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The raising interest in the cislunar space as a strategic environment to facilitate the access 

to the surface of the Moon and as an outpost to begin Solar System exploration has fostered 

the development of several prospective missions in the Earth-Moon system. In particular, 

close-proximity operations (such as those involving the relative motion of a spacecraft with 

respect to a lunar station) require the development of specific tools for trajectory design and 

path-planning. This paper introduces an original relative motion representation with respect 

to a periodic chief in the circular restricted three-body problem and an original procedure to 

design proximity trajectories in the cislunar environment based on fundamental modal 

solutions decomposition. The relative motion model is first developed in a velocity-based 

orbiting frame, in which the velocity (i.e., flight-path) direction is one of the axes of the frame. 

Then, modal decomposition is applied to separate the fundamental modes of motion, showing 

that the modal coefficients, eigenvectors, and eigenvalues can be employed to characterize the 

geometry of the relative motion. In this way, the coefficients act as geometrically insightful 

relative orbital elements for trajectory design and path planning purposes. 

I. Introduction 

The importance of close-proximity operations (CPOs) in the current space environment has become increasingly 

evident over the years. In the near-Earth space, methodologies for CPOs are being investigated to deal with the current 

satellite overpopulation by enabling deorbiting as well as a wide range of on-orbit services [1, 2]. In the cislunar space, 

a similar trend is manifesting [3-7], also in view of its prospective use as a bridgehead for Moon and Solar System 

exploration. In this respect, different research activities have investigated the feasibility of CPO missions in cislunar 

space [8, 9], highlighting the importance of an autonomous guidance, navigation, and control (GNC) system, and 

discussing solutions to comply with low size, weight, and power consumption requirements [10]. To achieve this 

purpose, however, a deeper understanding of the dynamics of the cislunar space is needed, as well as dedicated models 

to describe the relative motion of a chaser spacecraft with respect to a target object, due to the higher complexity 

compared to the near-Earth environment. In this context, this paper focuses on the development of an original relative 

motion model and its use in conjunction with a fundamental modal solution decomposition to gain geometrical insight 

for trajectory design and path planning purposes. The resulting formulation can then be leveraged to define relative 
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trajectories with desired properties and be used for path-planning purposes, being the coefficients integrals of motions 

and therefore interpretable as relative orbital elements (ROEs). Thus, the proposed methodology can serve as a key 

tool within an autonomous guidance sub-system enabling CPOs in the cislunar space. 

 Relative motion models are often derived within the absolute motion description given in the circular restricted 

three-body problem (CR3BP), based on two fundamental assumptions: (i) circularization, i.e., the two primary centers 

of gravity, e.g., the Earth and the Moon, revolve in a circular motion; (ii) restriction, i.e., the mass of the third body 

(the spacecraft) is negligible. Within the system of the two primary bodies, the CR3BP formulation allows defining 

five equilibrium points known as Lagrange points and labelled L1 to L5 around which the motion can be described 

analytically. For instance, Segerman et al. [11] derive equations and corresponding analytical solutions for the relative 

motion dynamics of a chaser spacecraft with respect to a target spacecraft in orbit around the L2 point of the 

Earth/Moon Sun system. Luquette and Sanner [12] derive a set of relative motion dynamics equations for spacecraft 

orbiting Lagrange points of the Earth/Moon-Sun system under both the CR3BP assumptions and the more general 

case obtained by removing circularization. However, some GNC applications require high-accuracy modelling of the 

relative motion: Colagrossi et al. [13] show that, in the Earth-Moon system, this can be achieved only if solar radiation 

pressure and Sun gravitational effects are considered, as they affect the periodicity of the target orbit. Therefore, they 

develop a model for guidance and control purposes in an inertial reference frame that can contain such contributions, 

deriving both the non-linear and linearized equations of motion. Colombi et al. [14] present two models, the first one 

relying on CR3BP dynamics and suitable for mission design, and the second one using planetary ephemerides to 

consider the effect of celestial bodies and solar radiation pressure perturbation and preferred for controlled dynamics: 

their approach also allows considering the effect of orbit-attitude coupling on relative dynamics in the cislunar 

environment. Franzini and Innocenti [15] develop sets of non-linear and linear differential equations for the relative 

motion of a spacecraft around a target object in both the restricted three-body and four-body problem formulations, 

the latter considering the gravitational perturbation of the Sun and the solar radiation pressure effect. As an interesting 

addition to their derivation, in Ref. [15] the equations of relative motion are expressed in a local-vertical-local-horizon 

(LVLH) frame defined by describing the target motion with respect to the Moon. 

Many studies focused on the use of such dynamic models for path-planning and trajectory design, relying on some 

level of geometric insight or on the spectral analysis of the state matrix and numerical methods to leverage the natural 

dynamics of the cislunar environment. In this spirit, the analytical solutions presented by Segerman et al. [11] are 

expressed in terms of the amplitude and phase of motion along each Cartesian component. Elliot and Bosanac [16] 

also derive a set of relative motion equations in the LVLH, introducing a set of geometrical parameters for the 

description of quasi-periodic motions around the target and showing that they can be used as ROEs for trajectory 

design and path-planning. Zuehlke et al. [17, 18] use an exponential matrix model for the relative motion in CR3BP 

to find natural periodic solutions using a single-shooting differential correction method. Mand et al. [19] discuss 

preliminary trajectory design methodologies for spacecraft rendezvous around the L2 Earth-Moon Lagrange point 

accounting for multi-body effects, both replicating rendezvous profiles traditionally used in orbits around the Earth 

and introducing new approaches leveraging the unique relative dynamics around L2. Bucci et al. [20] use the spectral 

analysis of the state transition matrix describing the relative dynamics to identify stable and unstable manifolds and 

use them for mission design and guidance purposes; a similar approach is considered in Colombi et al. [14] and in 

Bucchioni and Innocenti [9]. However, a different perspective on relative motion modelling has been fostered using 

the Lyapunov-Floquet (LF) transformation, deriving from the Floquet theory for the analysis of periodic systems [21]. 

Given a periodic linear time-varying (LTV) system, the LF transform allows finding an equivalent linear time-

invariant (LTI) system description. The LF transformation has thus proven itself to be a powerful tool to ease the 

handling of relative dynamics modelling and control, although its application has been investigated in few research 

works. Sherril et al. [22] use the LF transform to provide a mapping solution from the linearized equations of relative 

motion around a target in an eccentric Earth orbit to the Clohessy-Wiltshire (CW) ones. In a subsequent work [23], 

this transformation is used to develop a linear state-feedback controller with time-varying gains. Ogundele et al. [24] 

further apply the LF transformation approach to provide an approximation of the non-linear representation of the 

relative dynamics.  

The LF transformation can also be used to enable the application of modal decomposition techniques to an LTV 

system. Modal decomposition allows separating the fundamental components (i.e., fundamental solutions) of a 

motion, such as drifting (stable or unstable) and oscillatory contributions, and express any solution as a weighted sum 

of such fundamental terms, which are functions of the eigenvectors and eigenvalues of the relative dynamics. The 

coefficients that weigh each mode of motion thus act as constants of integration and are equivalent to a set of ROEs: 

therefore, they carry a geometrical meaning with them concerning free relative dynamics and can be used for path-

planning, guidance and control purposes. Burnett and Schaub [25-27] focus on the application of modal decomposition 

to different motion regimes, including the CR3BP one and highly perturbed environments, and use the coefficients of 
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modal decomposition as ROEs for impulsive and continuous-time path-planning. Bai et al. [28] apply the LF 

transformation to the relative dynamics around a target spacecraft on an eccentric Earth orbit, then retrieve the modes 

of motion by applying a Jordan decomposition to the state matrix of the equivalent LTI system. In doing so, they show 

that the initial conditions of the LTI system act as constants of integration of the motion and develop a control system 

that acts on such constants to perform reconfiguration maneuvers. 

The work presented in this paper wishes to contribute to this research context in two ways. 

• The first contribution is the development of a linearized model for the relative dynamics in cislunar 

environment, under the assumptions of the CR3BP and considering that the orbit of the target spacecraft is 

periodic. The equations of relative motion are presented in an orbiting target-fixed, velocity-based frame, in 

which one of the frame axes is always aligned with the instantaneous velocity vector of the target. In such a 

frame, if the chaser spacecraft shares the same orbit as the target one, the only motion with respect to the 

target that will be observed is along the flight-path direction itself. This representation relative to the current 

flight path is more intuitive compared to the one achieved in other orbiting frames as it is more similar to what 

would be observed on an elliptic orbit around the Earth. 

• The second contribution fosters the application of the method of fundamental modal solutions presented by 

Burnett and Schaub [26, 27] to geometrically characterize the relative motion and use this result for trajectory 

design, guidance and control purposes. Specifically, the coefficients of modal decomposition depend on the 

initial conditions of motion and can be used to highlight (and design) interesting geometrical properties of the 

motion. Moreover, variations in the coefficients can be mathematically related to control actions that are 

applied to the chaser spacecraft, thus allowing the use of the coefficients as ROEs for guidance and path-

planning. 
 

The paper is articulated as follows: first, Section I.A introduces the notation and reference frames considered 

throughout the work. The absolute and relative dynamics are presented in Section II, which also addresses the 

derivation of the equations of relative motion in the velocity-based frame. At this point, the method of fundamental 

modal solutions decomposition is briefly recalled and the geometrical analysis of each mode of motion is conducted 

in Section III, in which relations are provided to bind the coefficients to the geometrical properties of the motion. The 

derived relative motion model and modal decomposition are then applied to specific cases of interest in Section IV, 

including the design of periodic, quasi-periodic, and drifting motions, and the evaluation of the impulsive ΔVs required 

for the execution of an approach maneuver, and the results are discussed. Finally, conclusions are drawn in Section 

V. 

A. Notation and reference frames 

In this work the following mathematical notation is considered. Scalars are indicated using italic letters (e.g., s or 

S). Vectors are indicated using underlined, bold italic letters (e.g., v), except for unit vectors which are simply indicated 

using a circumflex accent (e.g., v̂); both are considered as column vectors by default. The norm of a vector is 

represented using the scalar notation but preserving the nomenclature for the vector (e.g., the norm of v is v), with 

some exceptions highlighted throughout the paper. Matrices are indicated using bold italic letters with a double 

underline (e.g., M); therefore, by extension, matrices 0n and In respectively represent the square null and identity 

matrices of order n. Square brackets are considered throughout the paper to specify that a physical entity is expressed 

in a certain frame. For example, the notation [v] a
b is employed to specify that the vector entity v is observed in frame 

A but expressed in B. The notation simplifies to [v]b, i.e., omitting the superscript, in case A and B are the same frame; 

also, it further reduces to v in case the physical entity is considered without the need to specify in which reference 

frame it is observed or represented. With regards to rotation matrices, the notation R b
a is employed to represent the 

transformation matrix that rotates vectors from frame B to frame A. Finally, with reference to angular velocity vectors, 

ωab represents the angular velocity with which frame A rotates with respect to frame B and matrix Ωab represents the 

skew-symmetric matrix equivalent to a cross-product by vector ωab. Moreover, the notation [ωab]a and [Ωab]a is 

employed to specify that the components of the angular velocity are expressed in frame A. A dot notation (“∘̇”) is 

considered to express differentiation with respect to time; multiple dots imply that differentiation occurs multiple 

times. Finally, dimensional quantities are represented using the symbol “∘”: if not specified, the considered quantity 

is dimensionless. 

This notation approach is employed to deal with vectors being observed from multiple reference frames that rotate 

one with respect to another. An example of application of this notation is provided as a clarification. Let us consider 

two frames A and B, with frame B being a non-inertial reference frame rotating with respect to A with angular velocity 

ωba and with vectors ρ and ρ̇ defining the position and velocity of the origin of frame B with respect to A; then, let a 
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particle have position vectors r and r′ in frames A and B, respectively. Recalling that position vectors represent the 

same physical entity regardless of the reference frame they are observed in, the velocity of the particle in frame A can 

thus be expressed as in Eq. (1) by applying the transport theorem: 

 

 [�̇�]
𝑎
= [�̇�]

𝑎
+ [�̇�′]

𝑎
= [�̇�]

𝑎
+ [�̇�′]

𝑏

𝑎
+ [𝝎𝑏𝑎]

𝑎
× [𝒓′]

𝑎
= [�̇�]

𝑎
+ [�̇�′]

𝑏

𝑎
+ [𝛀𝑏𝑎]

𝑎

[𝒓′]
𝑎

 (1) 

 

To present the equations of relative motion, first an inertial reference frame (IRF) is defined, indicated using letter 

“I”, where the motion of the Earth and Moon is taking place. Considering the origin of the reference frame in the 

barycenter B of the system of the two primary bodies (Earth and Moon), it is then defined as {B, Î, Ĵ, K̂} and its axes 

are aligned with those of the classical Earth-centered inertial frame. The CR3BP equations are usually expressed in 

the synodal barycentric reference frame, centered in B with its x axis pointing towards the Moon, its z axis aligned 

with the angular velocity of the rotation of the primaries around their barycenter, and the y axis completing the right-

handed frame. In this work, a Moon-centered, x/y inverted synodal frame (MRF) is defined as {M, x̂MRF, ŷMRF, ẑMRF}, 

indicated with letter “M", with its origin in the Moon, the x axis instantaneously pointing towards the Earth, the z axis 

parallel to the angular velocity of rotation of the Earth-Moon system with respect to the IRF, ωmi, and the y axis 

completing the right handed frame. It is worth noting that the MRF is considered in this work alternatively to the 

synodal barycentric reference frame, compared to which a change in origin and an inversion in the x and y axes occur. 

