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Scalable Autonomous Decentralized Constellation Tasking on
Asynchronous Semi-Markov Decision Processes

Mark A. Stephenson∗ and Hanspeter Schaub†

Spacecraft and constellation scheduling is a challenging problem, especially when considering uncertain environments
and many agents. Traditional methods often rely on expensive ground-based planners to generate task schedules, which
may not be possible in highly dynamic environments. This paper presents a scalable, decentralized, autonomous
approach to constellation tasking by formulating the problem as an asynchronous decentralized partially observable
semi-Markov Decision Process (Dec-POsMDP) and using deep reinforcement learning to train a single per-agent policy
for all agents to execute locally. In particular, wildfire observation is considered as a motivating science objective, in
which satellites in a constellation must opportunistically image fires of unknown importance. This application highlights
two benefits of using reinforcement learning for spacecraft tasking that emerge from the decentralized autonomous
approach: 1) closed-loop responsiveness to opportunistic task lists; and 2) scalability to constellations of differing
sizes. The benefits of fine-tuning the policy for a particular constellation architecture in a multiagent environment are
demonstrated through a comparison of policies over different constellations, and the generalizability of policies to larger
constellations is investigated.
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1. Introduction
Planning and scheduling for satellites and constellations is challenging due to the complexity associated with

generating and uplinking task schedules. This is further compounded when considering highly nonstationary
environments, such as those with many opportunistic events to exploit, which can lead to a cascading need for on-the-fly
replanning that may not be feasible with onboard resources [1]. Per-agent, closed-loop distributed autonomy is an
attractive alternative to global open-loop planners for opportunistic science missions [2], presenting new challenges but
enabling otherwise impossible mission architectures. In this work, wildfires are opportunistic and quickly evolving
events that are valuable to responsively monitor for both scientific and disaster response purposes; this paper will present
a scalable, decentralized, autonomous approach to wildfire monitoring with a constellation of satellites.

Traditional methods for satellite scheduling tend to rely on global or hierarchical ground-based planners to generate
constellation-wide task sequences and upload them when satellites are accessible [1, 3]. References [4–7] and others
demonstrate a variety of methods, including mixed-integer programming, iterative local search, and other optimization
techniques. These methods scale poorly with constellation size due to combinatorial complexity and require a priori
knowledge of the task list. Some treatments consider aleatoric uncertainty but do not use real-time information to
inform future decisions, maintaining the ground-based preplanning approach [8, 9]. Markov decision processes (MDPs)
provide a framework for closed-loop decision-making in uncertain environments: Eddy [10] and Harris [11] formalize
the Earth-observing spacecraft tasking problem as an MDP, and Herrmann demonstrates the use of deep reinforcement
learning (RL) to learn a single-agent autonomous policy [12]. Research into RL in the multiagent setting has not
sufficiently explored decentralized planning for constellations with tasks that require cooperation. Some algorithms
merge RL with centralized global planning stages [13–15]. Others only consider preventing the duplication of tasks: In
[16], the closed-loop nature of a single-agent-trained policy is leveraged in a multiagent setting with communication to
deduplicate tasks in a policy that has not inherently learned to coordinate. Li considers RL on a similar tasking problem,
in which task deduplication can be achieved through value modification [17].
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In this work, a constellation tasking problem for coordinated and responsive identification and monitoring of wildfires
as they evolve is formulated as an asynchronous decentralized partially observable semi-Markov decision process
(Dec-POsMDP), building on prior work considering the single-agent case [18] and the use of single-agent-trained policies
in a multiagent setting [16]. Wildfires are selected as the target of interest as there is no prior knowledge about their
location or value, necessitating closed-loop planning. Each satellite is equipped with a low-resolution forward-looking
scanning instrument that can coarsely identify the locations of wildfires as they appear, and a high-resolution pointing
instrument that can image the wildfires in detail to produce information of interest to stakeholders, similar to the
architecture in [19]. The goal of the problem is to maximize the value of images collected by the constellation, where
image value is a function of the wildfire’s intensity at the time of the image, which can only be coarsely determined
by the low-resolution instrument: large, rapidly-evolving wildfires are more valuable than small, short-lived ones. A
high-fidelity simulation environment is configured using the BSK-RL package for spacecraft tasking RL environments
[20, 21].

