i(Isi,3 − Isi,1)(ŝi,1ŝ

T
i,3 + ŝi,3ŝ

T
i,1) (3.32)

Using these definitions greatly simplifies the expression in Eq. (3.24) yielding the compact

expression

Ḣsc,B = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N + [I ′sc,B]ωB/N +

Ns∑
i=1

{
θ̈iIsi,2ĥi,2

+ ωB/N × θ̇iIsi,2ĥi,2 +mspi
rSi/B × r′′Si/B

+mspi
ωB/N ×

(
rSi/B × r′Si/B

)}
(3.33)

Next Eqs. (3.18) and (3.33) are equated to yield

LB +mscr̈B/N × c = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N + [I ′sc,B]ωB/N +

Ns∑
i=1

{
θ̈iIsi,2ĥi,2

+ ωB/N × θ̇iIsi,2ĥi,2 +mspi
rSi/B × r′′Si/B

+mspi
ωB/N ×

(
rSi/B × r′Si/B

)}
(3.34)

Finally, Eq. (3.34) is written into compact matrix form and rearranged to have all acceleration

terms on the left hand side again.

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

Ns∑
i=1

{
Isi,2ĥi,2 +mspi

di[r̃Si/B]ŝi,3

}
θ̈i =

− [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
Ns∑
i=1

{
θ̇i[ω̃B/N ]

(
Isi,2ĥi,2 +mspi

di[r̃Si/B]ŝi,3

)
+mspi

diθ̇
2
i [r̃Si/B]ŝi,1

}
+LB (3.35)

This expanded rotational equations of motion a rigid hub with Ns hinged panels illustrates the

additional terms required to account for the panel flexing and thus the system center of mass

location shift relative to the body. This equation conforms with the general rotational EOM form

introduced in Eq. (2.2).
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3.1.1.6 Hinged Panel Equations of Motion

The set of EOMs required to solve this system of differential equations are related to the

hinged rigid panels which can represent solar panel flexing. In this development the ith solar panel

frame Si is assumed to be a principal coordinate frame of the panel, yielding the diagonal inertia

tensor representation shown in Eq. (3.20).

Let LHi = Li,1ŝi,1 +Li,2ŝi,2 +Li,3ŝi,3 be the total torque acting on the solar panel about the

hinge point Hi. The corresponding hinge torque component about the body-fixed hinge axis ŝi,2 is

given through

Li,2 = −kiθi − ciθ̇i + ŝi,2 · τext,Hi (3.36)

The hinge structure produces the other two torques Li,1 and Li,3. The vector τext,Hi is the net

external torque on the solar panel and is projected onto the ŝi,2 direction to find its contribution

to Li,2. Gravity, for example would apply the following torque on the solar panel about point Hi

τg,Hi = rSi/Hi
× Fg (3.37)

The inertial angular velocity vector for the solar panel frame is

ωSi/N = ωSi/Hi
+ ωHi/B + ωB/N (3.38)

where ωSi/Hi
= θ̇iŝi,2. Because the hinge frame Hi is fixed relative to the body frame B the

relative angular velocity vector is ωHi/B = 0. The body angular velocity vector is written in

Si-frame components as

ωB/N = (ŝi,1 · ωB/N )ŝi,1 + (ŝi,2 · ωB/N )ŝi,2 + (ŝi,3 · ωB/N )ŝi,3 (3.39)

= ωsi,1 ŝi,1 + ωsi,2 ŝi,2 + ωsi,3 ŝi,3 (3.40)

Fortunately using this definition greatly simplifies the following algebraic development. Finally, the

inertial solar panel angular velocity vector is written as

ωSi/N = ωsi,1 ŝi,1 + (ωsi,2 + θ̇i)ŝi,2 + ωsi,3 ŝi,3 (3.41)
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As ŝi,2 is a body-fixed vector, note that

ω̇si,2 =
Bd

dt

(
ωB/N · ŝi,2

)
=
Bd

dt

(
ωB/N

)
· ŝi,2 = ω̇B/N · ŝi,2 (3.42)

The notation Bd/dt(x) denotes a body-frame B relative time derivative operation of the vector x.

Substituting these angular velocity components into the rotational equations of motion of a

rigid-body with torques taken about its center of mass [39], the general solar panel equations of

motion are written as

Isi,1ω̇si,1 = −(Isi,3 − Isi,2)(ωsi,2 + θ̇i)ωsi,3 + Lsi,1 (3.43)

Isi,2(ω̇si,2 + θ̈i) = −(Isi,1 − Isi,3)ωsi,3ωsi,1 + Lsi,2 (3.44)

Isi,3ω̇si,3 = −(Isi,2 − Isi,1)ωsi,1(ωsi,2 + θ̇i) + Lsi,3 (3.45)

where LSi = Lsi,1 ŝi,1 +Lsi,2 ŝi,2 +Lsi,3 ŝi,3 is the net torque acting on the solar panel about its center

of mass. Note that the second differential equation in Eq. (3.44) is used to get the desired equations

of motion of θi. The first and third equation could be used to back-solve for the structural hinge

torques embedded in Lsi,1 and Lsi,3 if needed.

Let FSi be the net force acting on the solar panel. Using the superparticle theorem [39] yields

FSi = mspi
r̈Si/N (3.46)

The torque about the solar panel center of mass can be related to the torque about the hinge point

Hi using

LHi = LSi + rSi/Hi
× FSi (3.47)

Solving for the torque about Si yields

LSi = LHi − rSi/Hi
×mspi

r̈Si/N (3.48)

Taking the vector dot product of Eq. (3.48) with ŝi,2 and using rSi/Hi
= −diŝi,1 allows for a scalar
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equation to be developed that relates the hinge axis torque Lsi,2 .

Lsi,2 = ŝi,2 ·LSi = ŝi,2 ·LHi︸ ︷︷ ︸
Li,2

−ŝi,2 ·
(
rSi/Hi

×mspi
r̈Si/N

)
(3.49)

= −kiθ − ciθ̇i + ŝi,2 · τext,Hi +mspi
diŝi,2 ·

(
ŝi,1 × r̈Si/N

)
(3.50)

Solving for the second order inertial time derivative of rSi/N = rHi/N − dŝi,1 yields

r̈Si/N = r̈Hi/N − ω̇Si/N × (dŝi,1)− ωSi/N × (ωSi/N × (dŝi,1)) (3.51)

Substituting this inertial acceleration into the above Lsi,2 expression provides

Lsi,2 = −kiθi − ciθ̇i +mspi
diŝi,2 · (ŝi,1 × r̈Hi/N ) +mspi

d2
i ŝi,2 · (ŝi,1 × (ŝi,1 × ω̇Si/N ))

−mspi
d2
i ŝi,2 · (ŝi,1 × (ωSi/N × (ωSi/N × ŝi,1))) (3.52)

Using the double vector cross product identity, as well as a · (b× c) = (a× b) · c, the Lsi,2 torque

component is simplified to

Lsi,2 = −kiθi − ciθ̇i + ŝi,2 · τext,Hi −mspi
diŝi,3 · r̈Hi/N

−mspi
d2
i ŝi,2 · ω̇B/N −mspi

d2
i θ̈i +mspi

d2
iωsi,3ωsi,1 (3.53)

Substituting this torque into the differential equation seen in Eq. (3.45), yields the desired scalar

hinged solar panel equation of motion

(
Isi,2 +mspi

d2
i

)
ŝTi,2ω̇B/N +

(
Isi,2 +mspi

d2
i

)
θ̈i +mspi

diŝ
T
i,3r̈Hi/N + kiθ + ciθ̇i

− ŝTi,2τext,Hi +
(
Isi,1 − Isi,3 −mspi

d2
i

)
ωsi,3ωsi,1 = 0 (3.54)

The final task is to expand r̈Hi/N in terms of the translational motion r̈B/N . Recalling that

the hinge location is a fixed point on the body, Eq. (3.54) is changed to the following form:

(
Isi,2 +mspi

d2
i

)
ŝTi,2ω̇B/N +mspi

diŝ
T
i,3(r̈B/N + ω̇B/N × rHi/B + ωB/N × (ωB/N × rHi/B))

+
(
Isi,2 +mspi

d2
i

)
θ̈i + kiθi + ciθ̇i − ŝTi,2τext,Hi +

(
Isi,1 − Isi,3 −mspi

d2
i

)
ωsi,3ωsi,1 = 0 (3.55)
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The final expression again groups the second order state variables conveniently to the left-hand side

of the equation and the cross products are replaced with the skew symmetric matrix operators:

mspi
diŝ

T
i,3r̈B/N +

[(
Isi,2 +mspi

d2
i

)
ŝTi,2 −mspi

diŝ
T
i,3[r̃Hi/B]

]
ω̇B/N

+
(
Isi,2 +mspi

d2
i

)
θ̈i = −kiθi − ciθ̇i + ŝTi,2τext,Hi +

(
Isi,3 − Isi,1 +mspi

d2
i

)
ωsi,3ωsi,1

−mspi
diŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B (3.56)

Eq. (3.56) provides Ns scalar hinged panel EOM required to describe the motion of the spacecraft.

This equation conforms with the general effector EOM form introduced in Eq. 2.4.

3.1.1.7 Back-Substitution Formulation

The equations presented in the previous sections result in Ns + 6 coupled kinetic differential

equations. Note that the various kinematic differential equation for hub motion and rotation, as well

as the flexing angles, are already decoupled in this formulation. Therefore, if the remaining N + 6

kinetic EOMs were placed into state space form, a system mass matrix of size Ns + 6 would need

to be inverted to numerically integrate the dynamical system. This can result in a computationally

expensive simulation for a large number of panels. In the following developments the EOMs are

manipulated using the back-substitution method introduced in Section 2.3.

3.1.1.8 Solar Panel Motion Manipulation

In Eq. (3.56), the solar panel motion is coupled with both the translational motion and the

rotational motion. In addition, both the translational and rotational EOMs include the solar panel

accelerations. To decouple the hub acceleration vectors from the panel accelerations, Eq. (3.56) is
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solved for the angular accelerations θ̈i.

θ̈i =
1(

Isi,2 +mspi
d2
i

)(−mspi
diŝ

T
i,3r̈B/N −

[(
Isi,2 +mspi

d2
i

)
ŝTi,2 −mspi

diŝ
T
i,3[r̃Hi/B]

]
ω̇B/N

− kiθi − ciθ̇i + ŝTi,2τext,Hi +
(
Isi,3 − Isi,1 +mspi

d2
i

)
ωsi,3ωsi,1

−mspi
diŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B

)
(3.57)

Eq. (3.57) is rewritten into the following compact form and will be utilized multiple times through-

out this formulation

θ̈i = aTθi r̈B/N + bTθiω̇B/N + cθi (3.58)

where aθi , bθi , and cθi are defined as

aθi = − mspi
di(

Isi,2 +mspi
d2
i

) ŝi,3 (3.59a)

bθi = − 1(
Isi,2 +mspi

d2
i

)[ (Isi,2 +mspi
d2
i

)
ŝi,2 +mspi

di[r̃Hi/B]ŝi,3

]
(3.59b)

cθi =
1(

Isi,2 +mspi
d2
i

)(− kiθi − ciθ̇i + ŝi,2 · τext,Hi +
(
Isi,3 − Isi,1 +mspi

d2
i

)
ωsi,3ωsi,1

−mspi
diŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B

) (3.59c)

3.1.1.9 Decoupled Translational and Rotational Accelerations

To solve for the translational and rotational accelerations, Eq. (3.58) is substituted into

the translational and rotational EOMs. The result of this substitution for the translation EOM,

Eq. (3.15), is seen in the following equation:

mscr̈B/N −msc[c̃]ω̇B/N +

Ns∑
i=1

mspi
diŝi,3

(
aTθi r̈B/N + bTθiω̇B/N + cθi

)
= Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−

Ns∑
i=1

mspi
diθ̇

2
i ŝi,1 (3.60)
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Simplifying and combining like terms yields the translational EOM that has been decoupled from

the solar panel acceleration:

(
msc[I3×3] +

N∑
i=1

mspi
diŝi,3a

T
θi

)
r̈B/N +

(
−msc[c̃] +

N∑
i=1

mspi
diŝi,3b

T
θi

)
ω̇B/N

= mscr̈C/N − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−
N∑
i=1

(
mspi

diθ̇
2
i ŝi,1 +mspi

dicθi ŝi,3

)
(3.61)

Following the same pattern for the rotational hub EOM, Eq. (3.35), yields:

[
msc[c̃] +

N∑
i=1

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3
)
aTθi

]
r̈B/N

+
[
[Isc,B] +

N∑
i=1

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3
)
bTθi

]
ω̇B/N = −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N

−
N∑
i=1

{(
θ̇i[ω̃B/N ] + cθi [I3×3]

) (
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

)
+mspi

diθ̇
2
i [r̃Sc,i/B]ŝi,1

}
+LB (3.62)

The following matrices are defined to adhere to the back-substitution method as seen in Section 2.3:

[A] = msc[I3×3] +
N∑
i=1

mspi
diŝi,3a

T
θi

(3.63)

[B] = −msc[c̃] +
N∑
i=1

mspi
diŝi,3b

T
θi

(3.64)

[C] = msc[c̃] +

N∑
i=1

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3
)
aTθi (3.65)

[D] = [Isc,B] +
N∑
i=1

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3
)
bTθi (3.66)

vtrans = mscr̈C/N − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c

−
N∑
i=1

(
mspi

diθ̇
2
i ŝi,1 +mspi

dicθi ŝi,3

) (3.67)

vrot = −
N∑
i=1

{(
θ̇i[ω̃B/N ] + cθi [I3×3]

) (
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

)
+mspi

diθ̇
2
i [r̃Sc,i/B]ŝi,1

}
− [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N +LB

(3.68)

Defining these matrices was the final step required to adhere to the general EOM form introduced

in Section 2. Now the EOMs can readily be implemented in software to approximate the flexing

phenomenon.
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3.1.1.10 Conclusion

Spacecraft with large appended solar panels have flexing effects that are generally non-

negligible and should be included in simulations of the spacecraft. This dissertation presents a

very convenient and compact closed-form formulation for a first-order approximation of flexible

dynamics that can be applied to spacecraft with appended solar panels or hinged structural sub-

components that can be modeled as single rigid-bodies. It is not applicable to appended solar

panels that consist of multiple interconnected panels. Numerical simulation results for a spacecraft

with flexing solar arrays using this model can be seen in Section 6.3.

The equations produced in this dissertation are compact, frame independent, and modular

equations of motion which will result in organized and flexible software implementations. Addition-

ally the back-substitution method equations are more computationally efficient because it removes

the need for a fully-coupled system mass matrix inverse. Modeling the flexing effect using this

first-order approximation is an excellent way to analyze the impact of flexing on the spacecraft

by running simulations through the life of missions and narrow down scenarios susceptible to un-

wanted flexing behavior. Formulating the equations of motion for flexible multi-body dynamics can

be a time consuming task and this dissertation provides a solution that can readily implemented

in software.

3.1.2 Fuel Slosh - Lumped Mass Spring Mass Damper Model

3.1.2.1 Introduction

Another important physical phenomenon that affects many spacecraft is fuel slosh. Math-

ematically, the EOMs of the structure and the liquid are tightly coupled[59, 60]. In space, the

liquid is subjected not only to inertial forces, but also to microgravity, viscous, and surface tension

forces[61, 62]. Furthermore, a moving liquid inside a tank produces a change in the position of the

center of mass of the whole system in addition to internal torques and forces when a liquid wave

hits the walls of the tank.
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The most rigorous mathematical approach to sloshing phenomena is given by the Navier-

Stokes equations with nonlinear boundary conditions[63]. Several Computational Fluid Dynamics

(CFD) methods have been applied to solve this problem using different formulations[59, 64, 60, 65,

66]. Quasi-simultaneous methods can be used to solve the coupled EOMs[59]. The combined CFD-

rigid-body model, although more exact, has some drawbacks from a simulation point of view. First,

the inherent complexity of the combined model might not be feasible in early stages of the design.

Second, integrating continuum and lumped models can be computationally time consuming[67, 68].

To avoid these complications, often simplified slosh models are used for control loop mod-

eling [61, 62, 69, 70]. Slosh is comprised of several different kinds of movement, many of which

are highly nonlinear. Small-amplitude waves and stable nonlinear rotary slosh can be approxi-

mated using lumped mechanical multi-mode models[61, 62, 71], including either masses, springs,

and dampers or pendulums. Using a lumped model may be a useful simplification in a dynamic

model for control design purposes. It can be viewed as a complement of the more accurate CFD

approach. In this work, a systematic approach to slosh modeling is proposed using approximated

multi-mode mechanical models.

3.1.2.2 Problem Statement

The formulation assumes that there is a rigid hub, with NP lumped masses in the tank for

the fuel. Subscript j is used to indicate the jth fuel slosh mass, mj . Figure 3.2 displays the frame

and variable definitions used for this formulation.

There are two coordinate frames defined for this formulation. The inertial reference frame

is indicated by N : {n̂1, n̂2, n̂3}. The body fixed coordinate frame, B : {b̂1, b̂2, b̂3}, which is

anchored to the hub and can be oriented in any direction.

There are a few more key locations that need to be defined. Point B is the origin of the body

frame, and can have any location with respect to the hub. Point Bc is the location of the center

of mass of the rigid hub. Pj is the undeflected or equilibrium position of each corresponding slosh

mass, while point Pc,j is the current position of that slosh mass.
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N
Bc

C

c

b̂3

b̂2b̂1

B

p̂j

Pj

⇢j mj

Pc,j

Figure 3.2: Frame and variable definitions used for formulation

Figure 3.3 provides further detail of the fuel slosh parameters. As seen in Figure 3.3, an

individual slosh particle is constrained to move along its corresponding p̂j direction while connected

by a spring with a linear spring constant value kj and by a linear damper with a damping coefficient,

cj . The variable, ρj is a state variable and quantifies the displacement from equilibrium for the

corresponding slosh mass.

p̂j

mj

Pj

⇢j

kj

cj

Pc,j

Figure 3.3: Detailed description of single slosh particle

Using the variables and frames defined, the following section outlines the derivation of equa-

tions of motion for the spacecraft.

3.1.2.3 Rigid Spacecraft Hub Translational Motion

The derivation begins with Newton’s first law for the center of mass of the spacecraft.

r̈C/N =
F

msc
(3.69)
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Ultimately the acceleration of the body frame or point B is desired

r̈B/N = r̈C/N − c̈ (3.70)

The definition of c can be seen in Eq. (3.71).

c =
1

msc

(
mhubrBc/B +

NP∑
j=1

mjrPc,j/B

)
(3.71)

To find the inertial time derivative of c, it is first necessary to find the time derivative of c with

respect to the body frame. A time derivative of any vector, v, with respect to the body frame is

denoted by v′; the inertial time derivative is labeled as v̇. The first and second body-relative time

derivatives of c can be seen in Eqs. (3.72) and (3.73).

c′ =
1

msc

( NP∑
j=1

mjr
′
Pc,j/B

)
(3.72)

c′′ =
1

msc

( NP∑
j=1

mjr
′′
Pc,j/B

)
(3.73)

rPc,j/B is defined in the following

rPc,j/B = rPj/B + ρjp̂j (3.74)

And, the first and second body time derivatives of rPc,j/B are

r′Pc,j/B
= ρ̇jp̂j (3.75)

r′′Pc,j/B
= ρ̈jp̂j (3.76)

Eqs. (3.72) and (3.73) are next reformulated to include these new definitions:

c′ =
1

msc

( NP∑
j=1

mj ρ̇jp̂j

)
(3.77)

c′′ =
1

msc

( NP∑
j=1

mj ρ̈jp̂j

)
(3.78)

Using the transport theorem[39] yields the following definition for c̈

c̈ = c′′ + 2ωB/N × c′ + ω̇B/N × c+ ωB/N ×
(
ωB/N × c

)
(3.79)
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Eq. (3.70) is updated to include Eq. (3.79)

r̈B/N = r̈C/N − c′′ − 2ωB/N × c′ − ω̇B/N × c− ωB/N ×
(
ωB/N × c

)
(3.80)

Substituting Eq.(3.78) into Eq.(3.80) results in

r̈B/N = r̈C/N −
1

msc

[NP∑
j=1

mj ρ̈jp̂j

]
− 2ωB/N × c′ − ω̇B/N × c− ωB/N ×

(
ωB/N × c

)
(3.81)

Moving second order terms to the left hand side and introducing the tilde matrix[39] to replace the

cross product operators simplifies the equation to

r̈B/N − [c̃]ω̇B/N +
1

msc

NP∑
j=1

mjp̂j ρ̈j = r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c (3.82)

Equation (3.82) is the translational motion equation and is the first EOM needed to describe the

motion of the spacecraft. The following section develops the rotational EOM.

3.1.2.4 Rigid Spacecraft Hub Rotational Motion

Starting with Euler’s equation when the body fixed coordinate frame origin is not coincident

with the center of mass of the body[39]

Ḣsc,B = LB +mscr̈B/N × c (3.83)

where LB is the total external torque about point B. The definition of the angular momentum

vector of the spacecraft about point B is

Hsc,B = [Ihub,Bc ]ωB/N +mhubrBc/B × ṙBc/B +

NP∑
j=1

mjrPc,j/B × ṙPc,j/B (3.84)

Now the inertial time derivative of Eq. (3.84) is taken and yields

Ḣsc,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N +mhubrBc/B × r̈Bc/B

+

NP∑
j=1

mjrPc,j/B × r̈Pc,j/B (3.85)
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The terms r̈Bc/B and r̈Pc,j/B are found using the transport theorem and knowing that rBc/B is

fixed with respect to the body frame.

r̈Bc/B = ω̇B/N × rBc/B + ωB/N × (ωB/N × rBc/B) (3.86)

r̈Pc,j/B = r′′Pc,j/B
+ 2ωB/N × r′Pc,j/B

+ ω̇B/N × rPc,j/B + ωB/N × (ωB/N × rPc,j/B) (3.87)

Incorporating Eqs. (3.86) - (3.87) into Eq. (3.85) results in

Ḣsc,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N +mhubrBc/B × (ω̇B/N × rBc/B)

+mhubrBc/B×
[
ωB/N×(ωB/N×rBc/B)

]
+

NP∑
j=1

mjrPc,j/B×
[
r′′Pc,j/B

+2ωB/N×r′Pc,j/B
+ω̇B/N×rPc,j/B

+ ωB/N × (ωB/N × rPc,j/B)
]

(3.88)

Applying the parallel axis theorem the following inertia tensor terms are defined as

[Ihub,B] = [Ihub,Bc ] +mhub[r̃Bc/B][r̃Bc/B]T (3.89)

[Isc,B] = [Ihub,B] +

NP∑
j=1

mj [r̃Pc,j/B][r̃Pc,j/B]T (3.90)

Taking the body-relative time derivative of Equation (3.90) yields

[I ′sc,B] = −
NP∑
j=1

mj

(
[r̃′Pc,j/B

][r̃Pc,j/B] + [r̃Pc,j/B][r̃′Pc,j/B
]
)

(3.91)

Using Eq. (3.90) to simplify results in Eq. (3.92). The Jacobi Identity, (a×b)× c = a× (b×

c)− b× (a× c), is used to combine terms and produce the following simplified equation

Ḣsc,B = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N + [I ′sc,B]ωB/N +

NP∑
j=1

[
mjrPc,j/B × r′′Pc,j/B

+mjωB/N ×
(
rPc,j/B × r′Pc,j/B

)]
(3.92)

Eqs. (3.83) and (3.92) are equated and yield

LB +mscr̈B/N × c = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N + [I ′sc,B]ωB/N +

NP∑
j=1

[
mjrPc,j/B × r′′Pc,j/B

+mjωB/N ×
(
rPc,j/B × r′Pc,j/B

)]
(3.93)
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Finally, using tilde matrix and simplifying yields the modified Euler equation, which is the second

EOM necessary to describe the motion of the spacecraft.

[Isc,B]ω̇B/N = −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
NP∑
j=1

(
mj [r̃Pc,j/B]r′′Pc,j/B

+mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

)
+LB −msc[c̃]r̈B/N (3.94)

Rearranging Eq. (3.94) to be in the same form as the previous sections results in:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NP∑
j=1

mj [r̃Pc,j/B]p̂j ρ̈j = −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N

−
NP∑
j=1

mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B
+LB (3.95)

3.1.2.5 Fuel Slosh Motion

The fuel slosh motion is being approximated by a lumped mechanical multi-mode model[61,

62, 71]. Figure 3.9 shows that a single fuel slosh particle is free to move along its corresponding

p̂j direction and this formulation is generalized to include NP number of fuel slosh particles. The

derivation begins with Newton’s law for each fuel slosh particle:

mj r̈Pc,j/N = FG + FC − kjρjp̂j − cj ρ̇jp̂j (3.96)

Where FG is the force of gravity and FC is the constraint force that maintains the fuel slosh mass

to travel along the direction p̂j . The forces due to the spring and damper are explicitly included

in Eq. (3.96) and result in a restoring force and damping force. r̈Pc,j/N is defined in the following

equation.

r̈Pc,j/N = r̈B/N + r̈Pc,j/B (3.97)

The inertial acceleration vector r̈Pc,j/B is defined in Eq. (3.87). Plugging this definition into

Eq. (3.96) results in

mj

[
r̈B/N + ρ̈jp̂j + 2ωB/N × r′Pc,j/B

+ ω̇B/N × rPc,j/B + ωB/N × (ωB/N × rPc,j/B)
]

= FG + FC − kjρjp̂j − cj ρ̇jp̂j (3.98)
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Equation (3.98) is the dynamical equation for a fuel slosh particle, however, the constraint

force, FC , is undefined. Since the fuel slosh particle is free to move in the p̂j direction, the

component of FC along the p̂j direction is zero. Leveraging this insight, Eq. (3.98) is projected

into the p̂j direction by multiplying both sides of the equation by p̂j
T .

mj

(
p̂j
T r̈B/N + ρ̈j + 2p̂j

TωB/N × r′Pc,j/B
+ p̂j

T ω̇B/N × rPc,j/B + p̂j
TωB/N × (ωB/N × rPc,j/B)

)
= p̂j

TFG − kjρj − cj ρ̇j (3.99)

Moving the second order terms to the left hand side and introducing the tilde matrix notation

yields the final equation needed to describe the motion of the spacecraft with fuel slosh. These

EOMs match the generalized EOM form introduced in Section 2.

mjp̂j
T r̈B/N −mjp̂j

T [r̃Pc,j/B]ω̇B/N +mj ρ̈j

= p̂j
TFG − kjρj − cj ρ̇j − 2mjp̂j

T [ω̃B/N ]r′Pc,j/B
−mjp̂j

T [ω̃B/N ][ω̃B/N ]rPc,j/B (3.100)

3.1.2.6 Back-substitution Method

The equations presented in the previous sections result in NP + 6 coupled differential equa-

tions. Therefore, if the EOMs were placed into state space form, a system mass matrix of size

NP + 6 would need to be inverted to numerically integrate the EOMs. This can result in a com-

putationally expensive simulation. In the following section, the EOMs are manipulated to fit the

form of the back-substitution method seen in Section 2.3.

First, the slosh equation is manipulated to isolate the slosh acceleration to the left hand side

of the equation:

ρ̈j =
1

mj

(
−mjp̂j

T r̈B/N +mjp̂j
T [r̃Pc,j/B]ω̇B/N

+ p̂j
TFG − kjρj − cj ρ̇j − 2mjp̂j

T [ω̃B/N ]r′Pc,j/B
−mjp̂j

T [ω̃B/N ][ω̃B/N ]rPc,j/B

)
(3.101)

The equation is placed in a more compact form

ρ̈j = aTρj r̈B/N + bTρj ω̇B/N + cρj (3.102)
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while utilizing the variables defined in the following equations:

aρj = −p̂j (3.103)

bρj = −[r̃Pc,j/B]p̂j (3.104)

cρj =
1

mj

(
p̂j
TFG − kjρj − cj ρ̇j − 2mjp̂j

T [ω̃B/N ]r′Pc,j/B
−mjp̂j

T [ω̃B/N ][ω̃B/N ]rPc,j/B

)
(3.105)

To decouple the translational EOM from the slosh equation, Eq. (3.102) is substituted into

Eq (3.82) resulting in

r̈B/N − [c̃]ω̇B/N +
1

msc

NP∑
j=1

mjp̂j

(
aTρj r̈B/N + bTρj ω̇B/N + cρj

)
= r̈C/N − 2[ω̃B/N ]c′

− [ω̃B/N ][ω̃B/N ]c (3.106)

Simplifying this result and multiplying both sides by msc yields

(
msc[I3×3] +

NP∑
j=1

mjp̂ja
T
ρj

)
r̈B/N +

(
−msc[c̃] +

NP∑
j=1

mjp̂jb
T
ρj

)
ω̇B/N

= mscr̈C/N − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−
NP∑
j=1

mjcρj p̂j (3.107)

Following a similar pattern for the rotational dynamics, the slosh equation is plugged into

the rotational EOM of the spacecraft and yields

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NP∑
j=1

mj [r̃Pc,j/B]p̂j

(
aTρj r̈B/N + bTρj ω̇B/N + cρj

)
=

− [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
NP∑
j=1

mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B
+LB (3.108)

Combining like terms and rearranging the equation to fit the back-substitution method form results
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in the following equation:

[
msc[c̃]+

NP∑
j=1

mj [r̃Pc,j/B]p̂ja
T
ρj

]
r̈B/N+

[
[Isc,B]+

NP∑
j=1

mj [r̃Pc,j/B]p̂jb
T
ρj

]
ω̇B/N = −[ω̃B/N ][Isc,B]ωB/N

− [I ′sc,B]ωB/N −
NP∑
j=1

(
mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

+mjcρj [r̃Pc,j/B]p̂j

)
+LB (3.109)

Finally, the back-substitution matrices are defined in the following equations:

[A] = msc[I3×3] +

NP∑
j=1

mjp̂ja
T
ρj (3.110)

[B] = −msc[c̃] +

NP∑
j=1

mjp̂jb
T
ρj (3.111)

[C] = msc[c̃] +

NP∑
j=1

mj [r̃Pc,j/B]p̂ja
T
ρj (3.112)

[D] = [Isc,B] +

NP∑
j=1

mj [r̃Pc,j/B]p̂jb
T
ρj (3.113)

vtrans = mscr̈C/N − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−
NP∑
j=1

mjcρj p̂j (3.114)

vrot = −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N

−
NP∑
j=1

(
mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

+mjcρj [r̃Pc,j/B]p̂j

)
+LB (3.115)

This completes the necessary definitions to describe the motion of a spacecraft approximating the

sloshing fuel with the lumped mass spring mass damper model. These equations fit the general-

ized EOM form introduced in Section 2 and can be readily implemented in software. Numerical

simulations of this model can be seen in Section 6.4.



55

3.1.3 Imbalanced Reaction Wheels

3.1.3.1 Introduction

Momentum exchange devices are a fundamental component of most spacecraft for both coarse

attitude control and precision pointing. Many modern spacecraft include three or more reaction

wheels (RWs), which consist of a flywheel attached to a motor and bearing fixed to the spacecraft.

A challenge to using RWs is that they may induce jitter due to mass imbalances in the RW. Char-

acterization and mitigation of RW induced jitter on a spacecraft is important to many missions due

to the increasingly rigorous attitude stability requirements and the necessity of avoiding excitation

of the spacecraft’s structural modes. Excessive vibration of a spacecraft may be detrimental to

its instruments and operation. Additionally, many instruments require the spacecraft to be held

extremely steady in order to effectively operate or collect data. Optical instruments in particular

often require attitude stability of less than one arc-second per second in order to avoid optical

smear or similar effects [72, 73]. Vibration isolation has long been a method of dulling the effects

of wheel jitter[74]. Various methods of vibration isolation have been proposed, including magnetic

suspension of RWs as a means of circumventing the jitter problem [75, 76].

RW induced vibration on a spacecraft is usually characterized through experimentation prior

to flight in order to validate requirements. Empirical models of RWs allow static and dynamic

imbalance parameters to be extracted [77]. In addition to experimental demonstration of RW

performance on an integrated spacecraft, it is of interest to use an analytic model of a RW for

simulation in the early stages of spacecraft development. A popular simplified model of RW jitter

involves including forces and torques resulting from RW static and dynamic imbalances as external

disturbances [78, 79, 74]. Static imbalance is when the center of mass of the reaction wheel is not

coincident with the spin axis, and dynamic imbalance is due to off-diagonal inertia matrix terms

with respect to the spin axis frame. This model is well established and attractive due to its low

computational requirements – force and torque of jitter are simply proportional to wheel speed

squared. Furthermore, the simplified formulation allows a model to be constructed directly from
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the typical RW manufacturer imbalance specifications: static imbalance and dynamic imbalance.

This allows RW mass imbalances to be implemented as lumped parameters instead of using specific

terms such as RW center of mass location and inertia tensor [74]. Previous literature puts emphasis

on empirical modeling of RW jitter and the effects of RW jitter within context of spacecraft flexible

dynamics [80, 81, 82].

Regarding modeling the momentum exchange device jitter with a first-principles approach,

Zhang and Zhang discuss a fully-coupled model of control moment gyro (CMG) imbalance[83].

While this contains gyro frame imbalance modeling not required for RWs, the results are presented

without a full derivation and the paper does not provide the complete system equations of mo-

tion. This partial imbalanced momentum exchange device results also does not discuss how to

tie typical manufacturers’ imbalance specifications directly to the imbalance parameter modeling.

Reference [76] develops the spacecraft equations of motion with magnetically suspended RWs where

the RW center of mass moves relative to the body. However, this magnetic levitation introduces

additional degrees of freedom and modeling challenges not present in a body-locked imbalanced

RW as studied in this dissertation.

The simplified model for representing RW jitter due to static and dynamic imbalances is not

physically realistic due to the nonconservative nature of adding a system-internal forcing effect as

an external disturbance [39]. The resulting model only considers the impact of the wheel onto

the spacecraft, but neglects how the spacecraft impacts the wheel motion. The resulting one-way

coupled simplified model has the primary benefits of algebraic simplicity of the jitter equations and

the associated fast computational evaluation. For spacecraft dynamics analysis purposes the non-

physical nature of the simplified model does not necessarily present a problem if the RWs are well

balanced with respect to the overall size of the spacecraft. However, depending on the quality of

the reaction wheel balance in relation to the spacecraft size this approach may become problematic.

Furthermore, the simplified model does not allow for energy and momentum code validation checks.

When verifying the computer simulation code the spacecraft energy and momentum checks are

critical tools of the dynamics validation process. Even for a spacecraft simulation that only includes
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RW jitter, complete verification of the model is difficult because without energy and momentum

checks a truth model is difficult to create. If the model of the spacecraft has other complex behaviors

such as solar panel flexing or fuel slosh, the importance of energy and momentum checks increases

rapidly. The coupled nature of these complex spacecraft systems results in severe challenges with

debugging and verification. The energy and momentum checks become essential in this process.

An offset in the center of mass of the RW from the spin axis, denoted static imbalance,

results in an internal force and torque on the spacecraft. An asymmetric distribution of mass

about the RW spin axis is denoted as the dynamic imbalance and produces an internal disturbance

torque onto the spacecraft. Figure 3.4 explains these imbalances geometrically. Ip is a line that is

coincident with the center mass of the RW and illustrates a principal axis of the RW. The static

imbalance results in a center of mass offset of the RW but does not change the direction of the

principal axes. The dynamic imbalance is result of the principal axes not being aligned with the

spin axis. Deflection of the RW wheel bearing due to static and dynamic imbalances further affects

the vibrational modes of the system, however, this effect is beyond the scope of this work and is

not being considered. This dissertation investigates modeling these classical static and dynamic

imbalance behaviors in a first-principles based approach. With this jitter model the RW is still

treated as a rigid component with a body-fixed rotation axis, but the rotation axis is not necessarily

aligned with the RW principle axes, and the RW center of mass is off-set from this rotation axis by

a distance di.

ĝs

Ip

Static Imbalance Dynamic Imbalance

Figure 3.4: Reaction wheel static and dynamic imbalance.

When deriving the equations of motion (EOMs) for a spacecraft with Nrw reaction wheels,
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an important assumption is made in that the reaction wheels are symmetric and results in the

EOMs to be simplified to a convenient and compact form [39]. However, if the reaction wheels

are imbalanced the EOMs have to be re-derived to account for the fully-coupled dynamics between

the RWs and the spacecraft. This dissertation follows a development path using Newtonian and

Eulerian mechanics using a formulation that uses a minimal coordinate description [39].

3.1.3.2 Problem Statement

Bc

b̂3

b̂2

B

✓i

di

ĝsi = m̂si

ŵ2i

ŵ3i

m̂3i
m̂2i

Wi

Wci

N

b̂1

c

C

N

N
rB/N

Figure 3.5: Reference frame and variable definitions.

Figure 3.5 shows the frame and variable definitions used for this problem. The formulation

involves a rigid hub with its center of mass location labeled as point Bc, and Nrw RWs with their

center of mass locations labeled as Wci . The frames being used for this formulation are the body-

fixed frame, B : {b̂1, b̂2, b̂3}, the motor frame of the ith RW, Mi : {m̂si , m̂2i , m̂3i} which is

also body-fixed, and the wheel-fixed frame of the ith RW, Wi : {ĝsi , ŵ2i , ŵ3i}. The dynamics are

modeled with respect to the B frame which can be generally oriented. The Wi frame is oriented

such that the ĝsi axis is aligned with the RW spin axis which is the same as the motor torque axis

m̂si , the ŵ2i axis is perpendicular to ĝsi and points in the direction towards the RW center of

mass Wci . The ŵ3i completes the right hand rule. The Mi frame is defined as being equal to the
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Wi frame at the beginning of the simulation and therefore the Wi and Mi frames are offset by an

angle, θi, about the m̂si = ĝsi axes.

A few more key variables in Figure 3.5 need to be defined. The rigid spacecraft structure

without the RWs is called the hub. Point B is the origin of the B frame and is a general body-fixed

point that does not have to be identical to the total spacecraft center of mass, nor the rigid hub

center of mass Bc. Point Wi is the origin of the Wi frame and can also have any location relative

to point B. Point C is the center of mass of the total spacecraft system including the rigid hub

and the RWs. Due to the RW imbalance, the vector c, which points from point B to point C, will

vary as seen by a body-fixed observer. The scalar variable di is the center of mass offset of the

RW, or the distance from the spin axis, ĝsi to Wci . Finally, the inertial frame orientation is defined

through N : {n̂1, n̂2, n̂3}, while the origin of the inertial frame is labeled as N .