This choice is inherited from the work of Franzini and Innocenti [15] as it allows defining an orbiting reference frame 

for cislunar orbits as if the Moon were the central body, similarly to how it would be defined in an Earth-centered 

orbit. The choice of the Moon as the origin of the MRF is thus only related to the fact that the cislunar orbits considered 

in this work are closer to the Moon. Finally, the orbiting reference frame in which the relative motion equations will 

be developed is defined as a velocity frame (VRF) [29], represented as {V, î, ĵ, k̂} and indicated with letter “V”, with 

its origin in the target spacecraft, the y axis aligned with the instantaneous velocity vector, the z axis aligned with the 

instantaneous angular momentum vector, and the x axis completing the right-handed frame. A graphical representation 

of the reference frames discussed so far and how are they related one to another is provided in Fig. 1. 

 

 

Fig. 1 Graphical representation of the reference frames and their relationship. 

 

II. Dynamics in the circular restricted three-body problem 

In this work, the absolute motion of the target spacecraft is assumed to be described by CR3BP equations, in which 

periodic or quasi-periodic orbits for the target spacecraft can be found. However, this choice does not limit the validity 

of the proposed methodology: in fact, when the state-space formulation of the relative dynamics will be presented, it 

will be shown that a change in the absolute dynamics would only affect how the state matrix of the system is computed. 

Clearly, the corresponding initial conditions need to be corrected to maintain the property of (quasi-)periodicity 

outside of CR3BP assumptions. Therefore, first the equations of the CR3BP formulation will be recalled for the sake 

of completeness; then, the equations of the relative motion will be derived. 

A. Absolute motion in the CR3BP 

The vector equation of the three-body problem representing the motion of the spacecraft with respect to the Moon 

can be expressed in dimensional quantities in the IRF under the restriction assumption as in Eq. (2), where r represents 
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the position vector of the spacecraft, rem is the position vector of the Moon with respect to the Earth, μe and μm are the 

gravitational parameters of Earth and Moon. 

 [�̈�]
𝑖
= −𝜇

𝑚

[𝒓]
𝑖

𝑟
3 − 𝜇

𝑒
(
[𝒓 + 𝒓

𝑒𝑚
]
𝑖

‖𝒓 + 𝒓
𝑒𝑚
‖
3 −

[𝒓
𝑒𝑚
]
𝑖

𝑟𝑒𝑚
3 ) (2) 

The circularization hypothesis implies that the Moon revolves on a circular orbit around the Earth. The equations 

of the CR3BP are usually reported in their dimensionless form, which is obtained by: (i) imposing that the sum of the 

dimensionless masses of the primaries equals unity (or, equivalently, that the sum of their dimensionless gravitational 

parameters equals unity); (ii) the sum of the dimensionless distances of the primaries from their barycenter equals 

unity, i.e., rem = 1; and (iii) the time unit of the system is the inverse of the synodal frequency ωmi. As a result of the 

latter, the dimensionless synodal frequency equals unity. Equation (3) reports the dimensionless form of the CR3BP 

equations in the MRF, where μ is the dimensionless ratio between the gravitational parameters, and because of the use 

of the MRF, [rem]m = [-1, 0, 0]T. Equation (4) reports the relationship between dimensionless and dimensional 

quantities. 
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𝑚
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𝑚
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𝑚
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𝑡

𝜔𝑚𝑖
,     𝒓 = 𝑟𝑒𝑚𝒓,     �̇� = 𝜔𝑚𝑖𝑟𝑒𝑚�̇�,     �̈� = 𝜔𝑚𝑖

2
𝑟𝑒𝑚�̈�,     𝜔𝑚𝑖 = √

𝜇𝑒 + 𝜇𝑚

𝑟𝑒𝑚
3

 (4) 

The CR3BP assumptions thus introduce a simplification of the actual motion occurring between the two primaries 

to reduce the complexity of the equations. In this respect, these equations would be ideal for on board online guidance 

purposes compared to more accurate sets of equations (e.g., the elliptical restricted three-body problem equations, or 

the full ephemeris restricted four-body problem equations) because of their mathematical simplicity. However, 

Franzini and Innocenti [15] highlight their suitability for GNC applications only at the aposelene: therefore, the 

CR3BP assumptions will be considered in this work to develop the proposed methodology, but further work will be 

required in the future to generalize the methodology to other regimes of the cislunar environment.  

B. Derivation of relative motion equations in VRF 

The derivation of the relative motion equations in VRF follows a similar approach to the one adopted by Franzini 

and Innocenti [15]. First, the relative position vector ρ of the chaser with respect to the target is defined as in Eq. (5) 

where x, y, and z are its components in VRF, and rc and r are the position vectors of the chaser and the target. 

 

 [𝝆]
𝑖
= [𝒓𝑐]𝑖 − [𝒓]𝑖 = 𝑥[𝑖̂]𝑖 + 𝑦[𝑗̂]𝑖 + 𝑧[�̂�]𝑖  (5) 

 

By differentiating Eq. (5) two times, the relative acceleration between the target and the chaser can be related to 

its expression in the VRF frame through the transport theorem as follows: 
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𝑖
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𝑖
 (7) 

 

Substituting terms [r̈]i and [r̈c]i in Eq. (7) as per Eq. (2), the non-linear equations of relative motion as observed in 

the VRF are obtained. These are reported in Eq. (8 considering that the angular velocity of the VRF with respect to 

the IRF and its derivative in time can be computed as per Eqs. (9)-(10). 
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 𝝎𝑣𝑖 = 𝝎𝑣𝑚 +𝝎𝑚𝑖  (9) 
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The angular velocity and acceleration vectors ωvi and ω̇vi are thus functions of both the angular motion of the MRF 

with respect to the IRF and the angular motion of the VRF with respect to the MRF. As also explained in Ref. [15], 

the quantities considered in Eqs. (9) and (10) can be expressed in analytical form. In fact, while ωmi and ω̇mi are 

constant quantities within the CR3BP formulation and equal to ωmi = [0, 0, 1]T and ω̇mi = [0, 0, 0]T respectively, ωvm 

and ω̇vm can instead be computed based on the knowledge of the state of the target spacecraft in the MRF. From the 

definition of the unit vectors of the VRF axes provided in Eq. (11), where v and h are the norms of vectors [ṙ] m
i  and 

[r]i × [ṙ] m
i , respectively, the transport theorem can be applied to obtain a relationship between their time derivatives 

observed in MRF and ωvm as in Eq. (12) (see details in Ref. [15]). 
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Therefore, explicitly evaluating vectors [î̂̇] m
i , [ĵ̂̇ ] m

i  and [k̇̂] m
i  allows to find analytical expressions for the components 

of ωvm directly in the VRF [15]. Once vector ωvm is found, its components can be derived to find the corresponding 

angular acceleration as expressed in the VRF. Based on Eq. (11), unit vector [ĵ̂̇ ] m
i  can be computed as follows: 
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where v̂̇  is the projection of the acceleration vector along the y axis of the VRF: 
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Similarly, vector [k̇̂] m
i  can be expressed as: 
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(15) 

where ḣ is the projection of the time derivative of the orbit angular momentum vector along the z axis of the VRF: 

 ℎ̇ = [�̇�]
𝑣

𝑖
∙ [�̂�]

𝑖
= ([�̇�]

𝑚

𝑖
− [𝛀𝑣𝑚]

𝑖

[𝒉]
𝑣

𝑖
) ∙ [�̂�]

𝑖
= [�̇�]

𝑚

𝑖
∙ [�̂�]

𝑖
 (16) 

As a result, applying the rule of the derivative of a product to the expression of [î]i in Eq. (11) and substituting 

Eqs. (13) and (15), the following result is obtained: 

 [𝑖̂̇]
𝑚

𝑖
= [𝑗̂̇]

𝑚

𝑖
× [�̂�]

𝑖
− [�̇̂�]

𝑚

𝑖

× [𝑗̂]𝑖 = −
1

𝑣
([�̈�]

𝑚

𝑖
∙ [𝑖̂]𝑖) [𝑗̂]𝑖 −

1

ℎ
([�̇�]

𝑚

𝑖
∙ [𝑖]̂𝑖) [�̂�]𝑖  

(17) 

Equations (13)-(17) provide an expression of the derivatives of the directions of the VRF expressed in terms of 

the components of such variations along the axes of the VRF itself. Combining these results in Eq. (12), an expression 

of ωvm in terms of its components along the axes of the VRF is obtained, as reported in Eq. (18).  

 

 [𝝎𝑣𝑚]
𝑖
= (

1

2𝑣
[�̈�]

𝑚

𝑖
∙ [�̂�]

𝑖
−
1

2ℎ
[�̇�]

𝑚

𝑖
∙ [𝑗̂]𝑖) [𝑖]̂𝑖 + (

1

ℎ
[�̇�]

𝑚

𝑖
∙ [𝑖̂]𝑖) [𝑗̂]𝑖 + (−

1

𝑣
[�̈�]

𝑚

𝑖
∙ [𝑖̂]𝑖) [�̂�]𝑖  

(18) 

 

The components of 𝝎𝑣𝑚 along the axes of the VRF can be developed further from Eq. (18) by explicating the dot 

products. Borrowing the following definition of ṙ from Ref. [15], which considers ṙ as the projection of the velocity 

vector along the radial direction (identified by the direction of the position vector of the target): 
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 �̇� =
1

𝑟
[𝒓]

𝑖
∙ [�̇�]

𝑚

𝑖
 (19) 

 

the dot products in Eq. (18) can be explicated as follows: 

 

[�̈�]
𝑚

𝑖
∙ [𝑖̂]𝑖 = [�̈�]𝑚

𝑖
∙ ([𝑗̂]𝑖 × [�̂�]𝑖) = [�̈�]

𝑚

𝑖
∙ (
[�̇�]

𝑚

𝑖

𝑣
×
[𝒉]

𝑚

𝑖

ℎ
) =

=
1

ℎ𝑣
[�̈�]

𝑚

𝑖
∙ {([�̇�]

𝑚

𝑖
∙ [�̇�]

𝑚

𝑖
) [𝒓]

𝑖
− ([�̇�]

𝑚

𝑖
∙ [𝒓]

𝑖
) [�̇�]

𝑚

𝑖
} =

=
𝑣

ℎ
([�̈�]

𝑚

𝑖
∙ [𝒓]

𝑖
) −

𝑟�̇�

ℎ𝑣
([�̈�]

𝑚

𝑖
∙ [�̇�]

𝑚

𝑖
) 

(20) 

[�̈�]
𝑚

𝑖
∙ [�̂�]

𝑖
= [�̈�]

𝑚

𝑖
∙
[𝒉]

𝑚

𝑖

ℎ
=
1

ℎ
[�̈�]

𝑚

𝑖
∙ ([𝒓]

𝑖
× [�̇�]

𝑚

𝑖
) (21) 

[�̇�]
𝑚

𝑖
∙ [𝑖̂]𝑖 = ([𝒓]𝑖 × [�̈�]𝑚

𝑖
) ∙ ([𝑗̂]𝑖 × [�̂�]𝑖) = 

= ([𝒓]
𝑖
∙ [𝑗̂]𝑖) ([�̈�]𝑚

𝑖
∙ [�̂�]

𝑖
) − ([𝒓]

𝑖
∙ [�̂�]

𝑖
) ([�̈�]

𝑚

𝑖
∙ [𝑗̂]𝑖) =

𝑟�̇�

ℎ𝑣
[�̈�]

𝑚

𝑖
∙ [𝒉]

𝑚

𝑖
 

(22) 

[�̇�]
𝑚

𝑖
∙ [𝑗̂]𝑖 = ([𝒓]𝑖 × [�̈�]𝑚

𝑖
) ∙
[�̇�]

𝑚

𝑖

𝑣
= −

1

𝑣
[�̈�]

𝑚

𝑖
∙ [𝒉]

𝑚

𝑖
 (23) 

 

As a result, by substituting Eqs. (20)-(23) into Eq. (18), the components ω vm,x
v , ω vm,y

v , and ω vm,z
v  of vector 𝝎𝑣𝑚 

along the VRF axes can be obtained as a function of quantities related to the absolute motion of the target object. 