Given information about the agent’s own state and upcoming known wildfires, each agent independently and
asynchronously decides onboard which upcoming target to attempt to image next, subject to slew time and visibility
constraints inherent to the high-fidelity simulation. Instead of coordinating actions at the policy level, collaboration is
achieved through a realistic notion of intersatellite communication defined internally to the MDP, in which information
about the previous imaging times and values for each wildfire is shared between satellites at a reasonable interval. In
a multiagent training environment, deep RL is used to learn a single closed-loop policy that is executed locally by
each agent, implicitly leading to scalability, responsiveness, and robustness. In particular, a modified implementation
of proximal policy optimization is used that accounts for variable-duration actions in semi-MDPs [22–24]. A base
single-agent policy is trained and then fine-tuned on a variety of constellation architectures, demonstrating that in
scenarios with more interaction between agents, the policy can be improved by multiagent training.

2. Problem Formulation
The problem is constructed in three parts: a model of the science objective that the constellation aims to monitor, a

description of the satellite capabilities and behaviors, and a formalization of the closed-loop scheduling problem as a
MDP. In summary, wildfires appear stochastically and evolve in intensity over time. Satellites can detect these fires with
a low-fidelity sensor, but must using a high-fidelity agile-pointing instrument to collect scientifically valuable data. The
task is to maximize the value of the data collected by the constellation, in which the value of an image is proportional to
the intensity of the fire at the time of the image. Satellite must decide which upcoming fires to image based low-fidelity
estimates of value and satellites’ previous images of the fires, subject to slew time and data buffer constraints.

2.1. Wildfire Science Objective Model
Wildfires are selected as the objective for the satellite tasking problem due to their unpredictable appearance, rapid

evolution, and a motivating scientific and practical value for observing their behavior. A sufficiently detailed model of
wildfires is necessary to drive the tasking problem; as such, a generative model for wildfires has been derived from a
database of historical wildfire occurrences [25]. With this model, random but realistic distributions of fire instances can
be sampled for use in a RL environment.

A multistep approach to generating wildfire instances is taken. First, a global wildfire occurrence rate process is
sampled, which gives the rate at which new fires occur (Equation 11). This model is dependent on the time of year
being sampled. Based on this rate, fire ignition times 𝑡0,𝑖 are generated. The location of the fire is then sampled from a
global, day-of-year-dependent distribution of fire occurrences (Figure 11). Finally, a duration Δ𝑡𝑖 (Equation 14) and
total burnt area 𝐴𝑖 (Equation 15) are sampled from a joint distribution. Typically, this fire model generates 3000 to
10000 active fires at any given time, usually highly clustered in certain regions of South America and Africa, depending
on the time of year.

Each fire is assigned a time-varying intensity function 𝐼𝑖 (𝑡), seen in Figure 1. This function is meant to be
representative of how “interesting” a fire is at a given time. For many applications, this is reasonably related to how
large or active the fire is. As such, this function is arbitrarily defined as
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where 𝐺 (𝑡) is a Gaussian process with a mean of 0, a variance 𝐴2
𝑖
/100, and length scale of ℓ = 50 seconds. Effectively,
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Fig. 1 The model is instantiated for a one-day duration. (Left) Map of fire locations; marker size and color
indicates fire intensity. (Right) Change in fire intensity over time; color indicates fire duration.

this is a parabola with roots at the start and end times of the fire and a peak proportional to the area, plus a random walk.
For a specific application, this function would be derived from expert knowledge about which qualities of a fire are most
important to observe for the given use case.

Detailed model parameters are given in the appendix.

2.2. Satellite Architecture
An agile Earth-observing satellite (AEOS) is modeled with two instruments: the agile pointing instrument used

to collect scientifically valuable data, and an always-on lookahead scanning instrument that detects upcoming fires
along with a rough estimate of their intensity. This operations scheme is similar to that in [26] as well as other dynamic
tasking architectures. This architecture is key for demonstrating the in-the-loop planning capabilities of RL-based
policies, as the agent does not have any prior knowledge of the task locations or values, as opposed to in previous work
in which the satellite is tasking over a fixed-location, fixed-value request list [18].
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Fig. 2 The satellite’s field of view when collecting an image, field of regard for possible collects, and lookahead
for upcoming fires.

The lookahead scanning instrument identifies fires from the satellite’s current location up to the horizon, or
approximately a 7 minute horizon of upcoming along-track opportunities. This instrument provides knowledge of fire
𝑖’s location and a coarse estimate of the fire intensity:

𝐼𝑖 (𝑡scan) = ⌈𝐼𝑖 (𝑡scan)⌉ (2)

The purpose of this instrument is to provide the agent with information about possible upcoming tasks.
The agile pointing instrument is used to collect scientifically valuable data, which is the objective of the mission.

