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Abstract

The inspection of objects in low Earth orbit is important
to rendezvous and proximity operations, which are of in-
creasing interest to commercial and government organiza-
tions. Complex relative motion dynamics in low Earth or-
bit make the problem of autonomous inspection challeng-
ing. Agents must be able to fully inspect an object subject
to illumination constraints while avoiding collision. This pa-
per presents a novel approach to autonomous satellite inspec-
tion with impulsive maneuvers by combining a semi-Markov
decision process formulation of the inspection task with an
optimization-based shield for collision avoidance based on
the Clohessy-Wiltshire-Hill equations of relative motion. By
leveraging natural motion dynamics, the servicer is able to
complete the inspection task using 2.6 m/s of ∆v in 2.9 or-
bits, on average. The spacecraft evaluates maneuver actions
by evaluating a policy onboard in a closed-loop manner, ac-
counting for actual spacecraft states as opposed to executing
a brittle, off-line plan; the policy is trained for the domain of
inspection tasks offline in advance of the mission.

Introduction
With the proliferation of satellites in low Earth orbit (LEO),
rendezvous and proximity operations (RPO) tasks are be-
coming increasingly important, whether for servicing and
interacting with active spacecraft, deorbiting defunct satel-
lites, or inspecting objects for damage. It is often necessary
to inspect an object prior to interacting with it. This inspec-
tion task is complex, requiring the agent to control its rel-
ative motion with the object to inspect all illuminated sur-
faces while avoiding collision. Close proximity operations
are challenging to operate and require significant ground
support to upload open-loop command sequences and moni-
tor the resulting performance. Close relative motion maneu-
vers must be scheduled in a manner to be fuel efficient, avoid
even the potential for collision, and yet still satisfy complex
space object imaging requirements and servicer spacecraft
safety concerns.

Recent papers (Sabatini, Volpe, and Palmerini 2020;
Bernhard et al. 2020; Nakka et al. 2022) demonstrate
pipelines for global planning of inspection trajectories for
a swarm of satellites, for impulsive and continuous thrust
control. These plan a set of stable relative orbits that should
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provide coverage of the resident space object (RSO), then
assign orbits to individual servicers within the swarm, cal-
culating optimal transitions between orbits. Another paper
(Lauinger and Ulrich 2025) decomposes a large RSO into
primative shapes and projects inspection paths onto them.

More recently, reinforcement learning (RL) has been
posed as a method for closed-loop autonomy on the inspec-
tion task. RL has the benefits of directly finding a policy to
maximize a reward function in an arbitrary environment. In
one paper (Aurand et al. 2023), a neural network-based pol-
icy is used for high-level planning between predetermined
inspection waypoints. Another paper (van Wijk et al. 2023)
approaches the problem with a continuous action space for
continuous, low-thrust control, considering lighting condi-
tions. In recent work (Lei et al. 2024, 2025), the waypoint-
based approach is used for distributed and centralized con-
trol of a swarm of servicers. However, a drawback of this
class of methods is a lack of safety guarantees. While penal-
ties can be included to disincentivize unsafe actions, there is
no guarantee that the agent will not take an unsafe action.

Significant research exists on safe coordinated motion
planning in LEO under Clohessy-Wiltshire-Hill (CWH) dy-
namics. Morgan (Morgan, Chung, and Hadaegh 2014; Mor-
gan et al. 2016) uses sequential convex programming (SCP)
to plan collision-free continuous thrust trajectories. Others
(Gaias and D’Amico 2015; Koenig and D’Amico 2018) use
analytical methods to derive swarm reconfiguration laws
with impulsive thrusts in terms of relative orbital elements.
RL has been considered for trajectory optimization: a few
authors (Guffanti et al. 2024; Takubo et al. 2024) leverage
the transformer architecture for RPO, while another (Kuhl
et al. 2025) applies Markov decision processes (MDPs) to
station keeping with collision avoidance. Most similar to
this work, two recent papers (Van Wijk et al. 2024; Dun-
lap, Hamilton, and Hobbs 2025) ensures safety in a RL-
controlled inspection task with continuous control inputs us-
ing a control barrier function. Their safety constraints in-
clude the keep-out zone present in this work, fixed-horizon
passive safety, velocity constraints, a sun pointing con-
straint, and a keep-in zone.