These are shown in Eq. (24). 

 

 [𝝎𝑣𝑚]
𝑣
=

{
 
 

 
 𝜔𝑣𝑚,𝑥

𝑣 =
1

ℎ𝑣
[�̈�]

𝑚

𝑖
∙ [𝒉]

𝑚

𝑖

𝜔𝑣𝑚,𝑦
𝑣 =

𝑟�̇�

ℎ2𝑣
[�̈�]

𝑚

𝑖
∙ [𝒉]

𝑚

𝑖

𝜔𝑣𝑚,𝑧
𝑣 = −

1

ℎ
[�̈�]

𝑚

𝑖
∙ [𝒓]

𝑖
+
𝑟�̇�

ℎ𝑣2
[�̈�]

𝑚

𝑖
∙ [�̇�]

𝑚

𝑖

 (24) 

 

 

By directly differentiating the VRF components of vector 𝝎𝑣𝑚, the components ω̇vm,x
v , ω̇vm,y

v , and ω̇vm,z
v  of vector 

�̇�𝑣𝑚 expressed in the same frame can be obtained. The direct differentiation yields: 

 

 [�̇�𝑣𝑚]𝑣 =

{
 
 
 
 

 
 
 
 �̇�𝑣𝑚,𝑥

𝑣 = −(
ℎ̇

ℎ
+
�̇�

𝑣
)𝜔𝑣𝑚,𝑥

𝑣 +
1

ℎ𝑣
[�⃛�]

𝑚

𝑖
∙ [𝒉]

𝑚

𝑖

�̇�𝑣𝑚,𝑦
𝑣 = (

�̇�

𝑟
−
�̇�

𝑣
−
2ℎ̇

ℎ
)𝜔𝑣𝑚,𝑦

𝑣 +
𝑟�̈�

ℎ
𝜔𝑣𝑚,𝑥
𝑣 +

𝑟�̇�

ℎ2𝑣
[�⃛�]

𝑚

𝑖
∙ [𝒉]

𝑚

𝑖

�̇�𝑣𝑚,𝑧
𝑣 = −

ℎ̇

ℎ
𝜔𝑣𝑚,𝑧
𝑣 −

1

ℎ
[�⃛�]

𝑚

𝑖
∙ [𝒓]

𝑖
+

+ {(
�̇�

𝑟
−
2�̇�

𝑣
)
𝑟�̇�

ℎ𝑣2
+
𝑟�̈�

ℎ𝑣2
−
1

ℎ
 } [�̈�]

𝑚

𝑖
∙ [�̇�]

𝑚

𝑖
+
𝑟�̇�

ℎ𝑣2
([�⃛�]

𝑚

𝑖
∙ [�̇�]

𝑚

𝑖
+ ‖[�̈�]

𝑚

𝑖
‖
2

)

 (25) 

 

in which �̈� can be obtained by directly differentiating �̇� as follows: 

 �̈� =
𝜕�̇�

𝜕𝑡
=
1

𝑟
(𝑣2 + [𝒓]

𝑖
∙ [�̈�]

𝑚

𝑖
− �̇�2) (26) 

and the jerk term [r⃛] m
i  can be obtained by direct derivation of the target acceleration expressed as in Eq. (3), with the 

useful notation for the derivative of the terms p/p3 borrowed by Ref. [15]: 



8 

 

 

 

 

[�⃛�]
𝑚

𝑖
= −2 [𝛀𝑚𝑖]

𝑖

[�̈�]
𝑚

𝑖
− [𝛀𝑚𝑖

2 ]
𝑖

[�̇�]
𝑚

𝑖
− 𝜇

𝜕

𝜕𝒓
[
[𝒓]

𝑖

𝑟3
] [�̇�]

𝑚

𝑖
− (1 − 𝜇)

𝜕

𝜕𝒓
[
[𝒓 + 𝒓𝑒𝑚]𝑖

‖𝒓 + 𝒓𝑒𝑚‖
3] [�̇�]𝑚

𝑖
   , 

𝜕

𝜕𝒑
[
𝒑

𝑝3
] =

1

𝑝3
(𝑰3 − 3

𝒑 𝒑𝑇

𝑝2
) 

(27) 

 

Once the components of the angular velocity and angular acceleration vectors of the VRF with respect to the MRF 

have been computed, they can be substituted into Eqs. (8)-(10) to achieve a non-linear description of the relative 

motion. However, when the chaser and target spacecraft are sufficiently close one to another, i.e., for ρ/r << 1, a 

linearization can be conducted about the orbit r(t) of the target spacecraft. This yields to the following linearized 

equations of relative motion in the velocity frame: 

[�̈�]
𝑣
+ 2 [𝛀𝑣𝑖]

𝑣

[�̇�]
𝑣
+ [�̇�𝑣𝑖]

𝑣
[𝝆]

𝑣
+ [𝛀𝑣𝑖

2 ]
𝑣

[𝝆]
𝑣
=

= −
𝜇

𝑟3
(𝑰3 − 3

[𝒓]
𝑣
[𝒓]

𝑣

𝑇

𝑟2
) [𝝆]

𝑣
−

(1 − 𝜇)

‖𝒓 + 𝒓𝑒𝑚‖
3 (𝑰3 − 3

[𝒓 + 𝒓𝑒𝑚]𝑣[𝒓 + 𝒓𝑒𝑚]𝑣
𝑇

‖𝒓 + 𝒓𝑒𝑚‖
2 ) [𝝆]

𝑣
 

(28) 

As a last remark, it is useful to rewrite Eq. (28) in the form of a linear time-varying (LTV) system as shown in Eq. 

(29), in which the state vector is defined as x = [[ρ]v
 T, [ρ̇]v

 T]T, and the input vector u has its components expressed 

along the VRF axes. 

 

�̇� = 𝑨(𝑡) 𝒙 + 𝑩 𝒖, 𝑨(𝑡) = [

𝟎3 𝑰3

𝑨𝑣(𝑡) −2 [𝛀𝑣𝑖(𝑡)]
𝑣] , 𝑩 = [

𝟎3

𝑰3
] (29) 

𝑨𝑣(𝑡) = − [�̇�𝑣𝑖]
𝑣
− [𝛀𝑣𝑖

2 ]
𝑣

−
𝜇

𝑟3
(𝑰3 − 3

[𝒓]
𝑣
[𝒓]

𝑣

𝑇

𝑟2
) −

(1 − 𝜇)

‖𝒓 + 𝒓𝑒𝑚‖
3 (𝑰3 − 3

[𝒓 + 𝒓𝑒𝑚]𝑣[𝒓 + 𝒓𝑒𝑚]𝑣
𝑇

‖𝒓 + 𝒓𝑒𝑚‖
2 ) (30) 

 

Matrix A(t) is the Jacobian of Eq. (28) and it strictly depends on the absolute dynamics of the target spacecraft. 

Moreover, if the target orbit is periodic, A(t) will show the same periodicity: therefore, Eqs. (29) and (30) represent a 

periodic LTV system if the orbit of the target spacecraft is periodic. This formulation also allows introducing more 

complex assumptions of the motion if the elements of the matrix are modified accordingly (e.g., by introducing the 

gravitational acceleration of a fourth body or the solar radiation pressure acceleration in Av or as part of the input u 

[13]), as long as the linearization remains valid. 

III. Modal decomposition of the relative motion in the CR3BP 

The relative motion between two spacecraft in the CR3BP is particularly complicated, and like the absolute one it 

has some special analytical solutions [11] but not a general one. To gain further insight into its properties, the method 

of fundamental modal solutions presented in Ref. [26, 27] is here applied to the VRF formulation derived in the 

previous section and reported in Eqs. (29) and (30) as a periodic LTV system. Clearly, this is possible if a proper LF 

transformation is identified to get an equivalent LTI system first. 

A. Mathematical background 

Given a periodic LTV system with period T in the form provided in Eq. (29), the equation obtained by considering 

a null forcing term describes the natural evolution of the system. The same equation can be rewritten in matrix form 

as in Eq. (31), in which matrix Φ(t, t0) represents the state transition matrix (STM) of the system from an initial time, 

t0, to a given time, t, and it is such that Φ(t0, t0) = I6. Equation (31) is known as the fundamental matrix equation, 

defining how the STM propagates over time, and Eq. (32) provides a solution to it. 

�̇�(𝑡, 𝑡0) = 𝑨(𝑡)𝚽(𝑡, 𝑡0) (31) 

𝚽(𝑡, 𝑡0) = 𝑷(𝑡)𝑒
𝚲(𝑡−𝑡0) (32) 
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In Eq. (32), matrix Λ has complex entries and it is constant over time, while matrix P(t) is the LF transformation 

matrix, which must satisfy the following matrix equation [26, 27]: 

𝑷−𝟏(𝑡) (𝑨(𝑡)𝑷(𝑡) − �̇�(𝑡)) = 𝚲(𝑡) (33) 

Many solutions exist to the differential equation (33) in P(t): in accordance with previous works [25-28], the 

solution considered in this work is shown in Eq. (34) and is obtained by inverting Eq. (32), yielding a periodic matrix 

with period T and equal to the identity matrix at time t0.  

  𝑷(𝑡) = 𝚽(𝑡, 𝑡0)𝑒
−𝚲(𝑡−𝑡0), 𝑷(𝑡0) = 𝑷(𝑡0 + 𝑇) = 𝑰6 (34) 

Equation (34) provides a way of computing matrix P(t), although this requires knowing matrix Λ first. To compute 

the latter, it must be recalled that in LTV systems matrix Φ(t0 + T, t0) = M is known as the monodromy matrix of the 

system. Evaluating Eq. (32) at time t0 + T and inverting it allows computing matrix Λ from matrix M as per Eq. (35), 

where the natural logarithm of a matrix is defined as the principal matrix logarithm (i.e., the inverse transformation of 

the matrix exponential). 

𝑴 = 𝑷(𝑡0 + 𝑇)𝑒
𝚲𝑇
= 𝑰6𝑒

𝚲𝑇
   ⇒    𝚲 =

1

𝑇
ln𝑴 (35) 

In complicated dynamics systems such as the one considered in this work, numerically integrating Eq. (31) over a 

full period T allows determining the evolution of the STM over interval [t0, t0 + T] and the monodromy matrix M. At 

this point, Eq. (35) is employed to compute matrix Λ, and Eq. (34) can be used to compute matrix P(t) over a period. 

As a result, the following LF transformation can be defined between the LTV state x and the LTI state z, representing 

an instantaneous change of coordinates between the original LTV system and the equivalent LTI system of Eq. (37). 

In the latter, the first term in the right-hand side of the equation is the direct transformation of the homogeneous 

equation of the LTV system and the second term directly results from Eq. (29) when the coordinate transformation in 

Eq. (36) is applied [28]. It must be noted that, equivalently, Eq. (37) can be obtained by directly applying the 

transformation in Eq. (36) to Eq. (29) and considering that Eq. (33) defines matrix Λ. 

 

𝒙(𝑡) = 𝑷(𝑡)𝒛(𝑡) (36) 

�̇� = 𝚲 𝒛 + 𝑷−𝟏(𝑡)𝑩 𝒖 (37) 

 

The modal decomposition is finally applied to the equivalent LTI system in which u = 0. To this purpose, matrix 

Λ is decomposed in its Jordan normal form: however, since matrices M and Λ are related through Eq. (35), it can be 

shown that the following relationship holds true: 

𝑴 = 𝑽𝑚 𝑱𝑚 𝑽𝑚
−1    ⇔    𝚲 = 𝑽𝑚 (

1

𝑇
log (𝑱𝑚))𝑽𝑚

−1 = 𝑽𝜆 𝑱𝜆 𝑽𝜆
−1 (38) 

where the columns of matrices Vλ and Vm are the eigenvectors of matrices Λ and M, respectively, and matrices Jλ and 

Jm contain the eigenvalues of Λ and M on their main diagonal. Each eigenvalue λi and associated eigenvector vi of Λ 

allow defining a fundamental solution of the homogeneous equation of Eq. (37) in the form ζi(t) = vie
λi(t-t0), 

representing a portion of the motion (i.e., a mode), which can be converted to a fundamental solution of the LTV 

system of Eq. (29) thanks to Eq. (36). By linearly combining the different fundamental solutions with a certain set of 

coefficients, represented by vector c = [c1, c2, …, c6]T, any solution can be described. If the fundamental solutions are 

grouped as the columns of a matrix Z(t), then the general solution x(t) of Eq. (29) can be represented as follows: 

𝒙(𝑡) = 𝚿(𝑡)𝒄 = 𝑷(𝑡)𝚭(𝑡)𝒄 =∑𝑐𝑖𝑷(𝑡)𝒗𝑖𝑒
𝜆𝑖(𝑡−𝑡0)

6

𝑖=1

 (39) 

If Eq. (39) is considered at the initial time t = t0, then the relationship reported in Eq. (40) can be found relating 

the initial conditions x(t0) = x0 to the corresponding set of coefficients, or vice versa. 

