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QUANTIFYING THE OPTIMALITY OF A DISTRIBUTED RL-BASED
AUTONOMOUS EARTH-OBSERVING CONSTELLATION*

Mark Stephenson†, Lorenzzo Mantovani†, Anaïs Cheval†, and Hanspeter
Schaub‡

The objective of the multiagent agile Earth-observing satellite scheduling prob-
lem is to maximize the global sum of values of imaging requests imaged by a
constellation. Prior work has shown that individually-trained satellites executing a
deep reinforcement learning policy can best be induced to cooperate on an Earth-
observing mission by sharing their intended tasks as they select them; these agents
are operating on asynchronous variable-duration decision intervals. Additionally,
methods for determining the global optimum for request allocation have been de-
veloped. In this work, these two developments will be combined to quantify how
close to global optimality the distributed method can achieve. The methods are
evaluated over variety of constellation configurations and request distributions,
demonstrating that the intent sharing method is very effective at collaboratively,
autonomously, and reactively scheduling observations for the constellations.

INTRODUCTION

Scheduling constellations of agile Earth-observing satellites (AEOSs) is a challenging problem,
especially with higher densities of requests and satellites [1]. Because of the agile nature of the
satellites (i.e. the ability to slew along-track), each observation request has a time window for
which can be imaged, greatly increasing the set of feasible solutions when compared to traditional
Earth-observing satellites (EOSs) that can only slew across-track. In this work, ideas from two
previous papers are combined to create a scaleable autonomous solution to the problem: a variable-
interval formulation of the agile Earth-observing satellite scheduling problem (AEOSSP) [2] and
the use of single-agent policies in a multiagent environment [3]. This paper explores how best
to induce cooperation between a cluster of satellites operating on different intervals to complete a
many-request imaging task, as shown in Figure 1.

Much of the existing literature treats the AEOSSP as a discrete task-based planning problem,
representing possible collection events as vertices and feasible slews as edges [4]. The problem (not
considering resource management, which must be handled by additional constraints) is then reduced
to maximization over a directed acyclic graph, part of a well-studied class of problems [5, 6]. Mixed-
integer programs (MIPs) or iterative local search (ILS) can then be used to find optimal solution.
For single-satellite planning, these approaches are considered in [7] and [8], among many others.
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Figure 1: Concept of autonomous multiagent Earth-observing constellation tasking with intent
sharing. Satellites share the request they intend to complete next in order to deconflict tasks.

These preplanning approaches can be extended to account for multi-satellite constellation plan-
ning and request deconflicting among agents. Bianchessi considers the problem for hundreds to low
thousands of requests across two satellites and multiple users, comparing a heuristic method to an
optimal solution [9]. Cho develops a two-step approach to constellation scheduling, first planning
downlink opportunities then request fulfillment for up to 12 satellites and 700 requests [10]. Kim
introduces additional realistic constraints for imaging and a heuristic to speed planning times for
a constellation [11]. Wang formulates a MIP with added cloud uncertainty for up to 300 requests
[12]. Nag utilizes dynamic programming to greatly improve planning times for a two-satellite con-
stellation [13]. Eddy introduces a set-theory-based approach to target allocation that scales better
than other approaches for large constellations and request sets [14].

A common theme among these approaches is a time-expensive planning stage, often requiring
tens of minutes to hours to plan for constellations with at most tens of agents and hundreds to
thousands of requests. These computationally expensive and time-consuming approaches limit the
possibility of replanning when the request set has changed or of onboard planning. A recently
proposed alternative for satellite scheduling is the use of onboard autonomous tasking policies found
with reinforcement learning. Markov decision processes (MDPs) for the single-agent, task-based
AEOSSP are formulated in [15, 16, 17, 18]. In particular, [15] and [16] use high-fidelity simulation
environments for training and testing. Zhao applies reinforcement learning differently, training an
agent to perform the global scheduling problem for a single satellite [19]. Reference [2] builds
on previous work in on-orbit autonomy by implementing variable-duration decision intervals into
the MDP formulation, in order to be able to produce the same quality of solutions as MIP-based
approaches.

Multiagent interaction has been identified as an important next step in multiagent satellite plan-
ning [20]. Asynchronous interagent reactivity can be combined with existing allocation algorithms,
as demonstrated in [21]. To generalize to a scalable multi-satellite constellation using reinforce-
ment learning (RL), reference [3] adds communication between single-agent-trained satellites to
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Figure 2: Examples of each target distribution over various request densities.

deduplicate efforts.