Shielded RL has been demonstrated as an effective
method for various other spacecraft tasking problems, in-
cluding resource management (Harris et al. 2022), small-
body proximity operations (Herrmann and Schaub 2022),
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Figure 1: Diagram of inspection task and optimization based
shield.

and agile Earth observation under various conditions
(Stephenson and Schaub 2024a; Stephenson, Mantovani,
and Cheval 2025).

In this work, the RSO inspection problem is considered
for a RSO with a Hill-frame-fixed attitude and a single,
impulsively thrusting servicer, subject to range, pointing,
and lighting constraints for inspection. The problem is for-
mulated as a MDP and solved using deep reinforcement
learning (DRL), with a formulation that is specifically de-
signed to reflect the operations of a impulsively maneu-
vered spacecraft. Unlike other RL-based approaches to the
inspection task, a shield (Alshiekh et al. 2018) that uses
an optimization-based analysis of the CWH dynamics un-
der impulsive control is employed to ensure that the agent
cannot take unsafe actions with respect to the RSO or any
other nearby objects in orbit.

Problem Statement
In the inspection task, a servicer spacecraft aims to image all
facets of an RSO in LEO, subject to illumination constraints.
To achieve this, the servicer must leverage discrete thrusts
to control its relative motion with the RSO while avoiding
collision.

RSO Model
The RSO is a passive satellite in a circular orbit. In relative
motion terms, the RSO is the chief, denoted by subscript
C. The RSO has a set of N body-fixed inspection points
pi ∈ P , each with an associated normal vector n̂i. In this
work, the RSO is modelled as a 2-meter radius sphere of
N = 100 uniformly distributed points with normals in the
radial direction.

The RSO’s circular, 500 km altitude orbit is perturbed by
J2 effects and atmospheric drag. The inclination and right
ascension are randomly sampled for each instance of the en-
vironment.

It is assumed that the RSO is known to be in a Hill-frame
fixed attitude, which could be confirmed via a simultaneous
localization and mapping (SLAM) algorithm. This is typi-
cal for many spacecraft with nadir-pointing sensors. Further
work will extend the problem to the general case of a tum-
bling RSO.

Servicer Spacecraft Model
The servicer spacecraft is equipped with a body-fixed cam-
era ĉ to inspect the RSO. In relative motion terms, the ser-
vicer is the deputy, denoted by subscript D. A flight software
algorithm controls the attitude of the spacecraft using reac-
tion wheels to point the camera boresight at the RSO. To
inspect a point on the RSO, the angle between the normal
n̂i and the camera boresight ĉ must satisfy

θi = ̸ (n̂i,−ĉ) < θmax (1)

The servicer must also be within rinspect = 250 m of the
RSO to inspect a point. When a point is inspected, it is added
to the inspected set I.

The servicer’s orbit is modelled to high fidelity, including
J2 perturbations and atmospheric drag. As a result, the rel-
ative motion between the servicer and the RSO is governed
by perturbed CWH equations of relative motion. The ser-
vicer can control its relative motion with a cluster of impul-
sive thrusters. These thrusters can produce impulsive thrusts
of magnitude up to ∆vmax in any arbitrary direction. Since
the period between thrusts is generally sufficiently long, this
could be achieved by a variable-thrust thruster on an actu-
ated platform that reorients between maneuvers. At most,
the servicer may use 10 m/s of ∆v to complete the task.

If the servicer collides with the RSO, the inspection task
is considered a failure. Collision is defined as the distance
between the servicer and the RSO being less than the sum of
their collision radii:

∥rDC∥ < RD +RC (2)

The initial position is of the servicer is randomly set
within a 1 km radius of the RSO; the initial relative velocity
is near zero.