𝒙0 = 𝑽𝜆 𝒄 (40) 
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All the terms in Eq. (39) can assume complex values: however, it is possible to retain an equivalent, fully real 

formulation of this equation if the fundamental solutions related to complex conjugate eigenvalues are refactored 

together. To this purpose, the following section recollects some common results that occur when analyzing LTV 

systems and, specifically, the relative dynamics in the CR3BP problem. 

B. Common fundamental modal solutions and their refactorization 

In a generic periodic LTV system, different solutions are observed depending on the nature of the eigenvalues of 

matrix Λ. For example, a couple of conjugate imaginary eigenvalues corresponds to an oscillatory (center) mode; a 

purely real eigenvalue corresponds to a stable or unstable drifting mode depending on whether the eigenvalue is 

negative or positive; null eigenvalues correspond to trivial motions as defined in the following. Depending on the 

expected mode of motion, a different shape of the solution can be defined. 

 

1. Trivial modes 

As Burnett and Schaub highlight in Ref. [27], if the orbit of the target in the CR3BP problem is perfectly periodic 

then Λ has a null defective eigenvalue, having algebraic multiplicity of 2 (i.e., two eigenvalues λi and λj are identical 

and equal to 0) and geometric multiplicity of 1 (i.e., one linearly independent eigenvector is associated to it). Therefore, 

a generalized eigenvector vj can be computed from vi and a generic solution of Eq. (29) can be expressed as the sum 

of the two linearly independent solutions associated with the two eigenvectors vi and vj, as shown in Eq. (41).  

𝒛𝑖𝑗(𝑡) = 𝑐𝑖𝒗𝑖 + 𝑐𝑗(𝒗𝑖(𝑡 − 𝑡0) + 𝒗𝑗) (41) 

The defective eigenvalue thus represents a trivial mode in which the motion is described by an offset term and a 

component drifting linearly with time. Notably, both eigenvectors are necessarily real since matrix M and the two 

corresponding eigenvalues are real as well. 

 

2. Stable and unstable modes 

The modes associated with purely real eigenvalues of Λ, i.e., stable and unstable modes, are also fully real in their 

description, since the corresponding eigenvectors must be real themselves. Therefore, given a real eigenvalue λi and 

the corresponding eigenvector vi, the stable or unstable mode is straightforwardly described by: 

𝒛𝑖(𝑡) = 𝑐𝑖𝒗𝑖𝑒
𝜆𝑖(𝑡−𝑡0) (42) 

  

3. Center modes 

For what concerns the center modes, in the presence of two imaginary conjugate eigenvalues  λi = –iωi and λj = iωi 

the conventional exponential solution can be rewritten as in Eq. (43) as a function of sine and cosine using Euler’s 

formula. 

𝒛𝑖𝑗(𝑡) = 𝑐𝑖𝒗𝑖[cos(𝜔𝑖(𝑡 − 𝑡0)) + 𝑖 sin(𝜔𝑖(𝑡 − 𝑡0))] + 𝑐𝑗𝒗𝑗[cos(𝜔𝑖(𝑡 − 𝑡0)) − 𝑖 sin(𝜔𝑖(𝑡 − 𝑡0))] (43) 

Following Refs. [26, 27], the two modes can be considered altogether to refactor them and remove the complex 

part. To this purpose, the two coefficients and eigenvalues are rewritten as a combination of a real part and an 

imaginary part as ci,j = cR ± icI and vi,j = vR ± ivI and are substituted in Eq. (43). By explicitly computing the products 

between coefficients, eigenvectors, and trigonometric functions, and then further manipulating Eq. (43), the following 

reformulation can be obtained which results in the two new, purely real fundamental solutions of the motion: 

𝒛𝑖𝑗(𝑡) = 𝑐𝑅[2𝒗𝑅 cos(𝜔𝑘(𝑡 − 𝑡0)) − 2𝒗𝐼 sin(𝜔𝑘(𝑡 − 𝑡0))] + 

−𝑐𝐼[2𝒗𝑅 sin(𝜔𝑘(𝑡 − 𝑡0)) + 2𝒗𝐼 cos(𝜔𝑘(𝑡 − 𝑡0))] = 𝑐𝑅𝜻𝑖(𝑡) + 𝑐𝐼𝜻𝑗(𝑡) 
(44) 

If this refactorization is considered, the set of coefficients c and the matrix of eigenvectors Vλ must be modified to 

include coefficients cR and cI instead of ci and cj, and column vectors 2vR and –2vI instead of vi and vj for Eq. (40) to 

still be valid. This assert is straightforwardly proven by evaluating Eq. (44) at the initial time t0 and comparing it with 

Eq. (40). 
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4. Center modes approximating a trivial motion 

Cases can occur in which the eigenvalues of the center modes feature a magnitude in the complex plane that is 

close to zero, as both the real and complex parts of the eigenvalue approach zero. In these cases, considering the 

general result zi(t) = civie
(λR + iλI)(t - t0), the LTI function can be approximated as zi(t) ≈ civi if the exponent of the 

exponential is small, which occur over a time interval t – t0 that becomes larger the smaller the magnitudes of λR and 

λI. Considering the two center modes simultaneously, a similar result to the one observed for the center modes is 

achieved using Eqs. (43) and (44), although the latter process also has the advantage of refactoring of the eigenvectors 

to remove their imaginary components. The latter approach can therefore be considered, observing that the resulting 

function zij is constant over time. 

C. Geometrical analysis of the modes of motion 

The refactorization of the solution presented in Eqs. (41)-(44) also highlights that the LTI equivalent of the solution 

of the LTV system obtained through modal decomposition can be characterized geometrically if the equations are 

further manipulated. Moreover, this geometric reformulation of the modal decomposition of the solution can also be 

carried on to the LTV equations. In fact, Eq. (39) clarifies that the LTV solution is a linear combination of the LTI 

solutions zi = ciζi(t) according to the rows of matrix P(t), which change in magnitude and sign over time from the 

initial condition given by the identity matrix. This translates into the fact that the LTI solution provides a trend for the 

relative motion and matrix P(t) describes how the actual motion unfolds around such trend. Therefore, analyzing the 

LTI solution from a geometrical standpoint can provide a way of gaining further insight into the LTV one.  

The analysis is conducted in this section by considering that the LTI state vector z is articulated as z(t) = [zp(t)T, 

zv(t)T]T. The reason for articulating z in these two subvectors is that, at time t0 and after every period from t0 going on, 

matrix P(t) equals identity and therefore x = z. In other words, for any integer k, vectors zp(t0 + kT) and zv(t0 + kT) 

directly represent the position and velocity of the LTV system: when computed at any other time instant t, the two 

subvectors zp and zv do not correspond to the position and velocity as described in the LTV state, but all contribute to 

each component of the LTV state as a result of the combination through the rows of P(t). The common types of modes 

previously discussed in Section III.B are now considered separately, focusing specifically on the stable/unstable and 

center modes. The trivial modes, in fact, have a directly interpretable geometrical meaning, as they represent an offset 

term with a linear drift in time. 

In the case of stable and unstable modes, Eq. (42) can be easily rewritten accounting for the fact that the initial 

condition of the motion (i.e., zi(t0) = civie
-λit0) scales the exponential term, resulting in the alternative formulation given 

by Eq. (45). Moreover, considering the equivalence of the LTI and LTV states at the initial condition, this also means 

that, for a stable or unstable mode, ẑi,v(t0) is the unit vector of the initial velocity of the motion, thus indicating the 

initial direction of evolution of the i-th mode. If the corresponding eigenvector vi is articulated as v = [vi,p
T, vi,v

T]T then 

ẑi,v(t0) = v̂i,v, meaning that at t0 the direction of evolution of the mode in the actual Cartesian state coincides with portion 

v̂i,v of the corresponding eigenvalue. 

𝒛𝑖(𝑡) = 𝑐𝑖𝜶𝑖𝑒
𝜆𝑖𝑡 , 𝜶𝑖 =

𝒗𝑖

𝑒𝜆𝑖𝑡0
 (45) 

For what concerns the center modes, Eq. (44) shows that each refactored mode can be first rewritten as a vector of 

harmonic oscillators. Specifically, let us consider the generic couple i and j of center modes, for which the 

corresponding eigenvalues are λi = –iωi and λj = +iωi,  and let zp,m(t) be the m-th component of the p-th fundamental 

solution zp(t), with p = i, j. The harmonic oscillators of the two modes assume the following form:  

𝑧𝑖,𝑚(𝑡) = �̅�𝑖,𝑚 cos (𝜔𝑖𝑡 − 𝜙0𝑖 + 𝜙𝑣𝑖𝑗𝑚) , 𝑧𝑗,𝑚(𝑡) = �̅�𝑗,𝑚 sin (𝜔𝑖𝑡 − 𝜙0𝑖 + 𝜙𝑣𝑖𝑗𝑚), 

�̅�𝑝,𝑚 = 𝑐𝑝√𝑣𝑖,𝑚
2 + 𝑣𝑗,𝑚

2 = 𝑐𝑝𝑣𝑖𝑗,𝑚, 𝑝 = 𝑖, 𝑗, 𝜙0𝑖 = 𝜔𝑖𝑡0, 𝜙𝑣𝑖𝑗𝑚 = tan−1 (
𝑣𝑗,𝑚

𝑣𝑖,𝑚
) 

(46) 

Equation (46) highlights that, for each m-th component of the solution zp(t), the amplitude A̅p,m is a function of 

both the corresponding coefficient and the elements of the eigenvectors associated with the motion, while the phase 

ϕ
vijm

 is a function of the elements of the eigenvectors only. The motion zij(t) associated with the combination of the 

two harmonic oscillators is the sum of the two fundamental solutions associated with the center modes: however, since 

Eq. (46) highlights that the sine and cosine functions of the two modes share the same argument, it is therefore possible 

to condensate the center modes in a single oscillatory motion as per Eq. (47). The latter equation shows that any 

oscillatory motion in the LTI state-space is represented by a three-dimensional ellipse, which is described, both in 
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terms of its phase and amplitude, by the corresponding modal coefficients, which can therefore be interpreted as design 

variables. 

 

𝑧𝑖𝑗,𝑚(𝑡) = �̅�𝑖𝑗,𝑚 sin (𝜔𝑖𝑡 − 𝜙0𝑖 + 𝜙𝑣𝑖𝑗𝑚 + 𝜙𝑐𝑖𝑗) , 

�̅�𝑖𝑗,𝑚 = 𝑣𝑖𝑗,𝑚√𝑐𝑖
2 + 𝑐𝑗

2, 𝜙𝑐𝑖𝑗 = tan
−1(�̅�𝑖,𝑚/�̅�𝑗,𝑚 ) = tan

−1(𝑐𝑖/𝑐𝑗) 
(47) 

 

The extension of these concepts to the LTV Cartesian state representation of the relative motion must consider the 

fact that the j-th component of the Cartesian state x results from a combination of all components of vector z according 

to the elements of the j-th row pr,j(t) of matrix P(t). As such, it is a complicated time-varying combination of the terms 

of z, which cannot be modelled analytically in the context of the CR3BP; nevertheless, useful relations can still be 

derived between the geometrical properties of the motion and the coefficients c if the single modes are analyzed 

separately and numerical analyses of the time-varying terms are performed. Notably, the latter depends on the absolute 

dynamics of the target: therefore, most analyses can be performed once and over a timespan that is limited to no more 

than a few orbit periods of the target. Starting with the case of the stable and unstable modes of the motion, the 

Cartesian relative state can be represented as follows for the generic i-th mode: 

𝒙𝑖(𝑡) = 𝑐𝑖𝒑𝑠(𝑡)𝑒
𝜆𝑖𝑡 , 𝒑𝑠(𝑡) = [𝒑𝑟,1

𝑇 (𝑡)𝜶𝑖 , … , 𝒑𝑟,6
𝑇 (𝑡)𝜶𝑖]

𝑇

 (48) 

Equation (48) can be analyzed both component-wise and in terms of its norm. First, observing that each component 

of vector zi in Eq. (45) is a monotone exponential function, the envelopes of the single components of the motion can 

be expressed as exponential functions multiplied by a constant coefficient given by the maximum or minimum of the 

dot product pr,j
T(t)αi over one orbit period of the target, as summarized in Eqs. (49) and (50) for the generic m-th 

component. 