3.1.3.3 Balanced Reaction Wheel Discussion

Before showing the EOMs of a spacecraft with imbalanced reaction wheels, it is useful to

explain how the commonly seen EOMs of balanced reaction wheels fit into the generalized EOM

form and the back-substitution method. The equations of motion of a balanced reaction wheel

are provided in Reference [39] and are slightly modified to adhere to the standard form seen in

Section 2. Since a balanced reaction wheel does not change the center of mass location of the

spacecraft, the translational equation of motion is not coupled with Ω̇ as shown below:

msc[I3×3]r̈B/N −msc[c̃]ω̇B/N = Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c (3.116)

The rotational equation of motion includes Ω̇ terms, and is thus coupled with the wheel motion as

seen in the following equation:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

Nrw∑
i=1

Jsi ĝsiΩ̇i = −[ω̃B/N ][Isc,B]ωB/N

−
Nrw∑
i=1

(ωB/N × JsiΩiĝsi) +LB (3.117)
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The motor torque equation is coupled with ω̇B/N as shown below.

Ω̇i =
usi

Jsi

− ĝTsiω̇B/N (3.118)

3.1.3.4 Back-Substitution Derivation

Since translation is not coupled with wheel speed, the back-substitution equation may be

obtained readily following the same method used in the prior derivations:

msc[c̃]r̈B/N + ([Isc,B]−
Nrw∑
i=1

Jsi ĝsi ĝ
T
si)ω̇B/N = −[ω̃B/N ][Isc,B]ωB/N −

Nrw∑
i=1

(ĝsiusi +ωB/N × JsiΩiĝsi)

− [I ′sc,B]ωB/N +LB (3.119)

The back-substitution matrices can quickly be defined for balanced reaction wheels seen in the

following equations:

[A] = msc[I3×3] (3.120)

[B] = −msc[c̃] (3.121)

[C] = msc[c̃] (3.122)

[D] = [Isc,B]−
N∑
i=1

Jsi ĝsi ĝ
T
si (3.123)

vtrans = Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c (3.124)

vrot = −[ω̃B/N ][Isc,B]ωB/N −
Nrw∑
i=1

(ĝsiusi + ωB/N × JsiΩiĝsi)− [I ′sc,B]ωB/N +LB (3.125)

This concludes the necessary definitions for balanced reaction wheels and shows that the only

contributions from RWs to the back-substitution matrices are to the [D] and vrot matrices. This

agrees with intuition since balanced reaction wheels do not change the mass properties of the

spacecraft and therefore only affect the rotational dynamics EOMs.

3.1.3.5 Imbalanced Reaction Wheel Back-Substitution

The derivation of equations of motion of an imbalanced reaction wheel can be seen in Refer-

ence [84], and the EOMs are repeated here for the reader’s convenience. The translational equation
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of motion is

r̈B/N − [c̃]ω̇B/N +
1

msc

NRW∑
i=1

mrwidiŵ3iΩ̇i = r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c

+
1

msc

NRW∑
i=1

mrwidiΩ
2
i ŵ2i (3.126)

The rotational equation of motion can be seen in the following equation:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NRW∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
Ω̇i

=

NRW∑
i=1

[
mrwi [r̃Wci/B

]diΩ
2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi [r̃Wci/B

]r′Wci/B

)]
− [ω̃B/N ][Isc,B]ωB/N − [Isc,B]′ωB/N +LB (3.127)

The motor torque equation is as follows

[
mrwidiŵ

T
3i

]
r̈B/N +

[
(J11i +mrwid

2
i )ĝ

T
si + J13iŵ

T
3i −mrwidiŵ

T
3i [r̃Wi/B]

]
ω̇B/N +

[
J11i +mrwid

2
i

]
Ω̇i

= −J13iωw2i
ωsi +ωw2i

ωw3i
(J22i −J33i −mrwid

2
i )−mrwidiŵ

T
3i [ω̃B/N ][ω̃B/N ]rWi/B +usi + ĝTsiτext,i

(3.128)

These equations conform to the standard EOM form as seen in Section 2.

The back-substitution method derivation starts by solving for Ω̇i in the motor torque equa-

tion:

Ω̇i = −
( mrwidiŵ

T
3i

J11i +mrwid
2
i

)
r̈B/N −

1

J11i +mrwid
2
i

[
(J11i +mrwid

2
i )ĝ

T
si

+ J13iŵ
T
3i −mrwidiŵ

T
3i [r̃Wi/B]

]
ω̇B/N +

1

J11i +mrwid
2
i

(
ωw2i

ωw3i
(J22i

− J33i −mrwid
2
i )− J13iωw2i

ωsi −mrwidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi

)
(3.129)

The following coefficients are defined and are used to de-clutter the final equations.

aΩi = − mrwidi
J11i +mrwid

2
i

ŵ3i (3.130)

bΩi = − 1

J11i +mrwid
2
i

[
(J11i +mrwid

2
i )ĝsi + J13iŵ3i +mrwidi[r̃Wi/B]ŵ3i

]
(3.131)
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cΩi =
1

J11i +mrwid
2
i

(
ωw2i

ωw3i
(J22i − J33i −mrwid

2
i )− J13iωw2i

ωsi

−mrwidiŵ
T
3i [ω̃B/N ][ω̃B/N ]rWi/B + usi + ĝTsiτext,i

)
(3.132)

Writing the equation to fit the compact form seen in Eq 2.4 yields:

Ω̇i = aTΩi
r̈B/N + bTΩi

ω̇B/N + cΩi (3.133)

Plugging in the equation into the translational EOM, rearranging and multiplying both sides by

msc yields:[
msc[I3×3] +

NRW∑
i=1

mrwidiŵ3ia
T
Ωi

]
r̈B/N +

[
−msc[c̃] +

NRW∑
i=1

mrwidiŵ3ib
T
Ωi

]
ω̇B/N

= Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c+

NRW∑
i=1

[
mrwidiΩ

2
i ŵ2i −mrwidicΩiŵ3i

]
(3.134)

Eq. (3.134) is the de-coupled translational equation for the back-substitution method. Following

the same steps as before, the de-coupled rotational EOM for imbalanced reaction wheels can be

seen in the following equation.[
msc[c̃] +

NRW∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
aTΩi

]
r̈B/N

+

[
[Isc,B] +

NRW∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
bTΩi

]
ω̇B/N

= −[ω̃B/N ][Isc,B]ωB/N − [Isc,B]′ωB/N +LB

+

NRW∑
i=1

[
mrwi [r̃Wci/B

]diΩ
2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi [r̃Wci/B

]r′Wci/B

)
−
(

[Irwi,Wci
]ĝsi +mrwidi[r̃Wci/B

]ŵ3i

)
cΩi

]
(3.135)

All of the information needed to define the back-substitution matrices for imbalanced reaction

wheels has been found. The imbalanced reaction wheel back-substitution matrices are given by,
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[A] = msc[I3×3] +

NRW∑
i=1

mrwidiŵ3ia
T
Ωi

(3.136)

[B] = −msc[c̃] +

NRW∑
i=1

mrwidiŵ3ib
T
Ωi

(3.137)

[C] = msc[c̃] +

NRW∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
aTΩi

(3.138)

[D] = [Isc,B] +

NRW∑
i=1

(
[Irwi,Wci

]ĝsi +mrwidi[r̃Wci/B
]ŵ3i

)
bTΩi

(3.139)

vtrans = Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c+

NRW∑
i=1

[
mrwidiΩ

2
i ŵ2i −mrwidicΩiŵ3i

]
(3.140)

vrot = −[ω̃B/N ][Isc,B]ωB/N − [Isc,B]′ωB/N +LB

+

NRW∑
i=1

[
mrwi [r̃Wci/B

]diΩ
2
i ŵ2i − [Irwi,Wci

]′Ωiĝsi − [ω̃B/N ]
(

[Irwi,Wci
]Ωiĝsi +mrwi [r̃Wci/B

]r′Wci/B

)
−
(

[Irwi,Wci
]ĝsi +mrwidi[r̃Wci/B

]ŵ3i

)
cΩi

]
(3.141)

This concludes the necessary definitions for balanced and imbalanced reaction wheels to fit the

standard form for the EOMs introduced in Section 2.

3.1.4 Thruster Based Mass Depletion

3.1.4.1 Introduction

Another common physical phenomenon seen by spacecraft is thruster based mass depletion.

Majority of spacecraft simulations assume that the only dynamical effect caused by thrusters is the

well-known thruster force and the corresponding torque. However, when thrusters are ejecting mass

out of the spacecraft, the spacecraft is changing its physical properties. Therefore, the resulting

dynamics depends on the relative mass property change inside the fuel tanks compared to the mass

that is being ejected at the thruster nozzle.

The simplest way to take into account the ejection of propellant is to use an “update-only”

approach, thus updating the center of mass position and the inertia during the simulation in the
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EOMs without considering the dynamical influences of the mass depletion. This results in a easy-

to-implement model whose limitations consist in the lack of detailed attitude and translational

motion prediction for high-fidelity purposes. A more accurate approach considers the spacecraft as

an open system whose mass changes in accord with the fuel flows and, consequently, the dynamical

variables are transported out of the system using the Reynolds theorem[85, 86, 87, 88, 89, 85]. Past

works[90, 91, 92, 93] present the derivation of a variable mass rocket with an axial-symmetric design

with a single axial-symmetric burn chamber and a circular nozzle. These assumptions decouple the

rocket axial spin from the transverse angular velocity and results in a closed solution to the problem.

Other works[94, 95] present the EOMs considering a system of coaxial bodies with different angular

velocities. The studies present an analysis of the nutation angle in the case of a two-body satellite,

like a spacecraft with a coaxial wheel. The equations must be specified accordingly with the

number of interconnected bodies and this results in the need of re-derivation for a specific system

of interconnected bodies and to take into account how particles leave the system. A more recent

work[96] considers a body fixed reference origin and develops the translational and rotational EOM

for a reentry module. The model lacks in a defined approach to connect the dynamical properties

variation with the ejected mass characteristics.

In Reference [43], the fully-coupled dynamics is considered for this problem and the EOMs

are developed using the standard from seen in Section 2.

3.1.4.2 Problem Statement

To help define the problem, Figure 3.6 is displayed. This problem involves a spacecraft

consisting of a hub which is a rigid-body and has a center of mass location labeled as point Bc. The

hub has T number of tanks and N number of thrusters attached to it. The figure only shows one

tank and one thruster but the analytical development is general. The ith tank has a center of mass

location labeled as Fci and the jth thruster is located at Ncj . The body fixed reference frame B:

{b̂1 , b̂2 , b̂3} with origin B can be oriented in any direction and point B can be located anywhere

fixed to the hub. This means that point B and the center of mass location of the spacecraft, C,
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b̂3

b̂2
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Figure 3.6: Thruster based mass depletion schematic

are not necessarily coincident. As a result, the vector c defines the vector pointing from the body

frame origin to the center of mass fo the spacecraft. The inertial reference frame N : {n̂1 , n̂2 , n̂3}

is centered at N and is fixed in inertial space.

Another important description of this problem are the assumptions being used. The following

list organizes the assumptions that are used for this formulation:

• The spacecraft hub is rigid and deformations are not considered

• The mass flow among the tanks, the thrusters and in the combustion chamber are considered

to be second order effects and neglected

• The relative motion between the propellant and the fuel tanks is not considered in this

present work

• The particles are accelerated instantaneously from the spacecraft velocity ṙB/N to the

exhausted velocity vexh at the nozzle exit

• The particle exhausted velocity vexh is considered constant and parallel to the nozzle’s

normal n̂
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3.1.4.3 Equations of Motion

The thorough development of the EOMs of a spacecraft with thrusters considering the fully-

coupled problem can be seen in Reference [43]. The final form of the EOMs are included in the

dissertation to show how the EOMs fit the standard form of the EOMs seen in Section 2. The

translational EOM can be seen in the following equation:

mscr̈B/N −msc [c̃] ω̇B/N = Fthr − 2 ṁfuel

(
c′ +

[
ω̃B/N

]
× c
)
−mscc

′′ − 2msc

[
ω̃B/N

]
c′

−mscm̈fuel c−msc

[
ω̃B/N

] [
ω̃B/N

]
c+ 2

N∑
j=1

ṁnozj

[
ω̃B/N

]
rNj/B

+

N∑
j=1

m̈nozjrFcj/B + Fext, vol + Fext, surf (3.142)

The rotational equation is also repeated here and is shown in Eq. (3.143).

[Isc, B] ω̇B/N +msc [c̃] r̈B/N =
[
ω̃B/N

]T
[Isc, B] ωB/N − [K] ωB/N

+
M∑
i=1

(
mfueli

[
r̃Fci/B

]T
r′′Fci/B +mfueli

[
ω̃B/N

]T [
r̃Fci/B

]
r′Fci/B

+ ṁfueli

[
r̃Fci/B

]T
r′Fci/B

)
+LB, vol +LB, surf +

N∑
j=1

LBthrj
(3.143)

Looking at Equations (3.142)-(3.143), it is evident that thruster based mass depletion is

unique to the models described up until this point because there are no second order state variables

for this model. This is because thrusters do not add a degree of freedom to this system but rather

act as an external force and torque on the system. However, this model does provide the fully-

coupled solution to the problem and takes into account the dynamical effect of the changing mass

properties of the spacecraft. Equations (3.142)-(3.143) fit the standard form introduced in Section 2

and provide another ready to implement solution into simulation software.
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3.1.5 Dual-Hinged Rigid-Bodies

3.1.5.1 Introduction

The model described in Section 3.1.1 is a first order approximation to a flexing body attached

to a spacecraft. That model is limited in that only one frequency can be present per appended body.

For some analysis purposes, that model is sufficient, but in some case more flexibility is desired.

In this section, a model is introduced that approximates a flexing body as two interconnected

hinged rigid-bodies. This provides the ability to model two frequencies at a time and also model

deployment of a set of two panels. This section provides the derivation of the EOMs for this system.

3.1.5.2 Problem Statement

This formulation assumes that there is a rigid hub, with NS dual-linked solar panels (or

appended rigid-bodies) and subscript i is used to indicated the ith pair of solar panels. Figure 3.7

displays the frame and variable definitions used for this formulation.

O

N

ŝi1,3
ĥi1,3

ŝi1,1

ĥi1,1

ĥi1,2 = ŝi1,2

Sc,i1

Bc

C

c

✓i1
Hi

b̂3

b̂2b̂1

B

mspi1

ĥi1,3

✓i2

Sc,i2

ŝi2,3

ŝi2,2

ŝi2,1

ĥi2,1

Figure 3.7: Frame and variable definitions used for dual-hinged rigid-bodies formulation

There are six coordinate frames defined for this formulation. The inertial reference frame is

indicated by N : {n̂1, n̂2, n̂3}. The body fixed coordinate frame, B : {b̂1, b̂2, b̂3}, which is anchored

to the hub and can be oriented in any direction. The first solar panel frame, Si1 : {ŝi1,1, ŝi1,2, ŝi1,3},
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is a frame with its origin located at its corresponding hinge location, Hi1. The Si1 frame is oriented

such that ŝi1,1 points antiparallel to the center of mass of the first solar panel, Sc,i1. The ŝi1,2

axis is defined as the rotation axis that would yield a positive θi1 using the right-hand rule. The

distance from point Hi1 to point Sc,i1 is defined as di1. The total length of the first panel is li1

The hinge frame, Hi1 : {ĥi1,1, ĥi1,2, ĥi1,3}, is a frame fixed with respect to the body frame, and is

equivalent to the respective Si1 frame when the corresponding solar panel is undeflected.

The other two frames Si2 and Hi2 are frames attached to the second solar panel. The Hi2

frame is located at the joint between the two solar panels and ĥi1,2 = ĥi2,2. The ĥi2,1 completes

the definition of the Hi2 frame and can be oriented in any direction while orthogonal to the ĥi2,2

axis. This allows for the simulation to model undeployed solar panels,for example, and defines the

undeflected direction of the second solar panel. The Si2 frame is defined by being equal to the Hi2

when the second solar panel is undeflected from its equilibrium point and rotates about the ĥi2,2

axis.

There are a few more key locations that need to be defined. Point B is the origin of the body

frame, and can have any location with respect to the hub. Point Bc is the location of the center

of mass of the rigid hub. Using the variables and frames defined, the following section outlines the

derivation of equations of motion for the spacecraft.

3.1.5.3 Rigid Spacecraft Hub Translational Motion

Following a similar derivation as in previous work [41], the derivation begins with Newton’s

first law for the center of mass of the spacecraft.

r̈C/N =
F

msc
(3.144)

Ultimately the acceleration of the body frame or point B is desired

r̈B/N = r̈C/N − c̈ (3.145)
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The definition of c the location of the center of mass of the entire spacecraft, can be seen in Eq.

(3.146).

c =
1

msc

[
mhubrBc/B +

NS∑
i=1

(
mspi1

rSc,i1/B +mspi2
rSc,i2/B

)]
(3.146)

To find the inertial time derivative of c, it is first necessary to find the time derivative of c with

respect to the body frame. A time derivative of any vector, v, with respect to the body frame is

denoted by v′; the inertial time derivative is labeled as v̇. The first and second body-relative time

derivatives of c can be seen in Eqs. (3.147) and (3.148).

c′ =
1

msc

NS∑
i=1

(
mspi1

r′Sc,i1/B
+mspi2

r′Sc,i2/B

)
(3.147)

c′′ =
1

msc

NS∑
i=1

(
mspi1

r′′Sc,i1/B
+mspi2

r′′Sc,i2/B

)
(3.148)

The vector rSc,i1/B is readily defined using the ŝi,1 axis

rSc,i1/B = rHi1/B − di1ŝi1,1 (3.149)

The vector rSc,i2/B is defined similarly

rSc,i2/B = rHi1/B − li1ŝi1,1 − di2ŝi2,1 (3.150)

Now the first and second time derivatives with respect to the body frame of rSc,i1/B are taken

r′Sc,i1/B
= di1θ̇i1ŝi1,3 (3.151)

r′′Sc,i1/B
= di1ŝi1,3θ̈i1 + di1θ̇

2
i1ŝi1,1 (3.152)

Similarly the body time derivatives of rSc,i2/B are defined in the following

r′Sc,i2/B
= li1θ̇i1ŝi1,3 + di2

(
θ̇i1 + θ̇i2

)
ŝi2,3 (3.153)

r′′Sc,i2/B
= (li1ŝi1,3 + di2ŝi2,3)θ̈i1 + di2ŝi2,3θ̈i2 + li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1 (3.154)

Eqs. (3.147) and (3.148) are next reformulated to include these new definitions:

c′ =
1

msc

NS∑
i=1

(
mspi1

[
di1θ̇i1ŝi1,3

]
+mspi2

[
li1θ̇i1ŝi1,3 + di2

(
θ̇i1 + θ̇i2

)
ŝi2,3

])
(3.155)



70

c′′ =
1

msc

NS∑
i=1

(
mspi1

di1
(
θ̈i1ŝi1,3 + θ̇2

i1ŝi1,1
)

+mspi2

[
li1

(
θ̈i1ŝi1,3 + θ̇2

i1ŝi1,1

)
+ di2

(
θ̈i1 + θ̈i2

)
ŝi2,3 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

])
(3.156)

Using the transport theorem[39] yields the following definition for c̈

c̈ = c′′ + 2ωB/N × c′ + ω̇B/N × c+ ωB/N ×
(
ωB/N × c

)
(3.157)

Eq. (3.145) is updated to include Eq. (3.157)

r̈B/N = r̈C/N − c′′ − 2ωB/N × c′ − ω̇B/N × c− ωB/N ×
(
ωB/N × c

)
(3.158)

Substituting Eq.(3.156) into Eq.(3.158) and moving the second order state variables to the left

hand side results in

r̈B/N + ω̇B/N × c+
1

msc

NS∑
i=1

([
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

]
θ̈i1 +mspi2

di2ŝi2,3θ̈i2

)

= r̈C/N −
1

msc

NS∑
i=1

(
mspi1

di1θ̇
2
i1ŝi1,1 +mspi2

[
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

])
− 2ωB/N × c′ − ωB/N ×

(
ωB/N × c

)
(3.159)

Introducing the tilde matrix[39] to replace the cross product operators and multiplying both sides

by msc simplifies the equation to

mscr̈B/N −msc[c̃]ω̇B/N +

NS∑
i=1

([
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

]
θ̈i1 +mspi2

di2ŝi2,3θ̈i2

)
= F − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c

−
NS∑
i=1

(
mspi1

di1θ̇
2
i1ŝi1,1 +mspi2

[
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

])
(3.160)

Equation (3.160) is the translational motion equation and fits the standard form of the

translational EOM introduced in Section 2.
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3.1.5.4 Rigid Spacecraft Hub Rotational Motion

Starting with Euler’s equation when the body fixed coordinate frame origin is not coincident

with the center of mass of the body[39]

Ḣsc,B = LB +mscr̈B/N × c (3.161)

where LB is the total external torque about point B. The definition of the angular momentum

vector of the spacecraft about point B is

Hsc,B = [Ihub,Bc ]ωB/N +mhubrBc/B × ṙBc/B

+

NS∑
i=1

(
[Ispi1,Sc,i1 ]ωB/N + θ̇i1Isi1,2 ŝi1,2 +mspi1

rSc,i1/B × ṙSc,i1/B

+ [Ispi2,Sc,i2 ]ωB/N +
(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2 +mspi2

rSc,i2/B × ṙSc,i2/B

)
(3.162)

Both solar panel inertia’s about their center of masses’ are assumed to be defined along principal

inertia axes and are of the form

[Ispi1,Sc,i1 ] =

Si1
Isi1,1 0 0

0 Isi1,2 0

0 0 Isi1,3

 (3.163)

[Ispi2,Sc,i2 ] =

Si2
Isi2,1 0 0

0 Isi2,2 0

0 0 Isi2,3

 (3.164)

Now the inertial time derivative of Eq. (3.162) is taken and yields

Ḣsc,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N +mhubrBc/B × r̈Bc/B

+

NS∑
i=1

(
[I ′spi1,Sc,i1

]ωB/N + [Ispi1,Sc,i1 ]ω̇B/N + ωB/N × [Ispi1,Sc,i1 ]ωB/N

+ θ̈i1Isi1,2 ŝi1,2 + ωB/N × θ̇i1Isi1,2 ŝi1,2 +mspi1
rSc,i1/B × r̈Sc,i1/B

+ [I ′spi2,Sc,i2
]ωB/N + [Ispi2,Sc,i2 ]ω̇B/N + ωB/N × [Ispi2,Sc,i2 ]ωB/N

+
(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2 + ωB/N ×

(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2 +mspi1

rSc,i2/B × r̈Sc,i2/B

)
(3.165)
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The terms r̈Bc/B, r̈Sc,i1/B and r̈Sc,i2/B are found using the transport theorem and knowing that

rBc/B is fixed with respect to the body frame.

r̈Bc/B = ω̇B/N × rBc/B + ωB/N × (ωB/N × rBc/B) (3.166)

r̈Sc,i1/B = r′′Sc,i1/B
+ 2ωB/N × r′Sc,i1/B

+ ω̇B/N × rSc,i1/B + ωB/N × (ωB/N × rSc,i1/B) (3.167)

r̈Sc,i2/B = r′′Sc,i2/B
+ 2ωB/N × r′Sc,i2/B

+ ω̇B/N × rSc,i2/B + ωB/N × (ωB/N × rSc,i2/B) (3.168)

Incorporating Eqs. (3.166) - (3.168) into Eq. (3.165) results in

Ḣsc,B = [Ihub,Bc ]ω̇B/N + ωB/N × [Ihub,Bc ]ωB/N +mhubrBc/B × (ω̇B/N × rBc/B)

+mhubrBc/B ×
[
ωB/N × (ωB/N × rBc/B)

]
+

NS∑
i=1

(
[I ′spi1,Sc,i1

]ωB/N + [Ispi1,Sc,i1 ]ω̇B/N

+ ωB/N × [Ispi1,Sc,i1 ]ωB/N + θ̈i1Isi1,2 ŝi1,2 + ωB/N × θ̇i1Isi1,2 ŝi1,2 +mspi1
rSc,i1/B × r′′Sc,i1/B

+ 2mspi1
rSc,i1/B ×

(
ωB/N × r′Sc,i1/B

)
+mspi1

rSc,i1/B ×
(
ω̇B/N × rSc,i1/B

)
+mspi1

rSc,i1/B ×
[
ωB/N × (ωB/N × rSc,i1/B)

]
+ [I ′spi2,Sc,i2

]ωB/N + [Ispi2,Sc,i2 ]ω̇B/N

+ ωB/N × [Ispi2,Sc,i2 ]ωB/N +
(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2 + ωB/N ×

(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2

+mspi2
rSc,i2/B × r′′Sc,i2/B

+ 2mspi2
rSc,i2/B ×

(
ωB/N × r′Sc,i2/B

)
+mspi2

rSc,i2/B ×
(
ω̇B/N × rSc,i2/B

)
+mspi2

rSc,i2/B ×
[
ωB/N × (ωB/N × rSc,i2/B)

])
(3.169)

Applying the parallel axis theorem the following inertia tensor terms are defined as

[Ihub,B] = [Ihub,Bc ] +mhub[r̃Bc/B][r̃Bc/B]T (3.170)

[Ispi1,B] = [Ispi1,Sc,i1 ] +mspi1
[r̃Sc,i1/B][r̃Sc,i1/B]T (3.171)

[Ispi2,B] = [Ispi2,Sc,i2 ] +mspi2
[r̃Sc,i2/B][r̃Sc,i2/B]T (3.172)

[Isc,B] = [Ihub,B] +

NS∑
i=1

(
[Ispi1,B] + [Ispi2,B]

)
(3.173)

Because the tilde matrices are skew-symmetric, taking the body-relative time derivative of Equa-
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tion (3.173) yields

[I ′sc,B] =

NS∑
i=1

[
[I ′spi1,Sc,i1

]−mspi1

(
[r̃′Sc,i1/B

][r̃Sc,i1/B] + [r̃Sc,i1/B][r̃′Sc,i1/B
]
)

+ [I ′spi2,Sc,i2
]−mspi2

(
[r̃′Sc,i2/B

][r̃Sc,i2/B] + [r̃Sc,i2/B][r̃′Sc,i2/B
]
) ]

(3.174)

[I ′spi1,Sc,i1
] needs to be defined and can be conveniently expressed by leveraging the assumption that

the inertia matrix is diagonal (as seen in Eq. (3.163)) and is written in terms of its base vectors:

[Ispi1,Sc,i1 ] = Isi1,1 ŝi1,1ŝ
T
i1,1 + Isi1,2 ŝi1,2ŝ

T
i1,2 + Isi1,3 ŝi1,3ŝ

T
i1,3 (3.175)

Taking the body time derivative of Eq. (3.175) results in

[I ′spi1,Sc,i1
] = Isi1,1 ŝ

′
i1,1ŝ

T
i1,1 + Isi1,1 ŝi1,1ŝ

′T
i1,1 + Isi1,2 ŝ

′
i1,2ŝ

T
i1,2

+ Isi1,2 ŝi1,2ŝ
′T
i1,2 + Isi1,3 ŝ

′
i1,3ŝ

T
i1,3 + Isi1,3 ŝi1,3ŝ

′T
i1,3 (3.176)

Using the transport theorem for each basis vector in the frame: ŝ′i1,j = ωSi1/B×ŝi1,j = θ̇i1ŝi1,2×ŝi1,j ,

applying this to Eq. (3.176), evaluating the cross products, and simplifying results in

[I ′spi1,Sc,i1
] = θ̇i1(Isi1,3 − Isi1,1)(ŝi1,1ŝ

T
i1,3 + ŝi1,3ŝ

T
i1,1) (3.177)

Applying the same methodology for [I ′spi2,Sc,i2
] and using the following definition: ŝ′i2,j =

ωSi2/B × ŝi2,j =
(
θ̇i1 + θ̇i2

)
ŝi2,2 × ŝi2,j results in

[I ′spi2,Sc,i2
] =

(
θ̇i1 + θ̇i2

)
(Isi2,3 − Isi2,1)(ŝi2,1ŝ

T
i2,3 + ŝi2,3ŝ

T
i2,1) (3.178)

Substituting Eq. (3.177) and Eq. (3.178) into Eq. (3.169) and using Eq. (3.173) to simplify results

in Eq. (3.179). The Jacobi Identity, (a×b)×c = a×(b×c)−b×(a×c), is used to combine terms.

Factoring out ω̇B/N and, selectively, ωB/N and utilizing the tilde matrix transforms Eq. 3.169 into
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Eq.(3.179) so that [Isc,B] can be extracted.

Ḣsc,B =

(
[Ihub,Bc ]−mhub[r̃Bc/B][r̃Bc/B] +

NS∑
i=1

(
[Ispi1,Sc,i1 ] + [Ispi2,Sc,i2 ]−mspi1

[r̃Sc,i1/B][r̃Sc,i1/B]

−mspi2
[r̃Sc,i2/B][r̃Sc,i2/B]

))
ω̇B/N + ωB/N ×

(
[Ihub,Bc ]−mhub[r̃Bc/B][r̃Bc/B]+

NS∑
i=1

(
[Ispi1,Sc,i1 ] + [Ispi2,Sc,i2 ]−mspi1

[r̃Sc,i1/B][r̃Sc,i1/B]−mspi2
[r̃Sc,i2/B][r̃Sc,i2/B]

))
ωB/N

+

NS∑
i=1

(
[I ′spi1,Sc,i1

]ωB/N + θ̈i1Isi1,2 ŝi1,2 + ωB/N × θ̇i1Isi1,2 ŝi1,2 +mspi1
rSc,i1/B × r′′Sc,i1/B

+ 2mspi1
rSc,i1/B ×

(
ωB/N × r′Sc,i1/B

)
+ [I ′spi2,Sc,i2

]ωB/N +
(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2+

ωB/N ×
(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2 +mspi2

rSc,i2/B × r′′Sc,i2/B
+ 2mspi2

rSc,i2/B ×
(
ωB/N × r′Sc,i2/B

))
(3.179)

Eqs. (3.170)-(3.173) further simplify the equation to the following:

Ḣsc,B = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N

+

NS∑
i=1

(
[I ′spi1,Sc,i1

]ωB/N + θ̈i1Isi1,2 ŝi1,2 + ωB/N × θ̇i1Isi1,2 ŝi1,2 +mspi1
rSc,i1/B × r′′Sc,i1/B

+ 2mspi1
rSc,i1/B ×

(
ωB/N × r′Sc,i1/B

)
+ [I ′spi2,Sc,i2

]ωB/N +
(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2+

ωB/N ×
(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2 +mspi2

rSc,i2/B × r′′Sc,i2/B
+ 2mspi2

rSc,i2/B ×
(
ωB/N × r′Sc,i2/B

))
(3.180)

Using the Jacobi Identity again, followed by tilde matrix substitution yields:

Ḣsc,B = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N

+

NS∑
i=1

(
[I ′spi1,Sc,i1

]ωB/N −mspi1

(
[r̃Sc,i1/B][r̃′Sc,i1/B] + [r̃′Sc,i1/B][r̃Sc,i1/B]

)
ωB/N + θ̈i1Isi1,2 ŝi1,2

+ ωB/N × θ̇i1Isi1,2 ŝi1,2 +mspi1
rSc,i1/B × r′′Sc,i1/B

+mspi1
rSc,i1/B ×

(
ωB/N × r′Sc,i1/B

)
+ [I ′spi2,Sc,i2

]ωB/N −mspi2

(
[r̃Sc,i2/B][r̃′Sc,i2/B] + [r̃′Sc,i2/B][r̃Sc,i2/B]

)
ωB/N +

(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2

+ ωB/N ×
(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2 +mspi2

rSc,i2/B × r′′Sc,i2/B
+mspi2

rSc,i2/B ×
(
ωB/N × r′Sc,i2/B

))
(3.181)
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Factoring out ωB/N , and substituting in from Eq. (3.174) leaves:

Ḣsc,B = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N + [I ′sc,B]ωB/N +

NS∑
i=1

[
θ̈i1Isi1,2 ŝi1,2

+ ωB/N × θ̇i1Isi1,2 ŝi1,2 +mspi1
rSc,i1/B × r′′Sc,i1/B

+mspi1
ωB/N ×

(
rSc,i1/B × r′Sc,i1/B

)
+
(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2 + ωB/N ×

(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2

+mspi2
rSc,i2/B × r′′Sc,i2/B

+mspi2
ωB/N ×

(
rSc,i2/B × r′Sc,i2/B

)]
(3.182)

Eqs. (3.161) and (3.182) are equated and yield

LB +mscr̈B/N × c = [Isc,B]ω̇B/N + ωB/N × [Isc,B]ωB/N + [I ′sc,B]ωB/N +

NS∑
i=1

[
θ̈i1Isi1,2 ŝi1,2

+ ωB/N × θ̇i1Isi1,2 ŝi1,2 +mspi1
rSc,i1/B × r′′Sc,i1/B

+mspi1
ωB/N ×

(
rSc,i1/B × r′Sc,i1/B

)
+
(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2 + ωB/N ×

(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2

+mspi2
rSc,i2/B × r′′Sc,i2/B

+mspi2
ωB/N ×

(
rSc,i2/B × r′Sc,i2/B

)]
(3.183)

Finally, using tilde matrix and simplifying yields the modified Euler equation:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NS∑
i=1

[
θ̈i1Isi1,2 ŝi1,2 +mspi1

[r̃Sc,i1/B]r′′Sc,i1/B

+
(
θ̈i1 + θ̈i2

)
Isi2,2 ŝi2,2 +mspi2

[r̃Sc,i2/B]r′′Sc,i2/B

]
= −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N

−
NS∑
i=1

[
[ω̃B/N ]θ̇i1Isi1,2 ŝi1,2 +mspi1

[ω̃B/N ][r̃Sc,i1/B]r′Sc,i1/B

+ [ω̃B/N ]
(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2 +mspi2

[ω̃B/N ][r̃Sc,i2/B]r′Sc,i2/B

]
+LB (3.184)
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The second order terms need to be combined and results in:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NS∑
i=1

[(
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2

+mspi2
li1[r̃Sc,i2/B]ŝi1,3 +mspi2

di2[r̃Sc,i2/B]ŝi2,3

)
θ̈i1 +

(
Isi2,2 ŝi2,2 +mspi2

[r̃Sc,i2/B]di2ŝi2,3

)
θ̈i2

]
= −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −

NS∑
i=1

[
[ω̃B/N ]θ̇i1Isi1,2 ŝi1,2 +mspi1

di1θ̇
2
i1[r̃Sc,i1/B]ŝi1,1

+mspi2
li1θ̇

2
i1[r̃Sc,i2/B]ŝi1,1 +mspi1

[ω̃B/N ][r̃Sc,i1/B]r′Sc,i1/B
+ [ω̃B/N ]

(
θ̇i1 + θ̇i2

)
Isi2,2 ŝi2,2

+mspi2
di2
(
θ̇i1 + θ̇i2

)2
[r̃Sc,i2/B]ŝi2,1 +mspi2

[ω̃B/N ][r̃Sc,i2/B]r′Sc,i2/B

]
+LB (3.185)

The terms r′′Sc,i1/B
and r′′Sc,i2/B

contain second order state variables, therefore replacing their

definition seen in Eqs. (3.152) and (3.154) and simplifying the expression yields

msc[c̃]r̈B/N+[Isc,B]ω̇B/N+

NS∑
i=1

[(
Isi1,2 ŝi1,2+mspi1

di1[r̃Sc,i1/B]ŝi1,3+Isi2,2 ŝi2,2+mspi2
li1[r̃Sc,i2/B]ŝi1,3

+mspi2
di2[r̃Sc,i2/B]ŝi2,3

)
θ̈i1 +

(
Isi2,2 ŝi2,2 +mspi2

di2[r̃Sc,i2/B]ŝi2,3
)
θ̈i2

]
= −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −

NS∑
i=1

[
θ̇i1Isi1,2 [ω̃B/N ]ŝi1,2 +mspi1

[ω̃B/N ][r̃Sc,i1/B]r′Sc,i1/B

+mspi1
di1θ̇

2
i1[r̃Sc,i1/B]ŝi1,1 +

(
θ̇i1 + θ̇i2

)
Isi2,2 [ω̃B/N ]ŝi2,2 +mspi2

[ω̃B/N ][r̃Sc,i2/B]r′Sc,i2/B

+mspi2
[r̃Sc,i2/B]

(
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

)]
+LB (3.186)

Equation (3.186) is the rotational motion equation for dual-hinged rigid-bodies and fits the standard

form for the rotational EOM introduced in Section 2.

3.1.5.5 Dual Linked Solar Panel Motion

Let LHi1 = Li1,1ŝi1,1 +Li1,2ŝi1,2 +Li1,3ŝi1,3 be the total torque acting on the first solar panel

at point Hi1. The corresponding hinge torque is given through

Li1,2 = −ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝi1,2 · τexti1,Hi1 + ŝi1,2 · rHi2/Hi1
× F1/2i (3.187)

Where F1/2i is the reaction of solar panel 2 acting on solar panel 1. It is important to point out

that F1/2i = −F2/1i.
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To define the F1/2i, F2/1i needs to be defined. This is done performing the super particle

theorem on the second solar panel:

F2/1i + Fexti2 = mspi2 r̈Sc,i2/N (3.188)

The sum of the external forces on solar panel 2, Fexti2 , is separate because it does not contribute

to the reaction force at the joint. With this definition F1/2i is defined as

F1/2i = Fexti2 −mspi2 r̈Sc,i2/N (3.189)

Plugging this definition into Eq. (3.187) yields

Li1,2 = −ki1θi1− ci1θ̇i1 +ki2θi2 + ci2θ̇i2 + ŝi1,2 ·τexti1,Hi1 + ŝi1,2 ·
[
rHi2/Hi1

×
(
Fexti2 −mspi2 r̈Sc,i2/N

)]
(3.190)

The hinge structure produces the other two torques Li1,1 and Li1,3. τexti1,Hi1 is the external torque

on the solar panel and is projected onto the ŝi,2 direction to find its contribution to Li1,2. Gravity,

for example would apply the following torque on the solar panel about point Hi1

τg,Hi1 = rSc,i1/Hi1
× Fg (3.191)

The inertial angular velocity vector for the solar panel frame is

ωSi1/N = ωSi1/Hi1
+ ωHi1/B + ωB/N (3.192)

where ωSi1/Hi1
= θ̇i1ŝi1,2. Because the hinge frame Hi1 is fixed relative to the body frame B the

relative angular velocity vector is ωHi1/B = 0. The body angular velocity vector is written in

Si1-frame components as

ωB/N = (ŝi1,1 · ωB/N )ŝi1,1 + (ŝi1,2 · ωB/N )ŝi1,2 + (ŝi1,3 · ωB/N )ŝi1,3 (3.193)

= ωsi1,1 ŝi1,1 + ωsi1,2 ŝi1,2 + ωsi1,3 ŝi1,3 (3.194)

Using this definition greatly simplifies the following algebraic development. Finally, the inertial

solar panel angular velocity vector is written as

ωSi1/N = ωsi1,1 ŝi1,1 + (ωsi1,2 + θ̇i1)ŝi1,2 + ωsi1,3 ŝi1,3 (3.195)
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As ŝi1,2 is a body-fixed vector, note that

ω̇si1,2 =
Bd

dt

(
ωB/N · ŝi1,2

)
=
Bd

dt

(
ωB/N

)
· ŝi1,2 = ω̇B/N · ŝi1,2 (3.196)

Substituting these angular velocity components into the rotational equations of motion of

a rigid-body with torques taken about its center of mass[39], the general solar panel equations of

motion are written as

Isi1,1ω̇si1,1 = −(Isi1,3 − Isi1,2)(ωsi1,2 + θ̇i1)ωsi1,3 + Lsi1,1 (3.197)

Isi1,2(ω̇si1,2 + θ̈i1) = −(Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 + Lsi1,2 (3.198)

Isi1,3ω̇si1,3 = −(Isi1,2 − Isi1,1)ωsi1,1(ωsi1,2 + θ̇i1) + Lsi1,3 (3.199)

where LSc,i1 = Lsi1,1 ŝi1,1 + Lsi1,2 ŝi1,2 + Lsi1,3 ŝi1,3 is the net torque acting on the solar panel about

its center of mass. The second differential equation is used to get the equations of motion of θi1.