Illumination Constraints
In addition to the view incidence angle, the inspection points
on the RSO must be illuminated by the sun. To be suffi-
ciently illuminated for imaging, the incidence angle between
the sun and the point normal must be less than ϕmax. The
RSO also must not be eclipsed by Earth.

Figure 2 shows the percent of the RSO that is inspectable
due to the orbital elements of the RSO for 1000 random
cases. Orbits that are closer to a sun-synchronous orbit
(SSO) tend to have the smallest fraction of points ever il-
luminated, as one side of the spacecraft is constantly facing
away from the sun.
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Figure 2: Percent of RSO inspectable due to orbital geome-
try.

Objective Function
The numerical objective function is to maximize the percent-
age of the RSO points that are inspected with a weighted
penalty

maximize
|I|
N

− α
∑

∆v (3)

s.t. ∥rDC∥ > RD +RC ∀t (4)
subject to a non-collision constraint and the environment dy-
namics.

Reinforcement Learning
DRL is an effective class of methods for finding policies
to maximize a reward function over time for autonomy in
robotics problems with continuous state spaces. To be able
to leverage DRL, the inspection problem must be formal-
ized as a MDP, which is a framework for sequential decision
making. In a MDP, the agent interacts with an environment
by taking actions in response to a state, which returns a re-
ward and a new state. The goal of the agent is to find a policy
that maximizes the expected sum of rewards over time.

Learning on MDPs
MDPs are a framework for representing sequential optimiza-
tion problems (Sutton and Barto 2018). In a MDP, the state s
evolves with some action a according to a transition function
T (s, a, s′) and yields a reward r(s, a, s′). The goal of rein-
forcement learning is to find a policy π(a|s) that maximizes
the expected discounted sum of rewards.

Semi-Markov Decision Processes
While in most control problems, the control input is changed
on a fixed interval, this does not reflect the operational real-
ities of impulsive maneuvers. Instead, the servicer should
perform an impulsive thrust, then drift for a variable dura-
tion of time until the next thrust is to be performed. To rep-
resent this problem, the MDP must be extended to allow for
variable-duration timesteps.

Element Dim. Description
rHDC 3 Hill frame position
vH
DC 3 Hill frame velocity

∆vavail 1 available ∆v
i 1 orbit inclination
Ω 1 orbit RAAN (rel. sun)
ŝ 3 sun vector

[τoecl, τ
c
ecl] 2 eclipse start and end times

t 1 time since start of episode
inspection % M region inspection status

Table 1: Elements of the observation space.

A MDP with variable-duration timesteps is called a semi-
Markov decision process (sMDP). In a sMDP, each step
has some ∆t associated with it, which represents the time-
opportunity cost of the step, and a reward density ϱt(t)
instead of reward rt (Bradtke and Duff 1994). The γ-
discounted reward for a step is then given by

r
(γ)
t =

∫ tt+∆tt

tt

eγ(t−tt)ϱt(t)dt (5)

In this work, a semi-Markov-modified version of proxi-
mal policy optimization (PPO) is used to train a policy for
the inspection task (Schulman et al. 2017). Using the RLlib
framework, advantage estimation in the base PPO is modi-
fied to discount in a timestep-aware manner when learning
(Liang et al. 2018).

MDP Formulation
The elements of the partially-observable Markov decision
process (POMDP) tuple for the inspection task are as fol-
lows:

• State Space: The state of the simulator providing the
generative model for the MDP. This includes satellite
dynamic states, flight software states, and environment
states. Terminal states are encountered due to various
conditions:

– ≥ 95% of illuminated points are inspected.
– The servicer collides with the RSO: |rDC | < RC +

RD

– The servicer leaves the RSO: |rDC | > 1 km. This con-
dition is included to encourage “good” behavior when
training, but is not a hard constraint enforced by the
shield in evaluation

– The servicer runs out of available fuel: ∆vavail = 0

– The episode times out: t ≥ 10 orbits

• Observation Space: The observation is composed of a
subset of the elements of the state space and transforma-
tions thereof. The elements of the observation space are
given in Table 1. The region inspection status is the per-
centage of points in M = 15 equally spaced regions of
the RSO that have been inspected; each region is roughly
the same size as the servicer’s field of view due to inci-
dence angle requirements.