 

𝑥𝑖𝑛𝑓,𝑖,𝑚(𝑡) = |𝑐𝑖|𝑚𝑣𝑖,𝑚
𝑒𝜆𝑖𝑡 ≤ 𝑐𝑖 (𝒑𝑟,𝑚

𝑇 (𝑡)𝜶𝑖) 𝑒
𝜆𝑖𝑡 , 𝑚𝑣𝑖,𝑚

= min
𝑡∈[𝑡0,𝑡0+𝑇]

(sign(𝑐𝑖)𝒑𝑟,𝑚
𝑇 (𝑡)𝜶𝑖) (49) 

𝑥𝑠𝑢𝑝,𝑖,𝑚(𝑡) = |𝑐𝑖|𝑀𝑣𝑖,𝑚
𝑒𝜆𝑖𝑡 ≥ 𝑐𝑖 (𝒑𝑟,𝑚

𝑇 (𝑡)𝜶𝑖) 𝑒
𝜆𝑖𝑡 , 𝑀𝑣𝑖,𝑚

= max
𝑡∈[𝑡0,𝑡0+𝑇]

(sign(𝑐𝑖)𝒑𝑟,𝑚
𝑇 (𝑡)𝜶𝑖) (50) 

 

Consequently, the norm of the relative position vector ρi associated with the i-th mode has the same exponential 

trend of each component, which results in the actual evolution of the target-chaser distance once combined with matrix 

P(t). Therefore, the superior and inferior limiting functions are evaluated as in Eqs. (51) and (52), and describe the 

bounds of the approaching (departing) motion of a stable (unstable) mode, allowing an approach to (departure from) 

the target spacecraft that does not require additional control actions ideally. The choice of the coefficients to design 

the stable or unstable motion can be performed in different ways, such as by choosing the value that allows achieving 

a desired minimum target-chaser separation ρinf,i(tf) at a given final time tf. As the sign of the coefficient does not affect 

the evolution of functions ρinf,i(t) and ρsup,i(t), it can be chosen depending on the direction of approach to the target by 

observing the sign of the elements of vector vi,p. 

 

𝜌𝑖𝑛𝑓,𝑖(𝑡) = |𝑐𝑖|𝑑𝜌,𝑚𝑒
𝜆𝑖𝑡 , 𝑑𝜌,𝑚 = min (√𝑚𝑣𝑖,1

2 +𝑚𝑣𝑖,2
2 +𝑚𝑣𝑖,3

2 ,   √𝑀𝑣𝑖,1
2 +𝑀𝑣𝑖,2

2 +𝑀𝑣𝑖,3
2 ) (51) 

𝜌𝑠𝑢𝑝,𝑖(𝑡) = |𝑐𝑖|𝑑𝜌,𝑀𝑒
𝜆𝑖𝑡 , 𝑑𝜌,𝑀 = max (√𝑚𝑣𝑖,1

2 +𝑚𝑣𝑖,2
2 +𝑚𝑣𝑖,3

2 ,   √𝑀𝑣𝑖,1
2 +𝑀𝑣𝑖,2

2 +𝑀𝑣𝑖,3
2 ) (52) 

 

On the other hand, considering a generic couple of center modes i and j described in Eq. (47), it is possible to 

determine the expected maximum and minimum target-chaser separation during the corresponding quasi-periodic 

motion. To this purpose, each m-th component of the motion can be expressed as in Eq. (53) as the product of two 

vectors of periodic functions with different periods: specifically, the components of vector pr,m(t) all have the same 

period T of the motion of the target on its orbit, while the components of vector sij(t) have period equal to Ti = 2π/ωi. 

 

𝑥𝑖𝑗,𝑚(𝑡) = (√𝑐𝑖
2 + 𝑐𝑗

2) 𝒑𝑟,𝑚
𝑇 (𝑡)𝒔𝑖𝑗(𝑡), 𝒔𝑖𝑗(𝑡) = [

𝑣𝑖𝑗,1 sin (𝜔𝑖𝑡 − 𝜙0𝑖 + 𝜙𝑣𝑖𝑗𝑚 + 𝜙𝑐𝑖𝑗)

⋮

𝑣𝑖𝑗,6 sin (𝜔𝑖𝑡 − 𝜙0𝑖 + 𝜙𝑣𝑖𝑗𝑚 + 𝜙𝑐𝑖𝑗)

] (53) 
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Periods T and Ti are usually incommensurable and the norm ρij(t) of the relative position vector behaves like a 

quasi-periodic function. Searching for the superior and inferior limits of the motion thus requires numerically 

computing the maximum and minimum values of ρij(t) as per Eq. (54), where Tf is the smallest temporal interval over 

which the maximum and minimum shall be computed. The latter is taken as the closest larger integer multiple of 

period Ti, evaluated as if T and Ti were commensurable; in this way, approximations of the superior and inferior limits 

can be computed easily while considering the quasi-periodicity of the motion. 

 
𝜌𝑖𝑛𝑓,𝑖𝑗 = min

𝑡 ∈ [𝑡0,𝑡0+𝑇𝑓]
𝜌𝑖𝑗(𝑡)

𝜌𝑠𝑢𝑝,𝑖𝑗 = max
𝑡 ∈ [𝑡0,𝑡0+𝑇𝑓]

𝜌𝑖𝑗(𝑡)
, 𝜌𝑖𝑗(𝑡) = √𝑥𝑖𝑗,1

2 (𝑡) + 𝑥𝑖𝑗,2
2 (𝑡) + 𝑥𝑖𝑗,3

2 (𝑡), 𝑇𝑓 = ceil (
𝑇𝑖
𝑇
)𝑇𝑖  (54) 

 

The quasi-periodic motion resulting from the activation of a center mode can thus be designed observing that, if a 

spherical keep-out zone of radius rKOZ is considered, the latter can be related to the coefficients of modal decomposition 

as per Eq. (55), which results from the manipulation of Eq. (54) and imposing that ρinf,ij = rKOZ. From a general 

standpoint, this equation would require an iterative resolution of the problem due to mij being dependent on coefficients 

ci and cj. Moreover, the equation only provides one constraint, thus leaving space for a second constraint to be applied 

to fix the value of the other coefficient. In this respect, if ci is set to zero as an additional constraint, then the term ϕcij
 

in the elements of vector sij(t) of Eq. (53) can be nullified. In doing so, the coefficient mij of Eq. (55) becomes constant 

for different values of cj, and Eq. (55) can be inverted to find the value of cj that ensures that ρij(t) never falls below 

rKOZ. The same can be done if cj is set to zero, which instead results in ϕcij
 = π/2. 

 

𝑟𝐾𝑂𝑍 = √𝑐𝑖
2 + 𝑐𝑗

2 𝑚𝑖𝑗(𝑐𝑖 , 𝑐𝑗), 

𝑚𝑖𝑗(𝑐𝑖 , 𝑐𝑗) = min
𝑡∈[𝑡0,𝑡𝑜+𝑇𝑓]

√(𝒑𝑟,1
𝑇 𝒔𝑖𝑗(𝑡))

2

+ (𝒑𝑟,2
𝑇 (𝑡)𝒔𝑖𝑗(𝑡))

2

+ (𝒑𝑟,3
𝑇 (𝑡)𝒔𝑖𝑗(𝑡))

2

 

(55) 

 

Notably, the resulting quasi-periodic motion is bounded, and therefore a maximum target-chaser separation can 

also be identified as the radius rKIZ of a spherical keep-in zone, which can be computed as per Eq. (56), obtained by 

manipulating Eq. (54) and imposing that ρsup,ij = rKIZ. The same observations reserved to Eq. (55) apply to Eq. (56) as 

well, and the latter may also be employed for relative motion design, although it may be less desirable compared to a 

condition on the minimum target-chaser separation as the one provided in Eq. (55). 

 

𝑟𝐾𝐼𝑍 = √𝑐𝑖
2 + 𝑐𝑗

2 𝑀𝑖𝑗(𝑐𝑖 , 𝑐𝑗), 

𝑀𝑖𝑗(𝑐𝑖 , 𝑐𝑗) = max
𝑡∈[𝑡0,𝑡𝑜+𝑇𝑓]

√(𝒑𝑟,1
𝑇 𝒔𝑖𝑗(𝑡))

2

+ (𝒑𝑟,2
𝑇 (𝑡)𝒔𝑖𝑗(𝑡))

2

+ (𝒑𝑟,3
𝑇 (𝑡)𝒔𝑖𝑗(𝑡))

2

 

(56) 

 

In the case of a center mode approximating a trivial motion as considered in Section III.B.4, function sij of Eq. (53) 

is approximated with a constant vector since ωi ≈ 0. As a result, the motion is once again periodic with period T and 

the maximum and minimum values of the relative distance ρij(t) can be computed as per Eqs. (54)-(56) but over a 

single period T of the orbit of the target spacecraft. Therefore, the same considerations related to the design of a quasi-

periodic motion using the center modes can be applied in this case as well. 

IV. Results 

The assessment of the accuracy with which the model obtained through the fundamental modal solutions method 

represents the relative motion and its employment for guidance and path-planning purposes are investigated in this 

Section. Specifically, the non-linear and linearized relative motion equations derived in Section II.B are first tested to 

verify the accuracy with which they can model the relative dynamics. To this purpose, the motion is propagated from 

an arbitrarily chosen initial condition using both the linear and non-linear equations of relative motion, and these are 

compared with the relative state computed by numerically propagating the target and chaser orbits separately in the 

CR3BP. Errors on the state variables between the different models are computed according to Eq. (57), where subscript 

“r” identifies the reference solution. The error components are all computed between quantities expressed and 
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observed in the VRF. To conduct a thorough comparison, first, the linearized solution is compared against the non-

linear one taken as a reference, to assess the effect of linearization; then, a comparison is made between the linearized 

and non-linear equations of motions against the reference solution obtained by numerically propagating the CR3BP 

equation. Subsequently, the modal decomposition approach presented in Section III is applied to the relative dynamics 

equations in the velocity frame; given the periodicity of matrix P(t), the latter will be evaluated over a period and 

interpolated to be used over multiple periods, so that the burden of computing matrix P(t) at every instant is removed 

from the model. However, it must be noted that this is a simplifying assumption that might introduce errors if the 

system under consideration is not exactly periodic. The accuracy with which the modal decomposition model can be 

used to propagate the relative motion is then assessed in the same way as the linearized and non-linear equations of 

relative motion, with an additional comparison between the modal solution and the linearized one taken as a reference. 

𝑒𝑥 = 𝑥 − 𝑥𝑟 ,
𝑒𝑦 = 𝑦 − 𝑦𝑟 ,
𝑒𝑧 = 𝑧 − 𝑧𝑟 ,

                

𝑒�̇� = �̇� − �̇�𝑟
𝑒�̇� = �̇� − �̇�𝑟
𝑒�̇� = �̇� − �̇�𝑟

 (57) 

The set of modal solutions computed in this way is then used first to analyze the fundamental components of the 

relative motion in the velocity frame and characterize them from a geometrical standpoint, and later to compute target 

conditions for a path-planning strategy for CPOs to approach a target object. In this context, a state-of-the-art method 

is employed to compute fuel-efficient impulsive approach maneuvers, adapted to use the coefficients of modal 

decomposition as ROEs. To verify that the maneuvers effectively allow reaching the desired target state, the difference 

between the achieved and desired ROEs is observed, while the overall cost of the maneuvers is evaluated by summing 

the norms of the ΔV vectors describing each impulsive burn. 

The analyses presented in this Section are conducted considering a study case in which the target spacecraft is 

located on a nearly stable halo orbit around the L2 point, the initial conditions of which are reported in dimensionless 

Cartesian coordinates in Table 1. The gravitational parameters ratio for the Earth-Moon system is taken as μ = 1.215 

× 10-2 and the reference quantities considered to retrieve dimensional quantities from the dimensionless ones are 

summarized in Table 2. The initial condition of the target, the reference dimensional quantities, and parameter μ are 

all retrieved from the NASA Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog*.  

 

Table 1 Dimensionless initial conditions of the L2 halo orbit of the target spacecraft, expressed in both the 

classical synodal barycentric frame and the MRF frame. 

 Components of initial state vector, r 

Frame X Y Z Ẋ Ẏ Ż 

Synodal 1.08296 0 2.02317 0 –2.01026 0 

MRF –0.095106 0 0.202317 0 0.201026  

 

Table 2 Reference dimensional quantities. 

Reference quantity rem ωmi 

Value 3.89703 × 108 m 2.61110 × 10-6 rad/s 

 

A. Application of modal decomposition to the velocity frame 

In order to apply the methodology discussed in Section III, Eq. (29) is first numerically integrated together with 

the equations of the absolute motion (3) and the fundamental matrix equation (31) over a full target orbit period T, 

representing the angular velocity and acceleration terms as per Eqs. (9), (10), (24), and (25) and jerk term as per Eq. 