The first and third equation could be used to back-solve for the structural hinge torques embedded

in Lsi1,1 and Lsi1,3 if needed.

Let FSc,i1 be the net force acting on the first solar panel. Using the superparticle theorem[39]

yields

FSc,i1 = mspi1
r̈Sc,i1/N (3.200)

The torque about the solar panel center of mass can be related to the torque about the hinge point

Hi1 using

LHi1 = LSc,i1 + rSc,i1/Hi1
× FSc,i1 (3.201)

Solving for the torque about Sc,i1 yields

LSc,i1 = LHi1 − rSc,i1/Hi1
×mspi1

r̈Sc,i1/N (3.202)

Taking the vector dot product with ŝi1,2 and using rSc,i1/Hi1
= −di1ŝi1,1 results in

Lsi1,2 = ŝi1,2 ·LSc,i1 = ŝi1,2 ·LHi1︸ ︷︷ ︸
Li1,2

−ŝi1,2 ·
(
rSc,i1/Hi1

×mspi1
r̈Sc,i1/N

)
(3.203)
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Lsi1,2 = −ki1θi1−ci1θ̇i1 +ki2θi2 +ci2θ̇i2 + ŝi1,2 ·τexti1,Hi1 + ŝi1,2 ·
[
rHi2/Hi1

×
(
Fexti2−mspi2 r̈Sc,i2/N

)]
+mspi1

di1ŝi1,2 ·
(
ŝi1,1 × r̈Sc,i1/N

)
(3.204)

Expanding a couple of definitions yields:

Lsi1,2 = −ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝi1,2 · τexti1,Hi1 − li1ŝi1,2 ·
(
ŝi1,1 × Fexti2

)
+mspi2 li1ŝi1,2 ·

[
ŝi1,1 ×

(
r̈Sc,i2/N

)]
+mspi1

di1ŝi1,2 ·
(
ŝi1,1 × r̈Sc,i1/N

)
(3.205)

Using the double vector cross product identity results in:

Lsi1,2 = −ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝi1,2 · τexti1,Hi1 + li1ŝi1,3 · Fexti2

−mspi2 li1ŝi1,3 · r̈Sc,i2/N −mspi1
di1ŝi1,3 · r̈Sc,i1/N (3.206)

The following definitions need to be defined:

r̈Sc,i1/N = r̈B/N + r̈Sc,i1/B

= r̈B/N + r′′Sc,i1/B
+ 2ωB/N × r′Sc,i1/B

+ ω̇B/N × rSc,i1/B + ωB/N × (ωB/N × rSc,i1/B) (3.207)

r̈Sc,i2/N = r̈B/N + r̈Sc,i2/B

= r̈B/N + r′′Sc,i2/B
+ 2ωB/N × r′Sc,i2/B

+ ω̇B/N × rSc,i2/B + ωB/N × (ωB/N × rSc,i2/B) (3.208)

Substituting these definitions into the torque equation results in:

Lsi1,2 = −ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝi1,2 · τexti1,Hi1 + li1ŝi1,3 · Fexti2 −mspi1
di1ŝi1,3 ·

[
r̈B/N

+ r′′Sc,i1/B
+ 2ωB/N × r′Sc,i1/B

+ ω̇B/N × rSc,i1/B + ωB/N × (ωB/N × rSc,i1/B)
]

−mspi2 li1ŝi1,3 ·
[
r̈B/N + r′′Sc,i2/B

+ 2ωB/N × r′Sc,i2/B
+ ω̇B/N × rSc,i2/B

+ ωB/N × (ωB/N × rSc,i2/B)
]

(3.209)

Substituting this torque into the earlier differential equation

Isi1,2(ω̇si1,2 + θ̈i1) = −(Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 + Lsi1,2 (3.210)
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leads to the desired scalar hinged solar panel equation of motion

Isi1,2(ŝTi1,2ω̇B/N + θ̈i1) = −(Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 − ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2

+ ŝi1,2 · τexti1,Hi1 + li1ŝi1,3 · Fexti2 −mspi1
di1ŝi1,3 ·

[
r̈B/N + r′′Sc,i1/B

+ 2ωB/N × r′Sc,i1/B

+ ω̇B/N × rSc,i1/B +ωB/N × (ωB/N × rSc,i1/B)
]
−mspi2 li1ŝi1,3 ·

[
r̈B/N + r′′Sc,i2/B

+ 2ωB/N × r′Sc,i2/B

+ ω̇B/N × rSc,i2/B + ωB/N × (ωB/N × rSc,i2/B)
]

(3.211)

Moving second order variables to the left hand side of the equation yields:

[
mspi1

di1ŝ
T
i1,3+mspi2 li1ŝ

T
i1,3

]
r̈B/N+

[
Isi1,2 ŝ

T
i1,2−mspi1

di1ŝ
T
i1,3[r̃Sc,i1/B]−mspi2 li1ŝ

T
i1,3[r̃Sc,i2/B]

]
ω̇B/N

+ Isi1,2 θ̈i1 +mspi1
di1ŝ

T
i1,3r

′′
Sc,i1/B

+mspi2 li1ŝ
T
i1,3r

′′
Sc,i2/B

= −(Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 − ki1θi1− ci1θ̇i1

+ ki2θi2 + ci2θ̇i2 + ŝi1,2 · τexti1,Hi1 + li1ŝi1,3 · Fexti2 −mspi1
di1ŝi1,3 ·

[
2ωB/N × r′Sc,i1/B

+ ωB/N × (ωB/N × rSc,i1/B)
]
−mspi2 li1ŝi1,3 ·

[
2ωB/N × r′Sc,i2/B

+ ωB/N × (ωB/N × rSc,i2/B)
]

(3.212)

Expanding the r′′Sc,i1/B
and r′′Sc,i2/B

terms, replacing cross products with the tilde matrix and again

isolating the second order variables results in:

[
mspi1

di1ŝ
T
i1,3+mspi2 li1ŝ

T
i1,3

]
r̈B/N+

[
Isi1,2 ŝ

T
i1,2−mspi1

di1ŝ
T
i1,3[r̃Sc,i1/B]−mspi2 li1ŝ

T
i1,3[r̃Sc,i2/B]

]
ω̇B/N

+
[
Isi1,2 +mspi1

d2
i1 +mspi2 l

2
i1 +mspi2 li1di2ŝ

T
i1,3ŝi2,3

]
θ̈i1 +

[
mspi2 li1di2ŝ

T
i1,3ŝi2,3

]
θ̈i2

= −(Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 − ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝTi1,2τexti1,Hi1 + li1ŝ
T
i1,3Fexti2

−mspi1
di1ŝ

T
i1,3

[
2[ω̃B/N ]r′Sc,i1/B

+ [ω̃B/N ][ω̃B/N ]rSc,i1/B

]
−mspi2 li1ŝ

T
i1,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B + li1θ̇
2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

]
(3.213)

Eq. (3.213) is the EOM that describes the motion of the first solar panel with a linked

secondary panel attached at the end. The final step is to find the EOM of the secondary panel.

Following a similar pattern the EOM for the second panel is found. First the torque about point

Hi2 is defined as:

Li2,2 = −ki2θi2 − ci2θ̇i2 + ŝi2,2 · τexti2,Hi2 (3.214)
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The relationship between the torque about the center of mass of the solar panel and about the

hinge point is defined as:

LHi2 = LSc,i2 + rSc,i2/Hi2
× FSc,i2 (3.215)

The torque about ŝi2,2 is the only torque that is required:

Lsi2,2 = ŝi2,2 ·LSc,i2 = ŝi2,2 ·LHi2︸ ︷︷ ︸
Li2,2

−ŝi2,2 ·
(
rSc,i2/Hi2

×mspi2
r̈Sc,i2/N

)
(3.216)

Substituting Eq. (3.214) into the previous equation yields

Lsi2,2 = −ki2θi2 − ci2θ̇i2 + ŝi2,2 · τexti2,Hi2 −mspi2
di2ŝi2,3 · r̈Sc,i2/N (3.217)

Substituting this torque into the modified Euler’s equation for the second panel

Isi2,2(ω̇si2,2 + θ̈i1 + θ̈i2) = −(Isi2,1 − Isi2,3)ωsi2,3ωsi2,1 + Lsi2,2 (3.218)

yields the following equation:

Isi2,2(ω̇si2,2 + θ̈i1 + θ̈i2) = −(Isi2,1 − Isi2,3)ωsi2,3ωsi2,1 − ki2θi2 − ci2θ̇i2 + ŝTi2,2τexti2,Hi2

−mspi2
di2ŝ

T
i2,3r̈Sc,i2/N (3.219)

Substituting the definition of r̈Sc,i2/N into Eq (3.219) yields:

Isi2,2(ω̇si2,2 + θ̈i1 + θ̈i2) = −(Isi2,1 − Isi2,3)ωsi2,3ωsi2,1 − ki2θi2 − ci2θ̇i2 + ŝTi2,2τexti2,Hi2

−mspi2
di2ŝ

T
i2,3

[
r̈B/N + r′′Sc,i2/B

+ 2ωB/N × r′Sc,i2/B
+ ω̇B/N × rSc,i2/B

+ ωB/N × (ωB/N × rSc,i2/B)
]

(3.220)

Expanding r′′Sc,i2/B
, isolating second order state variables to the left hand side and introducing the

skew symmetric matrix:

[
mspi2

di2ŝ
T
i2,3

]
r̈B/N +

[
Isi2,2 ŝ

T
i2,2 −mspi2

di2ŝ
T
i2,3[r̃Sc,i2/B]

]
ω̇B/N +

[
Isi2,2 +mspi2

d2
i2

+mspi2
li1di2ŝ

T
i2,3ŝi1,3

]
θ̈i1 +

[
Isi2,2 +mspi2

d2
i2

]
θ̈i2 = −(Isi2,1 − Isi2,3)ωsi2,3ωsi2,1 − ki2θi2 − ci2θ̇i2

+ ŝTi2,2τexti2,Hi2 −mspi2
di2ŝ

T
i2,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B + li1θ̇
2
i1ŝi1,1

]
(3.221)
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Eq. (3.221) is the last EOM needed to describe the motion of the spacecraft. The dual-hinged

rigid-body EOMs conform the generalized EOM form introduced in Section 2. The next section

develops the back substitution method for interconnected panels and gives meaningful insight on

how effectors connected to other effectors dynamically couple to the spacecraft.

3.1.5.6 Back Substitution Method

First, Eq. (3.213) and (3.221) are rearranged so that the second order state variables for the

solar panel motions are isolated on the left hand side. This manipulation results in Eqs (3.222)-

(3.223).

[
Isi1,2 +mspi1

d2
i1 +mspi2 l

2
i1 +mspi2 li1di2ŝ

T
i1,3ŝi2,3

]
θ̈i1 +

[
mspi2 li1di2ŝ

T
i1,3ŝi2,3

]
θ̈i2 =

−
[
mspi1

di1ŝ
T
i1,3+mspi2 li1ŝ

T
i1,3

]
r̈B/N−

[
Isi1,2 ŝ

T
i1,2−mspi1

di1ŝ
T
i1,3[r̃Sc,i1/B]−mspi2 li1ŝ

T
i1,3[r̃Sc,i2/B]

]
ω̇B/N

− (Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 − ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝTi1,2τexti1,Hi1 + li1ŝ
T
i1,3Fexti2

−mspi1
di1ŝ

T
i1,3

[
2[ω̃B/N ]r′Sc,i1/B

+ [ω̃B/N ][ω̃B/N ]rSc,i1/B

]
−mspi2 li1ŝ

T
i1,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B + li1θ̇
2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

]
(3.222)

[
Isi2,2 +mspi2

d2
i2 +mspi2

li1di2ŝ
T
i2,3ŝi1,3

]
θ̈i1 +

[
Isi2,2 +mspi2

d2
i2

]
θ̈i2 =

−
[
mspi2

di2ŝ
T
i2,3

]
r̈B/N −

[
Isi2,2 ŝ

T
i2,2 +mspi2

di2ŝ
T
i2,3[r̃Sc,i2/B]

]
ω̇B/N − (Isi2,1 − Isi2,3)ωsi2,3ωsi2,1

− ki2θi2 − ci2θ̇i2 + ŝTi2,2τexti2,Hi2 −mspi2
di2ŝ

T
i2,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B + li1θ̇
2
i1ŝi1,1

]
(3.223)

Now, defining a matrix, [Ai], with elements defined as:

ai1,1 = Isi1,2 +mspi1
d2
i1 +mspi2 l

2
i1 +mspi2 li1di2ŝ

T
i1,3ŝi2,3 (3.224a)

ai1,2 = mspi2 li1di2ŝ
T
i1,3ŝi2,3 (3.224b)

ai2,1 = Isi2,2 +mspi2
d2
i2 +mspi2

li1di2ŝ
T
i2,3ŝi1,3 (3.224c)

ai2,2 = Isi2,2 +mspi2
d2
i2 (3.224d)
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And defining the row elements of a matrix [Fi] as:

fi1 = −
(
mspi2 li1 +mspi1

di1
)
ŝTi1,3 (3.225a)

fi2 = −mspi2
di2ŝ

T
i2,3 (3.225b)

With a 2× 3 matrix, [Gi], which has row elements defined as the following:

gi1 = −
[
Isi1,2 ŝ

T
i1,2 −mspi1

di1ŝ
T
i1,3[r̃Sc,i1/B]−mspi2 li1ŝ

T
i1,3[r̃Sc,i2/B]

]T
(3.226a)

gi2 = −
[
Isi2,2 ŝ

T
i2,2 −mspi2

di2ŝ
T
i2,3[r̃Sc,i2/B]

]T
(3.226b)

Also defining the vector vi as as 2× 1 with the following components:

vi1 = −(Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 − ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝTi1,2τexti1,Hi1 + li1ŝ
T
i1,3Fexti2

−mspi1
di1ŝ

T
i1,3

[
2[ω̃B/N ]r′Sc,i1/B

+ [ω̃B/N ][ω̃B/N ]rSc,i1/B

]
−mspi2 li1ŝ

T
i1,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B + li1θ̇
2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

]
(3.227)

vi2 = −(Isi2,1 − Isi2,3)ωsi2,3ωsi2,1 − ki2θi2 − ci2θ̇i2 + ŝTi2,2τexti2,Hi2

−mspi2
di2ŝ

T
i2,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B + li1θ̇
2
i1ŝi1,1

]
(3.228)

Using all of the definitions just defined, Eqs. (3.222) and (3.223) can now be re-written as:

ai1,1θ̈i1 + ai1,2θ̈i2 = fi1r̈B/N + gi1ω̇B/N + vi1 (3.229)

ai2,1θ̈i1 + ai2,2θ̈i2 = fi2r̈B/N + gi2ω̇B/N + vi2 (3.230)

Eqs. (3.229) and (3.230) are combined and written in matrix form to utilize some linear

algebra techniques.

[Ai]

θ̈i1
θ̈i2

 = [Fi]r̈B/N + [Gi]ω̇B/N + vi (3.231)

Eq. (3.343) can now be solved by inverting matrix [Ai]. Note the definition [Ei] = [Ai]
−1.θ̈i1

θ̈i2

 = [Ei][Fi]r̈B/N + [Ei][Gi]ω̇B/N + [Ei]vi (3.232)
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And the subcomponents of [E] are defined as

[E] =

eTi1
eTi2

 (3.233)

Since the modified Euler’s equation has θ̈i1 and θ̈i2 terms, it is more convenient to use the expression

for θ̈i as

θ̈i1 = eTi1[Fi]r̈B/N + eTi1[Gi]ω̇B/N + eTi1vi (3.234)

θ̈i2 = eTi2[Fi]r̈B/N + eTi2[Gi]ω̇B/N + eTi2vi (3.235)

The next step in the back substitution method is to analytically substitute Eqs. (3.346) and

(3.235) into the translational and rotational EOMs. Performing this substitution for translation

yields:

mscr̈B/N −msc[c̃]ω̇B/N +

NS∑
i=1

([
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

](
eTi1[Fi]r̈B/N

+ eTi1[Gi]ω̇B/N + eTi1vi

)
+mspi2

di2ŝi2,3

(
eTi2[Fi]r̈B/N + eTi2[Gi]ω̇B/N + eTi2vi

))
= F − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c−
NS∑
i=1

(
mspi1

di1θ̇
2
i1ŝi1,1 +mspi2

[
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

])
(3.236)

Combining like terms results in:{
msc[I3×3]+

NS∑
i=1

[(
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

)
eTi1[Fi]+mspi2

di2ŝi2,3e
T
i2[Fi]

]}
r̈B/N

+

{
−msc[c̃]+

NS∑
i=1

[(
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

)
eTi1[Gi]+mspi2

di2ŝi2,3e
T
i2[Gi]

]}
ω̇B/N

= F − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−
NS∑
i=1

(
mspi1

di1θ̇
2
i1ŝi1,1 +mspi2

[
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1

+ θ̇i2
)2
ŝi2,1

]
+
[
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

]
eTi1vi +mspi2

di2ŝi2,3e
T
i2vi

)
(3.237)
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Performing the same substitution into the rotational equation of motion and simplifying yields:{
msc[c̃] +

NS∑
i=1

[(
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2 +mspi2
li1[r̃Sc,i2/B]ŝi1,3

+mspi2
di2[r̃Sc,i2/B]ŝi2,3

)
eTi1[Fi] +

(
Isi2,2 ŝi2,2 +mspi2

di2[r̃Sc,i2/B]ŝi2,3
)
eTi2[Fi]

]}
r̈B/N

+

{
[Isc,B] +

NS∑
i=1

[(
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2 +mspi2
li1[r̃Sc,i2/B]ŝi1,3

+mspi2
di2[r̃Sc,i2/B]ŝi2,3

)
eTi1[Gi] +

(
Isi2,2 ŝi2,2 +mspi2

di2[r̃Sc,i2/B]ŝi2,3
)
eTi2[Gi]

]}
ω̇B/N

= −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
NS∑
i=1

[
θ̇i1Isi1,2 [ω̃B/N ]ŝi1,2 +mspi1

[ω̃B/N ][r̃Sc,i1/B]r′Sc,i1/B

+mspi1
di1θ̇

2
i1[r̃Sc,i1/B]ŝi1,1 +

(
θ̇i1 + θ̇i2

)
Isi2,2 [ω̃B/N ]ŝi2,2 +mspi2

[ω̃B/N ][r̃Sc,i2/B]r′Sc,i2/B

+mspi2
[r̃Sc,i2/B]

(
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

)
+
(
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2

+mspi2
li1[r̃Sc,i2/B]ŝi1,3 +mspi2

di2[r̃Sc,i2/B]ŝi2,3
)
eTi1vi +

(
Isi2,2 ŝi2,2

+mspi2
di2[r̃Sc,i2/B]ŝi2,3

)
eTi2vi

]
+LB (3.238)

Now that the translational and rotational EOMs have been decoupled from the solar panel

accelerations the back-substitution matrices can be defined. At this point it is useful to define the

matrix contributions in a slightly different way than before by specifically the contributions from

an effector. These modified definitions can be seen in following equations:

[A] = msc[I3×3] + [Acontr] (3.239)

[B] = −msc[c̃] + [Bcontr] (3.240)

vtrans = F − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c+ vtrans,contr (3.241)

[C] = msc[c̃] + [Ccontr] (3.242)
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[D] = [Isc,B] + [Dcontr] (3.243)

vrot = −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N +LB + vrot,contr (3.244)

Using these new definitions, the back-substitution matrices contributions for dual-hinged rigid-

bodies are defined as:

[Acontr] =

NS∑
i=1

[(
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

)
eTi1[Fi] +mspi2

di2ŝi2,3e
T
i2[Fi]

]
(3.245)

[Bcontr] =

NS∑
i=1

[(
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

)
eTi1[Gi]+mspi2

di2ŝi2,3e
T
i2[Gi]

]
(3.246)

vtrans,contr = −
NS∑
i=1

(
mspi1

di1θ̇
2
i1ŝi1,1 +mspi2

[
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

]
+
[
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

]
eTi1vi +mspi2

di2ŝi2,3e
T
i2vi

)
(3.247)

[Ccontr] =

NS∑
i=1

[(
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2 +mspi2
li1[r̃Sc,i2/B]ŝi1,3

+mspi2
di2[r̃Sc,i2/B]ŝi2,3

)
eTi1[Fi] +

(
Isi2,2 ŝi2,2 +mspi2

di2[r̃Sc,i2/B]ŝi2,3
)
eTi2[Fi]

]
(3.248)

[Dcontr] =

NS∑
i=1

[(
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2 +mspi2
li1[r̃Sc,i2/B]ŝi1,3

+mspi2
di2[r̃Sc,i2/B]ŝi2,3

)
eTi1[Gi] +

(
Isi2,2 ŝi2,2 +mspi2

di2[r̃Sc,i2/B]ŝi2,3
)
eTi2[Gi]

]
(3.249)

[vrot,contr] = −
NS∑
i=1

[
θ̇i1Isi1,2 [ω̃B/N ]ŝi1,2 +mspi1

[ω̃B/N ][r̃Sc,i1/B]r′Sc,i1/B
+mspi1

di1θ̇
2
i1[r̃Sc,i1/B]ŝi1,1

+
(
θ̇i1 + θ̇i2

)
Isi2,2 [ω̃B/N ]ŝi2,2 +mspi2

[ω̃B/N ][r̃Sc,i2/B]r′Sc,i2/B
+mspi2

[r̃Sc,i2/B]
(
li1θ̇

2
i1ŝi1,1

+ di2
(
θ̇i1 + θ̇i2

)2
ŝi2,1

)
+
(
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2 +mspi2
li1[r̃Sc,i2/B]ŝi1,3

+mspi2
di2[r̃Sc,i2/B]ŝi2,3

)
eTi1vi +

(
Isi2,2 ŝi2,2 +mspi2

di2[r̃Sc,i2/B]ŝi2,3
)
eTi2vi

]
(3.250)
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This concludes the derivation of EOMs for dual-hinged rigid-bodies conforming to both the gener-

alized EOM form and the back-substitution method seen in Section 2.

3.1.6 Imbalanced Variable Speed Control Moment Gyroscopes

3.1.6.1 Introduction

Similar to reaction wheels, variable speed control moment gyroscopes (VSCMGs) are also

susceptible to jitter disturbances. In Reference [45], a dynamics model is developed using the

standard EOM form and back-substitution method introduced in this dissertation. This work is

summarized in this section to show conformity with these equations.

3.1.6.2 Problem Statement

The problem consists of modeling static and dynamic imbalance of any number of wheel +

gimbal assemblies attached to a rigid spacecraft. In order to develop the equations of motion in

a general way, arbitrary locations, inertia tensors, and center of mass locations for the spacecraft

hub, gimbal, and wheels are considered. Additionally, the wheel center of mass is not assumed to

lie on the gimbal axis of the VSCMG, and the wheel frame origin and gimbal frame origin are not

assumed to coincide.

The development considers the body frame and N gimbal and wheel frames as well as the

inertial frame. The body frame is denoted B. The basis vectors of the body frame are

B : {B, b̂1, b̂2, b̂3} (3.251)

The ith gimbal and wheel frames are denoted Gi and Wi, respectively. The basis vectors of Gi and

Wi are defined as

Gi : {Gi, ĝsi , ĝti , ĝgi} (3.252)

Wi : {Wi, ĝsi , ŵ2i , ŵ3i} (3.253)

It is assumed that the ĝsi vectors of the Gi and Wi frames are always parallel.
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Parameters relating to the spacecraft hub are denoted with a subscript text B. Parameters

relating to the The ith gimbal and wheel are denoted with subscripts text Gi and Wi, respectively.

The hub, gimbal, and wheel each are allowed center of mass offsets from their respective coordinate

frame origins. The hub’s center of mass location is labeled as Bc. This location is described with

respect to the body frame origin as rBc/B. The gimbal is also allowed a general center of mass

offset from the gimbal frame origin. This location is labeled as Gci and is located with respect

to the gimbal frame origin as rGci/Gi
. The wheel’s center of mass location is labeled somewhat

differently. The wheel center of mass is assumed to lie on the ŵ2i axis a length di from the wheel

frame origin. This does not result in loss of generality since the parameters Li and `i describe

the axial and transverse offset, respectively, of the wheel origin. Thus, the wheel center of mass

location is allowed to vary in three dimensions with respect to the gimbal frame (and thus the body

frame as well, since the gimbal origin location does not vary with respect to the body). Since the

gimbal and wheel centers of mass change with time, so does the overall spacecraft center of mass.

The time-varying center of mass of the entire system is denoted c.
26

b̂3

N

B

ŵ3i

ŵ2i

ĝsi

ĝti

ĝsi Wi

Wci

Gci

di

�i

�i

Gi

�̇i

ĝgi

b̂2

Gi

Bc

b̂1

c

C

Li

Figure 3.1: Reference frame setup and variable definitions for the spacecraft + VSCMG problem.

3.1.2 Variable Definitions

Parameters relating to the spacecraft hub are denoted with a subscript text B. Parameters

relating to the The ith gimbal and wheel are denoted with subscripts text Gi and Wi, respectively.

The hub, gimbal, and wheel each are allowed center of mass o↵sets from their respective coordinate

frame origins. The hub’s center of mass location is labeled as Bc. This location is described with

respect to the body frame origin as rBc/B. The gimbal is also allowed a general center of mass

o↵set from the gimbal frame origin. This location is labeled as Gci and is located with respect

to the gimbal frame origin as rGci/Gi
. The wheel’s center of mass location is labeled somewhat

di↵erently. The wheel center of mass is assumed to lie on the ŵ2i axis a length di from the wheel

frame origin. This does not result in loss of generality since the parameters Li and `i describe

the axial and transverse o↵set, respectively, of the wheel origin. Thus, the wheel center of mass

location is allowed to vary in three dimensions with respect to the gimbal frame (and thus the body

frame as well, since the gimbal origin location does not vary with respect to the body). Since the

gimbal and wheel centers of mass change with time, so does the overall spacecraft center of mass.

The time-varying center of mass of the entire system is denoted c.

Figure 3.8: Reference frame setup and variable definitions for the spacecraft + VSCMG problem.
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3.1.6.3 Balanced VSCMG Back-Substitution

The balanced VSCMG equations of motion are reproduced here for the reader’s convenience.

The balanced translational equation of motion is given below. Note that translation is not coupled

with Ω̇ or γ̈i.

mscr̈B/N −msc[c̃]ω̇ = F − 2msc[ω̃]c′ −msc[ω̃]2c

The rotational equation of motion includes Ω̇i and γ̈i terms, and is thus coupled with VSCMG

motion as seen below.

msc[c̃]r̈B/N + [Isc,B]ω̇ +
N∑
i=1

IVgi
ĝgi γ̈i +

N∑
i=1

IWsi
ĝsiΩ̇i

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[
+ IWti

Ωγ̇ĝti + Ωiγ̇i(IWsi
− IWti

)ĝti

+ [ω̃][IGi,Gci
]γ̇iĝgi + [ω̃][IWi,Wci

]ωWi/B

]
The gimbal torque equation can be seen in the following equation.

IVgi
(ĝTgiω̇ + γ̈i) = ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt

The wheel torque equation is described below.

IWsi
(ĝTsiω̇ + Ω̇i) = −IWsi

ωtγ̇i + usi

For the back-substitution method, first the gimbal torque equation is solved for γ̈i in terms

of ω̇B/N .

γ̈i =
1

IVgi

(
ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt − IVgi
ĝTgiω̇

)
(3.254)

Additionally, the wheel torque equation is solved for Ω̇i in terms of ω̇B/N

Ω̇i = −ωtγ̇i − ĝTsiω̇ +
usi

IWsi

(3.255)
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Plugging into the rotational equation of motion and group like terms.

msc[c̃]r̈B/N +
[
[Isc,B]−

N∑
i=1

(
IVgi

ĝgi ĝ
T
gi
ω̇ + IWsi

ĝsi ĝ
T
si

)]
ω̇

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[(
usi − IWsi

ωtγ̇i
)
ĝsi + IWsi

Ωγ̇ĝti

+
(
ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt
)
ĝgi + [ω̃][IGi,Gci

]γ̇iĝgi + [ω̃][IWi,Wci
]ωWi/B

]
(3.256)

All of the information needed to define the back-substitution contribution matrices for a balanced

VSCMG is defined. The balanced VSCMG back-substitution contribution matrices are given by:

[Acontr] = [03×3] (3.257)

[Bcontr] = [03×3] (3.258)

[Ccontr] = [03×3] (3.259)

[Dcontr] = −
N∑
i=1

[
IVgi

ĝgi ĝ
T
gi

+ IWsi
ĝsi ĝ

T
si

]
(3.260)

vtrans,contr = 0 (3.261)

vrot,contr = −
N∑
i=1

[(
usi − IWsi

ωtγ̇i
)
ĝsi + IWsi

Ωγ̇ĝti +
(
ugi + (IVsi

− IVti
)ωsωt + IWsi

Ωiωt
)
ĝgi

+ [ω̃][IGi,Gci
]γ̇iĝgi + [ω̃][IWi,Wci

]ωWi/B

]
(3.262)

3.1.6.4 Imbalanced VSCMG Back-Substitution

The EOMs representing a spacecraft with N imbalanced VSCMGs were derived in Refer-

ence [45] and are repeated here to show conformity between the EOMs and the generalized EOMs

provided in this dissertation. The first step is to rewrite the translational equation of motion in a
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convenient form. The original equation is,

r̈B/N − [c̃]ω̇ +
1

msc

N∑
i=1

[
mGi [

˜̂ggi ]rGci/Gi
−mWidicθiĝsi +mWi`iĝti

]
γ̈i +

1

msc

N∑
i=1

[mWidiŵ3i ] Ω̇i

= r̈C/N − 2[ω̃]c′ − [ω̃][ω̃]c− 1

msc

N∑
i=1

[
mGi γ̇i[

˜̂ggi ]r
′
Gci/B

+mWi

[(
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇2

i cθiĝti − diΩ2
i ŵ2i

] ]
(3.263)

This equation may be abbreviated as,

r̈B/N − [c̃]ω̇ +
1

msc

N∑
i=1

uri γ̈i +
1

msc

N∑
i=1

vriΩ̇i = r̈C/N − 2[ω̃]c′ − [ω̃]2c− 1

msc

N∑
i=1

kri (3.264)

where,

uri = mGi [
˜̂ggi ]rGci/Gi

−mWidicθiĝsi +mWi`iĝti (3.265)

vri = mWidiŵ3i (3.266)

kri = mGi γ̇i[
˜̂ggi ]r

′
Gci/B

+mWi

[(
2diγ̇iΩisθi − `iγ̇2

i

)
ĝsi − diγ̇2

i cθiĝti − diΩ2
i ŵ2i

]
(3.267)

The next step is to rewrite the rotational equation of motion in a convenient form. The original

equation is,

msc[c̃]r̈B/N + [Isc,B]ω̇ +
N∑
i=1

[
[IGi,Gci

]ĝgi +mGi [r̃Gci/B
][˜̂ggi ]rGci/Gi

+ [IWi,Wci
]ĝgi

+mWi [r̃Wci/B
](`iĝti − dicθiĝsi)

]
γ̈i +

N∑
i=1

[
[IWi,Wci

]ĝsi +mWidi[r̃Wci/B
]ŵ3i

]
Ω̇i

=LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

[
[IGi,Gci

]′γ̇iĝgi + [ω̃][IGi,Gci
]γ̇iĝgi +mGi [ω̃][r̃Gci/B

]r′Gci/B

+mGi γ̇i[r̃Gci/B
][˜̂ggi ]r

′
Gci/Gi

+ [IWi,Wci
]Ωγ̇ĝti + [IWi,Wci

]′ωWi/B + [ω̃][IWi,Wci
]ωWi/B

+mWi [ω̃][r̃Wci/B
]r′Wci/B

+mWi [r̃Wci/B
]
[(

2diγ̇iΩisθi − `iγ̇2
i

)
ĝsi − diγ̇2

i cθiĝti − diΩ2
i ŵ2i

] ]
This equation may be abbreviated as,

msc[c̃]r̈B/N + [Isc,B]ω̇ +
N∑
i=1

uωi γ̈i +
N∑
i=1

vωiΩ̇i

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

kωi

(3.268)
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where,

uωi = [IGi,Gci
]ĝgi +mGi [r̃Gci/B

][˜̂ggi ]rGci/Gi
+ [IWi,Wci

]ĝgi

+mWi [r̃Wci/B
](`iĝti − dicθiĝsi) (3.269)

vωi = [IWi,Wci
]ĝsi +mWidi[r̃Wci/B

]ŵ3i (3.270)

kωi = [IGi,Gci
]′γ̇iĝgi + [ω̃][IGi,Gci

]γ̇iĝgi +mGi [ω̃][r̃Gci/B
]r′Gci/B

+mGi γ̇i[r̃Gci/B
][˜̂ggi ]r

′
Gci/Gi

+ [IWi,Wci
]Ωγ̇ĝti + [IWi,Wci

]′ωWi/B + [ω̃][IWi,Wci
]ωWi/B +mWi [ω̃][r̃Wci/B

]r′Wci/B

+mWi [r̃Wci/B
]
[(

2diγ̇iΩisθi − `iγ̇2
i

)
ĝsi − diγ̇2

i cθiĝti − diΩ2
i ŵ2i

]
(3.271)

Again, including the equations from Reference [45], the gimbal torque equation is:

ĝTgi

[
mVi [r̃Vci/Gi

]

]
r̈B/N + ĝTgi

[
[IVi,Vci

] +mVi [r̃Vci/Gi
][r̃Vci/B]T

]
ω̇ + ĝTgi

[
[IGi,Gci

]ĝgi

+ [IWi,Wci
]ĝgi + [Pi]

(
`iĝti − dicθiĝsi

)
+ [Qi][˜̂ggi ]rGci/Gi

]
γ̈i + ĝTgi

[
[IWi,Wci

]ĝsi + [Pi]diŵ3i

]
Ω̇i

= −ĝTgi

[
γ̇i[Qi][˜̂ggi ]r

′
Gci/Gi

+ [Pi]
[ (

2diγ̇iΩisθi − `iγ̇2
i

)
ĝsi − diγ̇2

i cθiĝti − diΩ2
i ŵ2i

]
+ [IGi,Gci

]′ωGi/N + [ω̃][IGi,Gci
]ωGi/N + [IWi,Wci

]Ωγ̇ĝti + [IWi,Wci
]′ωWi/N + [ω̃][IWi,Wci

]ωWi/N

+mGi [r̃Gci/Vci
]
(
2[ω̃]r′Gci/Vci

+ [ω̃]2rGci/Vci

)
+mWi [r̃Wci/Vci

]
(
2[ω̃]r′Wci/Vci

+ [ω̃]2rWci/Vci

)
+mVi [r̃Vci/Gi

]
(
2[ω̃]r′Vci/B

+ [ω̃]2rVci/B
)]

+ ugi (3.272)
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where,

[IVi,Vci
] = [IGi,Vci

] + [IWi,Vci
] (3.273)

[IGi,Vci
] = [IGi,Gci

] +mGi [r̃Gci/Vci
][r̃Gci/Vci

]T (3.274)

[IWi,Vci
] = [IWi,Wci

] +mWi [r̃Wci/Vci
][r̃Wci/Vci

]T (3.275)

[Pi] = mWiρGi [r̃Wci/Vci
]−mGiρWi [r̃Gci/Vci

] +mWi [r̃Vci/Gi
] (3.276)

[Qi] = mGiρWi [r̃Gci/Vci
]−mWiρGi [r̃Wci/Vci

] +mGi [r̃Vci/Gi
] (3.277)

[ω̃]2 = [ω̃][ω̃] (3.278)

Finally, the wheel torque equation is defined as:

[
mWidiŵ

T
3i

]
r̈B/N +

[
ĝTsi [IWi,Wci

] +mWidiĝ
T
si [

˜̂w2i ][r̃Wci/B
]T
]
ω̇

+ [J12isθi + J13icθi −mWidi`isθi] γ̈i +
[
J11i +mWid

2
i

]
Ω̇i

= −ĝTsi

[
[IWi,Wci

]′ωWi/N + [ω̃][IWi,Wci
]ωWi/N +mWidi[

˜̂w2i ]
[
2[r̃′Wci/B

]Tω + [ω̃][ω̃]rWci/B

]]

+ (J13isθi − J12icθi)Ωγ̇ −mWid
2
i γ̇

2
i cθisθi + usi (3.279)

