

Experimentally Estimating Total Electron Yield

James Walker NDSEG Fellow Julian Hammerl FINESST Fellow

Applied Space Environments Conference 2023 Huntsville, AL, October 9 - 13, 2023

Hanspeter Schaub Professor Department Chair

Motivation

- Simulating realistic spacecraft in ECLIPS vacuum chamber
 - Charge control experiments
 - Previously replicated discharging behavior of large spacecraft
 - Able to represent environmental currents using and RC circuit
 - Need to simulate charging behavior of spacecraft
- Characterize Total Electron Yield (TEY)
 - Use this in our spacecraft charging model
 - Meaningful comparison with vacuum chamber results
 - Secondary and Backscattered electrons are most significant

Estimating TEY with an RPA

- Procedure
 - Configure the desired setup
 - Target object at 37° angle to the electron gun
 - Normal to retarding potential analyzer (RPA)
 - Match impact location and area for beam energies
 - Sweep beam energies and measure the resulting current from the RPA.

- Scale the relative curve
 - E_2 value is a stable equilibrium where TEY = 1
 - E₂ can be found by conducting floating potential experiments
 - Scale TEY such that the yield is 1 at E₂

3

Experimental Curves for Al and Au

- Aluminum Oxide
 - Peak occurs at 720 eV

- Gold
 - Significantly different from previous results

Al Spacecraft Charging Simulations

- Aluminum
 - Multiple TEY = 1 crossings
 - Smoothed data

- 4 keV Beam Simulation
 - 1131-779 V difference in final potential
 - Difference in steady state is the same as in E_2

5

Robustness Testing

- Adjusted TEY Curves
 - Similar curves even with $E_2 \pm 200$ V adjustment
 - Adjusted to include greater TEY at lower impact energies

- 4 keV Beam simulations
 - Max 21% deviation from baseline

6

Future Work

- Validating the estimation method
 - Confirm impact location at lower energies
 - Measure TEY using previous methods
 - Design and mount enveloping collection surface
 - Compare these curves with experimental charging data
 - Explore different incident angles and materials

www.linkedin.com/in/james-walker-87aa51280

James.Walkerlii@colorado.edu

https://hanspeterschaub.info/AVSlab.html

Applied Space Environment Conference Oct. 9th-13th 2023 Huntsville AL