(27). The STM resulting from the final step of the numerical integration is the monodromy matrix M of the system, 

from which matrix Λ and the corresponding eigenvalues and eigenvectors can be computed as per Eqs. (35) and (38). 

The resulting eigenvalues are represented in Fig. 2.a, showing that, in the considered system and for initial conditions 

of the target spacecraft given in Table 1, there exist one stable and one unstable modes and four center modes; 

 

 

 
* Three-body Periodic Orbits – NASA Jet Propulsion Laboratory, California Institute of Technology. Available at: 

https://ssd.jpl.nasa.gov/tools/periodic_orbits.html#/periodic (Last accessed: 17 May 2024) 

https://ssd.jpl.nasa.gov/tools/periodic_orbits.html#/periodic
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specifically, the center modes all have null real part, and two of them feature a very small imaginary part (in the order 

of 10-5). The presence of this pair of imaginary conjugate eigenvalues that are very close to zero can be related to the 

fact that the selected L2 orbit is not perfectly periodic. However, while the magnitude of the imaginary part may be 

considered almost negligible, the corresponding modes cannot be directly treated as a trivial pair without introducing 

an error in the representation that increases over time: therefore, this couple of modes must be treated as a couple of 

center modes. Applying the refactorization suggested in Section III.B, the following representation of the fundamental 

solutions can be considered, in which a change in nomenclature is applied to make the notation more concise: 

 

𝒛1(𝑡) = 𝑐1𝒗1𝑒
𝜆1(𝑡−𝑡0),   𝜆1 ∈ 𝑅,   𝜆1 > 0

𝒛2(𝑡) = 𝑐2[𝒗2 cos(𝜔2(𝑡 − 𝑡0)) − 𝒗3 sin(𝜔2(𝑡 − 𝑡0))]

𝒛3(𝑡) = 𝑐3[𝒗2 sin(𝜔2(𝑡 − 𝑡0)) + 𝒗3 cos(𝜔2(𝑡 − 𝑡0))]

𝒛4(𝑡) = 𝑐4[𝒗4 cos(𝜔4(𝑡 − 𝑡0)) − 𝒗5 sin(𝜔4(𝑡 − 𝑡0))]

𝒛5(𝑡) = 𝑐5[𝒗4 sin(𝜔4(𝑡 − 𝑡0)) + 𝒗5 cos(𝜔4(𝑡 − 𝑡0))]

𝒛6(𝑡) = 𝑐6𝒗6𝑒
𝜆6(𝑡−𝑡0),   𝜆6 ∈ 𝑅,   𝜆6 < 0

𝜔2 = |imag(𝜆2)| = |imag(𝜆3)|, 𝜔4 = |imag(𝜆4)| = |imag(𝜆5)|

𝒄 = [𝑐1,   𝑐2,   𝑐3,   𝑐4,   𝑐5,   𝑐6]
𝑇 = [𝑐1,   𝑐𝑅1,   𝑐𝐼1,   𝑐𝑅2,   𝑐𝐼2,   𝑐6]

𝑇

𝑽 = [𝒗1,   𝒗2,   𝒗3,   𝒗4,   𝒗5,   𝒗6] = [𝒗1,   2𝒗𝑅1 ,   − 2𝒗𝐼1,   2𝒗𝑅2,   −2𝒗𝐼2,   𝒗6]

 (58) 

 

For completeness, Fig. 2.b also shows the eigenvectors associated with matrix Λ as already refactored according 

to Eq. (58). At a first glance, it is evident that the refactorization drastically reduces the magnitude of v5, that is not 

visible in this plot and whose components are of the same order of magnitude of the corresponding eigenvalue. In fact, 

coherently with λ4 and λ5 being close to zero, their eigenvectors are similar and thus their combination during 

refactorization results in v5 having second, fourth, and sixth components close to zero (≈ 10-15), and the first, third, 

and fifth components equal to –5.228 × 10–6, –1.229 × 10–5, and –1.103 × 10–6. Eigenvector v4, on the other hand, has 

its second component to be the largest of the set, while all other components are negligible (≈ 10-10). This has an 

important geometrical meaning: in fact, since ω4 is in the order of 10-5, the period of the oscillations described in z4(t) 

and z5(t) in Eq. (58) is in the order of 105. This implies that over the typical interval of interest of the propagation, the 

term resulting from z4(t) + z5(t) takes the form of an offset along the velocity axis summed with a linear drift trend 

superimposed to an oscillation having the same period as the target orbit; modes 4 and 5 thus represent a center mode 

approximating a trivial motion. This is coherent with the fact that if the chaser is on the same orbit of the target (i.e., 

only the fourth coefficient of the set is non-zero), at the initial time the two spacecraft will only be separated in the 

velocity direction and the chaser will oscillate along this direction as time passes. In the case of the modal 

decomposition, this oscillatory part is provided by the LF transformation matrix. If a positive fifth coefficient is 

considered, this results in an initial condition having a vertical component that is smaller, due to the first component 

of vector v5, which can be interpreted similarly to a reduction of the semimajor axis in an orbit around the Earth, 

resulting in a drift along the negative flight-path direction, as the negative sign of the fifth component of v5 shows. 

Once again, this term combines with the periodic oscillation given by matrix P(t).  

 

  
a) Eigenvalues in the complex plane, with unit 

circle in black. In the red box inset: zoom on 

eigenvalues λ4 and λ5. 
b) Eigenvectors, represented in pairs of components. 

Fig. 2 Representation of eigenvectors and eigenvalues of the state matrix Λ of the equivalent LTI system.  
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Finally, it is worth noting that the eigenvectors v2 and v3, associated with the primary center mode, have non-zero 

components placed in complementary locations: in other words, while v2 has second, fourth and sixth non-zero 

components, v3 has the first, third and fifth components as the non-zero ones. 

A representation of the evolution of the relative motion from the arbitrary initial condition given by coefficients 

vector c = [5 × 10-7, 2 × 10-6, 2 × 10-6, 5 × 10-7, 1 × 10-7, 5 × 10-7] as propagated through Eq. (39) is shown in Fig. 3.a 

and Fig. 3.b compared to the direct integration of both the non-linear and linear equations of relative motion given by 

Eqs. (28) and (29), respectively, and to the relative motion of the chaser with respect to the target obtained by 

integrating the CR3BP equations for the two spacecraft. In this respect, Fig. 4.a reports the component-wise errors 

that the modal decomposition model shows when compared with the linear equations of motion. As expected, the two 

sets of propagated states are in good accordance with one another, the modal decomposition being derived from the 

latter using the mathematical instruments introduced in Section III. The errors between the modal and linear 

representation compared against the non-linear model are instead reported in Fig. 4.b: the graph shows that errors are 

at least two orders of magnitudes smaller than the magnitude of the relative state, confirming that, in the considered 

conditions, the linearized model of the relative motion can represent the motion with enough accuracy to be a valuable 

substitute for the non-linear equations of motion. 

 

 

 
a) Three-dimensional view of the relative motion. 

 
b) Components of the Cartesian state vector. 

Fig. 3 Propagation of relative motion through modal decomposition model and comparison with the 

linearized and non-linear models of relative motion and the numerical integration of the CR3BP equations. 

 

 

More interesting results stem from observation of Fig. 4.c, depicting the errors of the modal, linear and non-linear 

models compared with the numerically integrated motion in CR3BP. First, the graphs show that, as expected, there is 

a negligible error (in the order of 10-5 m in position and 10-9 m/s in velocity) between the representation of the state 

given by the non-linear equations and the relative state obtained by direct integration of the CR3BP equations. The 

reason is that the non-linear dynamics constitute a direct representation of the relative motion as it would be observed 

in the VRF. As a result, the comparison between the modal and linear solutions against the numerical integration of 

the CR3BP equations shows the same trend that is observed in Fig. 4.b. As a last remark, it is worth noting that both 

in Fig. 4.b and Fig. 4.c the error increases in magnitude over time but featuring an oscillatory trend. This is a 

linearization error, and its trend is associated with the fact that the system is not perfectly periodic as the eigenvalues 

reported in Fig. 2.a highlight. The result of this analysis thus shows that the considered linearized model, and 

equivalently its modal decomposition representation, can be used to describe the relative motion with an accuracy at 

least two orders of magnitude smaller than the relative state itself for multiple orbit periods. To retain such accuracy 

over time, the linearization requires to be periodically recomputed. 
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a) Errors of modal decomposition model compared 

against the linearized model. 

 

 
b) Errors of modal decomposition and linearized 

models compared against the non-linear model. 

 

 
c) Errors of modal decomposition, linearized, and non-linear models against the numerical integration of the 

CR3BP equations. 

Fig. 4 Errors on the components of the Cartesian representation of the propagated relative state. 

 

In addition, Fig. 5 shows the three-dimensional evolution of the single modes of the motion. First of all, the drifting 

modes 1 and 6 in Fig. 5.a evidently represent such behavior but simultaneously show an initial offset with respect to 

the flight-path axis, as well as an oscillatory component along all directions, the largest and most evident one being in 

the flight-path direction. This component is periodic with period T and while its oscillatory behavior is due to matrix 

P(t), the direction of oscillation is related to the non-zero terms of eigenvectors 1 and 6: Fig. 2.b shows, in fact, that 

components 1 to 3 of both v1 and v6 are all non-zero, although the second one is the largest. Mode 2 and 3, shown in 

Fig. 5.b, coherently represent an oscillation around the target but feature a quasi-periodic motion. The quasi-periodicity 

is due to the incommensurability between the LTI description of the solution, periodic with period 2π/ω2, and the LF 

matrix P(t), periodic with period T = 2π/ωmi. Lastly, Fig. 5.c highlights that mode 5 shows the smallest contribution 

to the motion and mode 4 translates into a bounded periodic motion. This oscillation is specifically the effect of matrix 

P(t) over the constant offset that mode 4 represents in the LTI state-space. 

The same motion represented in Fig. 3.a and Fig. 3.b is shown in the LTI state-space in Fig. 6. Comparing this 

representation with the one in the LTV state-space of Fig. 3 and recalling that the LTI solution is represented by the 

modal decomposition of Eq. (58), this confirms that the LTI representation equivalent to the LTV system provides a 

more intuitive description of the relative motion. In fact, the complexity of the motion represented in Fig. 3.a and Fig. 

3.b is due to the temporal evolution of the LF transformation matrix P(t). 
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a) Fundamental modes 1 and 6. b) Fundamental modes 2 and 3. c) Fundamental modes 4 and 5. 

Fig. 5 Three-dimensional Cartesian representation of the fundamental modes of the motion shown in Fig. 

3, according to Eq. (58). 

 

  
a) Three-dimensional view of relative motion, LTI 

state-space. 
b) Components of relative motion, LTI state-space. 

Fig. 6 Equivalent representation in the LTI state-space of the relative motion shown in Fig. 3. 

 

B. Geometrical characterization of the relative motion 

The modal decomposition of the relative motion obtained in the previous Section IV.A is here applied to the design 

of simple motions using the coefficients of the decomposition as ROEs. A case is considered for each characteristic 

motion according to the geometrical interpretations given in Section III.B to highlight how each geometrical parameter 

can be used in conjunction with the coefficients for relative motion design. In the following, each motion is propagated 

by both using the modal decomposition model and numerically integrating the CR3BP equations of the absolute 

dynamics of the target and chaser spacecraft. 

 

1. Drifting motion towards the target 

The following case exemplifies the use of the coefficients of the stable mode to design a natural drifting motion 

that occurs approximately along the flight-path axis and allows approaching the target object from the negative flight-

path direction, such that the arrival point is at a separation ρdes from the target of 20 m. Considering the periodicity of 

the motion on the stable manifold, the target condition can be achieved safely on one of the local minima of the target-

chaser separation function ρi(t). Therefore, based on Eq. (51) and imposing ρinf,i(tf) = ρdes, the condition provided in 

Eq. (59) can first be applied to ensure that the coefficient c6 is chosen so that the closest point of the drifting motion 

is at a distance ρdes = ρdes/rem from the target. Then, Eq. (60) can be solved numerically to find the value of tf that 

simultaneously satisfies Eqs. (59) and (60). The sign of the coefficient is finally chosen to be negative observing the 

eigenvector of the mode. This design problem is solved considering initial conditions to be computed at t0 = 0.5 T, 

i.e., the target initial state on the L2 orbit is considered as propagated from the conditions in Table 1 for half an orbit 

period. Considering the periodicity of the motion on the stable manifold, these conditions allow placing the target 

directly on the portion of the relative trajectory of the stable mode that moves towards the target. 