This work builds on reference [3] by introducing considerations for communications when satel-
lites are not operating on the same decision interval. In this work, two methods are compared for
solving the agile Earth-observing constellation scheduling problem (AEOCSP): a mixed-integer lin-
ear program (MILP)-based approach that yields globally optimum solutions [22] and a distributed
RL-based approach that induces collaboration among agents [23]. The goal of this paper is to
demonstrate that the intent sharing method from [23] can achieve near-optimal results in a multia-
gent system using RL when compared to the global MILP solutions, just as [2] demonstrated for a
single agent. To do so, the intent sharing method is evaluated against the MILP solutions (both a
2-hour solution and an upper bound) for a variety of constellation configurations and request dis-
tributions. A string of four satellites is considered with varied spacing and a small Walker-delta
constellation are both considered in order to investigate the impact of satellite spacing on the per-
formance of the intent sharing method. The resulting performance shows that the intent sharing
method is able to efficiently and effectively schedule observations for the constellation.

PROBLEM STATEMENT

The AEOCSP is considered for a homogeneous constellation of imaging satellites with a joint ob-
jective to maximize the cumulative value of unique fulfilled requests. For a comparison of methods,
it is assumed that either open-loop task schedules can be uplinked to the constellation or that the
constellation has intersatellite communication capabilities to autonomously coordinate closed-loop
request selection.

Request Model

Image requests are specified using a point-based request model as a tuple consisting of an Earth-
fixed location and a priority, ρi = (ri, ri) ∈ R. All requests start in the unfulfilled set R = U .
When a ground location is imaged, the corresponding request is removed from U and added to the
set of fulfilled requests F . The value of fulfilling ρi ∈ U yields a reward equal to the priority ri;
fulfilling an already-fulfilled request ρi ∈ F yields no reward. Should an operator want to image
the same location multiple times, multiple requests can be made in that location with constraints on
the availability period of each request.

In this work, two distributions of requests are considered (Figure 2): A uniform distribution over
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the surface of the Earth, |R| ∈ [100, 10000], and a city-based distribution, |R| ∈ [300, 3000].* For
both distributions, request priorities are uniformly distributed ri ∈ [0, 1]. The city-based distribution
is intended to be representative of many Earth-observing missions, where the request type tends to
be concentrated in specific areas of interest (e.g. coastline, urban areas, etc.).

Satellite Dynamics

For a satellite to fulfill a request, various dynamic requirements must be satisfied. Each satellite
has a body-fixed instrument pointing in the ĉ direction. Being an agile satellite, an attitude control
algorithm is used to orient the instrument to point at the location of the request [24]. The satellite’s
instrument must be pointed at the request location within δθ and track its relative motion within a
rate threshold δθ̇ to take an image, fulfilling the request.

Because the satellites are agile (i.e. capable of slewing along-track), each request is accessible for
opportunity intervals [to, tc] = o ∈ Oi, as defined by quality of image constraints such as elevation
angle, time of day, or lighting conditions. In this work, only a minimum elevation angle constraint
ϕmin is considered, but generalization to other constraints is straightforward. The satellite must be
able to satisfy the dynamic constraints within the opportunity interval to fulfill the request.

The combination of attitude-based pointing and limited access opportunities yields a slew time
constraint between requests. The satellite must slew from its current attitude to the request attitude
before the opportunity for the request closes.

Simulation Environment

Each satellite’s dynamics are ultimately defined by a high-fidelity simulator of the constellation
and environment. The environment is configured using BSK-RL†, an open-source package for
building spacecraft tasking environments for RL [25]. The environment includes component-level
dynamics models, flight-proven flight software algorithms, and models of the space environment. In
particular, the attitude control system is modeled with reaction wheels driven by torque commands
from a nonlinear controller; this results in flight accurate transition dynamics between requests.

The package uses Basilisk‡ for the underlying high-fidelity spacecraft simulation [26]. Agents
interact with the environment via the Gymnasium API, allowing for compatibility with all major
RL frameworks [27].

Optimization Objective

The objective of the problem is to maximize the sum of fulfilled requests,

maximize
∑
ρi∈F

ri (1)

s.t. dynamics constraints (2)

subject to the previously described constraints imposed by the dynamics of the satellites and the
environment in fulfilling requests.