To begin the back-substitution method, first the gimbal torque equation is solved for γ̈i in

terms of r̈B/N and ω̇B/N and Ω̇i

γ̈i = aTγi r̈B/N + bTγiω̇ + cγiΩ̇i + dγi (3.280)

where,

aγi = e−1
γi mVi [r̃Vci/Gi

]ĝgi (3.281)

bγi = −e−1
γi

(
[IVi,Vci

]T ĝgi −mVi [r̃Vci/B][r̃Vci/Gi
]ĝgi

)
(3.282)

cγi = −e−1
γi

(
ĝTgi [IWi,Wci

]ĝsi + diĝ
T
gi

[Pi]ŵ3i

)
(3.283)
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dγi = −e−1
γi ĝ

T
gi

[
γ̇i[Qi][˜̂ggi ]r

′
Gci/Gi

+ [Pi]
[ (

2diγ̇iΩisθi − `iγ̇2
i

)
ĝsi − diγ̇2

i cθiĝti − diΩ2
i ŵ2i

]
+ [IGi,Gci

]′ωGi/N + [ω̃][IGi,Gci
]ωGi/N + [IWi,Wci

]Ωγ̇ĝti + [IWi,Wci
]′ωWi/N + [ω̃][IWi,Wci

]ωWi/N

+mGi [r̃Gci/Vci
]
(
2[ω̃]r′Gci/Vci

+ [ω̃]2rGci/Vci

)
+mWi [r̃Wci/Vci

]
(
2[ω̃]r′Wci/Vci

+ [ω̃]2rWci/Vci

)
+mVi [r̃Vci/Gi

]
(
2[ω̃]r′Vci/B

+ [ω̃]2rVci/B
)]

+ e−1
γi ugi (3.284)

eγi = ĝTgi

[
[IGi,Gci

]ĝgi + [IWi,Wci
]ĝgi + [Pi]

(
`iĝti − dicθiĝsi

)
+ [Qi][˜̂ggi ]rGci/Gi

]
(3.285)

Next, the wheel torque equation is solved for Ω̇i in terms of r̈B/N and ω̇B/N and γ̈i

Ω̇i = aTΩi
r̈B/N + bTΩi

ω̇B/N + cΩi γ̈i + dΩi (3.286)

where

aΩi = −e−1
Ωi
mWidiŵ3i (3.287)

bΩi = −e−1
Ωi

(
[IWi,Wci

]T ĝsi −mWidi[r̃Wci/B
][ ˜̂w2i ]ĝsi

)
(3.288)

cΩi = −e−1
Ωi

(J12isθi + J13icθi −mWidi`isθi) (3.289)

dΩi = −e−1
Ωi

[
ĝTsi [IWi,Wci

]′ωWi/N + ĝTsi [ω̃][IWi,Wci
]ωWi/N +mWidiĝ

T
si [

˜̂w2i ]
[
2[r̃′Wci/B

]Tω

+[ω̃][ω̃]rWci/B

]
+ (J13isθi − J12icθi)Ωγ̇ −mWid

2
i γ̇

2
i cθisθi + usi

] (3.290)

eΩi = J11i +mWid
2
i (3.291)

Substituting Eq. (3.280) into Eq. (3.286) decouples the gimbal and motor torque equations and

yields:

Ω̇i =aTΩi
r̈B/N + bTΩi

ω̇B/N + cΩi

[
aTγi r̈B/N + bTγiω̇ + cγiΩ̇i + dγi

]
+ dΩi

=
aTΩi

+ cΩia
T
γi

1− cΩicγi
r̈B/N +

bTΩi
+ cΩib

T
γi

1− cΩicγi
ω̇ +

dΩi + cΩidγi
1− cΩicγi

=pTi r̈B/N + qTi ω̇ + si

(3.292)
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where,

pi =
aΩi + cΩiaγi

1− cΩicγi
(3.293)

qi =
bΩi + cΩibγi
1− cΩicγi

(3.294)

si =
dΩi + cΩidγi
1− cΩicγi

(3.295)

Similar to prior back-substitution methods, Eq. (3.280) is substituted into the translational equation

of motion Eq. (3.264).

r̈B/N − [c̃]ω̇ +
1

msc

N∑
i=1

uri

[
aTγi r̈B/N + bTγiω̇ + cγiΩ̇i + dγi

]
+

1

msc

N∑
i=1

vriΩ̇i

= r̈C/N − 2[ω̃]c′ − [ω̃]2c− 1

msc

N∑
i=1

kri

(3.296)

Substituting Eq. (3.292) and grouping like terms, and multiplying each side of the equation by msc

results in: [
msc[I3×3] +

N∑
i=1

(
uria

T
γi +

(
vri + uricγi

)(
aTΩi

+ cΩia
T
γi

)
1− cΩicγi

)]
r̈B/N

+

[
−msc[c̃] +

N∑
i=1

(
urib

T
γi +

(
vri + uricγi

)(
bTΩi

+ cΩib
T
γi

)
1− cΩicγi

)]
ω̇

= F − 2msc[ω̃]c′ −msc[ω̃]2c−
N∑
i=1

(
kri + uridγi +

(
vri + uricγi

)(
cΩidγi + dΩi

)
1− cΩicγi

) (3.297)

The translational EOM is now decoupled from the other second order state variables. The rotational

EOM needs to be decoupled in a similar manner and is completed by substituting Eq. (3.280) into

the rotational equation of motion Eq. (3.268):[
msc[c̃] +

N∑
i=1

uωia
T
γi

]
r̈B/N +

[
[Isc,B] +

N∑
i=1

uωib
T
γi

]
ω̇ +

N∑
i=1

(
vωi + uωicγi

)
Ω̇i

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω − 1

msc

N∑
i=1

(
kωi + uωidγi

) (3.298)
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The final step is to substitute Eq. (3.292) into Eq. (3.298) and group like terms. This yields:[
msc[c̃] +

N∑
i=1

(
uωia

T
γi +

(
vωi + uωicγi

)(
aTΩi

+ cΩia
T
γi

)
1− cΩicγi

)]
r̈B/N

+

[
[Isc,B] +

N∑
i=1

(
uωib

T
γi +

(
vωi + uωicγi

)(
bTΩi

+ cΩib
T
γi

)
1− cΩicγi

)]
ω̇

= LB − [Isc,B]′ω − [ω̃][Isc,B]ω −
N∑
i=1

(
kωi + uωidγi +

(
vωi + uωicγi

)(
cΩidγi + dΩi

)
1− cΩicγi

) (3.299)

Now that the analytical back-substitution method has been performed on the EOMs, the

back-substitution matrices contributions can be defined. The contributions are:

[Acontr] =

N∑
i=1

[
uria

T
γi +

(
vri + uricγi

)
pTi

]
(3.300)

[Bcontr] =
N∑
i=1

[
urib

T
γi +

(
vri + uricγi

)
qTi

]
(3.301)

[Ccontr] =
N∑
i=1

[
uωia

T
γi +

(
vωi + uωicγi

)
pTi

]
(3.302)

[Dcontr] =

N∑
i=1

[
uωib

T
γi +

(
vωi + uωicγi

)
qTi

]
(3.303)

vtrans,contr = −
N∑
i=1

[
kri + uridγi +

(
vri + uricγi

)
si

]
(3.304)

vrot,contr = −
N∑
i=1

[
kωi + uωidγi +

(
vωi + uωicγi

)
si

]
(3.305)

This development confirms that the model for both the balanced and imbalanced VSCMGs conform

to the standard EOM form introduced in this dissertation and a ready to be implemented model

into software simulation.

3.1.7 Fuel Slosh - Pendulum Based Model

3.1.7.1 Introduction

Fuel slosh is a complicated phenomenon that sometimes requires multiple models to bound

the dynamical behavior. The spring mass damper model introduced earlier is a good model when
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dealing with translational movement, but does not cover all of the dynamical behavior when per-

forming rotational maneuvers. In contrast, a spherical pendulum model does perform better with

rotational maneuvers. This section describes the EOM and back-substitution method for a spher-

ical pendulum model representing fuel slosh. This work was completed with collaborator Paolo

Cappuccio of La Sapienza University of Rome during July - September of 2017.

3.1.7.2 Problem Statement

The spacecraft model is composed by a rigid hub, a fuel tank and NP lumped masses sim-

ulating the propellant. Subscript j indicates the jth propellant slosh mass, mj . Figure 3.9 shows

reference frame and key point definitions used for this formulation.

𝑛3

𝑛2
𝑛1

𝑏3

𝑏2

𝑏1

𝑝0,3

N

B

𝑃0
𝐵𝑐

C
c

𝑃

𝑚𝑗

𝑝0,1

𝑝0,2

d

𝑃𝑐

𝑙

Figure 3.9: Frame and variable definitions used for formulation

Four coordinate frames are defined for this formulation. The inertial reference frame is

indicated by N : {n̂1, n̂2, n̂3}. The body fixed coordinate frame, B : {b̂1, b̂2, b̂3}, which is fixed

with respect to the hub and can be oriented in any direction. Point B indicates the origin of

the body fixed reference frame, which can be any point fixed with respect to the hub. The initial

pendulum frame, P0,j : {p̂0j ,1, p̂0j ,2, p̂0j ,3}, is a frame with its origin located at the tank geometrical

center, T . The P0,j frame is a fixed frame with respect to the body frame, oriented such that p̂0j ,1
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points to the propellant slosh mass in its initial position, Pj . The constant distance from point T

to point Pj is defined as lj , while with lj is indicated the vector from T to Pc,j .

The remaining key points to be defined are: point Bc is the location of the center of mass

of the rigid hub and point Pc,j is the instantaneous position of the propellant slosh mass mj . d is

vector from the center of the body reference system to the tank geometrical center.

Figure 3.10 provides further detail of the propellant slosh parameters and reference frames.

As seen in Figure 3.9, an individual slosh particle is free to move in every direction while connected

by rigid weightless rod to the geometrical center of the tank. A linear damper effect is considered

using a damping matrix, D. The variables, ϕj and ϑj are state variables and quantify the angular

displacement from initial position for the corresponding slosh mass.

𝑝0𝑗,1

𝑝0𝑗,2

𝑝0𝑗,3

𝜗𝑗

𝜑𝑗

𝑚𝑗

𝑙𝑗

𝑃𝑐,𝑗

𝑃𝑗

Figure 3.10: Further detail of propellant slosh and reference frames

Using the variables and frames defined, the following section outlines the equations of motion

for the spacecraft.
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3.1.7.3 Equation of Motion

The translational EOM was found to fit the standard form seen in Section 2 and can be seen

in the following equation:

r̈B/N − [c̃]ω̇B/N −
1

msc

NP∑
j=1

mjlj

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̈j

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
ϑ̈j

]
= r̈C/N − 2[ω̃B/N ]c′

− [ω̃B/N ][ω̃B/N ]c− 1

msc

NP∑
j=1

mjlj

[(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j

+
(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j

+
(

2 sin(ϕj) sin(ϑj)p̂0j ,1 − 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j

]
(3.306)

Similarly, the rotational EOM was developed and yields:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N −
NP∑
j=1

mjlj [r̃Pc,j/B]

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̈j

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
ϑ̈j

]
= LB − [ω̃B/N ][Isc,B]ωB/N

− [I ′sc,B]ωB/N −
NP∑
j=1

mj

{
[ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

+ lj [r̃Pc,j/B]

[(
− cos(ϕj) cos(ϑj)p̂0j ,1

− sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j +

(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j

+
(

2 sin(ϕj) sin(ϑj)p̂0j ,1 − 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j

]}
(3.307)

To help define the sloshing equation, lj from Figure 3.10 is defined in Eq. (3.308).

lj = lj

P0,j


cos(ϕj) cos(ϑj)

sin(ϕj) cos(ϑj)

− sin(ϑj)

 (3.308)
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The body frame relative first and second time derivatives of lj also need to be defined and can be

seen in the following equations:

l′j = lj

P0,j

−ϕ̇j sin(ϕj) cos(ϑj)− ϑ̇j cos(ϕj) sin(ϑj)

ϕ̇j cos(ϕj) cos(ϑj)− ϑ̇j sin(ϕj) sin(ϑj)

−ϑ̇j cos(ϑj)

 (3.309)

l′′j = lj

P0,j 

−ϕ̈j sin(ϕj) cos(ϑj)− ϑ̈j cos(ϕj) sin(ϑj)− ϕ̇2
j cos(ϕj) cos(ϑj)

−ϑ̇2
j cos(ϕj) cos(ϑj) + 2ϕ̇jϑ̇j sin(ϕj) sin(ϑj)

ϕ̈j cos(ϕj) cos(ϑj)− ϑ̈j sin(ϕj) sin(ϑj)− ϕ̇2
j sin(ϕj) cos(ϑj)

−ϑ̇2
j sin(ϕj) cos(ϑj)− 2ϕ̇jϑ̇j cos(ϕj) sin(ϑj)

−ϑ̈j cos(ϑj) + ϑ̇2
j sin(ϑj)



(3.310)

Using these definitions, the sloshing equations were found and can be seen in Eqs (3.311)-

(3.312).

mjl
2
j ϕ̈j cos2(ϑj)−mjp̂

T
0j ,3[l̃j ]([l̃j ] + [d̃])ω̇B/N +mjp̂

T
0j ,3[l̃j ]r̈B/N = −mjp̂

T
0j ,3[l̃j ][ω̃B/N ][ω̃B/N ]d

+ p̂T0j ,3LT,j + 2mjl
2
j ϕ̇jϑ̇ cos(ϑj) sin(ϑj)−mjp̂

T
0j ,3[l̃j ]

[
2[ω̃B/N ]l′j + [ω̃B/N ][ω̃B/N ]lj

]
(3.311)

mjl
2
j ϑ̈j −mjp̂

′T
0j ,2[l̃j ]([l̃j ] + [d̃])ω̇B/N +mjp̂

′T
0j ,2[l̃j ]r̈B/N = −mjp̂

′T
0j ,2[l̃j ][ω̃B/N ][ω̃B/N ]d

+ p̂
′T
0j ,2LT,j −mjl

2
j ϕ̇

2
j cos(ϑj) sin(ϑj)−mjp̂

′T
0j ,2[l̃j ]

[
2[ω̃B/N ]l′j + [ω̃B/N ][ω̃B/N ]lj

]
(3.312)
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3.1.7.4 Back-substitution Method

A step-by-step derivation of the back-substitution method is presented in the following sec-

tion. Starting from Eq. (3.311), the ϕ̈j is isolated on the left hand side of the equation

ϕ̈j =
1

mjl2j cos2(ϑj)

{
mjp̂

T
0j ,3[l̃j ]([l̃j ] + [d̃])ω̇B/N −mjp̂

T
0j ,3[l̃j ]r̈B/N −mjp̂

T
0j ,3[l̃j ][ω̃B/N ][ω̃B/N ]d

+ p̂T0j ,3LT,j + 2mjl
2
j ϕ̇jϑ̇ cos(ϑj) sin(ϑj)−mjp̂

T
0j ,3[l̃j ]

[
2[ω̃B/N ]l′j + [ω̃B/N ][ω̃B/N ]lj

]}
(3.313)

and is simplified to a simpler form:

ϕ̈j =
1

mjl2j cos2(ϑj)

(
mjp̂

T
0j ,3[l̃j ]([l̃j ] + [d̃])ω̇B/N −mjp̂

T
0j ,3[l̃j ]r̈B/N + aϕj

)
(3.314)

Further simplification yields a familiar form

ϕ̈j = aTϕj
r̈B/N + bTϕj

ω̇B/N + cϕj (3.315)

using the following definitions:

aTϕj
= −

p̂T0j ,3[l̃j ]

l2j cos2(ϑj)
(3.316)

bTϕj
=
p̂T0j ,3[l̃j ]([l̃j ] + [d̃])

l2j cos2(ϑj)
(3.317)

cϕj =
1

mjl2j cos2(ϑj)

{
−mjp̂

T
0j ,3[l̃j ][ω̃B/N ][ω̃B/N ]d+ p̂T0j ,3LT,j

+ 2mjl
2
j ϕ̇jϑ̇ cos(ϑj) sin(ϑj)−mjp̂

T
0j ,3[l̃j ]

[
2[ω̃B/N ]l′j + [ω̃B/N ][ω̃B/N ]lj

]}
(3.318)

Following a similar process for Eq. (3.312)

ϑ̈j =
1

mjl2j

{
mjp̂

′T
0j ,2[l̃j ]([l̃j ] + [d̃])ω̇B/N −mjp̂

′T
0j ,2[l̃j ]r̈B/N −mjp̂

′T
0j ,2[l̃j ][ω̃B/N ][ω̃B/N ]d

+ p̂
′T
0j ,2LT,j −mjl

2
j ϕ̇

2
j cos(ϑj) sin(ϑj)−mjp̂

′T
0j ,2[l̃j ]

[
2[ω̃B/N ]l′j + [ω̃B/N ][ω̃B/N ]lj

]}
(3.319)

which results in a simpler form:

ϑ̈j =
1

mjl2j

(
mjp̂

′T
0j ,2[l̃j ]([l̃j ] + [d̃])ω̇B/N −mjp̂

′T
0j ,2[l̃j ]r̈B/N + aϑj

)
(3.320)
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Modifying to the equation to be consistent with the standard form:

ϑ̈j = aTϑj r̈B/N + bTϑj ω̇B/N + cϑj (3.321)

using the following definitions:

aTϑj = −
p̂

′T
0j ,2

[l̃j ]

l2j
(3.322)

bTϑj =
p̂

′T
0j ,2

[l̃j ]([l̃j ] + [d̃])

l2j
(3.323)

cϑj =
1

mjl2j

{
−mjp̂

′T
0j ,2[l̃j ][ω̃B/N ][ω̃B/N ]d+ p̂

′T
0j ,2LT,j −mjl

2
j ϕ̇

2
j cos(ϑj) sin(ϑj)

−mjp̂
′T
0j ,2[l̃j ]

[
2[ω̃B/N ]l′j + [ω̃B/N ][ω̃B/N ]lj

]}
(3.324)

The next step of the back-substitution method is to decouple the translational EOM:

r̈B/N − [c̃]ω̇B/N −
1

msc

NP∑
j=1

mjlj

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
(aTϕj

r̈B/N

+ bTϕj
ω̇B/N + cϕj ) +

(
cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
(aTϑj r̈B/N

+ bTϑj ω̇B/N + cϑj )

]
= r̈C/N − 2[ω̃B/N ]c′ − [ω̃B/N ][ω̃B/N ]c− 1

msc

NP∑
j=1

mjlj

[(
− cos(ϕj) cos(ϑj)p̂0j ,1

− sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j +

(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j

+
(

2 sin(ϕj) sin(ϑj)p̂0j ,1 − 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j

]
(3.325)
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Simplifying this result and combining like terms the final decoupled translational equation is:

{
msc[I3×3]−

NP∑
j=1

mjlj

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
aTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1

+ sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
aTϑj

]}
r̈B/N +

{
−msc[c̃]−

NP∑
j=1

mjlj

[(
sin(ϕj) cos(ϑj)p̂0j ,1

− cos(ϕj) cos(ϑj)p̂0j ,2

)
bTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
bTϑj

]}
ω̇B/N

= mscr̈C/N − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−
NP∑
j=1

mjlj

[(
− cos(ϕj) cos(ϑj)p̂0j ,1

− sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j +

(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j

+
(

2 sin(ϕj) sin(ϑj)p̂0j ,1 − 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j −

(
sin(ϕj) cos(ϑj)p̂0j ,1

− cos(ϕj) cos(ϑj)p̂0j ,2

)
cϕj −

(
cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
cϑj

]
(3.326)

The final step of the back-substitution method is to decoupled the rotational EOM. Following a

similar pattern to the translational EOM, the substitution results in:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N −
NP∑
j=1

mjlj [r̃Pc,j/B]

[(
sin(ϕj) cos(ϑj)p̂0j ,1

− cos(ϕj) cos(ϑj)p̂0j ,2

)
(aTϕj

r̈B/N + bTϕj
ω̇B/N + cϕj ) +

(
cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2

+ cos(ϑj)p̂0j ,3

)
(aTϑj r̈B/N + bTϑj ω̇B/N + cϑj )

]
=

LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
NP∑
j=1

mj

{
[ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

+ lj [r̃Pc,j/B]

[(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j +

(
− cos(ϕj) cos(ϑj)p̂0j ,1

− sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j +

(
2 sin(ϕj) sin(ϑj)p̂0j ,1 − 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j

]}
(3.327)
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Simplifying and combining like terms yields the desired decoupled rotational EOM:

{
msc[c̃]−

NP∑
j=1

mjlj [r̃Pc,j/B]

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
aTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
aTϑj

]}
r̈B/N +

{
[Isc,B]

−
NP∑
j=1

mjlj [r̃Pc,j/B]

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
bTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1

+ sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
bTϑj

]}
ω̇B/N = LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N

−
NP∑
j=1

mj

{
[ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

+ lj [r̃Pc,j/B]

[(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j

+
(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j +

(
2 sin(ϕj) sin(ϑj)p̂0j ,1

− 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j −

(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
cϕj

−
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
cϑj

]}
(3.328)

The back-substitution analytical method steps have now been completed and the following

back-substitution matrices definitions are defined:

[A] =
{
msc[I3×3]−

NP∑
j=1

mjlj

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
aTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
aTϑj

]}
(3.329)

[B] =
{
−msc[c̃]−

NP∑
j=1

mjlj

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
bTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
bTϑj

]}
(3.330)

[C] =
{
msc[c̃]−

NP∑
j=1

mjlj [r̃Pc,j/B]

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
aTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
aTϑj

]}
(3.331)



105

[D] =
{

[Isc,B]−
NP∑
j=1

mjlj [r̃Pc,j/B]

[(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
bTϕj

+
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
bTϑj

]}
(3.332)

vtrans = mscr̈C/N − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c

−
NP∑
j=1

mjlj

[(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j +

(
− cos(ϕj) cos(ϑj)p̂0j ,1

− sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j +

(
2 sin(ϕj) sin(ϑj)p̂0j ,1

− 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j −

(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
cϕj

−
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
cϑj

]
(3.333)

vrot = LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N

−
NP∑
j=1

mj

{
[ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

+ lj [r̃Pc,j/B]

[(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2

)
ϕ̇2
j

+
(
− cos(ϕj) cos(ϑj)p̂0j ,1 − sin(ϕj) cos(ϑj)p̂0j ,2 + sin(ϑj)p̂0j ,3

)
ϑ̇2
j +

(
2 sin(ϕj) sin(ϑj)p̂0j ,1

− 2 cos(ϕj) sin(ϑj)p̂0j ,2

)
ϕ̇jϑ̇j −

(
sin(ϕj) cos(ϑj)p̂0j ,1 − cos(ϕj) cos(ϑj)p̂0j ,2

)
cϕj

−
(

cos(ϕj) sin(ϑj)p̂0j ,1 + sin(ϕj) sin(ϑj)p̂0j ,2 + cos(ϑj)p̂0j ,3

)
cϑj

]}
(3.334)

These equations conclude the necessary steps required for the fuel slosh spherical pendulum

model. These equations conform with the standard form of the EOMs and the back-substitution

method introduced in Section 2.

3.1.8 N-Connected Hinged Rigid-Bodies

3.1.8.1 Introduction

The last model included in the examples of fully-coupled spacecraft dynamics problems is

the extension of hinged rigid-bodies to N-Connected hinged rigid-bodies. This extension allows for

general number of interconnected panels to be connected to the spacecraft and retains the standard
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EOM form introduced in this dissertation. This work was completed with collaborator Iosto Fodde

of Delft University of Technology during August - December of 2017.

Figure 3.11 shows a schematic of N-connected hinged rigid bodies and follows a similar

definition of the panels as seen in the dual-hinged rigid-bodies formulation and the single hinged

rigid-bodies formulation.

✓1

✓2

B
b̂1

b̂3

b̂2

ŝ1,2

ŝ1,3

ŝ1,1

S1

S2

ŝ2,1

ŝ2,3

ŝ2,2

c

2d

N
rB/N

�B/N

H
✓1,0

✓2,0
✓2,d

✓1,d

Figure 3.11: Frame and variable definitions for the system discussed here, where Np = 2.

3.1.8.2 Equations of Motion

The translational equation has been developed and results in the following equation:

mscr̈B/N −msc[c̃]ω̇B/N +

Np∑
i=1

[ Np∑
k=i

(2[Np − k] + 1)dmpŝk,3

]
θ̈i = Fext − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c−
Np∑
i=1

[( i∑
k=1

θ̇k

)2
(2[Np − i] + 1)dmpŝi,1

]
(3.335)
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Similarly the rotational equation of motion can be seen in Eq. (3.336) and fits the familiar form

throughout this dissertation.

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

Np∑
i=1

[ Np∑
k=i

Isk,2 ŝk,2 +

Np∑
k=i

[
[r̃Sk/B] +

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3

]
θ̈i

= −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
Np∑
i=1

(
mp[ω̃B/N ][r̃Si/B]r′Si/B

+
( i∑
k=1

θ̇
)2[

[r̃Si/B] +

Np∑
n=i+1

2[r̃Sn/B]
]
mpdŝi,1 + Isi,2

( i∑
k=1

θ̇k
)
[ω̃B/N ]ŝi,2

)
+LB (3.336)

The N hinged rigid-body equation of motion is:

[
dmpŝ

T
j,3 +

Np∑
i=j+1

2dmpŝ
T
j,3

]
r̈B/N +

[
Isj ,2ŝ

T
j,2 −mpdŝ

T
j,3[r̃Si/B]−

Np∑
i=j+1

2mpdŝ
T
j,3[r̃Si/B]

]
ω̇B/N+

Np∑
i=1

[
Isj ,2H[j − i] +mpd

2ŝTj,3

Np∑
k=i

(2ŝk,3 + 4ŝk,3(Np − j)−H[k − j]4ŝk,3(k − j))−H[j − i]ŝj,3
]
θ̈i

= K + 2dŝTj,3Fext,j+1 −
(
Isj,1 − Isj,3

)
ωsj,3ωsj,1 −mpdŝ

T
j,3

[
2[ω̃B/N ]r′Sj/B

+ [ω̃B/N ][ω̃B/N ]rSj/B+

Np∑
i=j+1

(
4[ω̃B/N ]r′Sj/B

+ 2[ω̃B/N ][ω̃B/N ]rSj/B

)

+
( i∑
n=1

θ̇i

)2
(2ŝi,1 + 4ŝi,1(Np − j)−H[i− j]4ŝi,1(i− j)−

( i∑
n=1

θ̇i

)2
ŝj,1)

]
(3.337)

where H[x] is the Heaviside function. It has been verified that when NP = 1, Eq. (3.337) matches

Eq. (3.56) and similarly for the dual-hinged rigid-body equations.

3.1.8.3 Back Substitution Method

The back substitution method is used to gain a simpler expression that combines the three

equations of motion. First, Eq. (3.337) is rearranged so that the second order state variables for
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the panel motions are isolated on the left hand side:

Np∑
i=1

[
Isj ,2H[j − i] +mpd

2ŝTj,3

Np∑
k=i

(2ŝk,3 + 4ŝk,3(Np − j)−H[k − j]4ŝk,3(k − j))−H[j − i]ŝj,3
]
θ̈i

= −
[
dmpŝ

T
j,3 +

Np∑
i=j+1

2dmpŝ
T
j,3

]
r̈B/N −

[
Isj ,2ŝ

T
j,2 −mpdŝ

T
j,3[r̃Si/B]−

Np∑
i=j+1

2mpdŝ
T
j,3[r̃Si/B]

]
ω̇B/N

+K + 2dŝTj,3Fext,j+1 −
(
Isj,1 − Isj,3

)
ωsj,3ωsj,1 −mpdŝ

T
j,3

[
2[ω̃B/N ]r′Sj/B

+ [ω̃B/N ][ω̃B/N ]rSj/B

+

Np∑
i=j+1

(
4[ω̃B/N ]r′Sj/B

+ 2[ω̃B/N ][ω̃B/N ]rSj/B

)

+
( i∑
n=1

θ̇i

)2
(2ŝi,1 + 4ŝi,1(Np − j)−H[i− j]4ŝi,1(i− j)−

( i∑
n=1

θ̇i

)2
ŝj,1)

]
(3.338)

Now, defining the elements of a matrix [A] as:

aj,i = Isj ,2H[j−i]+mpd
2ŝTj,3

Np∑
k=i

(
2ŝk,3 +4ŝk,3(Np−j)−H[k−j]4ŝk,3(k−j)

)
−H[j−i]ŝj,3 (3.339)

And defining the row elements of a matrix [F ] as:

fj,1 = −[dmpŝ
T
j,3 +

Np∑
i=j+1

2dmpŝ
T
j,3] (3.340)

with a matrix [G] which has row elements defined as:

gj,1 = −[Isj ,2ŝ
T
j,2 −mpdŝ

T
j,3[r̃Si/B]−

Np∑
i=j+1

2mpdŝ
T
j,3[r̃Si/B] (3.341)

Also by defining the vector v

vj,1 = K + 2dŝTj,3Fext,j+1 −
(
Isj,1 − Isj,3

)
ωsj,3ωsj,1 −mpdŝ

T
j,3

[
2[ω̃B/N ]r′Sj/B

+ [ω̃B/N ][ω̃B/N ]rSj/B

+

Np∑
i=j+1

(
4[ω̃B/N ]r′Sj/B

+ 2[ω̃B/N ][ω̃B/N ]rSj/B

)

+
( i∑
n=1

θ̇i

)2
(2ŝi,1 + 4ŝi,1(Np − j)−H[i− j]4ŝi,1(i− j)−

( i∑
n=1

θ̇i

)2
ŝj,1)

]
(3.342)

Equation (3.338) can then be written in matrix form to utilize some linear algebra techniques.

[A]


θ̈1

...

θ̈Np

 = [F ]r̈B/N + [G]ω̇B/N + v (3.343)
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Eq. (3.343) can now be solved by inverting matrix [A]. Note the definition [E] = [A]−1.


θ̈1

...

θ̈Np

 = [E][F ]r̈B/N + [E][G]ω̇B/N + [E]v (3.344)

And the subcomponents of [E] are defined as

[E] =


eT1
...

eTNp

 (3.345)

Since the modified Euler’s equation, Eq. (3.336), has θ̈i terms, it is more convenient to use the

expression for θ̈i as

θ̈i = eTi [F ]r̈B/N + eTi [G]ω̇B/N + eTi v (3.346)

The next step in the back substitution method is to analytically substitute Eq. (3.346) into the

translational and rotational EOMs. Performing this substitution for translation yields:

mscr̈B/N −msc[c̃]ω̇B/N +

Np∑
i=1

[ Np∑
k=i

(2[Np − k] + 1)dmpŝk,3[eTi [F ]r̈B/N + eTi [G]ω̇B/N + eTi v]
]

= Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−
Np∑
i=1

[( i∑
k=1

θ̇k

)2
(2[Np − i] + 1)dmpŝi,1

]
(3.347)

Combining like terms yields:
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{
msc[I3×3] +

Np∑
i=1

[ Np∑
k=i

(2[Np − k] + 1)dmpŝk,3

]
eTi [F ]

}
r̈B/N

+

{
−msc[c̃] +

Np∑
i=1

[ Np∑
k=i

(2[Np − k] + 1)dmpŝk,3

]
eTi [G]

}
ω̇B/N

= Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c−
Np∑
i=1

[( i∑
k=1

θ̇k

)2
(2[Np − i] + 1)dmpŝi,1

]

−
Np∑
i=1

[ Np∑
k=i

(2[Np − k] + 1)dmpŝk,3e
T
i v
]

(3.348)

Substitution into the rotational equation of motion:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

Np∑
i=1

[ Np∑
k=i

(Isk,2 ŝk,2 +
[
[r̃Sk/B]

+

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3)[eTi [F ]r̈B/N + eTi [G]ω̇B/N + eTi v]

]
= −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N

−
Np∑
i=1

(
mp[ω̃B/N ][r̃Si/B]r′Si/B

+
( i∑
k=1

θ̇
)2[

[r̃Si/B] +

Np∑
n=i+1

2[r̃Sn/B]
]
mpdŝi,1

+ Isi,2
( i∑
k=1

θ̇k
)
[ω̃B/N ]ŝi,2

)
+LB (3.349)

Combining like terms yields:{
msc[c̃] +

Np∑
i=1

[ Np∑
k=i

(Isk,2 ŝk,2 +
[
[r̃Sk/B] +

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3)eTi [F ]

]}
r̈B/N

+

{
[Isc,B] +

Np∑
i=1

[ Np∑
k=i

(Isk,2 ŝk,2 +
[
[r̃Sk/B] +

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3)eTi [G]

]}
ω̇B/N

= −[ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
Np∑
i=1

(
mp[ω̃B/N ][r̃Si/B]r′Si/B

+
( i∑
k=1

θ̇
)2[

[r̃Si/B]

+

Np∑
n=i+1

2[r̃Sn/B]
]
mpdŝi,1 + Isi,2

( i∑
k=1

θ̇k
)
[ω̃B/N ]ŝi,2

)
+LB −

Np∑
i=1

[ Np∑
k=i

(Isk,2 ŝk,2

+
[
[r̃Sk/B] +

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3)eTi v

]
(3.350)

Now, the analytical steps have been completed for the back-substitution method and the ma-

trices contributions for the N-Connected hinged rigid-bodies can be seen in the following equations:
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[Acontr] =

Np∑
i=1

[ Np∑
k=i

(2[Np − k] + 1)dmpŝk,3

]
eTi [F ] (3.351)

[Bcontr] =

Np∑
i=1

[ Np∑
k=i

(2[Np − k] + 1)dmpŝk,3

]
eTi [G] (3.352)

vtrans,contr = −
Np∑
i=1

[( i∑
k=1

θ̇k

)2
(2[Np−i]+1)dmpŝi,1

]
−

Np∑
i=1

[ Np∑
k=i

(2[Np−k]+1)dmpŝk,3e
T
i v
]

(3.353)

[Ccontr] =

Np∑
i=1

[ Np∑
k=i

(Isk,2 ŝk,2 +
[
[r̃Sk/B] +

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3)

]
eTi [F ] (3.354)

[Dcontr] =

Np∑
i=1

[ Np∑
k=i

(Isk,2 ŝk,2 +
[
[r̃Sk/B] +

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3)

]
eTi [G] (3.355)

[vrot,contr] = −
Np∑
i=1

(
mp[ω̃B/N ][r̃Si/B]r′Si/B

+
( i∑
k=1

θ̇
)2[

[r̃Si/B] +

Np∑
n=i+1

2[r̃Sn/B]
]
mpdŝi,1

+ Isi,2
( i∑
k=1

θ̇k
)
[ω̃B/N ]ŝi,2

)
−

Np∑
i=1

[ Np∑
k=i

(Isk,2 ŝk,2 +
[
[r̃Sk/B] +

Np∑
n=k+1

2[r̃Sn/B]
]
mpdŝk,3)

]
eTi v

(3.356)

These equations conclude the necessary steps for the N-Connected hinged rigid-body model and

confirms that the model agrees with the standardized EOM form and the back-substitution method

introduced in this dissertation.

It should be noted here before the section pertaining to Kane’s method development that

the derivation of equations of motion for N-Hinged rigid-bodies was actually completed solely using

Kane’s Method. This gives further validation of the systematic approach to developing the EOMs

using both Newtonian/Eulerian mechanics and Kane’s method.

3.2 Kane’s Method Derivation Comparisons

In Section 1.2.1, it is explained that the final form of the equations of motion can depend

on the method used to derive the EOMs. The equations of motion solutions provided in the prior
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sections used Newtonian and Eulerian mechanics to derive solutions. This section is provided to

show that Kane’s method [2] can be used to derive the EOMs and still arrive at the introduced

standardized EOM form. This is an important result because Kane’s method is a very powerful

method in developing dynamics solutions particularly involving multi-body applications. [2].

3.2.1 Hinged Rigid-Bodies

The first step in Kane’s Method is to define the state variables and their respective chosen

generalized speeds. A powerful attribute of Kane’s method is the generalized speeds do not have to

be the direct time derivative of the generalized coordinates [18]. For hinged rigid-bodies the states

and generalized speeds are defined in the following equation:

X =



rB/N

σB/N

θ1

·

θNS


u =



ṙB/N

ωB/N

θ̇1

·

θ̇NS


(3.357)

Next, the velocities of the center of mass of all of the bodies and the angular velocities of the rigid

bodies need to be defined and can be seen in the following equations:

ṙBc/N = ṙB/N + ωB/N × rBc/B = ṙB/N − [r̃Bc/B]ωB/N (3.358)

ṙC/N = ṙB/N + ċ (3.359)

ṙSi/N = ṙB/N + r′Si/B
+ ωB/N × rSi/B = ṙB/N + diθ̇iŝi,3 − [r̃Si/B]ωB/N (3.360)

ωS/N = ωB/N + θ̇iŝi,2 (3.361)

Next, the following partial velocity table is created:
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Table 3.1: Partial velocity table for hinged rigid-bodies

r vBc
r ωBr vSi

r ωSir
1− 3 [I3×3] [03×3] [I3×3] [03×3]
4− 6 −[r̃Bc/B ] [I3×3] −[r̃Si/B ] [I3×3]

7−NS [03×1] [03×1] diŝi,3 ŝi,2

Using these partial velocity definitions, the follow sections will step through the formulation

for the translational EOM development using Kane’s Method.

3.2.1.1 Rigid Spacecraft Hub Translational Motion

The definition of a generalized force is [2]:

Fr =

N∑
r

vTr · F (3.362)

Using this definition the external force applied on the spacecraft for the translational equations is

defined as:

F1−3 = [vC1−3]TFext = Fext (3.363)

Using the definition of generalized inertia forces [2],

F ∗r =
N∑
r

[
ωTr T

∗ + vTr (−mrar)
]

(3.364)

the inertia forces for the hub translational motion are defined as

F ∗1−3 = [vBc
1−3]T (−mhubr̈Bc/N )+

NS∑
i

[vSi
1−3]T (−mspi

r̈Si/N ) = −mhubr̈Bc/N +

NS∑
i

−mspi
r̈Si/N (3.365)

Finally, Kane’s equation is defined as

Fr + F ∗r = 0; r = 1, 2, ...N (3.366)

therefore,

Fext −mhubr̈Bc/N +

NP∑
i

−mspi
r̈Si/N = 0 (3.367)

Expanding and rearranging results in

mhub(r̈B/N + r̈Bc/B) +

NS∑
i

mspi
(r̈B/N + r̈Si/B) = Fext (3.368)
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Plugging in definitions, combining like terms and rearranging yields the final equation:

mscr̈B/N −msc[c̃]ω̇B/N +

Ns∑
i

mspi
diŝi,3θ̈i = Fext − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c−
Ns∑
i

mspi
diθ̇

2
i ŝi,1 (3.369)

Equation (3.369) is identical to Eq. (3.15) found using Newtonian mechanics, which confidence in

both the solution to the dynamics problem and the applicability of the generalized EOM form.