When the instrument, which has a body-fixed boresight direction of 𝒄 is pointing at a fire within some pointing threshold
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𝛿𝜃max (i.e. the field of view in Figure 2) and rate threshold 𝛿𝜔max, an image is collected, yielding an accurate value for
the fire’s current intensity 𝐼𝑖 (𝑡image) and a proportional reward towards the maximization objective. The agile instrument
is pointed using the satellite’s attitude dynamic control system, which implement an asymptotically stable pointing
controller driven by reaction wheels [27]. As a result, transition times between imaging different targets are nonzero
and depend on the slew time required to point the instrument. Fires can only be imaged if they are within an elevation
limit 𝜙 of the satellite’s current position corresponding to a 500 km radius field of regard.

Furthermore, each satellite has a finite amount of data storage in the buffer 𝐵max. Only 50 images may be stored at
a time. When within a 45° elevation of one of seven ground stations (Boulder, Merritt Island, Singapore, Weilheim,
Santiago, Dongara, and Hawaii), satellites can downlink data at a rate of one image per second, freeing buffer space for
new image collection. If a satellite attempts to collect an image while the storage is full, it is unsuccessful.
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Fig. 3 Minimum (bottom) and maximum (top) revisit times [hr] for the (left) 12-satellite Walker-delta, (middle)
string constellation, and (right) 48-satellite constellations.

Satellites are placed in 800 km, 60° inclination circular orbits; this inclination allows the satellites to cover the
majority of the latitudes over which wildfires occur. Three multisatellite constellations are considered in this work: A
3-plane × 4-satellite-per-plane Walker-delta constellation, a 4-satellite “string” constellation with 20° true anomaly
spacing, and a 48-satellite constellation made of two planes of 24 satellites each. The respective maps of coverage and
revisit frequency for each constellation is given in Figure 3, generated using the Tool for Early Mission Planning and
Observation (TEMPO)∗ [28, 29].

2.3. Information and Objective
In order to define an objective for the tasking problem and inform the agents’ decision-making, each satellite records

two logs of information based on the observations made by the instruments:

• Latest Scan Log: For each fire 𝑖 that has been scanned with the low-fidelity scanning instrument, a tuple
containing the fire index, the time of scanning, and the low-fidelity estimate of intensity [𝑖, 𝑡scan, 𝐼𝑖 (𝑡scan)] is
recorded for the latest scan. This tuple is overwritten whenever new scanning information is collected about the
fire.

• All Collect Log: Whenever a fire is collected by the agile imaging instrument (i.e. the pointing thresholds are
met and storage is available in the data buffer 𝐵 < 𝐵max), a tuple containing the fire index, the time of the collect,
and the high-fidelity measurement of the intensity 𝑐 = [𝑖, 𝑡col, 𝐼𝑖 (𝑡col)] is appended to a list of all collects C.

Note that the size of these logs are unrelated to the data buffer fullness 𝐵; they are instead treated as metadata with a
minimal storage requirement.

∗https://github.com/jsipps26/TEMPO
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The objective of the tasking problem is to maximize the value of the images collected by the constellation:

maximize
∑︁
𝑐∈C

𝑟 (𝑐) (3)

Per-collect reward 𝑟 is assumed to be proportional to the intensity of the fire at the time of the collect for this application;
the intensity function and/or reward function 𝑟 could be arbitrarily redefined if different behavior was desired. To
prevent overimaging of a single request, a linear penalty on collect frequency is applied. The reward function is

𝑟 (𝑐) =
{
𝑡−𝑡 ′
𝜏

𝐼𝑖 (𝑡col) if ∃ 𝑐′ ∈ C s.t. 𝑡 − 𝑡′ < 𝜏

𝐼𝑖 (𝑡col) else
(4)

where 𝜏 = 30 minutes is the penalty duration.
In multiagent settings, each satellite maintains its own logs of scans and collects. To enable coordination between

satellites, a communication mechanism is defined that allows satellites to share information about their logs. Intersatellite
communication is defined as the exchange of log data: For the scanning log, newly identified fires from other satellites
are added, and existing fires are updated with the latest intensity estimate. For the collect log, new collects completed by
other satellites are added. It is assumed that intersatellite communication is free and instantaneous. Communication is
performed every five minutes within the simulation. This environment-implicit communication avoids the need for
more complex multiagent reinforcement learning (MARL) techniques that require policies to be able to communicate
prior to deciding on any action; it also allows for communication to be defined in an arbitrary satellite-realistic way.