• Action Space: The servicer’s action space is a ∈
∆vmaxB3 × [0,∆tmax]. The first three elements spec-
ify the direction and magnitude of an impulsive thrust,
and the last element specifies the duration to drift before
executing the next thrust.

• Reward Function The reward density ϱ(t) is the sum
of three functions. First, reward is yielded for inspecting
points on the RSO.

ϱinspection(t) =
1

N

d

dt
|I|. (6)

A reward is also given for reaching the goal state of
≥ 95% inspection of illuminated points, using the Dirac
delta function.

ϱsuccess(t) = βsuccessδ(t− tsuccess) (7)

The 95% criteria is used for success, since some points
may only be momentarily illuminated due to the dis-
cretization of evaluation points. A penalty for fuel use
is given at the time of a burn.

ϱfuel(t) = −α∥∆v∥δ(t− tburn) (8)

Finally, a failure penalty is given for collision, running
out of fuel, or leaving the region of space around the
RSO. Failure also terminates the episode.

ϱfailure(t) = −βfailδ(t− tfailure) (9)

• Transition Model: Instead of a probabilistic transition
function, the transition model is implemented as a deter-
ministic generative model. When an action is taken, the
environment propagates the simulation forward in time
until the next action is to be taken. The sMDP ∆t for the
step is the duration that the simulator propagated the step
for.

The environment is implemented in accordance with the
Gymnasium API (Towers et al. 2023) using BSK-RL1,
a package for creating modular, high-fidelity spacecraft
tasking RL environments (Stephenson and Schaub 2024b).
The underlying spacecraft simulation is Basilisk2, a high-
performance spacecraft simulation package (Kenneally, Pig-
gott, and Schaub 2020). Rigid multi-body dynamics in
the perturbed orbital environment and flight-proven flight
software algorithms are used to simulate the environment.
Basilisk is ideal for offline agent training as its high com-
putation speed enables efficient training with a complex
physics-based simulation.

Optimization-Based Shield
Collision with the RSO is of high concern for the servicer
spacecraft. Shielding is a method for guaranteeing opera-
tional safety of a RL-based agent. For this problem, a shield
is developed that prevents the servicer from executing a burn
that may lead to eventual collision with the RSO under nat-
ural dynamics.

1https://avslab.github.io/bsk rl/
2https://avslab.github.io/basilisk/

Shielding for RL
A shield interacts with a policy in order to prevent unsafe
actions (i.e. those actions that may cause a transition into
s′ ∈ Sunsafe in the next step, or for more robustness, in any
future step) (Alshiekh et al. 2018). In general, there are two
classes of shields: “preshields”, which mask disallowed ac-
tions such that the policy may not select them, and “post-
shields”, which override the policy’s action with a safe ac-
tion. This work takes a hybrid approach, in which the shield
overrides the policy’s action with the closest safe action.

CWH Dynamics
The CWH equations of relative motion are a set of linear
equations that describe the unperturbed relative motion of a
deputy spacecraft relative to a chief spacecraft in a circular
orbit. In the Hill frame, the CWH equations are given by

ẋ = Ax, A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

 (10)

where the state vector x = [rHDC ,v
H
DC ] is composed of the

Hill-frame position and velocity of the deputy relative to the
chief, and n = 2π/Torbit is the mean motion of the chief.