*City location data from simplemaps.com.
†https://avslab.github.io/bsk_rl/
‡https://avslab.github.io/basilisk/
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METHODS: MILP FORMULATION

A common class of methods used for satellite and constellation task sequencing are MILPs.
Reference [22] describes a method for efficiently constructing a graph representation of the problem
and solving it with a MILP solver. This method uses a learned transition time estimator to more
accurately represent the problem and find solutions that are optimal when executed in the high-
fidelity simulator. In summary, the method is as follows:

1. First, a neural network based slew duration estimator is trained using supervised learning.
This estimator predicts the time it takes for the satellite to transition from one state to pointing
at an upcoming request. The estimator is trained on a dataset of simulated transitions.

2. For the set of requests and horizon being planned for, the opportunities for each request are
calculated. These opportunities are computed based on any constraints that must be satisfied
for the request to be fulfilled. In this work, only the minimum elevation angle constraint is
considered, but the method generalizes to other time-based constraints.

3. A graph of feasible transitions between discrete points in time along each opportunity is
constructed. Reference [22] demonstrates how this graph can be constructed in a sparse
manner to improve solution times.

4. Finally, a MILP is formulated to maximize the sum of fulfilled requests. The MILP uses the
graph of feasible transitions to ensure that the solution respects the dynamics of the satellite
and the environment. The MILP is solved using a commercial solver, and the solution is
executed in the high-fidelity simulator.

METHODS: RL WITH INTENT SHARING

The goal of this paper is to compare a scalable RL-based approach to the optimal MILP solutions
to the AEOCSP. For the RL-based approach, the problem is formalized as a MDP, RL is used to
train a policy for a single-agent instance of the environment, and an intent sharing algorithm is
defined to induce collaboration between agents.

Markov Decision Process

The multiagent problem is formalized as a decentralized partially-observable semi-Markov deci-
sion process (Dec-POsMDP), a generalization of a MDP for decentralized decision-making between
multiple agents with a single goal [28]. Semi-Markov refers to the fact that each step has a time du-
ration associate with it that can vary between steps [29]. A deterministic simulation of the scenario
is given as the generative model G(s, a) = s′, as described in the simulation environment section.
The elements of the Dec-POsMDP are as follows:

• State Space S: The space of simulator states required to maintain the Markov assumption.
This consists of the satellite state spaces and the environment state, S = S1× ...×Ss×Senv.
These states include “intuitive” aspects of the state, like satellite positions and attitudes, as
well as “hidden” aspects, like internal flight software states, in order to make the formulation
Markov.
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Quantity Dim. Normalization Description
HωBE 3 0.03 rad/s Hill-frame body angular rate
Hĉ 3 - Hill-frame instrument pointing direction

ErBE 3 rE Earth-fixed position, Earth radius-normalized
EvBE 3 vorb Earth-fixed velocity, orbital velocity-normalized
rn N - Request value ∈ [0, 1]

HrRnB 3N 800 km Hill-frame request location
θn N π/2 Angle between request and boresite
ωn N 0.03 rad/s Angle rate between the request and boresite

topenn , tclosen 2N 300 s Request opportunity window

Table 1: Elements in the observation space o and their normalization constants, as in [2]. Lower
half of table is provided for next N unfulfilled requests. The prepended superscript indicates the
frame in which the observation is expressed.

• Joint Observation Space O and Observation Probability Function Z: The product of the
individual observation spaces of each satellite; since the satellites are homogeneous, O =
O1 × ... × Os = OS

sat. Each satellite’s observation is a noiseless subset of the state space
O(s) ⊂ s, so Z(O(s)|s) = 1. The elements included in the observation for each satellite
are given in Table 1. The observation includes satellite states and information about the next
N = 32 unfulfilled requests; the elements included in the observation are determined by a
combination of experimentation and expert knowledge.

• Joint Action Space A: The product of the individual action spaces of each satellite; since
the satellites are homogeneous, A = A1 × ...×As = AS

sat. Each satellite has N + 1 actions:

– aim,i ×N : Actions to attempt to fulfill each of the N = 32 next unfulfilled requests, by
time of next encounter. The satellite slews to point the instrument at the request location
and — if attitude, rate, and access constraints are met — takes an image. As such, this
action does not guarantee successful imaging.