 

|𝑐𝑖(𝑡𝑓)| = 𝜌𝑑𝑒𝑠 (𝑑𝜌,𝑚𝑒
𝜆𝑖𝑡𝑓)⁄  (59) 
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𝜌𝑖(𝑡𝑓) = |𝑐𝑖(𝑡𝑓)| (√(𝒑
𝑟,1
𝑇 (𝑡𝑓)𝜶)

2

+ (𝒑
𝑟,2
𝑇 (𝑡𝑓)𝜶)

2

+ (𝒑
𝑟,3
𝑇 (𝑡𝑓)𝜶)

2

) 𝑒𝜆𝑖𝑡𝑓  (60) 

 

The solution of Eqs. (59) and (60) results in tf = 0.979 T, i.e., 10.34 days, which is coherently close to a full period 

of the orbit, where the next minimum of the function ρi(t) is expected, and c6 = –1.9566 × 10–7 with all other coefficients 

equal to zero. The motion is represented in Fig. 7.a in terms of the Cartesian components of the motion, also including 

the inferior and superior limits for each component computed as per Eqs. (49) and (50), while Fig. 7.b shows the 

evolution of the target-chaser separation together with the inferior and superior limits ρinf,i(t) and ρsup,i(t), computed as 

per Eqs. (51) and (52). The chaser successfully coasts towards the desired condition along an approach direction that 

is almost parallel to the flight-path axis, differing from the latter due to the properties of the stable manifold.  

 

 
 

 

 

a) Cartesian components of the relative motion, with inferior and superior limits 

for each component. 
 b) Target-chaser separation, with 

superior and inferior limits. 

Fig. 7 Natural drifting motion towards the target, obtained by activating the stable mode of the relative 

motion.  

 

As a last remark, the minimum desired separation of 20 m is not overcome during the approach, as shown by Fig. 

7.b, where the motion is propagated for a further 0.2 orbits to show that the constraint is satisfied. Overall, Fig. 7 

highlights the good agreement between the modal decomposition approach and the motion propagated using the 

CR3BP equations, as well as between the models of the geometrical properties described in Eqs. (49)- (52) and the 

actual motion. Specifically, the largest error between the modal decomposition representation and the numerical 

integration of the CR3BP equations is expectedly obtained at the end of the propagation, with mm-level error on the 

relative position and errors in the order of 10–8 m/s on the norm of the relative velocity vector. A similar approach to 

the one considered in this section can also be considered when dealing with the design of a drifting motion departing 

from the target spacecraft using the unstable mode. 

 

2. Quasi-periodic motion around the target 

The second case under consideration uses the center modes of the motion to design a quasi-periodic trajectory 

around the target that must not violate a keep-out sphere of radius rKOZ = 30 m. As no specific constraint is imposed 

on the initial conditions of the motion, the design can be conducted by imposing c2 = 0 and computing c3 according to 

Eq. (55), considering the dimensionless quantity rKOZ = rKOZ/rem. For t0 = 0, coefficient c3 is set to 5.3257 × 10-7 and 

all other coefficients are considered to be zero. The sign of the coefficient affects the initial condition of the motion: 

as no specific constraint is considered in this respect, the coefficient is taken positive for simplicity and without loss 

of generality. The resulting motion is shown in three dimensions in Fig. 8.a, which highlights that the designed 

trajectory effectively stays out of the desired spherical keep-out zone. This is more evident observing the temporal 

evolution of the target-chaser separation reported in Fig. 8.b, where the superior and inferior limits are computed 

according to Eqs. (55) and (56), which also highlights the accuracy of the proposed modeling of the minimum and 

maximum target-chaser separation. Propagating the motion further in time, slight violations of the superior and inferior 

limits on the target-chaser distance may occur which are related to the approximated Tf considered in Eq. (54); 

however, these can be easily dealt with by applying a safety margin on the required rKOZ. Moreover, Fig. 8.b and Fig. 

8.c further highlight the accordance between the motions propagated using the modal decomposition model and the 
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CR3BP equation. Specifically, the maximum errors between the modal decomposition representation and the 

numerical integration of the CR3BP equations are coherently achieved at the end of the propagation and are in the 

orders of the centimeters for the relative position and of 10–8 m/s for the relative velocity. 

 

 

  
a) Three-dimensional view of the relative motion, with 

representation of the keep-out sphere. 

b) Target-chaser separation, with superior and inferior 

limits. 
 

 
c) Cartesian components of the relative motion. 

Fig. 8 Quasi-periodic motion around the target spacecraft, designed to not violate a keep-out sphere of   

30 m around the target spacecraft. 

 

3. Bounded motion along the flight-path direction 

A final design case is considered in which the chaser spacecraft is required to perform a bounded motion along the 

flight-path direction with a minimum target-chaser separation rKOZ of 50 m. Such a bounded motion is desirable, for 

example, when the chaser is required to wait in between two approach sequences without drifting away from the target 

object. While a specific relative position in the Cartesian state-space can be maintained with respect to the target by 

using a continuous control profile, a natural motion that satisfies the desired property can be achieved by activating 

the center modes approximating the trivial motion. In this case, by observing that v4 has only the second component 

being substantially different from zero at t0 = 0, while all components of v5 approach zero (see Fig. 2.b), then c5 = 0 

can be imposed and Eq. (55) be used once again to compute the desired value of c4, considering rKOZ = rKOZ/rem. This 

results in c4 = 6.4151 × 10-8 and all other coefficients can be set to zero; as for the choice on the sign of the coefficient, 

eigenvalue v4 shows that a positive coefficient allows placing the chaser in a leading position with respect to the target. 

The propagated motion is shown in Fig. 9 in terms of the target-chaser separation and of the single components of the 

Cartesian state vector; specifically Fig. 9.a shows that the motion is effectively bounded and always stays above the 

desired target-chaser separation. As in the previous case, the superior and inferior limits of the motion are computed 

using Eqs. (55) and (56). While the modal propagation of the motion is expectedly contained within the prescribed 

bounds at any time, the numerical propagation of the motion through the CR3BP equations begins to slightly violate 

the boundaries after 10 orbital periods (i.e., 105.65 days). This is due to the error build-up of the modal decomposition 

propagation, which is evident from Fig. 9.b and amounts to a few centimeters and to less than hundredths of mm/s 

after 10 orbits.  
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a) Target-chaser separation, with superior and 

inferior limits. 
b) Cartesian components of the relative motion. 

Fig. 9 Bounded motion with respect to the target, occurring along the flight-path direction and designed 

to not violate a minimum target-chaser separation of 50 m. 

 

C. Modal coefficients as relative orbital elements for path-planning 

The final contribution of this work investigates the use of the coefficients of modal decomposition as ROEs for 

the design of fuel-optimal approach trajectories. As for other sets of ROEs, the coefficients of modal decomposition 

allow computing transfers directly in the ROEs state-space, thus designing the approach trajectory as a series of 

maneuvers that allow the chaser to transfer between different relative trajectories, each represented by a set of 

coefficients. To this purpose, impulsive control actions are evaluated by applying a method originally proposed by 

Guffanti and D’Amico [30] and reformulated to consider the coefficients of modal decomposition as ROEs. 

Considering a predetermined duration of the transfer, the method computes the optimal times of applications of the 

impulsive control actions and the corresponding ΔVs, breaking down the transfer to pass through multiple intermediate 

states if required. The result is an approach trajectory composed of several connected segments on which the chaser 

can coast freely and apply impulsive ΔV when required. Notably, this approach provides a desirable control over the 

relative states through which the chaser shall transfer to perform the approach, which can be selected to satisfy some 

desired constraints (e.g., safety or operational constraints involving minimum target-chaser separations).  

As the approach occurs, the accuracy with which a desired state is achieved is evaluated by comparing the achieved 

and desired set of coefficients ĉi and ci. The evaluation is also assisted by the observation of the Cartesian 

representation of the relative state. Finally, the cost of the approach is evaluated by observing the ΔV required for 

each transfer. 

 

1. Impulsive burns computation method 

In their work, Guffanti and D’Amico [30] highlight that, in general, a relative motion can be decomposed in an 

osculating term F’(x, t), a perturbing term Fp(x, t), and a control term, according to Eq. (61). Defining κ a set of 

constants of integration of this motion and considering that the osculating motion ∂x/∂t = F’(x, t) corresponds to a 

single set κ, the relative dynamics of Eq. (61) can equivalently be represented using the integration constants 

variational equation reported in Eq. (62), where [∂κ/∂x] is the Jacobian matrix of the mapping function between the 

constants of integration κ and the Cartesian relative state x. 

 

�̇�(𝑡) = 𝑭′(𝒙, 𝑡) + 𝑭𝑝(𝒙, 𝑡) + 𝑩(𝑡)𝒖(𝑡) =
𝜕𝒙(𝜿, 𝑡)

𝜕𝑡
+ [
𝜕𝒙(𝜿, 𝑡)

𝜕𝜿
]
𝜕𝜿

𝜕𝑡
 + 𝑩(𝑡)𝒖(𝑡) (61) 

�̇� = [
𝜕𝜿

𝜕𝒙(𝜿, 𝑡)
] 𝑭𝑝(𝒙, 𝑡) + [

𝜕𝜿

𝜕𝒙(𝜿, 𝑡)
]𝑩(𝑡)𝒖(𝑡) (62) 

 

Reformulating Eq. (62) using the coefficients of the modal decomposition as constants of integration, being c a set 

of constants of the motion, Eq. (33) results in [∂c/∂x] = Ψ–1(t). As for the perturbing term, in the following it is 

neglected without loss of generality as no perturbing actions are included. At this point, the formulation proposed in 
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Ref. [30] can be employed to solve the optimization problem reported in Eq. (63) to obtain the directions of the optimal 

impulsive burns Δv̂(ti) = Bc
T(ti)η as those that satisfy the condition || Bc

T(ti)η || = 1 at the times ti, for Bc(ti) = Ψ–1(t)B. 

From these, the magnitudes of the burns required to transfer from a relative state c0 to the next desired one cdes (i.e., 

to achieve the variation Δcdes) can be obtained by solving the system of linear equations shown in Eq. (64). 

 

maximize
𝜂

𝐽𝑑 = 𝜼𝑇Δ𝒄𝑑𝑒𝑠       subject to  ‖𝑩𝑐
𝑇(𝑡𝑖)𝜼‖ ≤ 1,   𝑡𝑗 ∈ [𝑡0, 𝑡𝑓] (63) 

[⋯  𝐵𝑐(𝑡𝑖)Δ�̂�(𝑡𝑖)⋯ ] [
⋮

‖Δ𝒗(𝑡𝑖)‖

⋮

] = Δ𝒄𝑑𝑒𝑠  (64) 

 

As also observed in Ref. [30], usually the condition || Bc
T(ti)η || = 1 is not satisfied perfectly and requires 

considering a tolerance which can be selected as arbitrarily small. In general, larger tolerance values allow identifying 

more variegate transfer solutions at the cost of higher ΔVs.  

 

2. Approach maneuver sequence 

The approach sequence considered in the following is designed to gradually get the chaser closer to the target 

while also performing an inspection maneuver, leveraging the natural dynamics of the CR3BP to minimize the 

propellant consumption, and is articulated in three main phases. The first phase begins at t0 = 0, with the chaser at 1 

km of separation from the target object on the negative flight-path direction. After an initial waiting time of 0.005 

orbits (i.e., about 1.27 h), the chaser performs a series of three transfers to gradually approach the target along the 

negative flight-path axis. Specifically, each transfer is computed to maneuver between bounded relative trajectories 

aligned along the flight-path direction, featuring predetermined minimum target-chaser distances of 500 m, 250 m, 

and 100 m, respectively. The three maneuvers are separated by waiting times of 0.005 orbits, which are introduced to 

replicate the necessity of an actual servicing mission to wait between two maneuvers to perform internal consistency 

checks before proceeding further. At the end of the last maneuver, the chaser further waits on its orbit for 0.005 orbits 

before resuming the operations. At this point, the second phase of the approach sequence begins, in which the chaser 

maneuvers onto a quasi-periodic relative trajectory that never violates a keep-out sphere of radius rKOZ = 25 m centered 

in the target. This quasi-periodic motion is a desirable choice for target inspection as it allows the chaser to coast 

safely on this natural trajectory. After coasting for 5.05 orbits (i.e., about 53.35 days), in the last phase of the approach 

the chaser performs a maneuver towards a bounded relative trajectory that is once again aligned along the negative 

flight-path axis and never violates the minimum target-chaser separation of 25 m. This is considered a safe minimum 

distance for a bounded trajectory on which the chaser can wait for a final approach to occur and is coherent with the 

dimension of the keep-out sphere considered previously. An additional propagation of the motion is conducted for a 

full orbit after the end of the sequence to verify that the final condition is satisfied. 