3.2.1.2 Rigid Spacecraft Hub Rotational Motion

To begin the rotational dynamics formulation, the torque acting on the spacecraft, LB needs

to be defined as a general active force. This definition can be seen in the following equation:

F4−6 = [ωB4−6]TLB = LB (3.370)

To define the generalized inertia forces, the definition of T ∗ needs to be defined for a rigid-

body [18]:

T ∗ = −[Ic]ω̇ − [ω̃][Ic]ω (3.371)

Using this definition, the generalized inertia forces for the rotational dynamics equation is

F ∗4−6 = [ωB4−6]TT ∗hub + [vBc
4−6]T (−mhubr̈Bc/N ) +

NS∑
i

(
[vSi

4−6]T (−mspi
r̈Si/N ) + [ωSi4-6]TT ∗spi

)
= −[Ihub,B]ω̇B/N − [ω̃B/N ][Ihub,B]ωB/N −mhub[r̃Bc/B]r̈Bc/N

+

NS∑
i

(
−mspi

[r̃Si/B]r̈Si/N − [Ispi,Si ]ω̇Si/N − [ω̃Si/N ][Ispi,Si ]ωSi/N

)
(3.372)

Using Kane’s equation, the following equation of motion for the rotational dynamics is de-

fined:

LB − [Ihub,B]ω̇B/N − [ω̃B/N ][Ihub,B]ωB/N −mhub[r̃Bc/B]r̈Bc/N

+

NS∑
i

(
−mspi

[r̃Si/B]r̈Si/N − [Ispi,Si ]ω̇Si/N − [ω̃Si/N ][Ispi,Si ]ωSi/N

)
= 0 (3.373)



115

Since the hinged rigid-body formulation has been developed in detail earlier in the dissertation, the

intermediate steps are chosen to not be included. Expanding and combining like terms yields the

following final rotational EOM:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NS∑
i

[
Isi,2 ŝi,2 +mspi

di[r̃Si/B]ŝi,3

]
θ̈i = −[ω̃B/N ][Isc,B]ωB/N

− [I ′sc,B]ωB/N −
NS∑
i

(
mspi

[ω̃B/N ][r̃Si/B]r′Si/B
+mspi

diθ̇
2
i [r̃Si/B]ŝi,1

+ Isi,2 θ̇i[ω̃B/N ]ŝi,2

)
+LB (3.374)

This final equation is the same equation developed for hinged rigid-bodies using Newtonian/Eulerian

mechanics. The last EOM to check is the flexing equation of motion.

3.2.1.3 Flexing Equation of Motion

Following the similar pattern for translational and rotational equations, the generalized active

forces are defined:

F7 = ωSir · (−kiθiŝi,2 − ciθ̇iŝi,2) = ŝi,2 · (−kiθiŝi,2 − ciθ̇iŝi,2) = −kiθi − ciθ̇i (3.375)

The generalized inertia forces are defined as:

F ∗7 = ωSir ·T ∗spi
+vSi

r ·(−mspi
r̈Si/N ) = ωSir ·

[
−[Ispi,Si ]ω̇Si/N−[ω̃Si/N ][Ispi,Si ]ωSi/N

]
+vSi

r ·(−mspi
r̈Si/N )

(3.376)

Using Kane’s equation the following EOM is defined:

−kiθi − ciθ̇i + ŝi,2 ·
[
− [Ispi,Si ]ω̇Si/N − [ω̃Si/N ][Ispi,Si ]ωSi/N

]
+ diŝi,3 · (−mspi

r̈Si/N ) = 0 (3.377)

Omitting some analytical steps to the final solution:

mspi
diŝ

T
i,3r̈B/N +

[
Isi,2ŝ

T
i,2 −mspi

diŝ
T
i,3[r̃Si/B]

]
ω̇B/N +

[
Isi,2 +mspi

d2
i

]
θ̈i

= −kiθi − ciθ̇i +
(
Isi,3 − Isi,1

)
ωsi,3ωsi,1 −mspi

diŝ
T
i,3[ω̃B/N ][ω̃B/N ]rSi/B = 0 (3.378)
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This equation concludes the Kane’s Method derivation of hinged rigid-bodies and confirms

that both Newtonian/Eulerian mechanics and Kane’s Method can be used to derive the EOMs and

still arrive at the standardized EOM form. This a promising result because Kane’s Method is a

powerful tool in developing EOMs for multi-body dynamics.

3.2.2 Fuel Slosh - Lumped Mass Spring Mass Damper Model

This section re-derives the EOMs for the spring mass damper based fuel slosh model that was

derived earlier using Newtonian/Eulerian mechanics. Starting with the definition of the generalized

coordinates and their respective generalized speeds are:

q =



rB/N

σB/N

ρ1

·

ρNP


u =



ṙB/N

ωB/N

ρ̇1

·

ρ̇NP


(3.379)

The necessary velocities and angular velocities needed to be defined can be seen in the following

equations:

ṙB/N = ṙB/N (3.380)

ṙC/N = ṙB/N + ċ (3.381)

ṙPc,j/N = ṙB/N + r′Pc,j/B
+ ωB/N × rPc,j/B = ṙB/N + ρ̇jp̂j − [r̃Pc,j/B]ωB/N (3.382)

Now the following partial velocity table used heavily in Kane’s Method is created and can be

seen in Table 3.2.

Using these partial velocity definitions, the follow sections will step through the formulation

for the translational, rotational and slosh EOMs developed using Kane’s method.
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Table 3.2: Partial velocity table for fuel slosh

r vBr ωBr vPc
r

1− 3 [I3×3] [03×3] [I3×3]
4− 6 [03×3] [I3×3] −[r̃Pc,j/B ]

7−NP [03×1] [03×1] p̂j

3.2.2.1 Rigid Spacecraft Hub Translational Motion

Using the definition of the external force applied on the spacecraft for the translational

equation, the general active force is:

F1−3 = [vC1−3]TFext = Fext (3.383)

Using the definition of the generalized inertia forces, the inertia forces for the hub translational

motion are can be seen in the following equation.

F ∗1−3 = [vB1−3]T (−mhubr̈B/N ) +

NP∑
j

[vPc
1−3]T (−mj r̈Pc,j/N ) = −mhubr̈B/N +

NP∑
j

−mj r̈Pc,j/N (3.384)

Finally, using Kane’s equation, the initial form of the EOM is:

Fext −mhubr̈B/N +

NP∑
j

−mj r̈Pc,j/N = 0 (3.385)

Expanding and rearranging results in

mhubr̈B/N +

NP∑
j

mj(r̈B/N + r̈Pc,j/B) = Fext (3.386)

Plugging Eq. (3.87) into Eq. (3.407) results in

mhubr̈B/N +

NP∑
j

mj

[
r̈B/N + ρ̈jp̂j + 2ωB/N × r′Pc,j/B

+ ω̇B/N × rPc,j/B

+ ωB/N × (ωB/N × rPc,j/B)
]

= Fext (3.387)

Combining like terms and rearranging yields

mscr̈B/N −msc[c̃]ω̇B/N +

NP∑
j=1

mjp̂j ρ̈j = Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c (3.388)

which is identical to Eq. (3.82) found using Newtonian mechanics.
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3.2.2.2 Rigid Spacecraft Hub Rotational Motion

The general active forces acting on the spacecraft for the rotational equations is defined as:

F4−6 = [ωB4−6]TLB = LB (3.389)

Similar to the hinged rigid-body development the generalized inertia forces for the rotational equa-

tions in the fuel slosh model is:

F ∗4−6 = [ωB4−6]TT ∗ +

NP∑
j

[vPc
4−6]T (−mj r̈Pc,j/N )

= −[Ihub,B]ω̇B/N − [ω̃B/N ][Ihub,B]ωB/N +

NP∑
j

−[r̃Pc,j/B]T (−mj r̈Pc,j/N ) (3.390)

Using Kane’s equation, the form of the rotational dynamics equation is defined in the following

equation:

LB − [Ihub,B]ω̇B/N − [ω̃B/N ][Ihub,B]ωB/N +

NP∑
j

−[r̃Pc,j/B](mj r̈Pc,j/N ) = 0 (3.391)

Plugging in definitions and combining like terms results in the same equation seen in Eq. (3.95)

found using Newtonian mechanics.

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NP∑
j=1

mj [r̃Pc,j/B]p̂j ρ̈j =

− [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
NP∑
j=1

mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B
+LB (3.392)

3.2.2.3 Fuel Slosh Motion

Following the similar pattern for translational and rotational equations the generalized active

forces are defined for fuel slosh motion equation:

F7 = vPc
r · (−kρjp̂j − cρ̇p̂j) = −kρj − cρ̇ (3.393)

The generalized inertia forces are defined as:

F ∗7 = vPc
r · (−mj r̈Pc,j/N ) = p̂Tj (−mj r̈Pc,j/N ) (3.394)
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Using Kane’s equation the following equations of motion are defined:

− kρj − cρ̇−mjp̂
T
j

[
r̈B/N + ρ̈jp̂j + 2ωB/N × r′Pc,j/B

+ ω̇B/N × rPc,j/B

+ ωB/N × (ωB/N × rPc,j/B)
]

= 0 (3.395)

Rearranging and combining like terms results in:

mjp̂j
T r̈B/N −mjp̂j

T [r̃Pc,j/B]ω̇B/N +mj ρ̈j

= −kjρj − cj ρ̇j − 2mjp̂j
T [ω̃B/N ]r′Pc,j/B

−mjp̂j
T [ω̃B/N ][ω̃B/N ]rPc,j/B (3.396)

which is identical to Eq. (3.100). This result finalizes the agreement between the Newtonian/Eulerian

mechanics development and the Kane’s method derivation for the fuel slosh model.

3.2.3 Dual-Hinged Rigid-Bodies

Another model chosen to derive the EOMs using Kane’s method is the dual-hinged rigid-

body model. Similar to the first derivations, the derivation begins defining the state variables and

generalized speeds. The choice of state variables and their respective chosen generalized speeds for

the dual-hinged rigid body model are:

X =



rB/N

σB/N

θ1,1

θ1,2

·

θNS ,1

θNS ,2



u =



ṙB/N

ωB/N

θ̇1,1

θ̇1,2

·

θ̇NS ,1

θ̇NS ,2



(3.397)

The necessary velocities and angular velocities needed to be defined can be seen in the following

equations:

ṙBc/N = ṙB/N + ωB/N × rBc/B = ṙB/N − [r̃Bc/B]ωB/N (3.398)
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ṙSc,i1/B = ṙB/N + r′Sc,i1/B
+ ωB/N × rSc,i1/B = ṙB/N + di1θ̇i1ŝi1,3 − [r̃Sc,i1/B]ωB/N (3.399)

ṙSc,i2/B = ṙB/N + r′Sc,i2/B
+ ωB/N × rSc,i2/B

= ṙB/N + li1θ̇i1ŝi1,3 + di2
(
θ̇i1 + θ̇i2

)
ŝi2,3 − [r̃Sc,i2/B]ωB/N (3.400)

ωSi1/N = ωB/N + θ̇i1ŝi1,2 (3.401)

ωSi2/N = ωB/N + (θ̇i1 + θ̇i2)ŝi2,2 (3.402)

ṙC/N = ṙB/N + ċ (3.403)

Now the following partial velocity table can be created using the velocities defined. This

table can be seen in Table 3.3.

Table 3.3: Partial velocity table for dual-hinged rigid-bodies

r vBc
r ωBr v

Sc,i1
r ωSi1r v

Sc,i2
r ωSi2r

1− 3 [I3×3] [03×3] [I3×3] [03×3] [I3×3] [03×3]
4− 6 −[r̃Bc/B ] [I3×3] −[r̃Sc,i1/B ] [I3×3] −[r̃Sc,i2/B ] [I3×3]

7 [03×1] [03×1] di1ŝi1,3 ŝi1,2 li1ŝi1,3 + di2ŝi2,3 ŝi2,2
8 [03×1] [03×1] [03×1] [03×1] di2ŝi2,3 ŝi2,2

Using these partial velocity definitions, the follow sections will step through the formulation

for the translational, rotational and flexing EOMs developed using Kane’s method.

3.2.3.1 Rigid Spacecraft Hub Translational Motion

The translational generalized active force can be seen in the following equation:

F1−3 = [vC1−3]TFext = Fext (3.404)
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Similarly, the inertia forces for the hub translational motion are defined as

F ∗1−3 = [vBc
1−3]T (−mhubr̈Bc/N ) +

NS∑
i

(
[v
Sc,i1

1−3 ]T (−mspi1
r̈Sc,i1/N ) + [v

Sc,i2

1−3 ]T (−mspi2
r̈Sc,i2/N )

)
= −mhubr̈Bc/N +

NS∑
i

(
−mspi1

r̈Sc,i1/N −mspi2
r̈Sc,i2/N

)
(3.405)

Using Kane’s equation the initial form of the translational EOM is

Fext −mhubr̈Bc/N +

NS∑
i

(
−mspi1

r̈Sc,i1/N −mspi2
r̈Sc,i2/N

)
= 0 (3.406)

Expanding and rearranging results in

mhub(r̈B/N + r̈Bc/B) +

NS∑
i

[
mspi1

(r̈B/N + r̈Sc,i1/B) +mspi2
(r̈B/N + r̈Sc,i2/B)

]
= Fext (3.407)

Plugging Eq. (3.167) into Eq. (3.407) results in

mhubr̈B/N +mhub

[
ω̇B/N × rBc/B + ωB/N × (ωB/N × rBc/B)

]
+

NS∑
i

(
mspi1

[
r̈B/N + r′′Sc,i1/B

+ 2ωB/N × r′Sc,i1/B
+ ω̇B/N × rSc,i1/B + ωB/N × (ωB/N × rSc,i1/B)

]
+mspi2

[
r̈B/N

+ r′′Sc,i2/B
+ 2ωB/N × r′Sc,i2/B

+ ω̇B/N × rSc,i2/B + ωB/N × (ωB/N × rSc,i2/B)
])

= Fext (3.408)

Combining like terms results in:

mscr̈B/N −msc[c̃]ω̇B/N +

NS∑
i

(
mspi1

[
di1ŝi1,3θ̈i1 + di1θ̇

2
i1ŝi1,1

]
+mspi2

[
(li1ŝi1,3 + di2ŝi2,3)θ̈i1 + di2ŝi2,3θ̈i2 + li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

])
= Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c (3.409)

Rearranging and putting in final form:

mscr̈B/N −msc[c̃]ω̇B/N +

NS∑
i

([
mspi1

di1ŝi1,3 +mspi2
li1ŝi1,3 +mspi2

di2ŝi2,3

]
θ̈i1 +mspi2

di2ŝi2,3θ̈i2

)
= Fext − 2msc[ω̃B/N ]c′ −msc[ω̃B/N ][ω̃B/N ]c

−
NS∑
i

(
mspi1

di1θ̇
2
i1ŝi1,1 +mspi2

[
(li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

])
(3.410)

which is identical to Eq. (3.160) found using Newtonian mechanics.
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3.2.3.2 Rigid Spacecraft Hub Rotational Motion

The torque acting on the spacecraft, LB needs to be defined as a general active force. Using

Eq. (3.362), active forces acting on the spacecraft for the rotational equations can be defined as:

F4−6 = [ωB4−6]TLB = LB (3.411)

The generalized inertia forces for the rotational motion equation for dual-hinged rigid-bodies can

be seen in Eq. (3.412).

F ∗4−6 = [ωB4−6]TT ∗hub + [vBc
4−6]T (−mhubr̈Bc/N ) +

NS∑
i

(
[v
Sc,i1

4−6 ]T (−mspi1
r̈Sc,i1/N ) + [ωSi14−6]TT ∗spi1

+ [v
Sc,i1

4−6 ]T (−mspi1
r̈Sc,i1/N ) + [ωSi14−6]TT ∗spi1

)
= −[Ihub,B]ω̇B/N − [ω̃B/N ][Ihub,B]ωB/N

−mhub[r̃Bc/B]r̈Bc/N +

NS∑
i

(
−mspi1

[r̃Sc,i1/B]r̈Sc,i1/N − [Ispi1,Sc,i1 ]ω̇Si1/N − [ω̃Si1/N ][Ispi1,Sc,i1 ]ωSi1/N

−mspi2
[r̃Sc,i2/B]r̈Sc,i2/N − [Ispi2,Sc,i2 ]ω̇Si2/N − [ω̃Si2/N ][Ispi2,Sc,i2 ]ωSi2/N

)
(3.412)

Using Kane’s equation, Eq. (3.366), the following equations of motion for the rotational

dynamics are defined:

LB − [Ihub,B]ω̇B/N − [ω̃B/N ][Ihub,B]ωB/N −mhub[r̃Bc/B]r̈Bc/N

+

NS∑
i

(
−mspi1

[r̃Sc,i1/B]r̈Sc,i1/N − [Ispi1,Sc,i1 ]ω̇Si1/N − [ω̃Si1/N ][Ispi1,Sc,i1 ]ωSi1/N

−mspi2
[r̃Sc,i2/B]r̈Sc,i2/N − [Ispi2,Sc,i2 ]ω̇Si2/N − [ω̃Si2/N ][Ispi2,Sc,i2 ]ωSi2/N

)
= 0 (3.413)

Some analytical development is omitted since a thorough derivation has already been included

for dual-hinged rigid bodies. Expanding, simplifying, and moving the second order state derivatives
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to the left hand side:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NS∑
i

([
Isi1,2 ŝi1,2 +mspi1

di1[r̃Sc,i1/B]ŝi1,3 + Isi2,2 ŝi2,2

+mspi2
[r̃Sc,i2/B](li1ŝi1,3+di2ŝi2,3)

]
θ̈i1+Isi2,2 ŝi2,2+mspi2

di2[r̃Sc,i2/B]ŝi2,3θ̈i2

)
= −[ω̃B/N ][Isc,B]ωB/N

− [I ′sc,B]ωB/N −
NS∑
i

(
mspi1

di1θ̇
2
i1[r̃Sc,i1/B]ŝi1,1 + Isi1,2 θ̇i1[ω̃B/N ]ŝi1,2 +mspi1

[ω̃B/N ][r̃Sc,i1/B]r′Sc,i1/B

+mspi2
[r̃Sc,i2/B]

[
li1θ̇

2
i1ŝi1,1 + di2

(
θ̇i1 + θ̇i2

)2
ŝi2,1

]
+ Isi2,2(θ̇i1 + θ̇i2)[ω̃B/N ]ŝi2,2

+mspi2
[ω̃B/N ][r̃Sc,i2/B]r′Sc,i2/B

)
+LB (3.414)

which is the same solution as the one which used Newtonian/Eulerian mechanics.

3.2.3.3 Panel 1 Flexing Equation

Following the similar pattern for translational and rotational equations the generalized active

forces are defined for the first interconnected panel:

F7 = ωSi17 ·
[
(−ki1θi1 − ci1θ̇i1)ŝi1,2 + (ki2θi2 + ci2θ̇i2)ŝi2,2 + τexti1,Hi1

]
+ vHi2

7 · F1/2i (3.415)

Expanding the terms in the generalized active forces for panel 1 results in:

F7 = ŝi1,2 ·
[
(−ki1θi1−ci1θ̇i1)ŝi1,2 +(ki2θi2 +ci2θ̇i2)ŝi2,2 +τexti1,Hi1

]
+ li1ŝi1,3 ·

[
Fexti2−mspi2 r̈Sc,i2/N

]
(3.416)

Further simplification yields:

F7 = −ki1θi1−ci1θ̇i1 +ki2θi2 +ci2θ̇i2 + ŝi1,2 ·τexti1,Hi1 + li1ŝi1,3 ·Fexti2−mspi2 li1ŝi1,3 · r̈Sc,i2/N (3.417)

The generalized inertia forces are defined as:

F ∗7 = ωSi17 · T ∗spi1
+ v

Sc,i1

7 · (−mspi1
r̈Sc,i1/N )

= ŝi1,2 ·
[
− [Ispi1,Sc,i1 ]ω̇Si1/N − [ω̃Si1/N ][Ispi1,Sc,i1 ]ωSi1/N

]
+ di1ŝi1,3 · (−mspi1

r̈Sc,i1/N ) (3.418)
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Using Kane’s equation the first form of the EOM is defined as:

− ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝi1,2 · τexti1,Hi1 + li1ŝi1,3 · Fexti2 −mspi2 li1ŝi1,3 · r̈Sc,i2/N

+ ŝi1,2 ·
[
− [Ispi1,Sc,i1 ]ω̇Si1/N − [ω̃Si1/N ][Ispi1,Sc,i1 ]ωSi1/N

]
−mspi1

di1ŝi1,3 · r̈Sc,i1/N = 0 (3.419)

Omitting some analytical development, the equation further simplifies to:

[
mspi1

di1ŝ
T
i1,3+mspi2 li1ŝ

T
i1,3

]
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T
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T
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T
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]
ω̇B/N

+
[
Isi1,2 +mspi1

d2
i1 +mspi2 l

2
i1 +mspi2 li1di2ŝ

T
i1,3ŝi2,3

]
θ̈i1 +

[
mspi2 li1di2ŝ

T
i1,3ŝi2,3

]
θ̈i2

= −(Isi1,1 − Isi1,3)ωsi1,3ωsi1,1 − ki1θi1 − ci1θ̇i1 + ki2θi2 + ci2θ̇i2 + ŝTi1,2τexti1,Hi1 + li1ŝ
T
i1,3Fexti2

−mspi1
di1ŝ

T
i1,3[ω̃B/N ][ω̃B/N ]rSc,i1/B −mspi2 li1ŝ

T
i1,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B

+ di2
(
θ̇i1 + θ̇i2

)2
ŝi2,1

]
(3.420)

This equation is the same equation found using Newtonian/Eulerian mechanics.

3.2.3.4 Panel 2 Flexing Equation

The generalized active forces are defined for the second interconnected panel in the following

equation:

F8 = ωSi28 ·
[
(−ki2θi2 − ci2θ̇i2)ŝi2,2 + τexti2,Hi2

]
(3.421)

Simplifying this result yields:

F8 = ŝi2,2 ·
[
(−ki2θi2 − ci2θ̇i2)ŝi2,2 + τexti2,Hi2

]
= −ki2θi2 − ci2θ̇i2 + ŝi2,2 · τexti2,Hi2 (3.422)

The generalized inertia forces are defined as:

F ∗8 = ωSi28 · T ∗spi2
+ v

Sc,i2

8 · (−mspi2
r̈Sc,i2/N )

= ŝi2,2 ·
[
− [Ispi2,Sc,i2 ]ω̇Si2/N − [ω̃Si2/N ][Ispi2,Sc,i2 ]ωSi2/N

]
+ di2ŝi2,3 · (−mspi2

r̈Sc,i2/N ) (3.423)

Using Kane’s equation the first form of the EOM can be seen in the following equation:

− ki2θi2 − ci2θ̇i2 + ŝi2,2 · τexti2,Hi2 + ŝi2,2 ·
[
− [Ispi2,Sc,i2 ]ω̇Si2/N − [ω̃Si2/N ][Ispi2,Sc,i2 ]ωSi2/N

]
−mspi2

di2ŝ
T
i2,3r̈Sc,i2/N = 0 (3.424)
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Expanding and simplifying results in the final form of the equation:

[
mspi2

di2ŝ
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]
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+ ŝi2,2 · τexti2,Hi2 −mspi2
di2ŝ

T
i2,3

[
2[ω̃B/N ]r′Sc,i2/B

+ [ω̃B/N ][ω̃B/N ]rSc,i2/B + li1θ̇
2
i1ŝi1,1

]
(3.425)

This concludes the necessary Kane’s Method development that confirms the arrival at the same

equations previously found using Newtonian/Eulerian mechanics.



Chapter 4

Modular Software Architecture for Spacecraft Dynamics Simulations

The final research goal of this proposed research is to design a software architecture that will

utilize the common structure of the generalized EOM form and the modularization of the coupled

EOMs from the back-substitution method. As mentioned before, multi-body dynamics simulations

can result in disorganized and massive software implementations or a complex interrelation between

the effectors and a system mass matrix. The proposed design alleviates this complicated interaction

while retaining the fully-coupled nature of the problem. Additionally the proposed research will

develop a modular architecture for multi-rigidly connected spacecraft that allows for deployment

and docking of the spacecraft.

4.1 Single Spacecraft Architecture

Figure 4.1 shows the Unified Modeling Language (UML) class diagram for object oriented

computer programming languages proposed in this dissertation. This is the design that allows

complex fully-coupled dynamics to be implemented in software while retaining a modular archi-

tecture. Additionally, it aims to solve the issues of testability, maintainability, and scalability that

fully-coupled dynamics problems pose.

The dynamicObject seen in Figure 4.1 is a parent class or abstract class that defines the base

functionality of the object that will control the calculation of the system EOMs and essentially solve

for the well-known state derivative vector Ẋ = f(X, t). However, the term state vector is used

loosely here because the stateManager organizes, stores, and controls all states of the system.
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+ integrate()
integrator

+ equationsOfMotion()
+ integrateState()
+ computeEnergyMom() 

dynamicObject

spacecraftPlus

+ computeBodyForceTorque()
dynamicEffector+ updateEffectorMassProperties()
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+ computeDerivatives()
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stateEffector
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+ register()
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stateManager

hubEffector
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thrusters

euler

rK2

rK4
dualHingedRigidBody

VSCMG

fuelSloshPendulum

Figure 4.1: UML Diagram for Modular Architecture.

The dynamicObject is an abstract or parent class because this would allow for different types

of systems to be implemented in the future which are not necessarily using the proposed back-

substitution method in this dissertation. Therefore, the spacecraftPlus is an instantiation of the

dynamicObject and is the class that is implementing the back-substitution method.

In the generalized EOMs introduced earlier in this dissertation, the term “effectors” is used

to define objects that are attached to the spacecraft and have dynamic states that need to be

integrated. Some examples are: reaction wheels, flexing solar arrays, fuel slosh, etc. In this modular

software architecture, those effectors are called stateEffectors and are illustrated in Figure 4.1.

In contrast, dynamicEffectors are phenomena that result in an external forces or torques being
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applied to the spacecraft. Examples of these include: gravity, thrusters, SRP, etc.

The stateEffector abstract or parent class is the class that defines the necessary methods

(and variables) needed for each effector to provide contributions to the spacecrafts mass properties

(msc, [Isc,B], c, etc.) using the method updateEffectorMassProperties and contributions to the

back substitution matrices ([A], [B]...vTrans, etc.) using the method updateContributions. Each

effector needs to be able to compute their derivatives using the method computeDerivatives. Fi-

nally, the method computeEnerMomContributions is the method that enables effectors add their

contributions to the energy and momentum of the system for verification purposes. Additionally, it

should be noted that in Figure 4.1 it shows that both stateEffectors and dynamicEffectors

are aggregated in spacecraftPlus. This allows for the modularity of the dynamics because

spacecraftPlus does not know the type of effectors attached to it, but rather has an array of

stateEffectors or dynamicEffectors which makes it general.

Another important aspect of the software architecture is the hubEffector instantiation of

stateEffector. The hubEffector is representing the rigid body hub defined in the generalized

EOM form and has translational and attitude states associated with it. The hubEffector is

unique to all of the stateEffectors because it is not included in the array of stateEffectors

that are looped over in spacecraftPlus but rather defined as an object in spacecraftPlus and

its methods are always called in equationsOfMotion(). This is because the assumption for the

back-substitution method and the generalized EOM form is that the spacecraft will always have a

rigid body hub with a body frame, B, attached and with the corresponding states: rB/N , ṙB/N ,

σB/N and ωB/N .

Since spacecraftPlus is an instantiation of dynamicObject, it inherits the methods that

are defined in Figure 4.1. The method equationsOfMotion() is the method that solves for all of

the state derivatives of the spacecraft system. To explain this method in more detail, Figure 4.2 is

included to show the flow in pseudo code. The spacecraft mass properties need to be calculated first

because in Eqs. (2.1) and (2.2) the total spacecraft mass, msc, inertia, [Isc,B] and other parameters

are needed. Next, the gravityEffector class is called to compute the gravity acting on the
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spacecraft. This is done at this location because some stateEffectors might need to know the

gravitational acceleration. Following this step, the stateEffectors are looped over to find their

contributions to the back-substitution matrices and the dynamicEffectors are looped over to get

their contributions to Fext and LB. Now, all of the necessary values have been computed for the

hub state derivatives to be calculated using Eq. 2.19, which is computed in the hubEffector’s

computeDerivatives. Finally, the stateEffectors are looped over to compute their derivatives

using r̈B/N and ω̇B/N .

spacecraftPlus

equationsOfMotion()
     
     hubEffector.updateEffectorMassProperties()
     for(effector in stateEffectors)
           effector.updateEffectorMassProperties()
     end

     gravityEffector.computeGravField()

     for(effector in stateEffectors)
           effector.updateContributions()
     end

     for(effector in dynEffectors)
           effector.computeBodyForceTorque()
     end

     hubEffector.computeDerivatives()
     for(effector in stateEffectors)
           effector.computeDerivatives()
     end

end

Figure 4.2: Pseudo code for the equationsOfMotion() method within spacecraftPlus

Since the hubEffector’s derivative calculation is so vital in this structure, Figure 4.3 is

shown to explain the calculations needed for this step. Again, this is shown using pseudo code.

Additionally, this method shows the interaction between the stateManager and the rest of the

system. The stateManager stores the states of the system in individual objects. These objects can

be accessed using a string and once the object has been accessed, the methods seen in Figure 4.1

under the stateManager class are available. For example, the getState method delivers the current



130

value of the state stored in that state object. In Figure 4.3, the hub effector uses those methods

to retrieve the desired information from the stateManager. Ultimately setting the derivative

values for the hubEffector is the goal of the computeDerivatives method and does so by using

setStateDeriv for both r̈B/N and ω̇B/N .

hubEffector

computeDerivatives()

    rBN_NState = stateManager.getStateObject('hubPosition')
    rBNDot_NState = stateManager.getStateObject('hubVelocity')
    sigmaBN_State = stateManager.getStateObject('hubRotPosition')
    omegaBN_BState = stateManager.getStateObject('hubRotVelocity')

    rBNDot_N = rBNDot_NState.getState()
    rBN_NState.setStateDeriv(rBNDot_N)

    sigmaBNDot = omegaToSigmaDot(omegaBN_BState.getState())
    sigmaBN_State.setStateDeriv(sigmaBNDot)

    omegaBN_BState.setStateDeriv(omegaBN_Dot)
    rBNDot_NState.setStateDeriv(rBNDDot_N)

end

Figure 4.3: Pseudo code for hubEffector computeDerivatives() method

Another important method in this architecture is the computeDerivatives method for a

generic stateEffector. To highlight this method, the hinged rigid bodies example introduced in

this dissertation is used. Figure 4.4 shows the pseudo code for the computeDerivatives method of

a hinged rigid body effector. When this method is being computed, r̈B/N and ω̇B/N have already

been calculated, therefore the hinged rigid body effector can use the state manager’s method called

getStateDeriv which gives access to those pre-computed values. Looking at Eq. (3.58), the hinged

rigid body effector utilizes r̈B/N and ω̇B/N in its calculation, and utilized saved variables for faster
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results and is a benefit of the back-substitution method.

hingedRigidBody

computeDerivatives()

    theta_State = stateManager.getStateObject('panelTheta')
    thetaDot_State = stateManager.getStateObject('panelThetaDot')
    hubVelocity_State = stateManager.getStateObject('hubVelocity')
    hubRotVelocity_State = stateManager.getStateObject('hubRotVelocity')

    thetaDot = thetaDot_State.getState()
    theta_State.setStateDeriv(thetaDot)

    rBNDDot_N = hubVelocity_State.getStateDeriv()
    omegaDotBN_B = hubRotVelocity_State.getStateDeriv()

     thetaDot_State.setStateDeriv(thetaDDot)

end

✓̈i = aT
✓i

r̈B/N + bT
✓i
!̇B/N + c✓i

Figure 4.4: Pseudo code for hingedRigidBody computeDerivatives() method

The power of this design is that stateEffectors can just be attached to the spacecraft in no

particular order and the scalability of this design is unconstrained. Adding another effector does

not depend on any other effectors even though the fully-coupled nature is still retained. All of the

coupling is through the rigid body hub and the analytical form of the back-substitution method

allows for this modularity. Additionally, a fixed size system mass matrix is inverted as opposed

to a dynamically allocated matrix of varying size which is common in fully-coupled dynamics

simulations.

4.2 Multiple Spacecraft Architecture

A goal of this dissertation is to expand the modular software architecture to allow for multiple

spacecraft to be simulated at a time and allow for docking and detachment. Figure 2.2 shows a

diagram of the desired ability of this architecture with multiple spacecraft that can either be docked
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to the primary spacecraft or unattached. However, the architecture should allow for spacecraft to

dock and detach as much as desired throughout the link of the simulation.

Further description is needed for this multi-spacecraft architecture. For the purposes of this

dissertation the attached spacecraft must include the primary spacecraft. In other words, the

primary spacecraft must always be included in the docked spacecraft (its valid if there are no

docked spacecraft) throughout the length of the simulation. For example, if the rocket problem

was to be simulated, the primary spacecraft would need to be defined as one of the last spacecraft

to stay attached. Using Figure 2.2 as an example, if the primary spacecraft were to detach from the

spacecraft with the flexing solar arrays, the other smaller spacecraft could not connect directly to

the flexing solar array spacecraft. However, if the flexing solar array spacecraft re-attached to the

primary spacecraft, the smaller spacecraft could choose to dock with either spacecraft. Additionally,

closed chain docking is not allowed. This architecture could be easily expanded to allow for multiple

primary spacecraft, but the current formulation does not allow for that for sake of simplicity.

Another assumption is that contact physics between docking spacecraft is not being discussed

in this architecture, therefore the docking between spacecraft is assumed to be “soft docks”. In other

works, the exchange of momentum between docking spacecraft is not being considered. However,

this architecture is not limited by this assumption. Contact physics and the exchange of momentum

between docking spacecraft could be implemented using this architecture but it is beyond the scope

of this dissertation.

In Section 2.2, the EOMs that describe the motion of a spacecraft system is introduced. Using

those equations and leveraging the software architecture designed for a single spacecraft, the UML

class diagram that can be used to develop a simulation with multiple spacecraft can be seen in Fig-

ure 4.5. This architecture is meant to replace the single spacecraft architecture if multi-spacecraft

is desired. Therefore all of the stateEffectors dynamicEffectors defined from the prior class

diagram can be re-used. The class diagram is very similar to the class diagram for single spacecraft

simulations. One main difference is the class change from spacecraftPlus to spacecraft. This

change is more than a name change because as it can be seen, the new spacecraft class is no longer
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Figure 4.5: UML diagram for multi-spacecraft modular architecture

inheriting from the dynamicObject class. This a key change because now the spacecraft class

is an object that defines a total spacecraft with stateEffectors and dynamicEffectors attached

to it but no longer has the job of controlling the integration and equation of motion generation

as spacecraftPlus does in the single spacecraft architecture. However, each spacecraft has very

similar mathematics to calculate and so retaining an object that essentially defines a spacecraft is

very useful.

The spacecraftDynamics class is the new class in Figure 4.5 and is the class that inherits

from the dynamicObject. With that, comes the responsibility of controlling the integration with

the integrateState method, and the logic required to do both the multi-spacecraft simulation
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spacecraftDynamics

equationsOfMotionSys()
     
     primarySC.hubEffector.updateEffectorMassProperties()
     for(effector in primarySC.stateEffectors)
           effector.updateEffectorMassProperties()
     end
     
     for(attachedSC in vectorOfAttachedSC)
           attachedSC.hubEffector.updateEffectorMassProperties()
           for(effector in attachedSC.stateEffectors)
                 effector.updateEffectorMassProperties()
           end
     end

     primarySC.gravityEffector.computeGravField()

     for(effector in primarySC.stateEffectors)
           effector.updateContributions()
     end

     for(attachedSC in vectorOfAttachedSC)
           for(effector in attachedSC.stateEffectors)
                 effector.updateContributions()
           end
     end

     for(effector in primarySC.dynEffectors)
           effector.computeBodyForceTorque()
     end

     for(attachedSC in vectorOfAttachedSC)
           for(effector in attachedSC.stateEffectors)
                 effector.computeBodyForceTorque()
           end
     end

     primarySC.hubEffector.computeDerivatives()
     for(effector in stateEffectors)
           effector.computeDerivatives()
     end

     for(attachedSC in vectorOfAttachedSC)
           for(effector in attachedSC.stateEffectors)
                 effector.computeDerivatives()
           end
     end

end

Figure 4.6: Pseudo code for the equationsOfMotionSys() method within spacecraftDynamics

and back-substitution in the equationsOfMotion method. Since the back-substitution method

was already implemented in the spacecraftPlus equationsOfMotion method, this calculation is
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stored in the new spacecraft class under its equationsOfMotion method. However this method

is now only applicable to spacecraft that are unattached from the primary spacecraft.

There are three additional methods that the spacecraftDynamics class defines and the

first one is the equationsOfMotionsSys method. This method controls the logic of the primary

spacecraft computing the acceleration of the state variables of the primary spacecraft hub and

getting contributions from the other spacecraft. However, as seen in Figure 4.6, all other attached

spacecraft to the primary spacecraft do not calculate their own hub derivatives. This is key feature

because it removes unnecessary math being calculated and relies on the fact that all of the other

connected spacecraft hub states can be found from the kinematic relationships between the primary

hub and the attached spacecraft hubs.

spacecraftDynamics

equationsOfMotion()
     
     equationsOfMotionSys()
     
     for(unAttachedSC in vectorOfUnAttachedSC)
           unAttachedSC.equationsOfMotionSC()
     end

end

Figure 4.7: Pseudo code for the equationsOfMotion() method within spacecraftDynamics

Now that both the spacecraftDynamics class equationsOfMotionSys and the spacecraft

class equationsOfMotion methods have been described, the final method that needs to be described

related to the dynamics calculations is the spacecraftDynamics equationsOfMotion method that

it inherits from the dynamicsObject class. This simple pseudo code seen in Figure 4.7 shows how

the calculations for the equations can be separated into the connected system of spacecraft and

the unattached independent spacecraft equations. This again is leveraging the modularity of the

equations developed in Section 2.

The final method that needs to be described for this multi-spacecraft architecture is the

integrateState method in the spacecraftDynamics class seen in Figure 4.8. This shows that
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spacecraftDynamics

integrateState()
     
     integrate()
     
     determineAttachedSCStates()

     computeEnergyMomentumSys()

     for(unAttachedSC in vectorOfUnAttachedSC)
           unAttachedSC.computeEnergyMomentumSC()
     end

end

Figure 4.8: Pseudo code for the integrateState() method within spacecraftDynamics

the integrate method is called to step the states one step forward in time but after this call the

spacecraft attached to the primary spacecraft have not had their hub states updated. This is the

job of the determineAttachedSCState method in the spacecraftDynamics class. This method

uses the primary hub’s states and the kinematic relationships to find the other attached space-

craft states. After these methods have been computed, the computeEnergyMomentumSys method

which computes the attached spacecraft system energy and momentum is called. Finally, the

unattached independent spacecraft have the opportunity to calculate their energy and momentum

with computeEnergyMomentumSC calls.