2.4. Problem Formalization
To approach the problem with RL, the wildfire monitoring task is formalized as a Dec-POsMDP. A MDP is a

generic framework for expressing tasking problems, in which an agent selects actions 𝑎 ∈ A based on the current state
𝑠 ∈ S of an environment; in turn, the environment returns a new state 𝑠′ and a scalar reward 𝑟 [30]. The objective of an
agent is to maximize the sum of future rewards.

Partially-observable Markov decision processs (POMDPs) extend the MDP framework to include partial observability,
in which the agent does not have full knowledge of the environment state. This may be due to epistemic limitations or
an excess of functionally irrelevant states in the simulator; both are true in the environment. Decentralized POMDPs
(dec-POMDPs) extend this notion to a multiagent setting, in which each agent has its own partial observation of the
environment and must select its own action based on its own observation [31].

In a semi-Markov decision process (sMDP), each step has a duration associated with it. For example, an action that
yields reward after a longer duration step will see that reward more heavily discounted than an action that yields reward
quickly. When applied to the multiagent case, this requires agents to make decisions asynchronously, as the duration of
each agent’s step may be different.

The MDP is implemented using BSK-RL, a tool for generating high-fidelity, modular spacecraft tasking RL
environments† [21]. Underlying models include rigid body dynamics with reaction-wheel based control, execution
of flight software for each flight mode, and realistic orbital and planetary dynamics. Frameworks to represent data,
communication, and the objective are also included in the package. To formalize the wildfire monitoring task as
a Dec-POsMDP, the following elements are defined, reflecting the generative model provided by the simulation
environment:

• State Space S: The state space is the complete space of simulator states required to maintain the Markov
assumption. This includes directly observable variables such as each spacecraft’s dynamic state and known
information about fires, unknown information about fires, and variables required for simulation such as controller
integrator states. Practically, only a subset of the state is relevant to the scheduling problem, which is exposed
through the observation function.

• Observation Space O and Observation Probability Function 𝑍: The observation space O for each agent
consists of a deterministic selection of dimensions from the state space and transformations thereof. The selected
elements are those presumed to be relevant to decision-making for the problem, based on expert knowledge and
experimentation. Informed by prior work [18], the observations for each satellite in this environment include
information about the satellite’s dynamic state and the next 𝑁 = 32 upcoming known fires, as given in Table 1. In

†https://avslab.github.io/bsk_rl/
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Quantity Norm. Dim. Description
H𝝎BH 0.03 rad/s 3 Hill-frame body angular rate

H𝒄 - 3 Hill-frame instrument pointing direction
E𝒓BE 𝑟𝐸 3 Earth-fixed position, Earth radius-normalized
E𝒗BE 𝑣orb 3 Earth-fixed velocity, orbital velocity-normalized
𝐵 𝐵max 1 Data buffer fill level

[𝑡𝑜down, 𝑡
𝑐
down] 𝑇orb 2 Next downlink opportunity open and close time

H𝒓𝑖 800 km 3 × 𝑁 Hill-frame position of next 𝑁 known fires
𝛿𝜃𝑖 𝜋/2 rad 1 × 𝑁 Pointing error of next 𝑁 known fires

[𝑡𝑜
𝑖
− 𝑡, 𝑡𝑐

𝑖
− 𝑡] 𝑇orb 2 × 𝑁 Opportunity open and close of next 𝑁 known fires

[𝑡scan, 𝐼𝑖 (𝑡scan)] [𝑇orb, 1] 2 × 𝑁 Latest scan information of next 𝑁 known fires
[𝑡col, 𝐼𝑖 (𝑡col)] [𝑇orb, 1] 2 × 𝑁 Latest collect information of next 𝑁 known fires

Table 1 Elements in each satellite’s observation 𝑜 and their normalization constants.

particular, the information about fires draws from the latest scan log and all collect log, which contain information
collected by the satellite and communicated from other satellites. Observation elements are normalized to fall
approximately in [−1, 1], which improves the performance of deep reinforcement learning (DRL) algorithms.