The sets of coefficients of the desired intermediate states constituting the approach sequence are summarized in 

Table 3 and are computed based on the methodology proposed in Section III.C, soliciting the center modes 

approximating the trivial motion or the actual center modes depending on the necessity. The initial state c0 is computed 

from the corresponding Cartesian representation according to Eq. (40). Notably, the possibility of evaluating how each 

ΔV affects the coefficients of modal decomposition using Eq. (62) allows computing all maneuvers in advance; Table 

4 thus summarizes the segments of the approach sequence and the transfers that the chaser must perform, computed 

using the indicated sets of coefficients from Table 3, with an indication of the required ΔVs. The duration of each 

maneuver (that is, the time between two burns) is chosen to provide a feasible solution that achieves the required state. 

Overall, the approach maneuver takes 7.701 orbits (i.e., about 81.36 days) to complete with a total ΔV of 2.104 

cm/s. Observing Table 3, it is worth noting that states c0 and c1, c2, c3, and c5 expectedly share the same form, meaning 

that the motion corresponding to the set c0 is also a bounded one. In fact, a spacecraft located on the same orbit of the 

target satellite follows that orbit, resulting in a bounded motion that is almost aligned with the flight-path direction. A 

three-dimensional representation of the relative state of the chaser with respect to the target during the approach is 

shown in Fig. 10; however, the approach trajectory can be analyzed in greater detail by observing each phase 

separately. 
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Table 3  Summary of the desired intermediate states of the chaser during the approach maneuver. 

State Coefficients set Description of corresponding state 

c0 [0, 0, 0, –1.283 × 10–6, 0, 0] Point at 1 km from target, on the negative flight-path direction. 

c1 [0, 0, 0, –6.415 × 10–7, 0, 0] 
Bounded motion along the negative flight-path direction, with a 

minimum target-chaser separation of 500 m. 

c2 [0, 0, 0, –3.208 × 10–7, 0, 0] 
Bounded motion along the negative flight-path direction, with a 

minimum target-chaser separation of 250 m. 

c3 [0, 0, 0, –1.283 × 10–7, 0, 0] 
Bounded motion along the negative flight-path direction, with a 

minimum target-chaser separation of 100 m. 

c4 [0, 0, –4.438 × 10–7, 0, 0, 0] 
Quasi-periodic motion around the target, with a keep-out sphere of 

radius 25 m centered in the target. 

c5 [0, 0, 0, –3.208 × 10–8, 0, 0] 
Bounded motion along the negative flight-path direction, with a 

minimum target-chaser separation of 25 m. 

 

Table 4  Chaser approach strategy, with indication of the transfers, times of flight, and corresponding ΔVs. 

Phase 
Approach segment Initial time, 

orbits 

Final time, 

orbits 
ΔV, cm/s 

ID Description 

1 

W1 Waiting 0 0.005 -- 

T1 Transfer from c0 to c1 0.005 0.105 1.134 

W2 Waiting 0.105 0.110 -- 

T2 Transfer from c1 to c2 0.110 0.210 0.587 

W3 Waiting 0.210 0.215 -- 

T3 Transfer from c2 to c3 0.215 0.515 0.278 

W4 Waiting 0.515 0.520 -- 

2 
T4 Transfer from c3 to c4 0.520 1.470 4.736 × 10–2 

IS Inspection 1.470 6.520 -- 

3 
T5 Transfer from c4 to c5 6.520 6.701 5.746 × 10–2 

FP Final propagation 6.701 7.701 -- 

 

 

  

a) Full-scale view. 
b) Focus on the last part of segment T4 and segments IS, 

T5, and FP. 

Fig. 10 Three-dimensional view of the relative motion of the chaser during the full approach sequence. 

 

The first phase of the approach is illustrated in Fig. 11 in terms of both the temporal evolutions of the Cartesian 

state vector and the coefficients of modal decomposition. In this respect, Fig. 11.a shows that when the origin and 

target states of the transfer are on the flight-path axis, a cost-effective solution is that of an “hop” between the two 

points, involving both a vertical and a cross-track component. Notably, the last hop requires a longer time to be 

executed, as shorter times of execution may lead to unfeasible solutions that do not allow reaching the desired state. 

The first phase of the approach is represented in the ROE state space in Fig. 11.b, and Table 5 reports the values of 

the sets of coefficients that have been achieved at the end of each of the first three transfers. Compared to the target 

values c1, c2 and c3 in Table 3, the sets achieved at the end of transfers T1, T2 and T3 all feature large errors on the 

first, fifth,  and last coefficients of the set. Specifically, on transfer T1 the coefficients of the stable and unstable modes 
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of the motion are almost equivalent in magnitude and opposite in sign, and they provide a drifting contribution towards 

the negative flight-path direction to the final natural motion. The situation changes for transfer T2, where the two 

modes contribute overall with a drift towards the positive flight-path direction, due to the sixth coefficient being the 

largest in magnitude; the same contribution can be observed for transfer T3, although it is related to the fact that the 

two coefficients are similar in magnitude and opposite in sign, with the first coefficient being positive and the last one 

being negative. During all three transfers, the fifth mode contributes with a drift term towards the negative flight-path 

direction. Overall, however, all the drifting contributions are negligible over the short waiting time that follows each 

maneuver. As a final remark, observing Fig. 11.b it is worth noting that the large values achieved by the fifth 

coefficient across the maneuvers are a direct consequence of the fact that the entries of eigenvector v5 are close to 

zero, thus requiring large values of the corresponding coefficient in order for this mode to affect the motion. 

 

 
a) Cartesian components of relative motion. 

 
b) Coefficients of modal decomposition. 

Fig. 11 Temporal evolution of the Cartesian state vector and the coefficients of modal decomposition during 

Phase 1 of the approach. Dashed black lines between asterisks represent discontinuities due to the application 

of a ΔV. 

 

Table 5 Achieved target states ĉ1, ĉ2 and ĉ3 for the first phase of the approach. 

Transfer segment Achieved state 

T1 [–1.176 ×10–8, –5.515 ×10–9, –8.542 ×10–9, –6.421 ×10–7, –3.853 ×10–5, 1.274 ×10–8] 

T2 [–8.915 ×10–9, 1.408 ×10–9, 5.221 ×10–10, –3.229 ×10–7, –8.928 ×10–5, –3.154 ×10–8] 

T3 [5.121 ×10–7, –4.933 ×10–9, 5.889 ×10–9, –7.284 ×10–8, –4.876 ×10–3, –6.242 ×10–7] 

 

The second phase of the approach is illustrated in Fig. 12, showing that the transition from the oscillatory motion 

along the flight-path axis to the quasi-periodic motion of the center modes requires at least three impulses to occur. 

However, Fig. 12.a and Table 4 highlight that such impulses are small compared to those that have occurred in the 

first phase and amount to the orders of the tenths of mm/s. This is in line with the slow dynamics that naturally 

characterize the CR3BP, as evident by observing the magnitude of the velocity components achieved during the 

inspection motion. Therefore, for these maneuvers to take place and leverage the natural relative motion, propulsive 

units capable of providing ΔVs below mm/s-level are required. Table 6 contains the set of coefficients achieved at the 

end of transfer T4, showing that the largest error is achieved once again on the coefficients of the drifting modes and 

on the fifth coefficient of the drifting term of the trivial motion. Because the error on the coefficient of the unstable 

mode is negative and larger in magnitude than the one on the coefficient of the stable mode and the fifth coefficient 

is negative and four orders of magnitude larger than the other two, the three drifting contributions approximately 

balance each other over the considered time interval. As a result, the center of the quasi-periodic trajectory oscillates 

around the target, and the smallest target-chaser separation achieved during the motion amounts to 20.43 m. 
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a) Cartesian components of relative motion. 

 
b) Coefficients of modal decomposition. 

Fig. 12 Temporal evolution of the Cartesian state vector and the coefficients of modal decomposition during 

Phase 2 of the approach. Dashed black lines between asterisks represent discontinuities due to the application 

of a ΔV. 

 

Table 6 Achieved target state ĉ4 for the second phase of the approach. 

Transfer segment Achieved state 

T4 [2.496 ×10–8, –3.838 ×10–9, –4.435 ×10–7, 2.642 ×10–9, –2.990 ×10–4, –3.177 ×10–8] 

 

The third and last phase of the approach is illustrated in Fig. 13 and includes the final propagation of the motion 

after the last maneuver has occurred. The figure highlights that, expectedly, another three impulsive burns are required 

to maneuver from the quasi-periodic trajectory back to the flight-path axis, and the magnitude of the impulsive ΔVs 

is comparable to that observed in the previous case, as shown in Table 4. 

 

 
a) Cartesian components of relative motion. 

 
b) Coefficients of modal decomposition. 

Fig. 13 Temporal evolution of the Cartesian state vector and the coefficients of modal decomposition during 

Phase 3 of the approach. Dashed black lines between asterisks represent discontinuities due to the application 

of a ΔV. 
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The final state achieved at the end of the transfer, reported in Table 7, once again shows that the three largest errors 

in achieving the final state occur on the first, fifth, and sixth coefficients of the set, and the same considerations of the 

previous case can be applied here as well. In fact, the positive sign of the coefficient of the unstable motion would 

imply a drift away from the target from a point in front of the latter; on the contrary, the negative sign of the sixth 

coefficient would result in a drift towards the target from a trailing point behind the latter. The motion that would 

result from the first and last coefficients only would therefore be a drifting motion away from the target and towards 

the positive flight path direction: the addition of the trivial mode, commanded by the fourth and fifth coefficient, 

results in a negligible drift of the chaser over the single orbit propagation occurring at the end of the approach, with 

the smallest target-chaser separation being 17.43 m. 

 

Table 7 Achieved target state ĉ5 for the third phase of the approach. 

Transfer segment Achieved state 

T5 [3.574 ×10–8, 3.905 ×10–10, –4.140 ×10–10, –3.378 ×10–8, –3.051 ×10–4, –3.901 ×10–8] 

 

Overall, this test shows that it is possible to consider the coefficients of modal decomposition as geometrically 

insightful relative orbital elements for relative trajectory design. Moreover, the coefficients can be used in ROE-based 

path-planning and guidance algorithms to compute fuel-efficient maneuvers. 

 

V. Conclusion 

This paper presents a set of equations of relative motion in the context of the circular restricted three-body problem 

and an application of the method of fundamental modal solutions to these equations to gain geometrical insight in the 

motion that can be used for trajectory design and path planning. Specifically, the equations of relative motion are 

written in a velocity-based frame, centered in the target spacecraft and considering the instantaneous velocity direction 

as one of the fundamental directions of the right-handed orbiting frame. The equations feature an analytical 

formulation of the angular velocity of the velocity-based frame with respect to an inertial frame that allows immediate 

computation from the knowledge of the absolute state of the target spacecraft. The application of the method of the 

fundamental modal solutions then allows describing the fundamental components (i.e., the modes) of the motion 

separately as a function of the eigenvalues and eigenvectors of the monodromy matrix of the system of the linearized 

relative dynamics equations: by performing a weighted sum of the modes using a set of modal coefficients, any 

solution of the relative motion can be represented. Both the coefficients and the eigenvectors of the motion can be 

used to find characteristic geometric quantities of the motion, which help in designing the relative trajectories. The 

coefficients can therefore be used as geometrically insightful relative orbital elements. The application of the method 

of the fundamental modal solutions to the representation of the relative motion in the CR3BP provides a valuable 

instrument for the characterization of the motion and for mission design and planning. Mathematical relations are 

proposed to model important geometrical properties of the motion, relating them to the coefficients of the modal 

decomposition, and examples of application to the design of periodic, quasi-periodic, and drifting motion are provided. 

Finally, a way of employing the coefficients of modal decomposition as ROEs for the formulation of guidance and 

control solutions is proposed, showing the planning of an approach and inspection trajectory for a chaser spacecraft 

towards a target object on an L2 halo. The approach requires a total ΔV of 2.103 m/s for a total time of flight of about 

81.36 days (corresponding to 7.701 orbits of the target object) but has the advantage of leveraging the natural dynamics 

of the CR3BP to coast on the approach trajectories and perform a passively safe inspection of the target. 

The proposed methodologies are valid for their application in the CR3BP, but further improvements could be made 

first by investigating the applicability of the modal decomposition approach to more complex environments (for 

example, the elliptical restricted three-body problem, and models including the use of ephemerides). In addition, the 

method for the calculation of impulsive maneuvers considered in this work requires that the duration of the transfer 

be provided in advance. As the maneuvers cannot take place at any arbitrary point on the orbits of the target and 

chaser, further investigations may be conducted to improve the impulsive burn planning strategy by considering the 

most efficient points on the orbit to begin the transfer, based on the dynamics of the three-body problem. This would 

enable the possibility to explore the state-space of the coefficients to find more variegate solutions, thus providing the 

chaser with the ability to autonomously compute the transfers while also potentially enforcing trajectory and time-of-

flight constraints. 
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