Both the single spacecraft and multi-spacecraft software architectures described utilize the

back-substitution method and the generalized EOM form introduced in Section 2. These architec-

tures could be implemented in any object oriented language and result in elegant modular software

implementations that solve the problems of maintainability, testability, and scalability for multi-

body spacecraft dynamics problems.
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Basilisk Astrodynamics Software Package Validation and Verification

The Basilisk Astrodynamics Software Package is chosen as the implementation code base

for the modular software dynamics architecture. However, this validation and verification section

and the rest of the dissertation is not dependent on the chosen software package. This software

architecture could be implemented in any object oriented language. Every dynamics model that

has been introduced in this dissertation has been implemented in Basilisk and this section explains

some of the methods used to validate and verify both the EOMs and the software implementation

of the equations.

The terms validation and verification can have different meanings depending on the appli-

cation. The validation and verification process used in this dissertation is similar to the formal

spacecraft validation and verification (V&V) process that many spacecraft missions utilize. The

process is meant to determine whether the functions of the software are meeting the desired ca-

pability, also known as validation. Verification is ensuring that the actual implementation of the

software is properly performing the previously described functions. This process can be performed

on any software, but the most common portions of code from a spacecraft mission perspective that

involve V&V related tasks, are flight software algorithms and the simulation models. The details

of the actual V&V process can depend on the resources and time available for the project. For ex-

ample, in this dissertation, it is known it is not an exhaustive validation and verification procedure

and does not involve comparison to experimental data. However, the procedure for validating and

verifying the software is rigorous and gives confidence in both the equations motion developed and
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the implementation of the equations in software.

5.1 Validation Examples

Validation of analytical development of spacecraft EOMs and software implementation can

be a difficult task, especially when experimentation is not available. To validate dynamics models,

one method is to define tests that might simplify the complicated problem to something simpler

and that can confirm the software is providing the expected results. Additionally, writing out the

expected functions and assumptions/limitations of each model will ensure that the developer is

aware of all of the expected functionality of the code. From a validation perspective, the process

is typically not exhaustive without doing experimental comparisons. However, for this dissertation

the validation examples coupled with verification effort discussed in this chapter is sufficient to

ensuring expected results and validating/verifying the models.

5.1.1 SpacecraftPlus

5.1.1.1 Introduction

spacecraftPlus is an instantiation of the dynamicObject abstract class. This abstract class

is representing systems that have equations of motion that need to be integrated and therefore the

main goal of this dynamic object is finding the state derivatives and interfacing with the integrator

to integrate the state forward in time. spacecraftPlus is representing a spacecraft that can be

simulating only the translational movement which would mean the spacecraft only has mass (for

gravity only simulations, setting the mass is not necessary), it could be simulating only rotational

dynamics which would result in the spacecraft only having inertia, and finally both translational

and rotational dynamics can be simulated at a time which results in the spacecraft having mass,

inertia and center of mass offset.

spacecraftPlus is the module where the equations of motion of the spacecraft are computed

including the interaction between the hubEffector, stateEffectors and dynamicEffectors. The
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hubEffector is where the translational and rotational derivatives are computed, the stateEffectors

give contributions to spacecraftPlus and computes their derivatives and the dynamicEffectors

provide force and torque contributions to spacecraftPlus.

5.1.1.2 Model Functions

This module is intended to be used as a model to represent a spacecraft that can be decom-

posed into a rigid body hub and has the ability to model state effectors such as reactions wheels,

and flexing solar panels, etc attached to the hub. The following is a list of functions that this model

should achieve.

• Updates the mass properties of the spacecraft by adding up all of the contributions to the

mass properties from the hubEffector and the stateEffectors

• Adds up all of the matrix contributions from the hubEffector and stateEffectors for

the back substitution method and gives this information to the hub effector

• Adds up the force and torque contributions from dynamicEffectors and gravityEffector

• Calls all of the computeDerivatives methods for the hub and all of the state effectors

which is essentially solving Ẋ = f(X, t)

• Integrates the states forward one time step using the selected integrator

• Calculates the total energy and momentum of the spacecraft by adding up contributions

from the hub and the state effectors

5.1.1.3 Model Assumptions and Limitations

Outlining the assumptions and limitations of a module can give perspective on how the

simulation was meant to be designed. Below is a summary of the assumptions/limitations:

• stateEffectors that are changing the mass properties of the spacecraft are considered

new bodies that are added to the mass properties of the spacecraft
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• The limitations of the simulation are primarily based on what configuration are set for

the spacecraft in (i.e. what state effectors and dynamic effectors that are attached to the

spacecraft). Additionally it is limited to the current capability of the models in regards to

state effectors and dynamic effectors.

• The accuracy of the simulation is based upon the integrator and integrator step size

• As discussed in the description section, the body fixed frame B can be oriented generally

and the origin of the B frame can be placed anywhere as long as it is fixed with respect to

the body. This means that there are no limitations from the rigid body hub perspective.

5.1.1.4 MRP switching test

An important aspect of spacecraft dynamics simulations involving MRPs are the ability

to switch to the shadow set of the MRPs to avoid singularities [39]. In Basilisk the MRPs are

switched to the shadow set in hubEffector after one step of the integration using the method

modifyStates() which is available to all stateEffectors that need to change their states to a

different but equivalent form. The MRP switching adheres to the following equation[39]:

if [s = |σ(t+ dt)|] > 1 then

σ(t+ dt) = −σ(t+ dt)

s2

end if

(5.1)

To check that the switch in the simulation is behaving the way it should, the following check

was developed. If the switch happened at time ts, then there are two variables from the sim that

will be used: σ(ts-1) and σ(ts). The intermediate MRP that is switched in the simulation is not

an output of the simulation, but needs to be defined: σ0(ts). To check the switching the following

math occurs:

σ0(ts) ≈ σ(ts-1) +
σ(ts-1)− σ(ts-2)

∆t
∆t (5.2)
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where this is an Euler approximation to the intermediate MRP before the switch occurs. Now using

Eq. (5.1) the following definition is made:

σch(ts) = − σ0(ts)

|σ0(ts)|2
(5.3)

Where σch(ts) is the MRP to check vs. the simulation MRP. Therefore, in this test, it is making

sure that σ(ts) ≈ σch(ts).
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Figure 5.1: Attitude of Spacecraft in MRPs

Figure 5.1 shows the MRPs over the simulation time of the test and it shows that the switch

occurs at around 4 seconds. Figure 5.2 shows the values being saved from Basilisk at the time of

switching. The results of the test confirm that the switching is being computed properly because

with a time step of 0.01 the relative accuracy of σ(ts) ≈ σch(ts) is 10−6. Additionally, the results

are dependent on the time step because of the Euler approximation used in the test. As the time

step goes down the accuracy approaches zero with agrees with intuition. This test gives validation

in the analytical development and software implementation.

5.1.1.5 Rotational Dynamics Validation Test

To validate the rotational dynamics, a relationship that involves both the attitude and at-

titude rate was chosen. The following calculation is a modified example from Reference[39] and
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Figure 5.2: MRP Switching

repeated here for convenience. To begin this example, the angular momentum vector is chosen to

be aligned with the inertial frame:

NH = −Hn̂3 =

N
0

0

−H

 (5.4)

The following relationship is written:

BH = [BN ]NH (5.5)

Since MRPs are the attitude parameterization chosen for Basilisk, then the direction cosine

matrix [BN ] is written in terms of the current MRPs. If there are no external torque’s acting on the

spacecraft, then the angular momentum vector will be conserved in the inertial frame. Therefore,

using the definition of transformation from MRPs to the direction cosine matrix[39], the following

relationship will always hold:

B
H1

H2

H3

 = −H

B
8σ1σ3 − 4σ2(1− σ2)

8σ2σ3 + 4σ1(1− σ2)

4(−σ2
1 − σ2

2 + σ2
3) + (1− σ2)2

 =

B
I1ω1

I2ω2

I3ω3

 (5.6)
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Finally, the current angular velocity components in the body frame can be found from the current

MRPs using the following relationship:

ω1 = −H
I1

[
8σ1σ3 − 4σ2(1− σ2)

]
(5.7)

ω2 = −H
I2

[
8σ2σ3 + 4σ1(1− σ2)

]
(5.8)

ω3 = −H
I3

[
4(−σ2

1 − σ2
2 + σ2

3) + (1− σ2)2
]

(5.9)

This gives a closed form solution between the current MRPs and the angular velocity of the
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Figure 5.3: Basilisk vs Validation Test Calculation For Rotation

spacecraft. The test picks 5 points during a simulation and verifies that this relationship holds

true.

Figure 5.3 shows the results of this test which gives validation for both the analytical devel-

opment and the software implementation. With a time step of 0.01, Basilisk provides a relative

accuracy of 10−10. Again, these results are dependent on the time step of the simulation but as

the time step goes down, the relative accuracy approaches zero.
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5.1.1.6 Translational Validation Calculation Scenario

The translational BOE calculation can be seen in Figure 5.4. In this test a positive force is

placed on the hub in the b̂1 direction with no torque and no initial rotation of the spacecraft. This

results in a one degree of freedom problem as seen in Figure 5.4. The force is applied for some

length of time, left off for another length of time, and then a negative force is applied to the system

for an additional length of time. The test is ensuring that Basilisk is giving the same results as the

analytical development described below.

n̂1
<latexit sha1_base64="G2Qjo8EpaB/yEzJ7CYapsYurOko=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKeVEEbmA3nbYzB1wlbkWaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRcPLFEkRnqIxGRnKUUKUn8/zF/DcKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKmuYEtzlL6+S/kXbddru3WWz06rqqINTcAZawAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxWjNqnaOwR9Ynz/V0paH</latexit><latexit sha1_base64="G2Qjo8EpaB/yEzJ7CYapsYurOko=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKeVEEbmA3nbYzB1wlbkWaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRcPLFEkRnqIxGRnKUUKUn8/zF/DcKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKmuYEtzlL6+S/kXbddru3WWz06rqqINTcAZawAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxWjNqnaOwR9Ynz/V0paH</latexit><latexit sha1_base64="G2Qjo8EpaB/yEzJ7CYapsYurOko=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKeVEEbmA3nbYzB1wlbkWaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRcPLFEkRnqIxGRnKUUKUn8/zF/DcKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKmuYEtzlL6+S/kXbddru3WWz06rqqINTcAZawAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxWjNqnaOwR9Ynz/V0paH</latexit><latexit sha1_base64="G2Qjo8EpaB/yEzJ7CYapsYurOko=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKeVEEbmA3nbYzB1wlbkWaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRcPLFEkRnqIxGRnKUUKUn8/zF/DcKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKmuYEtzlL6+S/kXbddru3WWz06rqqINTcAZawAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxWjNqnaOwR9Ynz/V0paH</latexit>

n̂2
<latexit sha1_base64="tgxNqPsmA+BMZ1ZIaL570a6UTFo=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlvCiCdmA3nJYzB1wlbkUaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRd3LFEkRnqIxGRnKUUKUn8/zF/DCKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKqubEtzlL6+SfrvlOi337rLRaVZ11MAZOAdN4IIr0AG3oAt6AINH8AxewZv1ZL1Y79bHYnTNqnZOwB9Ynz/XVpaI</latexit><latexit sha1_base64="tgxNqPsmA+BMZ1ZIaL570a6UTFo=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlvCiCdmA3nJYzB1wlbkUaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRd3LFEkRnqIxGRnKUUKUn8/zF/DCKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKqubEtzlL6+SfrvlOi337rLRaVZ11MAZOAdN4IIr0AG3oAt6AINH8AxewZv1ZL1Y79bHYnTNqnZOwB9Ynz/XVpaI</latexit><latexit sha1_base64="tgxNqPsmA+BMZ1ZIaL570a6UTFo=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlvCiCdmA3nJYzB1wlbkUaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRd3LFEkRnqIxGRnKUUKUn8/zF/DCKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKqubEtzlL6+SfrvlOi337rLRaVZ11MAZOAdN4IIr0AG3oAt6AINH8AxewZv1ZL1Y79bHYnTNqnZOwB9Ynz/XVpaI</latexit><latexit sha1_base64="tgxNqPsmA+BMZ1ZIaL570a6UTFo=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlvCiCdmA3nJYzB1wlbkUaoEI3sL+8SOAsIVxjhpQauU6q/RxJTTEjRd3LFEkRnqIxGRnKUUKUn8/zF/DCKBGMhTSHazhXf2/kKFFlOjOZID1Ry14p/ueNMh1f+znlaaYJx4uH4oxBLWBZBoyoJFizmSEIS2qyQjxBEmFtKqubEtzlL6+SfrvlOi337rLRaVZ11MAZOAdN4IIr0AG3oAt6AINH8AxewZv1ZL1Y79bHYnTNqnZOwB9Ynz/XVpaI</latexit>

b̂2
<latexit sha1_base64="CxVEFpWaDqYezrC4lPI9/78A13g=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlYVEE7cBuOC1nDrhK3Io0QIVuYH95kcBZQrjGDCk1cp1U+zmSmmJGirqXKZIiPEVjMjKUo4QoP5/nL+CFUSIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVFY3JbjLX14l/XbLdVru3WWj06zqqIEzcA6awAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxeiaVe2cgD+wPn8AxPaWfA==</latexit><latexit sha1_base64="CxVEFpWaDqYezrC4lPI9/78A13g=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlYVEE7cBuOC1nDrhK3Io0QIVuYH95kcBZQrjGDCk1cp1U+zmSmmJGirqXKZIiPEVjMjKUo4QoP5/nL+CFUSIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVFY3JbjLX14l/XbLdVru3WWj06zqqIEzcA6awAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxeiaVe2cgD+wPn8AxPaWfA==</latexit><latexit sha1_base64="CxVEFpWaDqYezrC4lPI9/78A13g=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlYVEE7cBuOC1nDrhK3Io0QIVuYH95kcBZQrjGDCk1cp1U+zmSmmJGirqXKZIiPEVjMjKUo4QoP5/nL+CFUSIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVFY3JbjLX14l/XbLdVru3WWj06zqqIEzcA6awAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxeiaVe2cgD+wPn8AxPaWfA==</latexit><latexit sha1_base64="CxVEFpWaDqYezrC4lPI9/78A13g=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhzCTqMdgh4HXjxOcB+wlpKm6RaWJiVJhVF78F/x4kERr/4b3vxvTLcedPNByOO934+8vDBlVGnH+bbW1jc2t7ZrO/Xdvf2DQ/vouK9EJjHpYcGEHIZIEUY56WmqGRmmkqAkZGQQTm9Kf/BApKKC3+tZSvwEjTmNKUbaSIF96k2Qzr1QsEjNEnPlYVEE7cBuOC1nDrhK3Io0QIVuYH95kcBZQrjGDCk1cp1U+zmSmmJGirqXKZIiPEVjMjKUo4QoP5/nL+CFUSIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVFY3JbjLX14l/XbLdVru3WWj06zqqIEzcA6awAVXoANuQRf0AAaP4Bm8gjfryXqx3q2PxeiaVe2cgD+wPn8AxPaWfA==</latexit>

b̂1
<latexit sha1_base64="yQoQKbSnleoOGWJ4TTJwHVV5yHI=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKw6II3MBuOm1nDrhK3Io0QYVuYH95kcBZQrjGDCk1cp1U+zmSmmJGioaXKZIiPEVjMjKUo4QoP5/nL+C5USIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVNYwJbjLX14l/Yu267Tdu8tmp1XVUQen4Ay0gAuuQAfcgi7oAQwewTN4BW/Wk/VivVsfi9GaVe0cgz+wPn8Aw3KWew==</latexit><latexit sha1_base64="yQoQKbSnleoOGWJ4TTJwHVV5yHI=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKw6II3MBuOm1nDrhK3Io0QYVuYH95kcBZQrjGDCk1cp1U+zmSmmJGioaXKZIiPEVjMjKUo4QoP5/nL+C5USIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVNYwJbjLX14l/Yu267Tdu8tmp1XVUQen4Ay0gAuuQAfcgi7oAQwewTN4BW/Wk/VivVsfi9GaVe0cgz+wPn8Aw3KWew==</latexit><latexit sha1_base64="yQoQKbSnleoOGWJ4TTJwHVV5yHI=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKw6II3MBuOm1nDrhK3Io0QYVuYH95kcBZQrjGDCk1cp1U+zmSmmJGioaXKZIiPEVjMjKUo4QoP5/nL+C5USIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVNYwJbjLX14l/Yu267Tdu8tmp1XVUQen4Ay0gAuuQAfcgi7oAQwewTN4BW/Wk/VivVsfi9GaVe0cgz+wPn8Aw3KWew==</latexit><latexit sha1_base64="yQoQKbSnleoOGWJ4TTJwHVV5yHI=">AAAB/3icbVDNS8MwHE3n15xfVcGLl+AQdhqtCHocePE4wX3AWkqapltYmpQkFUbtwX/FiwdFvPpvePO/Md160M0HIY/3fj/y8sKUUaUd59uqra1vbG7Vtxs7u3v7B/bhUV+JTGLSw4IJOQyRIoxy0tNUMzJMJUFJyMggnN6U/uCBSEUFv9ezlPgJGnMaU4y0kQL7xJsgnXuhYJGaJebKw6II3MBuOm1nDrhK3Io0QYVuYH95kcBZQrjGDCk1cp1U+zmSmmJGioaXKZIiPEVjMjKUo4QoP5/nL+C5USIYC2kO13Cu/t7IUaLKdGYyQXqilr1S/M8bZTq+9nPK00wTjhcPxRmDWsCyDBhRSbBmM0MQltRkhXiCJMLaVNYwJbjLX14l/Yu267Tdu8tmp1XVUQen4Ay0gAuuQAfcgi7oAQwewTN4BW/Wk/VivVsfi9GaVe0cgz+wPn8Aw3KWew==</latexit>

x
<latexit sha1_base64="7/w9HL1dZj9GAVJJnEkAOQbK8Ng=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFNy4r2Ae0Y8lkMm1oJhmSjFqG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJde53H6jSTIo7M02oH+ORYBEj2FjpfhBIHuppbK/saTas1tyGOwdaJV5BalCgNax+DUJJ0pgKQzjWuu+5ifEzrAwjnM4qg1TTBJMJHtG+pQLHVPvZPPUMnVklRJFU9giD5urvjQzHOo9mJ2NsxnrZy8X/vH5qois/YyJJDRVk8VCUcmQkyitAIVOUGD61BBPFbFZExlhhYmxRFVuCt/zlVdI5b3huw7u9qDXrRR1lOIFTqIMHl9CEG2hBGwgoeIZXeHMenRfn3flYjJacYucY/sD5/AFLepLv</latexit><latexit sha1_base64="7/w9HL1dZj9GAVJJnEkAOQbK8Ng=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFNy4r2Ae0Y8lkMm1oJhmSjFqG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJde53H6jSTIo7M02oH+ORYBEj2FjpfhBIHuppbK/saTas1tyGOwdaJV5BalCgNax+DUJJ0pgKQzjWuu+5ifEzrAwjnM4qg1TTBJMJHtG+pQLHVPvZPPUMnVklRJFU9giD5urvjQzHOo9mJ2NsxnrZy8X/vH5qois/YyJJDRVk8VCUcmQkyitAIVOUGD61BBPFbFZExlhhYmxRFVuCt/zlVdI5b3huw7u9qDXrRR1lOIFTqIMHl9CEG2hBGwgoeIZXeHMenRfn3flYjJacYucY/sD5/AFLepLv</latexit><latexit sha1_base64="7/w9HL1dZj9GAVJJnEkAOQbK8Ng=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFNy4r2Ae0Y8lkMm1oJhmSjFqG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJde53H6jSTIo7M02oH+ORYBEj2FjpfhBIHuppbK/saTas1tyGOwdaJV5BalCgNax+DUJJ0pgKQzjWuu+5ifEzrAwjnM4qg1TTBJMJHtG+pQLHVPvZPPUMnVklRJFU9giD5urvjQzHOo9mJ2NsxnrZy8X/vH5qois/YyJJDRVk8VCUcmQkyitAIVOUGD61BBPFbFZExlhhYmxRFVuCt/zlVdI5b3huw7u9qDXrRR1lOIFTqIMHl9CEG2hBGwgoeIZXeHMenRfn3flYjJacYucY/sD5/AFLepLv</latexit><latexit sha1_base64="7/w9HL1dZj9GAVJJnEkAOQbK8Ng=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFNy4r2Ae0Y8lkMm1oJhmSjFqG/ocbF4q49V/c+Tdm2llo64GQwzn3kpMTJJxp47rfTmltfWNzq7xd2dnd2z+oHh51tEwVoW0iuVS9AGvKmaBtwwynvURRHAecdoPJde53H6jSTIo7M02oH+ORYBEj2FjpfhBIHuppbK/saTas1tyGOwdaJV5BalCgNax+DUJJ0pgKQzjWuu+5ifEzrAwjnM4qg1TTBJMJHtG+pQLHVPvZPPUMnVklRJFU9giD5urvjQzHOo9mJ2NsxnrZy8X/vH5qois/YyJJDRVk8VCUcmQkyitAIVOUGD61BBPFbFZExlhhYmxRFVuCt/zlVdI5b3huw7u9qDXrRR1lOIFTqIMHl9CEG2hBGwgoeIZXeHMenRfn3flYjJacYucY/sD5/AFLepLv</latexit>

F
<latexit sha1_base64="YdNycSZ0vxd/YLF8zXZNn0WXYdw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFQVxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6AdaUM0HbhhlOe4miOA447QaT69zvPlKlmRT3ZppQP8YjwSJGsLHSwyCQPNTT2F7ZzWxYrbkNdw60SryC1KBAa1j9GoSSpDEVhnCsdd9zE+NnWBlGOJ1VBqmmCSYTPKJ9SwWOqfazeeoZOrNKiCKp7BEGzdXfGxmOdR7NTsbYjPWyl4v/ef3URFd+xkSSGirI4qEo5chIlFeAQqYoMXxqCSaK2ayIjLHCxNiiKrYEb/nLq6Rz3vDchnd3UWvWizrKcAKnUAcPLqEJt9CCNhBQ8Ayv8OY8OS/Ou/OxGC05xc4x/IHz+QP/cZK9</latexit><latexit sha1_base64="YdNycSZ0vxd/YLF8zXZNn0WXYdw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFQVxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6AdaUM0HbhhlOe4miOA447QaT69zvPlKlmRT3ZppQP8YjwSJGsLHSwyCQPNTT2F7ZzWxYrbkNdw60SryC1KBAa1j9GoSSpDEVhnCsdd9zE+NnWBlGOJ1VBqmmCSYTPKJ9SwWOqfazeeoZOrNKiCKp7BEGzdXfGxmOdR7NTsbYjPWyl4v/ef3URFd+xkSSGirI4qEo5chIlFeAQqYoMXxqCSaK2ayIjLHCxNiiKrYEb/nLq6Rz3vDchnd3UWvWizrKcAKnUAcPLqEJt9CCNhBQ8Ayv8OY8OS/Ou/OxGC05xc4x/IHz+QP/cZK9</latexit><latexit sha1_base64="YdNycSZ0vxd/YLF8zXZNn0WXYdw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFQVxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6AdaUM0HbhhlOe4miOA447QaT69zvPlKlmRT3ZppQP8YjwSJGsLHSwyCQPNTT2F7ZzWxYrbkNdw60SryC1KBAa1j9GoSSpDEVhnCsdd9zE+NnWBlGOJ1VBqmmCSYTPKJ9SwWOqfazeeoZOrNKiCKp7BEGzdXfGxmOdR7NTsbYjPWyl4v/ef3URFd+xkSSGirI4qEo5chIlFeAQqYoMXxqCSaK2ayIjLHCxNiiKrYEb/nLq6Rz3vDchnd3UWvWizrKcAKnUAcPLqEJt9CCNhBQ8Ayv8OY8OS/Ou/OxGC05xc4x/IHz+QP/cZK9</latexit><latexit sha1_base64="YdNycSZ0vxd/YLF8zXZNn0WXYdw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvQVZkRQZcFQVxWsA9ox5LJZNrQTDIkGaUM/Q83LhRx67+482/MtLPQ1gMhh3PuJScnSDjTxnW/ndLa+sbmVnm7srO7t39QPTzqaJkqQttEcql6AdaUM0HbhhlOe4miOA447QaT69zvPlKlmRT3ZppQP8YjwSJGsLHSwyCQPNTT2F7ZzWxYrbkNdw60SryC1KBAa1j9GoSSpDEVhnCsdd9zE+NnWBlGOJ1VBqmmCSYTPKJ9SwWOqfazeeoZOrNKiCKp7BEGzdXfGxmOdR7NTsbYjPWyl4v/ef3URFd+xkSSGirI4qEo5chIlFeAQqYoMXxqCSaK2ayIjLHCxNiiKrYEb/nLq6Rz3vDchnd3UWvWizrKcAKnUAcPLqEJt9CCNhBQ8Ayv8OY8OS/Ou/OxGC05xc4x/IHz+QP/cZK9</latexit>

m
<latexit sha1_base64="3AVkBCPEInymxqsywp+4VXhH45I=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoOQKtyJoGXAxjIBkwjJEfY2c8ma3b1jd08IIb/AxkIRW3+Snf/GTXKFJj4YeLw3w8y8KBXcWN//9gobm1vbO8Xd0t7+weFR+fikbZJMM2yxRCT6IaIGBVfYstwKfEg1UhkJ7ETj27nfeUJteKLu7STFUNKh4jFn1DqpKfvlil/zFyDrJMhJBXI0+uWv3iBhmURlmaDGdAM/teGUasuZwFmplxlMKRvTIXYdVVSiCaeLQ2fkwikDEifalbJkof6emFJpzERGrlNSOzKr3lz8z+tmNr4Jp1ylmUXFloviTBCbkPnXZMA1MismjlCmubuVsBHVlFmXTcmFEKy+vE7al7XArwXNq0q9msdRhDM4hyoEcA11uIMGtIABwjO8wpv36L14797HsrXg5TOn8Afe5w/Nu4zX</latexit><latexit sha1_base64="3AVkBCPEInymxqsywp+4VXhH45I=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoOQKtyJoGXAxjIBkwjJEfY2c8ma3b1jd08IIb/AxkIRW3+Snf/GTXKFJj4YeLw3w8y8KBXcWN//9gobm1vbO8Xd0t7+weFR+fikbZJMM2yxRCT6IaIGBVfYstwKfEg1UhkJ7ETj27nfeUJteKLu7STFUNKh4jFn1DqpKfvlil/zFyDrJMhJBXI0+uWv3iBhmURlmaDGdAM/teGUasuZwFmplxlMKRvTIXYdVVSiCaeLQ2fkwikDEifalbJkof6emFJpzERGrlNSOzKr3lz8z+tmNr4Jp1ylmUXFloviTBCbkPnXZMA1MismjlCmubuVsBHVlFmXTcmFEKy+vE7al7XArwXNq0q9msdRhDM4hyoEcA11uIMGtIABwjO8wpv36L14797HsrXg5TOn8Afe5w/Nu4zX</latexit><latexit sha1_base64="3AVkBCPEInymxqsywp+4VXhH45I=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoOQKtyJoGXAxjIBkwjJEfY2c8ma3b1jd08IIb/AxkIRW3+Snf/GTXKFJj4YeLw3w8y8KBXcWN//9gobm1vbO8Xd0t7+weFR+fikbZJMM2yxRCT6IaIGBVfYstwKfEg1UhkJ7ETj27nfeUJteKLu7STFUNKh4jFn1DqpKfvlil/zFyDrJMhJBXI0+uWv3iBhmURlmaDGdAM/teGUasuZwFmplxlMKRvTIXYdVVSiCaeLQ2fkwikDEifalbJkof6emFJpzERGrlNSOzKr3lz8z+tmNr4Jp1ylmUXFloviTBCbkPnXZMA1MismjlCmubuVsBHVlFmXTcmFEKy+vE7al7XArwXNq0q9msdRhDM4hyoEcA11uIMGtIABwjO8wpv36L14797HsrXg5TOn8Afe5w/Nu4zX</latexit><latexit sha1_base64="3AVkBCPEInymxqsywp+4VXhH45I=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoOQKtyJoGXAxjIBkwjJEfY2c8ma3b1jd08IIb/AxkIRW3+Snf/GTXKFJj4YeLw3w8y8KBXcWN//9gobm1vbO8Xd0t7+weFR+fikbZJMM2yxRCT6IaIGBVfYstwKfEg1UhkJ7ETj27nfeUJteKLu7STFUNKh4jFn1DqpKfvlil/zFyDrJMhJBXI0+uWv3iBhmURlmaDGdAM/teGUasuZwFmplxlMKRvTIXYdVVSiCaeLQ2fkwikDEifalbJkof6emFJpzERGrlNSOzKr3lz8z+tmNr4Jp1ylmUXFloviTBCbkPnXZMA1MismjlCmubuVsBHVlFmXTcmFEKy+vE7al7XArwXNq0q9msdRhDM4hyoEcA11uIMGtIABwjO8wpv36L14797HsrXg5TOn8Afe5w/Nu4zX</latexit>

Figure 5.4: Schematic of translational validation example

Figure 5.5 shows that there is a closed form solution to both the position and velocity of

the block in Figure 5.4 with respect to time. These values can be described with the following

equations. The acceleration during the first length of time that the force is applied is

a1 =
F1

m
(5.10)

and when the negative second force is applied the acceleration is

a2 = −F1

m
(5.11)

The velocity at t1 as seen in Figure 5.5 is described in the following equation:

v1 = a1t1 (5.12)
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�t0
<latexit sha1_base64="tuDTTNjjG4KrzPZo4sX5PTlxJQE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGgB48RzAOTEGYnnWTI7Owy0yuEkL/w4kERr/6NN//GSbIHTSxoKKq66e4KEyUt+f63t7a+sbm1ndvJ7+7tHxwWjo7rNk6NwJqIVWyaIbeopMYaSVLYTAzyKFTYCEc3M7/xhMbKWD/QOMFOxAda9qXg5KTH9i0q4oy6frdQ9Mv+HGyVBBkpQoZqt/DV7sUijVCTUNzaVuAn1JlwQ1IonObbqcWEixEfYMtRzSO0ncn84ik7d0qP9WPjShObq78nJjyydhyFrjPiNLTL3kz8z2ul1L/uTKROUkItFov6qWIUs9n7rCcNClJjR7gw0t3KxJAbLsiFlHchBMsvr5L6RTnwy8H9ZbFSyuLIwSmcQQkCuIIK3EEVaiBAwzO8wptnvRfv3ftYtK552cwJ/IH3+QOwZ5At</latexit><latexit sha1_base64="tuDTTNjjG4KrzPZo4sX5PTlxJQE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGgB48RzAOTEGYnnWTI7Owy0yuEkL/w4kERr/6NN//GSbIHTSxoKKq66e4KEyUt+f63t7a+sbm1ndvJ7+7tHxwWjo7rNk6NwJqIVWyaIbeopMYaSVLYTAzyKFTYCEc3M7/xhMbKWD/QOMFOxAda9qXg5KTH9i0q4oy6frdQ9Mv+HGyVBBkpQoZqt/DV7sUijVCTUNzaVuAn1JlwQ1IonObbqcWEixEfYMtRzSO0ncn84ik7d0qP9WPjShObq78nJjyydhyFrjPiNLTL3kz8z2ul1L/uTKROUkItFov6qWIUs9n7rCcNClJjR7gw0t3KxJAbLsiFlHchBMsvr5L6RTnwy8H9ZbFSyuLIwSmcQQkCuIIK3EEVaiBAwzO8wptnvRfv3ftYtK552cwJ/IH3+QOwZ5At</latexit><latexit sha1_base64="tuDTTNjjG4KrzPZo4sX5PTlxJQE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGgB48RzAOTEGYnnWTI7Owy0yuEkL/w4kERr/6NN//GSbIHTSxoKKq66e4KEyUt+f63t7a+sbm1ndvJ7+7tHxwWjo7rNk6NwJqIVWyaIbeopMYaSVLYTAzyKFTYCEc3M7/xhMbKWD/QOMFOxAda9qXg5KTH9i0q4oy6frdQ9Mv+HGyVBBkpQoZqt/DV7sUijVCTUNzaVuAn1JlwQ1IonObbqcWEixEfYMtRzSO0ncn84ik7d0qP9WPjShObq78nJjyydhyFrjPiNLTL3kz8z2ul1L/uTKROUkItFov6qWIUs9n7rCcNClJjR7gw0t3KxJAbLsiFlHchBMsvr5L6RTnwy8H9ZbFSyuLIwSmcQQkCuIIK3EEVaiBAwzO8wptnvRfv3ftYtK552cwJ/IH3+QOwZ5At</latexit><latexit sha1_base64="tuDTTNjjG4KrzPZo4sX5PTlxJQE=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBByCrsi6DGgB48RzAOTEGYnnWTI7Owy0yuEkL/w4kERr/6NN//GSbIHTSxoKKq66e4KEyUt+f63t7a+sbm1ndvJ7+7tHxwWjo7rNk6NwJqIVWyaIbeopMYaSVLYTAzyKFTYCEc3M7/xhMbKWD/QOMFOxAda9qXg5KTH9i0q4oy6frdQ9Mv+HGyVBBkpQoZqt/DV7sUijVCTUNzaVuAn1JlwQ1IonObbqcWEixEfYMtRzSO0ncn84ik7d0qP9WPjShObq78nJjyydhyFrjPiNLTL3kz8z2ul1L/uTKROUkItFov6qWIUs9n7rCcNClJjR7gw0t3KxJAbLsiFlHchBMsvr5L6RTnwy8H9ZbFSyuLIwSmcQQkCuIIK3EEVaiBAwzO8wptnvRfv3ftYtK552cwJ/IH3+QOwZ5At</latexit>

t1
<latexit sha1_base64="+/OvdIrRfivCP4hAXI+GtpRzpY4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSAw68QbXmNtwFyDrxClKDAq1B9as/TFgWc4VMUmN6nptikFONgkk+q/Qzw1PKJnTEe5YqGnMT5ItTZ+TCKkMSJdqWQrJQf0/kNDZmGoe2M6Y4NqveXPzP62UY3QS5UGmGXLHloiiTBBMy/5sMheYM5dQSyrSwtxI2ppoytOlUbAje6svrpH3Z8NyGd39Va9aLOMpwBudQBw+uoQl30AIfGIzgGV7hzZHOi/PufCxbS04xcwp/4Hz+AP23jYI=</latexit><latexit sha1_base64="+/OvdIrRfivCP4hAXI+GtpRzpY4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSAw68QbXmNtwFyDrxClKDAq1B9as/TFgWc4VMUmN6nptikFONgkk+q/Qzw1PKJnTEe5YqGnMT5ItTZ+TCKkMSJdqWQrJQf0/kNDZmGoe2M6Y4NqveXPzP62UY3QS5UGmGXLHloiiTBBMy/5sMheYM5dQSyrSwtxI2ppoytOlUbAje6svrpH3Z8NyGd39Va9aLOMpwBudQBw+uoQl30AIfGIzgGV7hzZHOi/PufCxbS04xcwp/4Hz+AP23jYI=</latexit><latexit sha1_base64="+/OvdIrRfivCP4hAXI+GtpRzpY4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSAw68QbXmNtwFyDrxClKDAq1B9as/TFgWc4VMUmN6nptikFONgkk+q/Qzw1PKJnTEe5YqGnMT5ItTZ+TCKkMSJdqWQrJQf0/kNDZmGoe2M6Y4NqveXPzP62UY3QS5UGmGXLHloiiTBBMy/5sMheYM5dQSyrSwtxI2ppoytOlUbAje6svrpH3Z8NyGd39Va9aLOMpwBudQBw+uoQl30AIfGIzgGV7hzZHOi/PufCxbS04xcwp/4Hz+AP23jYI=</latexit><latexit sha1_base64="+/OvdIrRfivCP4hAXI+GtpRzpY4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48VTVtoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74ST27nfeeLaiEQ94jTlQUxHSkSCUbTSAw68QbXmNtwFyDrxClKDAq1B9as/TFgWc4VMUmN6nptikFONgkk+q/Qzw1PKJnTEe5YqGnMT5ItTZ+TCKkMSJdqWQrJQf0/kNDZmGoe2M6Y4NqveXPzP62UY3QS5UGmGXLHloiiTBBMy/5sMheYM5dQSyrSwtxI2ppoytOlUbAje6svrpH3Z8NyGd39Va9aLOMpwBudQBw+uoQl30AIfGIzgGV7hzZHOi/PufCxbS04xcwp/4Hz+AP23jYI=</latexit>

t2
<latexit sha1_base64="1qJiF5l9nvLpulb6b2E4PxopBUs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHnBYH5Yrbs1dgmwSLycVyNEalr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6K4Y2fCZWkyBVbLQpTSTAmi7/JSGjOUM4soUwLeythE6opQ5tOyYbgrb+8STr1mufWvPvrSrOax1GEC7iEKnjQgCbcQQvawGAMz/AKb450Xpx352PVWnDymXP4A+fzB/87jYM=</latexit><latexit sha1_base64="1qJiF5l9nvLpulb6b2E4PxopBUs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHnBYH5Yrbs1dgmwSLycVyNEalr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6K4Y2fCZWkyBVbLQpTSTAmi7/JSGjOUM4soUwLeythE6opQ5tOyYbgrb+8STr1mufWvPvrSrOax1GEC7iEKnjQgCbcQQvawGAMz/AKb450Xpx352PVWnDymXP4A+fzB/87jYM=</latexit><latexit sha1_base64="1qJiF5l9nvLpulb6b2E4PxopBUs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHnBYH5Yrbs1dgmwSLycVyNEalr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6K4Y2fCZWkyBVbLQpTSTAmi7/JSGjOUM4soUwLeythE6opQ5tOyYbgrb+8STr1mufWvPvrSrOax1GEC7iEKnjQgCbcQQvawGAMz/AKb450Xpx352PVWnDymXP4A+fzB/87jYM=</latexit><latexit sha1_base64="1qJiF5l9nvLpulb6b2E4PxopBUs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5IUoR4LXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpb2zu7e8X90sHh0fFJ+fSsY+JUM95msYx1L6CGS6F4GwVK3ks0p1EgeTeY3i787hPXRsTqEWcJ9yM6ViIUjKKVHnBYH5Yrbs1dgmwSLycVyNEalr8Go5ilEVfIJDWm77kJ+hnVKJjk89IgNTyhbErHvG+pohE3frY8dU6urDIiYaxtKSRL9fdERiNjZlFgOyOKE7PuLcT/vH6K4Y2fCZWkyBVbLQpTSTAmi7/JSGjOUM4soUwLeythE6opQ5tOyYbgrb+8STr1mufWvPvrSrOax1GEC7iEKnjQgCbcQQvawGAMz/AKb450Xpx352PVWnDymXP4A+fzB/87jYM=</latexit> t0
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Figure 5.5: Velocity vs time curve for translational validation example

Using v1, v2 can be found simply:

v2 = v1 (5.13)

Finally, v3 can be found using v2 as seen in the following equation:

v3 = v2 + a2(t3 − t2) (5.14)

Like the velocities, there is a closed form solution for each position using the common re-

lationship between position and velocity for constant acceleration problems. These values can be

seen in the following equations.

x1 =
1

2
v1t1 (5.15)

x2 = x1 + v2(t2 − t1) (5.16)

x3 = x2 +
1

2
v2(t0 − t2) +

1

2
v3(t3 − t0) (5.17)

t0 and ∆t0 are two values that need to be found. First, ∆t0, can be found using the following

equations.