• Transition Probability Function T (s′|s, a): Transitions and transition durations are gener-
ated by the deterministic simulator. The simulator propagates for a variable amount of time,
depending on the actions taken and how the environment evolves during propagation. Propa-
gation is halted when one of two conditions is met:

1. Imaging Successful: If any satellite tasked with an imaging action successfully images
the target, the simulation halts since that satellite’s action can result in more reward.

2. Opportunity Window Close: If the opportunity window closes for any satellite tasked
with an imaging action, the simulation halts since the action will not result in any reward.

The simulator returns the next state s′, the reward r, and the step duration ∆t.

• Reward Function R(s, s′): The agents are jointly rewarded for imaging unfulfilled requests
during a step:

R(s, s′) =
∑
ρi∈R

{
ri if ρi ∈ U and ρi ∈ F ′

0 else
(3)
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Reinforcement Learning

RL is a method of finding a mapping of states to actions (π(s) = a) to maximize a long-term
reward signal in an environment with unknown and sometimes probabilistic dynamics [30]. The
learning agent finds this mapping by interacting with the environment, receiving a reward signal, and
updating its policy based on the reward signal and the observed state-action pairs. For continuous
or sufficiently large state and action spaces, deep reinforcement learning (DRL) is often applied,
which uses deep neural networks to represent the agent’s policy.

In this work, the proximal policy optimization (PPO) algorithm is used to train a policy for a
single-agent instance of the environment [31]. PPO has been shown to be performant across a
variety of domains, including spacecraft tasking [32]. The RLlib implementation is used due to its
scalability [33]. Agents are able to learn about 10M steps of training, or 10 to 15 years of simulated
on-orbit time, in about 24 hours of wall-clock time on a 32-core CPU.

Intent Sharing for Emergent Collaboration

Because multiagent RL presents a number of theoretical and practical challenges, prior work has
investigated the efficacy of deploying single-agent trained policies in a multiagent environment by
inducing collaboration in order to achieve scalability [3, 23]. Collaboration is induced by modifying
each agent’s request list based on the actions of the other agents, thus leveraging their closed-loop
planning to respond to a modified environment state.

The “intent sharing” algorithm (Algorithm 1) was found to be most effective if intersatellite
communication is available. In this algorithm, each agent shares the request it intends to fulfill
with the other agents, in a set denoted by I. The other agents then temporarily remove that request
from their request list, as shown in Algorithm 1. If the request is successfully fulfilled, all agents
permanently remove the request from their request list.

Algorithm 1 Intent Sharing

for each agent n do
if current request ρ not complete (fulfilled or out of range) then

assign ρ to agent n
else current request ρ complete
I ← I \ {ρ}
use policy π to select request ρ′ from U \ I
assign ρ′ to agent n
I ← I ∪ {ρ′}

end if
end for

With this algorithm, satellites avoid wasting time on a task that another satellite is already plan-
ning to complete. This allows the agents to more effectively use their time and resources to fulfill
requests, leading to a higher cumulative reward.

RESULTS

The performance of the intent sharing method relative to the optimal MILP solution is evalu-
ated for two constellations—a string constellation with variable spacing and a small Walker-delta
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(a) Illustration of the string constellation configura-
tions. Four satellites in the same orbital plane with
true anomaly spacing. True anomaly separation of
0.1, 1.0, and 10.0 degrees were considered.

(b) Illustration of the Walker-delta constellation con-
figuration. Two orbital planes with two satellites
each, separated by 180◦ in the longitude of the as-
cending node and true anomaly.

Figure 3: Illustrations of the two different constellation configurations used in this work.

constellation—over various request distributions.

Constellation Configurations

The string constellation contains all satellites in the same orbital plane, varying their relative
true anomaly. True anomaly separation of 0.1, 1.0, and 10.0 degrees were considered, based on
Reference [23]. The increase in spacing between satellites leads to a decrease in tasking conflicts.
The string configuration was chosen to investigate how the RL-based policy benefits from intent-
sharing in different scenarios with different levels of conflict.

A small instance of the Walker-delta constellation was also tested. Two planes with 2 satellites in
each were used. The orbital planes have a 180 degrees separation in the longitude of the ascending
node while satellites in the same orbital plane have a separation of 180 degrees in true anomaly.
Conflict in this configuration arises when the ground path of satellites in different planes intersect.
It was selected to complement the string configuration by creating zones of low and high conflict.

Performance

In each case, the performance of the intent sharing method is compared to two values: the MILP
solution computed with two hours of solve time and the upper bound on optimality returned by the
MILP solver. The true optimal solution falls between these bounds.