Optimization Problem
With these dynamics, the shield can be formulated as an op-
timization problem. In short, the problem is to find the thrust
closest to that selected by the policy π(s) = ∆v that does
not lead to collision with the RSO under CWH dynamics.
Let δv be the change in selected thrust required for safety.
The optimization problem can be written as

min. ∥δv∥ (11)
s.t. ∥∆v + δv∥ ≤ ∆vmax (12)

x0 =

[
r

v +∆v + δv

]
xT
0 exp(Ati)

T

[
I 0
0 0

]
exp(Ati)x0

≥ (RC +RD + ϵ)2 ∀ti ∈ [t0, tmax] (13)

± ((RC +RD + ϵ) + 2A′
0 ± y′off)x

′
off ≤ 3

2
tmaxnx

′2
off

(14)

The objective (11) minimizes the change in requested thrust.
The first constraint (12) ensures that the thrust does not ex-
ceed the maximum possible thrust. The second constraint
(13) ensures that the shielded action does not lead to colli-
sion with the RSO over some upcoming timespan [t0, tmax].
An additional safety parameter ϵ is added to the collision
constraint to account for the effects of perturbations or an
additional safety factor beyond what the agent was trained
to follow. The final two constraint equations (14) are only
necessary if passive safety is desired. With this constraint,



the servicer must either be in a non-colliding periodic or-
bit or on a secularly moving-away trajectory by tmax. This
constraint uses the standard definitions of x′

off , y′off , and A′
0,

where ′ indicates values calculated using the post-correction
state (Schaub and Junkins 2018). See the appendix for the
derivation of the final constraint.

The discretization time δt for propagation must be suffi-
ciently small to prevent collisions between timesteps. The
condition for this is similar to the one found by Morgan
(Morgan, Chung, and Hadaegh 2014). With an upper bound
on relative velocity of the servicer estimated as

⌈v⌉ =
√
(A0n)2 + (2A0n− 3

2
nxoff)2 + (B0n)2 +∆vmax

(15)
the maximum undetectable violation of the collision con-
straint for some δt is given by

rviolation ≤ δt⌈v⌉
2

(16)

It follows that a maximum allowable violation rviolation < ϵ
can be specified and used to select δt.

Results
A hyperparameter search is presented to find the best policy
for the inspection task. The selected policy is then evaluated
across various unshielded and shielded test cases.

Trained Policies
In total, 24 policies are trained. The varied hyperparame-
ters are the fuel use penalty α ∈ [0.0, 0.1, 0.2, 0.3, 0.4, 0.5],
the learning rate ∈ [10−5, 10−6], and the discount rate γ ∈
[0.9995, 0.9999]. The success and failure rewards βsuccess =
βfail = 1. The batch size is 1550. Other hyperparameters are
set to the RLlib 2.35.0 PPO defaults. Policies were trained
for 48 hours each across 32 cores.

Figure 3 shows training curves for all policies: the overall
reward, the fuel usage, and the inspection percent (i.e. the
number of inspected points divided by the number of illumi-
nated points).

The fuel penalty parameter α has a strong impact on the
policy. As expected, lower α values lead to policies that use
more fuel and inspect more aggresively, while higher α val-
ues lead to policies that use less fuel, sometimes at the ex-
pense of satisfactorily completing the task. Policies with a
higher α tend to reduce fuel usage by increasing the drift
time between burns, while those with a low α reduce fuel
usage by completing the task more quickly. This also hints
at why the high α polices trained fewer steps in the same
amount of time: simulating steps with longer drift times is
more computationally expensive.

The selected final policy has learning rate 10−5, discount
rate γ = 0.9999, and fuel penalty α = 0.2. This policy was
selected for its balance between inspection performance and
fuel usage, as shown in Figure 3.

Unshielded Performance
The selected policy is evaluated across various test cases.
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Figure 3: Training curves for all policies. Selected policy
highlighted. Purple: α = 0.0, yellow: α = 0.5.

Unshielded Benchmark To investigate the policy perfor-
mance, 1000 instances of the environment are sampled (ran-
domizing the RSO orbit and servicer initial relative orbit)
and the policy is evaluated on each instance.

Figure 4 demonstrates the overall performance of the un-
shielded policy. The vast majority (98.0%) of cases are suc-
cessfully inspected, using on average 2.8 m/s of fuel to com-
plete the task in 3.2 orbits. The most common failure modes
are using excessive ∆v (1.3% of cases) and using excessive
time (0.7 % of cases). Only 2 of the 1000 cases failed due to
collision with the RSO. This performance is reflective of the
final values of the training curves for the policy.