0 = v2 + a2(∆t0) (5.18)
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∆t0 = −v2

a2
(5.19)

Next, the relationship between t0, t2 and ∆t0 can be used to define t0:

t0 = t2 + ∆t0 (5.20)

Now that all of the necessary variables have been defined the translational validation test can

be implemented. The results from this validation test can be seen in Figures 5.6-5.7. The position

and velocity curve of the spacecraft from Basilsik was plotted against each of the three position

and velocity points that come from the analytical development. The results confirm that Basilisk

is giving expected results with regard to the simple translational example and providing an relative

accuracy of 10−10 with a time step of 0.01 seconds. This provides validation of the model and gives

confidence in both the analytical development of the model and the software implementation of the

model.
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Figure 5.6: Translation Velocity Validation Test
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Figure 5.7: Translation Position Validation Test

5.1.1.7 Dynamics Calculated About Point B Validation Test

The dynamics for the spacecraft have been derived in relation to the body frame origin,

point B, which is not necessarily coincident with point C. Therefore the dynamicEffectors and

stateEffectors define their torques about point B as oppose to about point C. This allows the

simulation to have multi-body dynamics where the center of mass of the spacecraft can move with

respect to the body frame. However, in rigid body dynamics it is very common to have the body

frame origin coincident with the center of mass of the spacecraft. Therefore, to confirm that the

dynamics has been developed correctly to handle this torque mapping a test has been created.

The test runs two simulations: one with the body frame origin defined at the center of mass

of the spacecraft, and one with the body frame origin not coincident with the center of mass. An

external force and corresponding torque is applied to the spacecraft in both cases: in the first case

the torque is being defined about point B = C, and in the second case the torque is being defined

about point B 6= C. Both simulations are given identical initial conditions and the expectation is

that the simulations should give identical results. The following parameters describe the success

criteria.
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• Agreement between both simulations for the translational states

• Agreement between both simulations for the attitude states
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Figure 5.8: PointB vs PointC Translation
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Figure 5.9: PointB vs PointC Attitude

The results from this test can be seen in Figures 5.8-5.9. The results show that the test is

working and Basilisk is giving an agreement between the two data sets of about 10−15 which is right
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around machine precision. This gives validation in the formulation, the software implementation,

and gives further confidence in the results.

5.1.2 HingedRigidBodyStateEffector

The hingedRigidBodyStateEffector class is an instantiation of the stateEffector ab-

stract class. The stateEffector abstract class is a base class for modules that have dynamic

states or degrees of freedom with respect to the rigid body hub. Examples of these would be

reaction wheels, variable speed control moment gyroscopes, fuel slosh particles, etc. Since the

stateEffectors are attached to the hub, the state effectors are directly affecting the hub as well

as the hub is back affecting the state effectors.

Specifically, a hinged rigid body state effector is a rigid body that has a diagonal inertia with

respect to its Si frame as seen in Figure 6.1. It is attached to the hub through a hinge with a linear

torsional spring and linear damping term.

5.1.2.1 Model Functions

This module is intended to be used an approximation to a flexing body attached to the

spacecraft. Examples include solar arrays, antennas, and other appended bodies that would exhibit

flexing behavior. Below is a list of functions that this model performs:

• Compute it’s contributions to the mass properties of the spacecraft

• Provides matrix contributions for the back substitution method

• Compute it’s derivatives for θ and θ̇

• Adds energy and momentum contributions to the spacecraft

5.1.2.2 Model Assumptions and Limitations

The hingedRigidBodyStateEffector is designed in Basilisk with the following assump-

tions/limitations:
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• Is a first-order approximation to a flexing body

• Is developed in such a way that does not require constraints to be met

• The hinged rigid body must have a diagonal inertia tensor with respect the Si frame

• Only linear spring and damping terms

• Will only approximate one flexing mode at a time

• Cannot simulate multiple interconnected panels

• The hinged rigid body will always stay attached to the hub (the hinge does not have torque

limits)

• The hinge does not have travel limits, therefore if the spring is not stiff enough it will

unrealistically travel through bounds such as running into the spacecraft hub

• The EOMs are nonlinear equations of motion, therefore there can be inaccuracies (and

divergence) that result from integration. Having a time step of<= 0.10 sec is recommended,

but this also depends on the natural frequency of the system

• When trying to match the frequency of a physical appended body, note that the natural

frequency of the coupled system will be different than the appending body flexing by itself:

use eigenvalues to find the coupled frequency

5.1.2.3 Steady State Deflection Validation Test

The validation calculation for the steady state deflection can be seen in Fig. 5.10(a). This

test involves an initially at rest spacecraft, and a constant external force is applied to the rigid-body

hub for the length of the simulation. There is damping in the torsional joints of each panel and the

spacecraft is symmetrical. With these descriptions the spacecraft should only move in the direction

of the applied force and the spacecraft should not rotate. Initially there will be a transient of the

deflection of the solar panels but they will eventually dampen to the steady-state value, θss.
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msp
<latexit sha1_base64="Ami5zZe+rnp2yRRlRjO8zVPkLKI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oWy2m3bpZhN3J8US+ju8eFDEqz/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb+d+e8K1EbF6wGnC/YgOlQgFo2glP+pnPeRPmJlkNuuXK27NXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362OHpGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvMEyEBozlBOLaFMC3srYSOqKUObU8mG4K2+vE5alzXPrXn3V5V6NY+jCGdwDlXw4BrqcAcNaAKDR3iGV3hzJs6L8+58LFsLTj5zCn/gfP4AvKWSog==</latexit><latexit sha1_base64="Ami5zZe+rnp2yRRlRjO8zVPkLKI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oWy2m3bpZhN3J8US+ju8eFDEqz/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb+d+e8K1EbF6wGnC/YgOlQgFo2glP+pnPeRPmJlkNuuXK27NXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362OHpGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvMEyEBozlBOLaFMC3srYSOqKUObU8mG4K2+vE5alzXPrXn3V5V6NY+jCGdwDlXw4BrqcAcNaAKDR3iGV3hzJs6L8+58LFsLTj5zCn/gfP4AvKWSog==</latexit><latexit sha1_base64="Ami5zZe+rnp2yRRlRjO8zVPkLKI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oWy2m3bpZhN3J8US+ju8eFDEqz/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb+d+e8K1EbF6wGnC/YgOlQgFo2glP+pnPeRPmJlkNuuXK27NXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362OHpGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvMEyEBozlBOLaFMC3srYSOqKUObU8mG4K2+vE5alzXPrXn3V5V6NY+jCGdwDlXw4BrqcAcNaAKDR3iGV3hzJs6L8+58LFsLTj5zCn/gfP4AvKWSog==</latexit><latexit sha1_base64="Ami5zZe+rnp2yRRlRjO8zVPkLKI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeCF48V7Ae0oWy2m3bpZhN3J8US+ju8eFDEqz/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb+d+e8K1EbF6wGnC/YgOlQgFo2glP+pnPeRPmJlkNuuXK27NXYCsEy8nFcjR6Je/eoOYpRFXyCQ1puu5CfoZ1SiY5LNSLzU8oWxMh7xrqaIRN362OHpGLqwyIGGsbSkkC/X3REYjY6ZRYDsjiiOz6s3F/7xuiuGNnwmVpMgVWy4KU0kwJvMEyEBozlBOLaFMC3srYSOqKUObU8mG4K2+vE5alzXPrXn3V5V6NY+jCGdwDlXw4BrqcAcNaAKDR3iGV3hzJs6L8+58LFsLTj5zCn/gfP4AvKWSog==</latexit>

(a) Schematic of problem

H
<latexit sha1_base64="OjLplQqC1jZix+0lHq1p0y+CoW8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqnUq3kcRbiAS6iCB7dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AlaeMsg==</latexit><latexit sha1_base64="OjLplQqC1jZix+0lHq1p0y+CoW8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqnUq3kcRbiAS6iCB7dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AlaeMsg==</latexit><latexit sha1_base64="OjLplQqC1jZix+0lHq1p0y+CoW8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqnUq3kcRbiAS6iCB7dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AlaeMsg==</latexit><latexit sha1_base64="OjLplQqC1jZix+0lHq1p0y+CoW8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoMeClx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbT+4XffUKleSwfzCxBP6JjyUPOqLFSqzEsV9yauwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR3fsZlkhqUbLUoTAUxMVl8TUZcITNiZgllittbCZtQRZmx2ZRsCN76y5ukc13z3JrXuqnUq3kcRbiAS6iCB7dQhwY0oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AlaeMsg==</latexit>

F H
<latexit sha1_base64="l0efZAQSvcx3Nh2JwOY9sNj9u+I=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkXoqiQi6LIgSJcV7APaECaTSTt0MhNmJoUS+iduXCji1j9x5984abPQ1gPDHM65lzlzwpRRpV3326psbe/s7lX3aweHR8cn9ulZT4lMYtLFggk5CJEijHLS1VQzMkglQUnISD+c3hd+f0akooI/6XlK/ASNOY0pRtpIgW2PQsEiNU/MlT8sgnZg192mu4SzSbyS1KFEJ7C/RpHAWUK4xgwpNfTcVPs5kppiRha1UaZIivAUjcnQUI4Sovx8mXzhXBklcmIhzeHaWaq/N3KUqCKcmUyQnqh1rxD/84aZju/8nPI004Tj1UNxxhwtnKIGJ6KSYM3mhiAsqcnq4AmSCGtTVs2U4K1/eZP0rpue2/Qeb+qtRllHFS7gEhrgwS20oA0d6AKGGTzDK7xZufVivVsfq9GKVe6cwx9Ynz/KfpOp</latexit><latexit sha1_base64="l0efZAQSvcx3Nh2JwOY9sNj9u+I=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkXoqiQi6LIgSJcV7APaECaTSTt0MhNmJoUS+iduXCji1j9x5984abPQ1gPDHM65lzlzwpRRpV3326psbe/s7lX3aweHR8cn9ulZT4lMYtLFggk5CJEijHLS1VQzMkglQUnISD+c3hd+f0akooI/6XlK/ASNOY0pRtpIgW2PQsEiNU/MlT8sgnZg192mu4SzSbyS1KFEJ7C/RpHAWUK4xgwpNfTcVPs5kppiRha1UaZIivAUjcnQUI4Sovx8mXzhXBklcmIhzeHaWaq/N3KUqCKcmUyQnqh1rxD/84aZju/8nPI004Tj1UNxxhwtnKIGJ6KSYM3mhiAsqcnq4AmSCGtTVs2U4K1/eZP0rpue2/Qeb+qtRllHFS7gEhrgwS20oA0d6AKGGTzDK7xZufVivVsfq9GKVe6cwx9Ynz/KfpOp</latexit><latexit sha1_base64="l0efZAQSvcx3Nh2JwOY9sNj9u+I=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkXoqiQi6LIgSJcV7APaECaTSTt0MhNmJoUS+iduXCji1j9x5984abPQ1gPDHM65lzlzwpRRpV3326psbe/s7lX3aweHR8cn9ulZT4lMYtLFggk5CJEijHLS1VQzMkglQUnISD+c3hd+f0akooI/6XlK/ASNOY0pRtpIgW2PQsEiNU/MlT8sgnZg192mu4SzSbyS1KFEJ7C/RpHAWUK4xgwpNfTcVPs5kppiRha1UaZIivAUjcnQUI4Sovx8mXzhXBklcmIhzeHaWaq/N3KUqCKcmUyQnqh1rxD/84aZju/8nPI004Tj1UNxxhwtnKIGJ6KSYM3mhiAsqcnq4AmSCGtTVs2U4K1/eZP0rpue2/Qeb+qtRllHFS7gEhrgwS20oA0d6AKGGTzDK7xZufVivVsfq9GKVe6cwx9Ynz/KfpOp</latexit><latexit sha1_base64="l0efZAQSvcx3Nh2JwOY9sNj9u+I=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkXoqiQi6LIgSJcV7APaECaTSTt0MhNmJoUS+iduXCji1j9x5984abPQ1gPDHM65lzlzwpRRpV3326psbe/s7lX3aweHR8cn9ulZT4lMYtLFggk5CJEijHLS1VQzMkglQUnISD+c3hd+f0akooI/6XlK/ASNOY0pRtpIgW2PQsEiNU/MlT8sgnZg192mu4SzSbyS1KFEJ7C/RpHAWUK4xgwpNfTcVPs5kppiRha1UaZIivAUjcnQUI4Sovx8mXzhXBklcmIhzeHaWaq/N3KUqCKcmUyQnqh1rxD/84aZju/8nPI004Tj1UNxxhwtnKIGJ6KSYM3mhiAsqcnq4AmSCGtTVs2U4K1/eZP0rpue2/Qeb+qtRllHFS7gEhrgwS20oA0d6AKGGTzDK7xZufVivVsfq9GKVe6cwx9Ynz/KfpOp</latexit>

k✓ss
<latexit sha1_base64="ADVFo/snS2dGHhi7rpXBTvp2Fmg=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmERIljA76SRDZh/O9AbCku/w4kERr36MN//GSbIHTSxoKKq66e4KEiUNue63U9jY3NreKe6W9vYPDo/KxyctE6daYFPEKtaPATeoZIRNkqTwMdHIw0BhOxjfzv32BLWRcfRA0wT9kA8jOZCCk5X8MevSCIn3MmNmvXLFrbkLsHXi5aQCORq98le3H4s0xIiE4sZ0PDchP+OapFA4K3VTgwkXYz7EjqURD9H42eLoGbuwSp8NYm0rIrZQf09kPDRmGga2M+Q0MqveXPzP66Q0uPEzGSUpYSSWiwapYhSzeQKsLzUKUlNLuNDS3srEiGsuyOZUsiF4qy+vk9ZlzXNr3v1VpV7N4yjCGZxDFTy4hjrcQQOaIOAJnuEV3pyJ8+K8Ox/L1oKTz5zCHzifP+0gkhw=</latexit><latexit sha1_base64="ADVFo/snS2dGHhi7rpXBTvp2Fmg=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmERIljA76SRDZh/O9AbCku/w4kERr36MN//GSbIHTSxoKKq66e4KEiUNue63U9jY3NreKe6W9vYPDo/KxyctE6daYFPEKtaPATeoZIRNkqTwMdHIw0BhOxjfzv32BLWRcfRA0wT9kA8jOZCCk5X8MevSCIn3MmNmvXLFrbkLsHXi5aQCORq98le3H4s0xIiE4sZ0PDchP+OapFA4K3VTgwkXYz7EjqURD9H42eLoGbuwSp8NYm0rIrZQf09kPDRmGga2M+Q0MqveXPzP66Q0uPEzGSUpYSSWiwapYhSzeQKsLzUKUlNLuNDS3srEiGsuyOZUsiF4qy+vk9ZlzXNr3v1VpV7N4yjCGZxDFTy4hjrcQQOaIOAJnuEV3pyJ8+K8Ox/L1oKTz5zCHzifP+0gkhw=</latexit><latexit sha1_base64="ADVFo/snS2dGHhi7rpXBTvp2Fmg=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmERIljA76SRDZh/O9AbCku/w4kERr36MN//GSbIHTSxoKKq66e4KEiUNue63U9jY3NreKe6W9vYPDo/KxyctE6daYFPEKtaPATeoZIRNkqTwMdHIw0BhOxjfzv32BLWRcfRA0wT9kA8jOZCCk5X8MevSCIn3MmNmvXLFrbkLsHXi5aQCORq98le3H4s0xIiE4sZ0PDchP+OapFA4K3VTgwkXYz7EjqURD9H42eLoGbuwSp8NYm0rIrZQf09kPDRmGga2M+Q0MqveXPzP66Q0uPEzGSUpYSSWiwapYhSzeQKsLzUKUlNLuNDS3srEiGsuyOZUsiF4qy+vk9ZlzXNr3v1VpV7N4yjCGZxDFTy4hjrcQQOaIOAJnuEV3pyJ8+K8Ox/L1oKTz5zCHzifP+0gkhw=</latexit><latexit sha1_base64="ADVFo/snS2dGHhi7rpXBTvp2Fmg=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoOQU9gVQY8BLx4jmERIljA76SRDZh/O9AbCku/w4kERr36MN//GSbIHTSxoKKq66e4KEiUNue63U9jY3NreKe6W9vYPDo/KxyctE6daYFPEKtaPATeoZIRNkqTwMdHIw0BhOxjfzv32BLWRcfRA0wT9kA8jOZCCk5X8MevSCIn3MmNmvXLFrbkLsHXi5aQCORq98le3H4s0xIiE4sZ0PDchP+OapFA4K3VTgwkXYz7EjqURD9H42eLoGbuwSp8NYm0rIrZQf09kPDRmGga2M+Q0MqveXPzP66Q0uPEzGSUpYSSWiwapYhSzeQKsLzUKUlNLuNDS3srEiGsuyOZUsiF4qy+vk9ZlzXNr3v1VpV7N4yjCGZxDFTy4hjrcQQOaIOAJnuEV3pyJ8+K8Ox/L1oKTz5zCHzifP+0gkhw=</latexit>

✓ss
<latexit sha1_base64="F4qQwyimH1SHuR2XLycVrLmnHKA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRahp5KIoMeCF48V7Ac0IWy2k3bp5oPdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSAVXaNvfRmVre2d3r7pfOzg8Oj4xT+s9lWSSQZclIpGDgCoQPIYuchQwSCXQKBDQD6Z3C7//BFLxJH7EeQpeRMcxDzmjqCXfrLs4AaR+7iLMMFeqKHyzYbfsJaxN4pSkQUp0fPPLHSUsiyBGJqhSQ8dO0cupRM4EFDU3U5BSNqVjGGoa0wiUly9vL6xLrYysMJG6YrSW6u+JnEZKzaNAd0YUJ2rdW4j/ecMMw1sv53GaIcRstSjMhIWJtQjCGnEJDMVcE8ok17dabEIlZajjqukQnPWXN0nvquXYLefhutFulnFUyTm5IE3ikBvSJvekQ7qEkRl5Jq/kzSiMF+Pd+Fi1Voxy5oz8gfH5AyB2lQ0=</latexit><latexit sha1_base64="F4qQwyimH1SHuR2XLycVrLmnHKA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRahp5KIoMeCF48V7Ac0IWy2k3bp5oPdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSAVXaNvfRmVre2d3r7pfOzg8Oj4xT+s9lWSSQZclIpGDgCoQPIYuchQwSCXQKBDQD6Z3C7//BFLxJH7EeQpeRMcxDzmjqCXfrLs4AaR+7iLMMFeqKHyzYbfsJaxN4pSkQUp0fPPLHSUsiyBGJqhSQ8dO0cupRM4EFDU3U5BSNqVjGGoa0wiUly9vL6xLrYysMJG6YrSW6u+JnEZKzaNAd0YUJ2rdW4j/ecMMw1sv53GaIcRstSjMhIWJtQjCGnEJDMVcE8ok17dabEIlZajjqukQnPWXN0nvquXYLefhutFulnFUyTm5IE3ikBvSJvekQ7qEkRl5Jq/kzSiMF+Pd+Fi1Voxy5oz8gfH5AyB2lQ0=</latexit><latexit sha1_base64="F4qQwyimH1SHuR2XLycVrLmnHKA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRahp5KIoMeCF48V7Ac0IWy2k3bp5oPdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSAVXaNvfRmVre2d3r7pfOzg8Oj4xT+s9lWSSQZclIpGDgCoQPIYuchQwSCXQKBDQD6Z3C7//BFLxJH7EeQpeRMcxDzmjqCXfrLs4AaR+7iLMMFeqKHyzYbfsJaxN4pSkQUp0fPPLHSUsiyBGJqhSQ8dO0cupRM4EFDU3U5BSNqVjGGoa0wiUly9vL6xLrYysMJG6YrSW6u+JnEZKzaNAd0YUJ2rdW4j/ecMMw1sv53GaIcRstSjMhIWJtQjCGnEJDMVcE8ok17dabEIlZajjqukQnPWXN0nvquXYLefhutFulnFUyTm5IE3ikBvSJvekQ7qEkRl5Jq/kzSiMF+Pd+Fi1Voxy5oz8gfH5AyB2lQ0=</latexit><latexit sha1_base64="F4qQwyimH1SHuR2XLycVrLmnHKA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRahp5KIoMeCF48V7Ac0IWy2k3bp5oPdibSE/BUvHhTx6h/x5r9x2+agrQ8GHu/NMDMvSAVXaNvfRmVre2d3r7pfOzg8Oj4xT+s9lWSSQZclIpGDgCoQPIYuchQwSCXQKBDQD6Z3C7//BFLxJH7EeQpeRMcxDzmjqCXfrLs4AaR+7iLMMFeqKHyzYbfsJaxN4pSkQUp0fPPLHSUsiyBGJqhSQ8dO0cupRM4EFDU3U5BSNqVjGGoa0wiUly9vL6xLrYysMJG6YrSW6u+JnEZKzaNAd0YUJ2rdW4j/ecMMw1sv53GaIcRstSjMhIWJtQjCGnEJDMVcE8ok17dabEIlZajjqukQnPWXN0nvquXYLefhutFulnFUyTm5IE3ikBvSJvekQ7qEkRl5Jq/kzSiMF+Pd+Fi1Voxy5oz8gfH5AyB2lQ0=</latexit>

(b) Free body diagram of
panel

Figure 5.10: Steady state deflection validation problem description

To find the steady-state value first the sum of the forces acting on the solar panel using

Figure 5.10(b) as reference for the free body diagram is found:

∑
F = FH = mspass (5.21)

where msp is the mass of each solar panel, and ass is the steady state acceleration of the panel.

Since the force is being applied continuously, once the transient dies out, the acceleration of the

solar panel is

ass =
Fext

msc
(5.22)

The mass of the spacecraft, msc is

msc = mhub + 2msp (5.23)

Performing the sum of the torques about point H at steady state results in

∑
τ = −kθss − Fhd cos(θss) = 0 (5.24)

Using these definitions and manipulating the equations the resulting steady state deflection does

not have a closed form solution. Therefore, the function

f(θss) = kθss +
1

msc
mspFd cos(θss) (5.25)
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defines the root function that must be solved. A Newton-Raphson method was chosen and the

success criteria for this test is whether Basilisk gives the same results as this calculation within a

certain tolerance.
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Figure 5.11: Validation Test Calculation for Steady State Theta 1 Deflection vs Simulation
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Figure 5.12: Validation Test Calculation for Steady State Theta 2 Deflection vs Simulation

The results seen in Figures 5.11-5.12 show that the test working Basilisk is achieving the

expected results with respect to the analytical development. This gives validation in the model.
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5.1.2.4 Frequency and Max Deflection Validation Test Description

The validation calculation for the frequency of oscillation of flexing hinged rigid bodies when

a constant force is being applied to the spacecraft is done by making the following assumptions:

• The force is being directed through the center of mass of the spacecraft, along the b̂2

direction

• The panels are initially undeflected and they are symmetric therefore the body will not

rotate

• Rotation is no longer apart of the equations so the translation and solar panel equations

are the only equations needed

• ŝi,3 is assumed to be equal to ĥi,3 in the equations of motion

• No external torque is being applied directly to the hinged rigid bodies

• Non-linear terms are neglected

Using the third assumption from above, the rotational motion is taken out of the equations

of motion:

mscr̈B/N +

N∑
i

mspi
diŝi,3θ̈i = Fext −

N∑
i

mspi
diθ̇

2
i ŝi,1 (5.26)

mspi
diŝ

T
i,3r̈B/N +

(
Isi,2 +mspi

d2
i

)
θ̈i = −kiθi − ciθ̇i + ŝTi,2τext,Hi (5.27)

Next, assumptions 4-6 are applied:

mscr̈B/N +

N∑
i

mspi
diĥi,3θ̈i = Fext (5.28)

mspi
diĥ

T
i,3r̈B/N +

(
Isi,2 +mspi

d2
i

)
θ̈i = −kiθi − ciθ̇i (5.29)
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Finally, knowing that the force is being directed along the b̂2 axis and that the spacecraft will not

rotate, the equations simplify to:

mscÿB/N +
N∑
i

mspi
diθ̈i = Fy (5.30)

mspi
diÿB/N +

(
Isi,2 +mspi

d2
i

)
θ̈i = −kiθi − ciθ̇i (5.31)

Converting these equations to State Space Representation [3]:

1 0 0 0 0 0

0 msc 0 msp1
d1 0 msp2

d2

0 0 1 0 0 0

0 msp1
d1 0 Is1,2 +msp1

d2
1 0 0

0 0 0 0 1 0

0 msp2
d2 0 0 0 Is2,2 +msp2

d2
2





ẏB/N

ÿB/N

θ̇1

θ̈1

θ̇2

θ̈2



=



0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 −k1 −c1 0 0

0 0 0 0 0 1

0 0 0 0 −k2 −c2





yB/N

ẏB/N

θ1

θ̇1

θ2

θ̇2


+



0

Fy

0

0

0

0


(5.32)

Equation (5.32) is written in a more compact form:

[M ]Ẋ = [A]X + F (5.33)

The equivalent dynamics matrix for this coupled system is:

[Ã] = [M ][A] (5.34)

Finding the eigenvalues of [Ã] will describe the coupled natural frequencies of the combined

system. The integrated test for this scenario ensures that the analytical coupled frequency of

oscillation matches the frequency obtained from the simulation.
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The next validation calculation that is needed is to find the maximum deflection while the

force is being applied and when the force is not being applied (with the assumption that there

is no damping). When the force is being applied the following max deflection can be seen in the

following equation:

θmax = 2θSS (5.35)

which uses the definition of θSS from Fig. 5.10.

Finally, the maximum deflection when the force is not being applied uses energy techniques.

Once the force is no longer being applied, energy is conserved and the velocity of the center of mass

is constant. The energy when the force is turned off is represented in the following equation:

E0 =
1

2
mhubẏ

2
B/N + 2

[1

2
mspṙsp · ṙsp +

1

2
Ispθ̇

2 +
1

2
kθ2
]

(5.36)

Where ṙsp is

ṙsp =

 −dθ̇ sin(θ)

ẏB/N + dθ̇ cos(θ)

 (5.37)

Next, the velocity of the center of mass of the system is defined in the following equation:

vCoM =
1

mtot
(mhubẏB/N + 2mspṙsp,y) (5.38)

This value can be computed from the values at the time the force is shut off and is a conserved

quantity.

When the panels are deflected at max deflection, θ̇ = 0. Leveraging this assumption the final

energy is defined as follows:

EF =
1

2
mtotv

2
CoM + 2

[1

2
kθ2

max

]
(5.39)

Conservation of energy states

E0 =
1

2
mtotv

2
CoM + kθ2

max (5.40)

Therefore, θmax is found using the following equation:

θmax =

√
E0 − 1

2mtotv2
CoM

k
(5.41)
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Figure 5.13: Max Theta While Forcing

Table 5.1: Frequency and amplitude test results for hinged rigid-bodies

Name Calculation Basilisk Results Relative Error
Frequency 0.182710919651 0.183486238532 0.00424341841673

Theta Max 1 -0.00105263143315 -0.00105259806106 3.17034890432e-05
Theta Max 2 0.000848883927341 0.000848853165165 3.62383770165e-05

The test results for this validation test can be seen in Figure 5.13 and Table 5.1. Both of these

results give confidence in the analytical development of the EOMs and the software implementation

of the code.

5.1.2.5 Lagrangian vs Basilisk Scenario

In this scenario the equations of motion for a planar simulation of a spacecraft hub and two

hinged rigid bodies using Lagrangian mechanics was developed using Mathematica. This simulation

is ran independently in the validation test and the results are compared vs Basilisk results. A force

and torque is applied for a certain amount of time, then turned off. Then another pulse of a force

and torque is applied and turn off and the simulation runs for another few seconds. The results

can be seen in Figures 5.14-5.18. The results show that Basilisk and the Lagrangian formulation

give identical results and they actually agree down to approximately machine precision. This test

gives further validation of system and gives confidence in both the analytical development and the

software implementation.
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Figure 5.14: X Position Lagrangian Vs Basilisk
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Figure 5.15: Y Position Lagrangian Vs Basilisk
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Figure 5.16: Theta Lagrangian Vs Basilisk
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Figure 5.17: Theta 1 Position Lagrangian Vs Basilisk
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Figure 5.18: Theta 2 Lagrangian Vs Basilisk
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5.1.3 ReactionWheelStateEffector

The reactionWheelStateEffector class is an instantiation of the stateEffector abstract

class and is the model attempting to represent the dynamics of a reaction wheel. The reaction

wheel can model both balanced reaction wheels, and imbalanced reaction wheels. This validation

section goes over the expected functions, assumptions/limitations and a validation test.

5.1.3.1 Model Functions

This model is used to approximate the behavior of a reaction wheel. Below is a list of

functions that this model performs:

• Compute it’s contributions to the mass properties of the spacecraft

• Provides matrix contributions for the back substitution method

• Compute it’s derivatives for θ and Ω

• Adds energy and momentum contributions to the spacecraft

5.1.3.2 Model Assumptions and Limitations

Below is a summary of the assumptions/limitations:

• The reaction wheel is considered a rigid body

• The spin axis is body fixed, therefore does not take into account bearing flexing

• For balanced wheels and simple jitter mode the mass properties of the reaction wheels are

assumed to be included in the mass and inertia of the rigid body hub, therefore there is

zero contributions to the mass properties from the reaction wheels in the dynamics call

when the reaction wheels are balanced

• For fully-coupled imbalanced wheels mode the mass properties of the reaction wheels are

assumed to not be included in the mass and inertia of the rigid body hub
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• For balanced wheels mode the inertia matrix is assumed to be diagonal with one of it’s

principle inertia axis equal to the spin axis, and the center of mass of the reaction wheel is

coincident with the spin axis

• For fully-coupled imbalanced wheels the inertia off-diagonal terms, J12 and J23 are equal

to zero and the remaining inertia off-diagonal term J13 is found through the setting of the

dynamic imbalance parameter Ud: J13 = Ud. The center of mass offset, d, is found using

the static imbalance parameter Us: d = Us
mrw

5.1.3.3 Validation Calculation Scenario

The validation test for this scenario can be seen in Figure 5.19. This involves a rigid body

hub connected to a reaction wheel with the spin axis being aligned with both the hub’s center of

mass and the reaction wheel’s center of mass. This problem assumes the hub and reaction wheel

are fixed to rotate about the the spin axis and so it is a two degree of freedom problem. The test

sets up Basilisk so that the initial conditions constrain the spacecraft to rotate about the spin axis.

b1 = gs
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Figure 5.19: Schematic for validation example of reaction wheels

The analytical expressions for the angular velocity of the hub, ω1, the angle of the hub, θ

and the reaction wheel speed, Ω are found in the below equations.

First, the angular momentum of the spacecraft is defined

Hsc = I1ω1 + Js(ω1 + Ω) (5.42)
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and the corresponding inertial time derivative of Hsc is found in the following equation and set to

zero since there are no external torques on the spacecraft:

Ḣsc = I1ω̇1 + Js(ω̇1 + Ω̇) = 0 = (I1 + Js)ω̇1 + JsΩ̇ (5.43)

The same approach is completed for the reaction wheel, however, there is an internal torque, us:

Hrw = Js(ω1 + Ω) (5.44)

Ḣrw = Js(ω̇1 + Ω̇) = us (5.45)

The equations of motion are placed into State Space Representation(I1 + Js) Js

Js Js


ω̇1

Ω̇

 =

 0

us

 (5.46)

and the inverse of the left hand side matrix producesω̇1

Ω̇

 =

 −us
I1

(I1+Js)us
I1Js

 (5.47)

Equation (5.47) is set of linear differential equations that produce the following close form

solutions for ω1(t), θ(t) and Ω(t):

ω1(t) = −us
I1
t+ ω0 (5.48)

θ(t) = − us
2I1

t2 + ω0t+ θ0 (5.49)

Ω(t) =
(I1 + Js)us

I1Js
t+ Ω0 (5.50)

The results seen in Figures 5.20-5.22 confirm that the analytical expressions agree with the

Basilisk simulation and gives further validation in the software implementation of Basilisk.
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5.2 Energy and Momentum Conservation Verification

The Basilisk astrodynamics software package was chosen as the implementation code base

for the modular dynamics architecture. A key feature that Basilisk needed to retain was the ability

to check energy and momentum conservation paricularly for verification purposes. For a model

to be verified, the model must conserve the four conservation quantities introduced in Section 2:

orbital angular momentum, rotational angular momentum, orbital energy, and rotation energy,

in the applicable scenarios. This verification process coupled with the validation process, gives

confidence in both the analytical development and the software implementation of the equations.

This section only gives two examples of the verification results for models: hinged rigid-bodies

and the multi-spacecraft architecture. However, the verification results of the remaining models

that have been introduced in this dissertation can be seen in the Appendix A. The importance

verification tool cannot be stressed enough and is necessary for debugging and verifying software

implementation.

5.2.1 Hinged Rigid-Bodies Verification

The scenario that is implemented to verify the conservation quantities for hinged rigid-bodies

is a scenario where a spacecraft with two hinged rigid-bodies attached to it is placed into orbit

around earth and has a non-zero initial angular velocity and non-zero deflected solar panels. No

damping terms were included in this test. The results can be seen in Figure 5.23 and confirms that

the hinged rigid-body model is conserving the four conservation quantities. This gives confidence

in the analytical and software implementation of the EOMs.

5.2.2 Multiple Attached Spacecraft Verification

One scenario that is implemented to verify the conservation quantities for the multi-spacecraft

architecture is a scenario where a spacecraft with one hinged rigid-body attached to it is docked to

a spacecraft with no stateEffectors attached to it but is docked to another spacecraft with one
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Figure 5.23: Simulation verification results for a rigid hub with two hinged panels

hinged rigid-body attached to it. The total spacecraft system is identical in mass properties the

hinged rigid-body verification scenario. The spacecraft system is placed into orbit around earth and

has a non-zero initial angular velocity and non-zero deflected solar panels. No damping terms were

included in this test. The results can be seen in Figure 5.24 and confirms that the multi-spacecraft

architecture is conserving the four conservation quantities. This gives confidence in the analytical

and software implementation of the EOMs.
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Figure 5.24: Simulation verification results for two spacecraft attached to the primary spacecraft
with two solar panels attached



Chapter 6

Applications, Simulations and Results

6.1 Linearization and Stability Analysis

6.1.1 Introduction

Many spacecraft have appended solar panels or appended bodies that exhibit flexible behav-

ior. Depending on the characteristics of the appended body, the effects due to this flexible phe-

nomenon sometimes cannot be considered negligible. To quantify the closed-loop attitude pointing

performance of these effects, a stability analysis can be performed. This will also show how the

control system performs while taking the dynamical effect of flexing solar arrays into consideration.

Stability analysis has extensive history and there are many methods to analyze the stability

of a system. When the system is linear, or can be linearized, there are classical techniques used to

perform stability analysis which include but are not limited to Bode plots, Nyquist plots, Root Locus

plots, and gain and phase margins [3, 97, 98]. When the system is nonlinear, there are techniques

that can used with Lyapunov theory to bound the stability of the system [97, 39]. Finally, if the

system has multiple inputs and outputs, there are robustness stability analysis techniques such as

Nyquist multiple input multiple out stability criteria and h-infinity stability analysis [99]. For this

dissertation, the classical techniques are used because the equations of motion can be linearized

well using some assumptions.

One task required to perform a stability analysis is developing the equations of motion that

describe the system in consideration. In this case, the unique system under consideration is a
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spacecraft with flexible solar arrays. One method is to develop the equations of motion considering

the appended body as a Bernoulli beam or a continuous flexing structure [100, 40, 39]. Another

method is to assume that the appended body is a rigid body but attached to the spacecraft through

a torsional spring [41]. For this dissertation, the latter method is chosen because of the ease of

linearizing the differential equations.

This dissertation aims to summarize methods that can be used to perform a stability analysis

of a spacecraft with flexing solar arrays or appended bodies. The equations of motion are linearized,

placed in state space representation, and converted to transfer functions. Then the classical stability

analysis tools can be used. This dissertation is also comparing the linear stability analysis results to

the full nonlinear simulation results to show the impact of the linearization process. The following

section introduces the equations of motion of a spacecraft with flexing solar arrays.

6.1.2 Derivation of Equations

The frame and variable definitions used for the hinged rigid body EOMs development can

be seen in Figure 6.1. Using these definitions, Newtonian/Eulerian mechanics [39, 40] and Kane’s

Method [8, 2] were used independently to derive the equations of motion. The equations of mo-

tion are introduced in Reference [41] and are repeated here for convenience. The compact, frame

independent translational EOM for the hub was found and can be seen in Eq. (6.1) [41].

mscr̈B/N −msc[c̃]ω̇B/N +

Ns∑
i=1

mspi
diŝi,3θ̈i = Fext − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c−
Ns∑
i=1

mspi
diθ̇

2
i ŝi,1 (6.1)

Similarly the hub rotational EOM can be seen in the following equation[41]:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

Ns∑
i

{
Isi,2ĥi,2 +mspi

di[r̃Si/B]ŝi,3

}
θ̈i

= LB − [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
Ns∑
i

{
θ̇i[ω̃B/N ]

(
Isi,2ĥi,2 +mspi

di[r̃Si/B]ŝi,3

)
+mspi

diθ̇
2
i [r̃Si/B]ŝi,1

}
(6.2)
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Figure 6.1: Hinged rigid bodies frame and variable definitions

Lastly, the hinged rigid body single degree of freedom differential equation can be seen in Eq. (6.3)[41].

mspi
diŝ

T
i,3r̈B/N +

[(
Isi,2 +mspi

d2
i

)
ŝTi,2 −mspi

diŝ
T
i,3[r̃Hi/B]

]
ω̇B/N

+
(
Isi,2 +mspi

d2
i

)
θ̈i = −kiθi − ciθ̇i + ŝTi,2τext,Hi +

(
Isi,3 − Isi,1 +mspi

d2
i

)
ωsi,3ωsi,1

−mspi
diŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B (6.3)

Eqs. (6.1)-(6.3) provides the 6+Ns EOMs required to describe the motion of the spacecraft with

flexing appended bodies. Although these equations are general for Ns number of solar panels, for

this dissertation the number of appended solar panels will be Ns = 2. These equations need to

be linearized to use classical stability analysis techniques, and this is performed in the following

section.