String Constellation First, the performance is evaluated on three configurations of the 4-satellite
string constellation to investigate how the spacing of the satellites necessitates collaboration. The
phasing of the satellites is varied at 0.1◦, 1.0◦, and 10.0◦, with the hypothesis that closer spacing
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Figure 4: For the string constellation with various phasings, performance of intent sharing relative
to the MILP solution across request distributions. Single-satellite RL performance is given for
comparison.

will require more performant collaboration to achieve global optimality.

Figure 4 gives the results for the string constellations, compared to how optimally the policy
performs in a single agent case. The intent sharing method shows strong performance across con-
figurations and request densities. Over lower densities (|R| ≤ 5000) of uniformly spaced requests,
the intent sharing method achieves the same performance as the MILP solutions, which generally
converge. At higher uniform densities, the intent sharing method is able to outperform the solution
found by the MILP solver in two hours§; even when compared to the upper bound of optimality,
intent sharing still achieves within 90% of the bound on the optimal solution. Over city-distributed
requests, the performance of intent sharing is still strong relative to the MILP solutions. The in-
tent sharing method is able to achieve within 90% of the two-hour solution across all densities, and
within 77% of the upper bound.

For both request distributions, the intent sharing method performs better relative to the MILP
solution than the single-agent policy performs relative to the single-agent MILP solution. This
implies that the intent sharing method maintains the performance of the single-agent policy while
benefiting from collaboration as a means to simplify the problem on a per-agent basis. This is in
contrast with global planning methods, which tend to become less efficient as the number of agents
being planned for increases.

Figure 5 (uniform requests) and Figure 6 (city requests) investigate how each satellite contributes
to the total reward collected by the constellation. Both methods tend to distribute the most requests
to the lead satellite when encountering a low density of requests and large satellite separation. As
the density of requests increases, more requests become available for the other satellites to image,
decreasing the reward-per-satellite gap.

§In 3/15 cases with 10,000 requests, the MILP solver did not find any reasonable solution.
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Figure 5: Fraction of reward collected by each satellite with uniformly distributed requests.

Walker-Delta Constellation The Walker-delta constellation with two planes of two satellites each
is evaluated to investigate how a sparse constellation configuration affects the performance of the
intent sharing method. Figure 7 gives the results of these experiments. As with the string constel-
lation, the performance of the intent sharing method is generally strong, but it struggles most for
high-density city-distributed requests. Still, the performance relative to the two-hour MILP solution
remains above 75%. The higher request density caused by clustered cities is challenging for the
RL-based policy, while the number of requests is still low enough for the MILP solver to find a
suitable solution. Nonetheless, the intent sharing case presents a higher optimality fraction than the
single satellite.

Discussion

Onboard Solution Time A key observation about the performance of the RL and intent sharing
system is the low computational cost of evaluating the policy onboard the satellite. Because it
consists of a single 2 × 2048 node fully-connected neural network, the policy can be evaluated in
less than 10 ms on a modern CPU.

Relative Complexity and Scalability A limitation of the global planning techniques is that they
scale poorly with constellation size and planning horizon [22]. The latter factor, planning horizon,
is driven by the availability of uplink opportunities to the constellation. An important property of
the intent sharing method is that the complexity of the problem does not increase with the number
of agents nor the planning horizon since no global solution is required.

Communication Requirements One technical requirement of satellites operating in a distributed
manner is the ability to communicate with other agents. In this work, it is assumed that intersatellite
communication is available, and that the satellites can share their intended actions with each other.
This is increasingly realistic as intersatellite communication technology and networks continue to
grow. Even then, prior work [3] has demonstrated that full communication among all agents is
not necessary for other communication-based reactive planning to be effective; in particular, only
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Figure 6: Fraction of reward collected by each satellite with city distributed requests.

communication among local groups of satellites is sufficient to achieve good performance.

CONCLUSION

This work demonstrates that single-agent RL policies can be effectively deployed in a multiagent
environment by inducing collaboration through intent sharing, analyzing a variety of constellation
configurations and request distributions. The intent sharing method is shown to induce multiagent
performance that is closer to optimal than in the case with a single RL-based policy. This trend is
opposite to the trend seen in global planning methods, which tend to become less efficient as the
number of agents being planned for increases. As such, the intent sharing method for multiagent
RL is a performant approach to achieving scalable, autonomous, and reactive tasking for Earth-
observing constellations.
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