Example Trajectories The policy’s behavior in two cases
is inspected more closely: an orbit with a high fraction of
illuminated points, and a SSO with a low fraction of illumi-
nated points.

Figure 5 shows results for the highly illuminated case, in
which most of the RSO is illuminated at some point of the
orbit. Since in this case, the servicer starts relatively far from
the RSO, a large portion of the total fuel usage comes from
large thrusts at the start of the episode in order to bring the
servicer within the inspection radius. Once near the RSO,
the policy leverages natural motion dynamics to make oc-
casional adjustments to the trajectory in order to cover the
entire inspectable region.

Figure 6 shows results for the less illuminated SSO case,
in which only about half of the points are inspectable. The
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Figure 4: Unshielded performance of the policy.

trajectory reveals that the policy is aware of the limited in-
spectable hemisphere, even though that information is only
implicitly included in the observation. The resulting trajec-
tory tends to stay on the illuminated side of the RSO in order
to complete the task more quickly.

Shielded Performance
The same policy is evaluated with the shield to demonstrate
safety. First, the shield is used to enforce a narrow constraint
close to that used in the training environment. Then, the abil-
ity of the shield to ensure safety with a significantly more
conservative constraint is demonstrated.

Shielded Benchmark The shielded policy is bench-
marked with the same 1000 instances as the unshielded case.
The keepout radius is set to RC +RD + ϵ = 20 meters and
the timestep selected such that the maximum interstep vio-
lation is 10 meters, leading to an effective guaranteed safety
radius of 10 meters.

Figure 7 shows the aggregate performance of the shield.
Most importantly, the shield prevents all collisions with the
RSO, as expected. Surprisingly, it improves the overall per-
formance of the policy: The mean fuel usage is reduced to
2.6 m/s (from 2.8, unshielded) and the mean inspection time
is reduced to 2.9 orbits (from 3.2, unshielded). The shielded
policy likewise reduces the fraction of cases that ran out of
time or fuel.

The impact of the shield is quantified in Figure 8. Reflec-
tive of the fact that the unshielded policy rarely collided with
the RSO, the shield does not often intervene. Even when the
shield is activated, it is likely not preventing a violation, but
rather enforcing the additional guarantee of passive safety.
Shield corrections tend to be very small in magnitude in this
case. The shield is relatively expensive to evaluate, averag-
ing about 1.0 second per call compared to the 10 ms per call
to the policy. However, this is acceptable since the shield
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Figure 5: Policy behavior in high illumination case. RSO
radius is enlarged.

is only called when the policy is about to execute a thrust,
which occurs with a period on the order of hundreds to thou-
sands of seconds.

Comparing to the state of the art (Van Wijk et al. 2024),
this shielded policy with impulsive thrusts uses only 10-20%
of the ∆v required in van Wijk’s work (12.86 to 26.00 m/s,
depending on experiment configuration) that uses continu-
ous control. Since natural relative motion is leveraged, in-
spection times are about 2.9 orbits rather than 0.59-0.63 or-
bits in their continuous control solutions.

Using a More Conservative Shield A primary benefit of
the shield formulation is that it allows for a keepout radius to
be specified different than that used in training. As a result,
the shield can be made more conservative when approaching
a RSO with a more uncertain state.

Figure 9 shows the policy executed with a shield that en-
forces a keepout radius of RC +RD + ϵ = 100 meters. The
behavior of the policy is similar to the unshielded policy, but
the plot of |rDC | over time shows that the keepout radius is
never violated. Since the keepout radius is much larger than
the collision radius used in training, the shield is required
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Figure 6: Policy behavior in low illumination case (SSO).

to intervene more often to maintain the stricter safety con-
straint.