6.1.2.1 Linearization

To complete a stability analysis using classical techniques, these equations need to be lin-

earized. One of the first steps of the linearization process is assuming the translational and rota-

tional EOMs are decoupled. Looking at Eqs. (6.1) and (6.2), it shows that this coupling comes

through the offset vector, c, between the body frame origin and the center of mass of the spacecraft.

Therefore, throughout the remainder of this work, the body frame origin and the center of mass of

the spacecraft will be assumed to be coincident. This is a good assumption when the body frame

origin is placed at the equilibrium position of the center of mass of the spacecraft, and when the
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flexing solar arrays do not change the center of mass location by a substantial amount. For the

remainder of this analysis, the cross coupling between the translation and rotational motion is ig-

nored and the translational equation, Eq (6.1), will not be used. Next, it is assumed that nonlinear

and other higher order terms are dropped from the rotational equation:

���
���msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NS∑
i=1

{
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

}
θ̈i =

(((
((((

(((−[ω̃B/N ][Isc,B]ωB/N���
���

�−[I ′sc,B]ωB/N
((((

((((
((((

(((
((((

((((

−
NS∑
i=1

{
θ̇i[ω̃B/N ]

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

)

���
���

���
���

+mspi
diθ̇

2
i [r̃Sc,i/B]ŝi,1

}
+LB (6.4)

This simplification results in:

[Isc,B]ω̇B/N +

NS∑
i=1

{
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

}
θ̈i = LB (6.5)

Following the same linearization techniques for the flex equation, Eq. (6.3) simplifies to:

���
���

��
mspi

diŝ
T
i,3r̈B/N +

[(
Isi,2 +mspi

d2
i

)
ŝTi,2 −mspi

diŝ
T
i,3[r̃Hi/B]

]
ω̇B/N +

(
Isi,2 +mspi

d2
i

)
θ̈i

= −kiθi − ciθ̇i +���
���ŝi,2 · τext,Hi +

((((
((((

(((
(((((

Isi,3 − Isi,1 +mspi
d2
i

)
ωsi,3ωsi,1

−
((((

((((
((((

(((

mspi
diŝ

T
i,3[ω̃B/N ][ω̃B/N ]rHi/B (6.6)

leading to the following linear relationship:[(
Isi,2 +mspi

d2
i

)
ŝTi,2 −mspi

diŝ
T
i,3[r̃Hi/B]

]
ω̇B/N +

(
Isi,2 +mspi

d2
i

)
θ̈i = −kiθi − ciθ̇i (6.7)

In Eq. (6.7), ki is the torsional spring constant and ci is the torsional damping term. Now the

nonlinear coupled equations of motion have been linearized to Eqs. (6.5) and (6.7) and linear

stability analysis techniques can be used.

6.1.2.2 State Space Representation

A convenient form to place the equations of motion into is a form called state space represen-

tation [3]. This form will allow for the classical stability analysis techniques to be used easily while
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leveraging linear algebra techniques. Since the dynamics are second order differential equations,

the associated kinematic differential equations need to be introduced. Modified Rodrigues Param-

eters (MRPs) are chosen for the attitude parameterization set and the associated MRP differential

kinematic equations of motion are given by [39]

σ̇B/N =
1

4
[B(σB/N )]BωB/N (6.8)

However, these equations also need to be linearized seen in the following equation:

σ̇B/N =
1

4
BωB/N (6.9)

The linear approximation range for MRPs is with principal rotation up to about 120 degrees. The

other kinematic differential equation for the hinged rigid bodies is trivial:

θ̇i =
d

dt
(θi) (6.10)

To simplify these examples to a two dimensional case, let’s assume that the solar array hinge

axes are directed along the b̂1 axis, and also assume that spacecraft is constrained to rotate only

about the b̂1 axis. Since the equations are linearized and decoupled, the flexing modes only show

up in the b̂1 axis so this is a good approximation. Additionally, the equilibrium direction ŝ1 for

the first solar panel is assumed to be directed along b̂2, and the equilibrium direction ŝ1 for the

second solar panel is assumed to be directed along −b̂2. This drastically reduces the complexity of

the problem. Now the equations are placed into state space representation and yields the following

state vector:

X =

[
σ1 ω1 θ1 θ̇1 θ2 θ̇2

]T
(6.11)

where σ1 is the first MRP coordinate and ω1 is the first body frame competent of ωB/N . The

following state space form is used[3]:

[M ]Ẋ = [A]X + [B]u (6.12)
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In most cases, the left hand side of the equation is comprised only of the state vector derivative

so the following manipulation was completed:

Ẋ = [M ]−1[A]X + [M ]−1[B]u (6.13)

Eqs. (6.5), (6.7), (6.9), and (6.10) are converted into the state space representation matrices

beginning with matrix [M ]:



1 0 0 0 0 0

0 I11 0 −Isp,2 −mspddSc/B 0 Isp,2 +mspddSc/B

0 0 1 0 0 0

0 −(Isp,2 +mspd
2)−mspddH/B 0 Isp,2 +mspd

2 0 0

0 0 0 0 1 0

0 (Isp,2 +mspd
2) +mspddH/B 0 0 0 Isp,2 +mspd

2


(6.14)

where Isp,2 is the inertia of the solar panel about its second solar panel axis seen in Figure 6.1, I11

is the inertia of the rigid body hub about the first body axis, dSc/B is the distance between the

body frame origin and the solar panels center of mass, and dH/B is the distance between the body

frame origin and the hinge location. Next, matrices [A], [B] and u are defined:

[A] =



0 0.25 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 −k −c 0 0

0 0 0 0 1 0

0 0 0 0 −k −c


(6.15)

[B] =

[
0 1 0 0 0 0

]T
(6.16)

u = [τ1] (6.17)
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where τ1 is the control torque applied about the first body frame axis, b̂1.

Next, the output equation is defined in the following equation:

Y = [C]X + [D]u =

[
σ1 ω1 θ1 θ̇1 θ2 θ̇2

]T
(6.18)

with [C] and [D] defined as

[C] =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(6.19)

[D] =

[
0 0 0 0 0 0

]T
(6.20)

The output equation is meant to include all of the outputs so that when the equations are converted

to transfer functions, eigenvalues can be computed on the resulting matrices.

It should be noted that the matrices included above are the continuous time representation

of the system. The system can be converted to a discrete time representation by either using a

software package or the analytical conversion. This conversion is not discussed in this document.

Now that the state space representation has been defined (the open loop portion), the closed

loop definition of this problem is defined in the next section.

6.1.2.3 Closed Loop State Space Representation

First, the feedback definition for the control in the state space form is defined in the following

equation[3].

u = −[K](X −Xref) = τ1 (6.21)

Where [K] is the gain matrix. The gain matrix chosen for this dissertation is[39]:

[K] =

[
K1P − 0.25K2

1I11 P 0 0 0 0

]
(6.22)
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If there is an integral term for σ1, then the gain that is associated with
∫
σ1 is KIK1. This addition

can easily be applied to the state space representation since the time derivative of
∫
σ is σ.

Finally, to complete the closed loop state space representation, the following equations are

needed:

Ẋ = [M ]−1[A]X − [M ]−1[B][K]X + [B][K]Xref (6.23)

Ẋ = [M ]−1
(

[A]− [B][K]
)
X + [B][K]Xref (6.24)

The state space representation for both the open loop and closed loop systems are useful

for simulating the linear response, and converting to the frequency domain space for completing

a phase and gain margin analysis. The following section will summarize the techniques used for

converting the between state space and the frequency domain.

6.1.2.4 State Space to Transfer Function Conversion

The following equation is used to convert from the time domain to the frequency domain:

[G(s)] = [C]
(
s[I]− [A]

)
[B] (6.25)

Where [G(s)] is the transfer function matrix and s is the frequency. where each element corresponds

the transfer function that relates an input to an output. This method can be used to find both the

open loop and closed loop transfer function matrices using the corresponding [A] and [B] matrices,

depending on which form.

However, another way to convert from the time domain to the frequency domain is to use

the following two equations:

[G(s)]OL = [C]
(
s[I]− [A]

)
[B][K] (6.26)

[G(s)]CL =
[G(s)]OL

I + [G(s)]OL
(6.27)
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Where the subscripts OL and CL are corresponding to open loop and closed loop respectively.

Now all of the equations of motion have been developed to perform a phase and gain analysis on

the system.

6.1.3 Results

This section uses the stability analysis tools on specific examples to highlight the effects of

flexing solar arrays on the stability of the spacecraft. The following table summarizes the physical

parameters used for the results in this section. There are two solar panels attached to the spacecraft

and they have the same physical parameters seen in Table 6.1.

Table 6.1: Spacecraft parameters for stability analysis

Name Description Value Units

I11 Rigid body hub inertia about b̂1 axis 500.0 kg-m2

Isp,2 Inertia of solar panel about ŝ2 axis 100 kg-m2

msp mass of solar panel 30 kg
d distance from hinge location to CoM of solar panel 1.5 m

dH/B distance from body frame location to hinge location 1 m
dSc/B distance from body frame location to CoM of solar panel 1 m
k spring constant 1200 N-m/rad
c damping constant 9 N-m-s/rad

6.1.3.1 Open Loop Stability Analysis Results

In general, an uncontrolled spacecraft is typically considered marginally stable, unless there

is some form of passive stability like gravity gradient. In our case, the spacecraft can be assumed

to be marginally stable, meaning that the dynamics matrix has values of zero for the pole locations

and if the system is perturbed by a step response, the spacecraft will just drift at a constant angular

speed.

For this open loop stability analysis, a bode plot is created for three different control gains.

These three scenarios are used to show the performance and robustness of the control system with

different gains.

The control gains used for each scenario is summarized in Table 6.2. Figures 6.2-6.4 show the

results from the bode plots for the open loop system for each set of control gains. These are the
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Table 6.2: Gain descriptions for the three scenarios for stability analysis

Scenario K1 KI P

Scenario 1 0.15 0.0 100

Scenario 2 0.5 0.0 600

Scenario 3 3 25 175

Figure 6.2: Open loop bode plot for Scenario 1 gains (blue is rigid response, green is flexible body
response)

Figure 6.3: Open loop bode plot for Scenario 2 gains

discrete-time systems - with the control frequency set to 2 Hz. The open loop bode plot is useful
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because it gives insight into how much the system is close to an instability region. Quantitatively,

these values are the gain and phase margins. Using the open loop bode plots the gain and phase

margin for each mode was found and can be seen Table 6.3. It should be noted that both the

rigid body response and the flexible response is plotted on the bode plots. The green curve is

the flexible system response, and blue curve is the rigid body response. There is good agreement

between the rigid body and flexible system response at most all frequencies except for close to the

frequency of the solar arrays. The solar arrays first mode frequency is at 0.9 Hz, and there is a

noticeable difference between the rigid body and flexible system response. However, from the open

loop analysis, this does not greatly impact performance.

Figure 6.4: Open loop bode plot for Scenario 3 gains

Table 6.3: Gain and phase margins for each scenario

Scenario Gain (db) Phase (deg)

Scenario 1 28 81

Scenario 2 12 72

Scenario 3 2.8 153
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6.1.3.2 Closed Loop Stability Analysis Results

The closed loop stability analysis is useful for looking at the closed loop performance, the

steady state response of the system, and how well the system will track a frequency response over

a frequency range. This is particularly useful in systems like this one that are marginally stable,

because the system will always be closed loop to elicit the desired control response. Using the

analytical development for converting the open loop to a closed loop system and converting the

continuous time state space model to the frequency a bode plot analysis was performed. A bode plot

was created for each set of control gains. The results from this analysis can be seen in Figures 6.5-

6.7. It should be noted that again the rigid body response curve is in blue, and the green curve is

flexible body response. Additionally, simulation results using the Basilisk astrodynamics software

package can seen in Figs. 6.5- 6.7 labeled with the red hash marks. The Basilisk simulation results

use the full nonlinear equations of motion. The reason for doing this is to show the agreement

between the analytical frequency domain response using the linearized equations and the numerical

results from the full nonlinear equations simulation.

Figure 6.5: Closed loop bode plot for Scenario 1 gains

The results show that the system tracks very well at low frequencies and at high frequencies

the performance degrades but the system does not go unstable. Additionally, the numerical sim-



178

Figure 6.6: Closed loop bode plot for Scenario 2 gains

ulation agrees well with the analytical development, and the flexible dynamics better models the

system response than the rigid body response. The spikes in the bode plots that are near the solar

array frequency (0.9 Hz) and the Nyquist frequency (1 Hz) are due to the flexible dynamics and the

degradation of performance while nearing a Nyquist frequency. Further analysis will be completed

in this region, and to see why there is some disagreement between the numerical simulation and

the analytical frequency response at these frequencies. However, the results are promising and give

confidence in the control gains selected.

6.1.4 Conclusion

This dissertation summarizes some analytical tools that can be used to perform stability

analysis of spacecraft with flexing solar arrays using classical methods like Bode plot and gain and

phase margins. The stability analysis results include a comparison between rigid body stability

analysis and the proposed method. The results highlight the difference between the two and show

why this can be important to include in stability studies. Additionally, the linearized stability

analysis is compared to the full non-linear equations of motion stability results and these show

good agreement. However, there is some disagreement as the results got closer to the solar array
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Figure 6.7: Closed loop bode plot for Scenario 3 gains

frequency and the Nyquist frequency. Further investigation needs to be completed to fully quantify

the reason for this discrepancy.

6.2 Force and Torque Calculation Example

This section gives an example of how the provided equations of motion in Section 3 could be

used to calculate the force and torque that is being imparted on the spacecraft from the considered

model. For example, it might be important to know the torque being applied by appended solar

panels to ensure that the torque is not exceeding the yield strength of the hinge. Or another

example would be it might be helpful to know the time history of the force and torque that fuel

slosh is applying to the spacecraft to compare that to experimental data provided by a fuel tank

manufacturer.

In this section, the force and torque calculations are shown for hinged rigid bodies and

fuel slosh but this methodology could be extended to all of the dynamics models included in this

dissertation or other models using the same generalized EOM form.
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6.2.1 Force on Spacecraft from Hinged Rigid Bodies and Fuel Slosh

This is the translational EOM for the spacecraft with hinged rigid bodies and fuel slosh:

r̈B/N − [c̃]ω̇B/N +
1

msc

NS∑
i=1

mspi
diŝi,3θ̈i +

1

msc

NP∑
j=1

mjp̂j ρ̈j = r̈C/N − 2[ω̃B/N ]c′

− [ω̃B/N ][ω̃B/N ]c− 1

msc

NS∑
i=1

mspi
diθ̇

2
i ŝi,1 (6.28)

To find the force and torque that each state effector places on the body, both sides of the

equation is multiplied by msc.

mscr̈B/N −msc[c̃]ω̇B/N +

NS∑
i=1

mspi
diŝi,3θ̈i +

NP∑
j=1

mjp̂j ρ̈j = mscr̈C/N − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c−
NS∑
i=1

mspi
diθ̇

2
i ŝi,1 (6.29)

Influences due to the state effectors are moved to the right-hand side of the equation:

mscr̈B/N −msc[c̃]ω̇B/N = Fext − 2msc[ω̃B/N ]c′

−msc[ω̃B/N ][ω̃B/N ]c−
NS∑
i=1

(
mspi

diŝi,3θ̈i +mspi
diθ̇

2
i ŝi,1

)
−

NP∑
j=1

mjp̂j ρ̈j (6.30)

Also c′ is moved over to the right hand side:

mscr̈B/N −msc[c̃]ω̇B/N = Fext −msc[ω̃B/N ][ω̃B/N ]c

−
NS∑
i=1

(
mspi

diŝi,3θ̈i +mspi
diθ̇

2
i ŝi,1 + 2[ω̃B/N ]mspi

diθ̇iŝi,3

)
−

NP∑
j=1

(
mjp̂j ρ̈j + 2[ω̃B/N ]mj ρ̇jp̂j

)
(6.31)

The force that each effector place on the spacecraft are as follows:

Fθ = −
(
mspi

diŝi,3θ̈i +mspi
diθ̇

2
i ŝi,1 + 2[ω̃B/N ]mspi

diθ̇iŝi,3

)
(6.32)

Fρ = −
(
mjp̂j ρ̈j + 2[ω̃B/N ]mj ρ̇jp̂j

)
(6.33)
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6.2.2 Torque on Spacecraft from Hinged Rigid Bodies and Fuel Slosh

The next step is to find the torque that each state effector is applying to the body. Here is

the rotational EOM with hinged rigid bodies and fuel slosh:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

NS∑
i=1

{
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

}
θ̈i +

NP∑
j=1

mj [r̃Pc,j/B]p̂j ρ̈j =

− [ω̃B/N ][Isc,B]ωB/N − [I ′sc,B]ωB/N −
NS∑
i=1

{
θ̇i[ω̃B/N ]

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

)
+mspi

diθ̇
2
i [r̃Sc,i/B]ŝi,1

}
−

NP∑
j=1

mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B
+LB (6.34)

The dynamical effects from the state effectors are moved to the right hand side of the equation:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N = −[ω̃B/N ][Isc,B]ωB/N

−
NS∑
i=1

{(
Isi,2 ŝi,2+mspi

di[r̃Sc,i/B]ŝi,3

)
θ̈i+
[
[I ′spi,Sc,i

]−mspi

(
[r̃′Sc,i/B

][r̃Sc,i/B] + [r̃Sc,i/B][r̃′Sc,i/B
]
) ]
ωB/N

+ θ̇i[ω̃B/N ]
(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

)
+mspi

diθ̇
2
i [r̃Sc,i/B]ŝi,1

}
−

NP∑
j=1

(
mj [r̃Pc,j/B]p̂j ρ̈j +mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

−mj

(
[r̃′Pc,j/B

][r̃Pc,j/B]

+ [r̃Pc,j/B][r̃′Pc,j/B
]
)
ωB/N

)
+LB (6.35)

The torque that each effector places on the spacecraft about point B and point C are as

follows:

τθ,B = −
{(

Isi,2 ŝi,2 +mspi
di[r̃Sc,i/B]ŝi,3

)
θ̈i +

[
[I ′spi,Sc,i

]−mspi

(
[r̃′Sc,i/B

][r̃Sc,i/B]

+ [r̃Sc,i/B][r̃′Sc,i/B
]
)]
ωB/N + θ̇i[ω̃B/N ]

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/B]ŝi,3

)
+mspi

diθ̇
2
i [r̃Sc,i/B]ŝi,1

}
(6.36)

τθ,C = −
{(

Isi,2 ŝi,2 +mspi
di[r̃Sc,i/C ]ŝi,3

)
θ̈i +

[
[I ′spi,Sc,i

]−mspi

(
[r̃′Sc,i/C

][r̃Sc,i/C ]

+ [r̃Sc,i/C ][r̃′Sc,i/C
]
)]
ωB/N + θ̇i[ω̃B/N ]

(
Isi,2 ŝi,2 +mspi

di[r̃Sc,i/C ]ŝi,3

)
+mspi

diθ̇
2
i [r̃Sc,i/C ]ŝi,1

}
(6.37)
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τρ,B = −
(
mj [r̃Pc,j/B]p̂j ρ̈j +mj [ω̃B/N ][r̃Pc,j/B]r′Pc,j/B

−mj

(
[r̃′Pc,j/B

][r̃Pc,j/B]

+ [r̃Pc,j/B][r̃′Pc,j/B
]
)
ωB/N

)
(6.38)

τρ,C = −
(
mj [r̃Pc,j/C ]p̂j ρ̈j +mj [ω̃B/N ][r̃Pc,j/C ]r′Pc,j/C

−mj

(
[r̃′Pc,j/C

][r̃Pc,j/C ]

+ [r̃Pc,j/C ][r̃′Pc,j/C
]
)
ωB/N

)
(6.39)

6.3 Hinged Rigid-Bodies Numerical Simulations

To provide an example of the flexing behavior, a spacecraft similar to the one in Figure 3.1 is

used. The hub is a cylinder with its center of mass located at the geometric center of the cylinder.

It has two identical solar panels modeled as rectangular prisms located opposite from each other.

There are two scenarios simulated: one that includes flexing and one that models the system as a

rigid-body.

Table 6.4: Simulation parameters for the flexing model

Parameter Notation Value Units

Number of solar panels Nsp 2 -
Total spacecraft mass msc 950 kg

Hub mass mhub 750 kg
Solar panel mass msp,i 100 kg

Hub inertia tensor [Ihub,Bc ]

B499.92 −1.76 −2.81
−1.76 400.01 −1.12
−2.81 −1.12 350.08

 kg·m2

Hub C.O.M. location w.r.t. B rBc/B
B[

0 −0.21 0
]T

m

Hinge 1 location vector rH1/B
B[

0.5 1.0 0.0
]T

m

Hinge 2 location vector rH2/B
B[

0.5 −1.0 0.0
]T

m

Body to Hinge 1 DCM [H1B]

−1 0 0
0 0 1
0 1 0

 -

Body to Hinge 2 DCM [H2B]

1 0 0
0 0 −1
0 −1 0

 -

C.O.M offset of solar panel di 1.5 m
Torsional linear spring constant ki 300 N·m/rad

Torsional linear damping constant ci 0 N·m·s/rad

The two simulations are assembled to have the same mass properties when the panels have
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zero angular deflection. The spacecraft parameters can be seen in Tables 6.4 and 6.5. Additionally,

the rigid-body simulation is chosen to have the center of mass coincident with the body frame

origin therefore rBc/B = rC/B =
B[

0 0 0

]T
. This assumption is common in rigid-body dynamics

formulations [39, 40]. The initial conditions of the spacecraft simulations can be seen in Table 6.6

and it should be noted that the two simulations also have the same initial conditions allowing

the simulations to be directly comparable; the differences between the two simulations are solely

due to the impact of flexing. The simulations are given an impulsive body fixed force, Fext =
B[

0 100 0

]T
Newtons, from t = 0 to t = 30 sec, and for the remainder of the simulation there

are no external forces or torques on the spacecraft.

Table 6.5: Simulation parameters for the rigid-body model

Parameter Notation Value Units

Total spacecraft mass msc 950 kg

Hub inertia tensor [Ihub,Bc ]

B857.81 −1.76 −2.81
−1.76 1300.01 −1.12
−2.81 −1.12 1407.97

 kg·m2

Hub C.O.M. location w.r.t. B rBc/B
B[

0 0 0
]T

m

Table 6.6: Flexing simulation initial conditions

Parameter Notation Value Units

Initial position rB/N
N[

0 0 0
]T

m

Initial velocity ṙB/N
N[

0 0 0
]T

m/s

Initial attitude MRP σB/N
[
0 0 0

]T
-

Initial angular velocity ωB/N
B[

5.73 −8.59 5.73
]T

deg/s

External force on spacecraft from t = 0 : 30 sec Fext
B[

0 100 0
]T

N
Initial angular deflection of panels θ1, θ2 0 deg

Initial angular velocity of panels θ̇1, θ̇2 0 deg/s

The results from these simulations can be seen in Figures 6.8-6.9. In Figure 6.8 the variables,

NṙB/N , and BωB/N are plotted for both the flexing model and rigid-body simulations. The flexing

impact on the simulations can readily be seen from these plots and visually shows how this can

impact simulation fidelity and accuracy of simulated accelerometers. Figure 6.9 shows the angular
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Figure 6.8: Inertial Velocity of Point B and Inertial Angular Velocity of the Body Frame
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Figure 6.9: Angular Deflection of the Hinged Rigid-Bodies

deflection of each solar panel and these oscillations are what are driving the oscillations in the
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translational and rotational motions.

6.4 Fuel Slosh and Hinged Rigid-Bodies Numerical Simulations

To give an example of the flexing and slosh behavior, a numerical simulation is setup. The

spacecraft is composed by a hub, two solar panels, and two slosh masses. The parameters used for

the simulation can be seen in Tables 6.7-6.9. Two different simulations are run: with and without

damping. The table shows the damping parameters for the damped case. For the undamped case

they are all zero.

Table 6.7: Hub simulation parameters

Hub

mhub [kg] 750
[Ihub,Bc ] [kg-m2] diag(

[
900 800 600

]
)

BrBc/B

[
0.00133 −0.267 0

]T

Table 6.8: Solar panel simulation parameters

Solar Panels

msp1
, msp2

[kg] 100
[ISc,1 ], [ISc,2 ] [kg-m2] diag(

[
100 50 50

]
)

BrH1/N [m]
[
0.5 1 0

]T
BrH2/N [m]

[
−0.5 1 0

]T
[H1B]

−1 0 0
0 0 1
0 1 0


[H2B]

1 0 0
0 0 −1
0 1 0


d1, d2 [m] 1.5
k1, k2 [N ] 43426.26
c1, c2 [Ns] 138.23

For simplicity, the spacecraft is given initial conditions that will constrain its movement to

planar motion. No external forces are acting on the body. The non-zero initial values are θ10 = 5◦,

ρ10 = 5 cm, ρ20 = −2.5 cm. All other initial values are set to zero.
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Table 6.9: Slosh simulation parameters

Slosh modes

m1, m2 [kg] 10, 20
BrPc,1/B [m]

[
0.1 0 0

]T
BrPc,2/B [m]

[
−0.1 0 0

]T
Bp̂1, Bp̂2

[
0 1 0

]T
k1, k2 [N/m] 3.95, 71.06
c1, c2 [Ns/m] 2.51, 7.54
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Figure 6.10: Solar panel, slosh, and rotational motion.

To describe the one-dimensional planar rotation, the angle between b̂3 and n̂3 is defined

as φ. It should be noted here that φ is only defined for use in this planar case, but otherwise
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Figure 6.11: Translational motion of spacecraft.

3-dimensional orientation descriptions would need to be used to describe the relationship between

the B and N frames. The results from this simulation can be seen in Figures 6.10-6.11.



Chapter 7

Conclusion and Future Work

7.1 Summary and Conclusion

Simulations of spacecraft dynamics are becoming increasingly more complex. Due to the

increase in complexity, special consideration must be taken with respect to the maintainability,

testability, and scalability of the software. However, spacecraft dynamics simulations provide their

own unique challenges. For example, the equations of motion (EOM)s of spacecraft can come in

an infinite number of different solutions to describe the same system. Once an additional system

is being considered, the variability between the EOMs grows very quickly. The assumptions made,

the state variables chosen, the coordinate frames used, and the methods used to develop the EOMs

all dictate the final form of the EOMs. These considerations require detailed planning throughout

the entire design process of the software architecture which begin at the development of the EOMs.

To combat the issue of having non-conformity between different equations of motion, a gen-

eralized EOM form is introduced in this dissertation that can apply to a wide range of spacecraft

applications. The elegant form is achieved by considering a specific spacecraft dynamical system

where a range of dynamical sub-systems are attached to a central rigid hub. Using this standard

form for the EOMs ensures that the dynamics solutions developed for a spacecraft mission or

spacecraft dynamics software will all adhere to the same form.

A key feature of this generalized EOM form is that a pattern is created in the system mass

matrix which creates modularity. One issue with multi-body dynamics is that the system mass

matrix is non-diagonal and needs to be inverted to solve the full system dynamics. Leveraging
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the pattern in the system mass matrix, a back-substitution method is introduced that analytically

solves the mass matrix inverse in the least amount calculations required and removes the need for

the system to populate the full system mass matrix. This introduces modularity to the spacecraft

dynamics which is leveraged in the design of the software architecture.

In addition to the modularity, since the full solution is being computed with the proposed

back-substitution method, energy and momentum tools are available for verification purposes.

When developing multi-body dynamics simulation software, energy and momentum tools are vital

for ensuring the code is implemented properly. This dissertation includes modularization of the

energy and momentum conservation values where each model provides contributions to the energy

and momentum calculations but does not need to know any information about other models.

Due to the variability in the dynamics formulations the literature is lacking on common

dynamics problems solutions seen by spacecraft that agree with a common form. This results

in the necessity to re-derive the equations of motion for complex problems which can be a time

consuming task and is susceptible to analytical development errors. This dissertation provides

ready-to-implement solutions to common spacecraft dynamics problems that all conform to the

general equation of motion form presented. The solutions included in this dissertation are flexing

appended bodies, spring mass damper based fuel slosh, pendulum based fuel slosh, thruster based

mass depletion, imbalanced reaction wheels, and imbalanced variable speed control moment gyro-

scopes. These examples are fully tested, ready to be implemented solutions to common phenomenon

affecting spacecraft.

This dissertation introduces a modular software architecture for fully-coupled spacecraft dy-

namics and solves the issue of maintainability, scalability, and testability for this problem. The

proposed software architecture is shown to be maintainable, allows for a fixed size system mass ma-

trix to be inverted, allows effectors to be attached to the spacecraft in no particular order, allows

for ease of testing the code base through energy and momentum conservation, and does not have

scaling limitations.

An additional contribution of this dissertation is the extension of the software architecture
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to allow for multiple spacecraft to be simulated at once, and allow for the spacecraft to dock and

detach from one another. This is completed by assuming that the connected spacecraft are docked

to one another rigidly through their rigid-body hubs. This creates a continuous rigid structure

between the spacecraft and essentially creates a larger spacecraft that utilizes the same generalized

EOM form. The architecture ensures that only the primary spacecrafts translational and rotational

states are integrated by calculating contributions from the other connected spacecraft. After an

integration step the software architecture solves for the other connected spacecraft states through

kinematic relationships.

The modular software architecture is verified using energy and momentum conservation and

is implemented in the Basilisk astrodynamics software package. This provides a fully implemented

and tested example of the modular software architecture to provide proof of concept but this

architecture could be implemented in any object oriented computer language.

7.2 Recommendations for Future Work

The included examples in this dissertation for common physical phenomenon affecting space-

craft is just a subset of all of the possible dynamics models affecting spacecraft. There are endless

possibilities of dynamics models for example dual-gimbal VSCMGs, robotic appendages with mul-

tiple arms, more realistic fuel slosh models, etc. If the generalized EOM form is used to develop the

EOMs, the modular software architecture could be used to implement these new models seamlessly.

The scalability of this architecture was a large consideration of this architecture and was meant to

allow for many different models to be added with ease.

Additionally, an assumption that was leveraged throughout this dissertation was the fact that

the effectors had to be attached to the the rigid body hub. For example if a developer wanted a

reaction wheel attached to a flexible appendage a new model would have to be created that defines

that system connected to the spacecraft. Future work could be completed on determining the

underlying physics and resulting architecture that would allow for effectors to be chained together

or allow for the rigid-body hub to become flexible.
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Appendix A

Energy and Momentum Verification

A.1 Rigid-Body Hub Verification

The scenario that is implemented to verify the conservation quantities for a rigid body hub

is a scenario where a spacecraft with a rigid body hub is placed into orbit around earth and has a

non-zero initial angular velocity. The results can be seen in Figure A.1 and confirms that the rigid

body model is conserving the four conservation quantities. This gives confidence in the analytical

and software implementation of the EOMs.
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Figure A.1: Simulation verification results for a rigid hub
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A.2 Fuel Slosh - Lumped Mass Spring Mass Damper Model Verification

The scenario that is implemented to verify the conservation quantities for the spring mass

damper fuel slosh model is a scenario where a spacecraft with three fuel slosh particles attached

to it is placed into orbit around earth and has a non-zero initial angular velocity and non-zero

deflected fuel slosh particles. No damping terms were included in this test. The results can be seen

in Figure A.2 and confirms that the model is conserving the four conservation quantities. This

gives confidence in the analytical and software implementation of the EOMs.
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Figure A.2: Simulation verification results for a rigid hub with three spring mass damper fuel slosh
particles
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A.3 Reaction Wheels Verification

A.3.1 Balanced Reaction Wheels

The scenario that is implemented to verify the conservation quantities for the balanced reac-

tion wheel model is a scenario where a spacecraft with three balanced reaction wheels are attached

to it is placed into orbit around earth and has a non-zero initial angular velocity and non-zero

wheel speeds. No friction terms were included in this test. The results can be seen in Figure A.3

and confirms that the model is conserving the four conservation quantities. This gives confidence

in the analytical and software implementation of the EOMs.
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Figure A.3: Simulation verification results for a rigid hub with three balanced reaction wheels
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A.3.2 Imbalanced Reaction Wheels

The scenario that is implemented to verify the conservation quantities for the imbalanced

reaction wheel model is a scenario where a spacecraft with three imbalanced reaction wheels are

attached to it is placed into orbit around earth and has a non-zero initial angular velocity and

non-zero wheel speeds. No friction terms were included in this test. The results can be seen in

Figure A.4 and confirms that the model is conserving the four conservation quantities. This gives

confidence in the analytical and software implementation of the EOMs.
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Figure A.4: Simulation verification results for a rigid hub with three imbalanced reaction wheels
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A.4 Dual-Hinged Rigid-Bodies Verification

The scenario that is implemented to verify the conservation quantities for dual-hinged rigid-

bodies is a scenario where a spacecraft with two sets of dual-hinged rigid-bodies attached to it is

placed into orbit around earth and has a non-zero initial angular velocity and non-zero deflected

solar panels. No damping terms were included in this test. The results can be seen in Figure A.5

and confirms that the dual-hinged rigid-body model is conserving the four conservation quantities.

This gives confidence in the analytical and software implementation of the EOMs.

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

R
e
la

ti
v
e
 D

if
fe

re
n
ce

1e 14

(a) Change in Orbital Angular Momentum

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

R
e
la

ti
v
e
 D

if
fe

re
n
ce

1e 14

(b) Change in Orbital Energy

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

R
e
la

ti
v
e
 D

if
fe

re
n
ce

1e 14

(c) Change in Rotational Angular Momentum

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

R
e
la

ti
v
e
 D

if
fe

re
n
ce

1e 14

(d) Change in Rotational Energy

Figure A.5: Simulation verification results for a rigid hub with two sets of dual-hinged rigid-bodies



204

A.5 Variable Speed Control Moment Gyroscopes Verification

A.5.1 Balanced Variable Speed Control Moment Gyroscopes

The scenario that is implemented to verify the conservation quantities for the balanced

VSCMG model is a scenario where a spacecraft with two balanced VSCMGs are attached to it

is placed into orbit around earth and has a non-zero initial angular velocity and non-zero wheel

speeds and non-zero gimbal speeds. No friction terms were included in this test. The results can

be seen in Figure A.6 and confirms that the model is conserving the four conservation quantities.

This gives confidence in the analytical and software implementation of the EOMs.

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
Change in Orbital Angular Momentum

(a) Change in Orbital Angular Momentum

0.0 0.2 0.4 0.6 0.8 1.0
0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025
Change in Orbital Energy

(b) Change in Orbital Energy

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

0.2
1e 12Change in Rotational Angular Momentum

(c) Change in Rotational Angular Momentum

0.0 0.2 0.4 0.6 0.8 1.0
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0
1e 11 Change in Rotational Energy

(d) Change in Rotational Energy

Figure A.6: Simulation verification results for a rigid hub with two balanced variable speed control
moment gyroscopes



205

A.5.2 Imbalanced Variable Speed Control Moment Gyroscopes

The scenario that is implemented to verify the conservation quantities for the imbalanced

VSCMG model is a scenario where a spacecraft with two imbalanced VSCMGs are attached to it

is placed into orbit around earth and has a non-zero initial angular velocity and non-zero wheel

speeds and non-zero gimbal speeds. No friction terms were included in this test. The results can

be seen in Figure A.7 and confirms that the model is conserving the four conservation quantities.

This gives confidence in the analytical and software implementation of the EOMs.
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Figure A.7: Simulation verification results for a rigid hub with two imbalanced variable speed
control moment gyroscopes
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A.6 N-Connected Hinged Rigid-Bodies Verification

The scenario that is implemented to verify the conservation quantities for N-Connected hinged

rigid-bodies is a scenario where a spacecraft with two sets of N-Connected hinged rigid-bodies

attached to it (one with four panels and one with three panels) is placed into orbit around earth

and has a non-zero initial angular velocity and non-zero deflected solar panels. No damping terms

were included in this test. The results can be seen in Figure A.8 and confirms that the model is

conserving the four conservation quantities. This gives confidence in the analytical and software

implementation of the EOMs.
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Figure A.8: Simulation verification results for a rigid hub with one panel with four sections and
another panel with three sections
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A.7 Fuel Slosh - Pendulum Model

The scenario that is implemented to verify the conservation quantities for the pendulum

based fuel slosh model is a scenario where a spacecraft with three fuel slosh particles attached to it

is placed into orbit around earth and has a non-zero initial angular velocity and non-zero deflected

fuel slosh particles. No damping terms were included in this test. The results can be seen in

Figure A.9 and confirms that the model is conserving the four conservation quantities. This gives

confidence in the analytical and software implementation of the EOMs.
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Figure A.9: Simulation verification results for a rigid hub with three pendulum based fuel slosh
particles



208

A.8 Multi-Spacecraft Verification - Attached Spacecraft and Unattached

Spacecraft

Another scenario that is implemented to verify the conservation quantities for the multi-

spacecraft architecture is a scenario where a spacecraft with one hinged rigid-body attached to it is

docked to a spacecraft with no stateEffectors attached to it but is docked to another spacecraft

with one hinged rigid-body attached to it. Two other spacecraft with rigid body hubs are simulated

unattached to the primary spacecraft. The spacecraft system is placed into orbit around earth and

has a non-zero initial angular velocity and non-zero deflected solar panels. No damping terms were

included in this test. The results can be seen in Figures A.10-A.12 and confirms that the multi-

spacecraft architecture is conserving the four conservation quantities for the spacecraft system and

the unattached spacecraft. This gives confidence in the analytical and software implementation of

the EOMs.
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Figure A.10: Simulation verification results for two spacecraft attached to the primary spacecraft
with two solar panels attached
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Figure A.11: Simulation verification results for first unattached spacecraft
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Figure A.12: Simulation verification results for second unattached spacecraft
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