Discussion of Future Work
A variety of future work can build on these initial results by
increasing the fidelity and complexity of the problem for-
mulation. The properties of the RSO can be generalized to
include tumbling and non-passive attitude dynamics. More
realistic lighting constraints due to self-shadowing on bodies
that cannot be approximated as a sphere or glare on certain
surfaces should also be considered. The servicer can also be
subject to more challenging constraints, such as a more real-
istic thrust model with limitations on the thrusts that can be
produced or more complex keepout constraints reflective of
different CONOPS.

It is also of interest to better investigate the Pareto front
between fuel use and inspection time. While the strategy
presented of training multiple policies with different penalty
factors α is effective, a better solution would be to encode
the priority of time versus fuel efficiency as part of the
MDP, allowing operators to make situation-dependent calls
on which should be prioritized, moving the solution along
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Figure 7: Shielded performance of the policy.
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the Pareto front.
Finally, multiagent inspection tasks present a more com-

plex but interesting problem formulation. The shield can be
extended to prevent collisions between multiple servicers,
and the agents can be trained to coordinate their inspection
tasks to maximize the number of points inspected in a given
time. Both centralized and decentralized control strategies
can be considered for this problem.

Conclusions
This work presents a novel approach to the problem of au-
tonomous inspection of resident space objects (RSOs) with
an impulsively maneuvering servicer spacecraft. The solu-
tions leverage the natural relative motion of satellites in low
Earth orbit (LEO) in order to minimize fuel consumption. To
this end, a semi-Markov decision process (sMDP) formula-
tion of the problem is introduced to account for variable-
duration coasts following impulsive maneuvers. Training an
agent on this sMDP results in a policy that implicity learns
what regions of the RSO are illuminated in order to min-
imize the amount of inspection that must be performed.
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Figure 9: Shielded policy behavior with a 100 m keepout.

To ensure safety, an optimization-based shield is deployed
around the policy; this guarantees that the servicer will not
enter a keepout region around the RSO under natural dynam-
ics over an infinite uncontrolled horizon. Combined, these
methods result in a reliable and efficient method for au-
tonomous inspection of RSOs.
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Appendix: Constraint Derivation
The final constraint in the optimization-based shield, equa-
tion 14, guarantees secularly increasing separation or peri-
odic motion between the servicer and the RSO. The gen-
eral solution to the Clohessy-Wiltshire-Hill (CWH) equa-
tions (10) are given by

x(t) = A0 cos(nt+ α) + xoff (17)

y(t) = −2A0 sin(nt+ α)− 3

2
ntxoff + yoff (18)

z(t) = B0 cos(nt+ β) (19)

Note that only the y component (18) has a secular term. Two
cases exist for safety:
1. The relative motion is periodic and safe. In this case, the

secular term coefficient must be zero to ensure periodic-
ity (up to any perturbations):

−3

2
nxoff = 0 =⇒ xoff = 0 (20)

The safety of the periodic motion is guaranteed by the
collision constraint (13), as long as the period is suffi-
ciently long:

tmax − t0 ≥ Torbit (21)

2. Alternatively, the secular term is nonzero and dominates
the motion. In this case, the magnitude of the local ex-
trema must be greater than the keepout radius and be
growing:∣∣∣∣−3

2
ntmaxxoff ± 2A0 + yoff

∣∣∣∣ ≥ RC +RD + ϵ (22)

d

dt

∣∣∣∣−3

2
ntxoff ± 2A0 + yoff

∣∣∣∣
t=tmax

> 0 (23)

It is worth noting that this constraint on y(t) is more strict
than necessary, as it is possible that the periodic motion
of x(t) and z(t) are enough by themselves to prevent col-
lision with arbitrary behavior in y(t).

The constraints 20 ∨ (22 ∧ 23) reduce to

3

2
tmaxnx

2
off ≥ −xoff((RC +RD + ϵ) + 2A0 + yoff) (24)

and
3

2
tmaxnx

2
off ≥ −xoff(−(RC+RD+ϵ)−2A0+yoff) (25)

which accounts for all possible combinations of signs.
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