Agent 1

Agent 2

Agent 3
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<latexit sha1_base64="D0s8UHrdlyehx4AUJP9UGMe414Q=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxC3ZSZItVl0Y3LCvYB7ThkMmkbmkmGJCPUofgrblwo4tb/cOffmGlnoa0HAodz7uHenCBmVGnH+bYKK6tr6xvFzdLW9s7unr1/0FYikZi0sGBCdgOkCKOctDTVjHRjSVAUMNIJxteZ33kgUlHB7/QkJl6EhpwOKEbaSL591E94SGQWh+I+rbhnU7/m22Wn6swAl4mbkzLI0fTtr34ocBIRrjFDSvVcJ9ZeiqSmmJFpqZ8oEiM8RkPSM5SjiCgvnV0/hadGCeFASPO4hjP1dyJFkVKTKDCTEdIjtehl4n9eL9GDSy+lPE404Xi+aJAwqAXMqoAhlQRrNjEEYUnNrRCPkERYm8JKpgR38cvLpF2ruvVq/fa83LjK6yiCY3ACKsAFF6ABbkATtAAGj+AZvII368l6sd6tj/lowcozh+APrM8fd/qUmA==</latexit>

o
(1)
2

<latexit sha1_base64="SxF93G0ObUWTUMUavxeXVEdxw3A=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquSvVY9OKxgv2Qdi3ZNNuGZpMlyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrK6tb+Q3C1vbO7t7xf2DppaJIrRBJJeqHWBNORO0YZjhtB0riqOA01Ywupn6rSeqNJPi3oxj6kd4IFjICDZWepCPadk7nfTOe8WSW3FnQMvEy0gJMtR7xa9uX5IkosIQjrXueG5s/BQrwwink0I30TTGZIQHtGOpwBHVfjo7eIJOrNJHoVS2hEEz9fdEiiOtx1FgOyNshnrRm4r/eZ3EhFd+ykScGCrIfFGYcGQkmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0nzrOJVK9W7i1LtOosjD0dwDGXw4BJqcAt1aACBCJ7hFd4c5bw4787HvDXnZDOH8AfO5w+4vo+4</latexit>

o(1)3

<latexit sha1_base64="cdDonV+FXPS6P9f5rsT9/etY88o=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9mtUj0WvXisYD+kXUs2zbahyWZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhU8tEEdogkkvVDrCmnEW0YZjhtB0rikXAaSsY3Uz91hNVmsno3oxj6gs8iFjICDZWepCPaalyNumd9wpFt+zOgJaJl5EiZKj3Cl/dviSJoJEhHGvd8dzY+ClWhhFOJ/luommMyQgPaMfSCAuq/XR28ASdWqWPQqlsRQbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwis/ZVGcGBqR+aIw4chINP0e9ZmixPCxJZgoZm9FZIgVJsZmlLcheIsvL5NmpexVy9W7i2LtOosjB8dwAiXw4BJqcAt1aAABAc/wCm+Ocl6cd+dj3rriZDNH8AfO5w+6Ro+5</latexit>

o(2)3

<latexit sha1_base64="UiKN7NyDor9pf5Aje2ROLxbm8fQ=">AAAB/XicbVDLSgMxFM34rPU1PnZugkWomzJjpbosunFZwT6gHYdMJm1DM8mQZIQ6FH/FjQtF3Pof7vwbM+0stPVA4HDOPdybE8SMKu0439bS8srq2npho7i5tb2za+/tt5RIJCZNLJiQnQApwignTU01I51YEhQFjLSD0XXmtx+IVFTwOz2OiRehAad9ipE2km8f9hIeEpnFobhPy9XTiV/17ZJTcaaAi8TNSQnkaPj2Vy8UOIkI15ghpbquE2svRVJTzMik2EsUiREeoQHpGspRRJSXTq+fwBOjhLAvpHlcw6n6O5GiSKlxFJjJCOmhmvcy8T+vm+j+pZdSHieacDxb1E8Y1AJmVcCQSoI1GxuCsKTmVoiHSCKsTWFFU4I7/+VF0jqruLVK7fa8VL/K6yiAI3AMysAFF6AObkADNAEGj+AZvII368l6sd6tj9nokpVnDsAfWJ8/fI6Umw==</latexit>

o
(3)
3

<latexit sha1_base64="4h83er0LecWFfPEqyRuhC4Oz7Po=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx6MVjBfsh7VqyabYNzSZLkhXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz209UaSbFvZnE1I/wULCQEWys9CAf07J3Pu1X+8WSW3HnQKvEy0gJMjT6xa/eQJIkosIQjrXuem5s/BQrwwin00Iv0TTGZIyHtGupwBHVfjo/eIrOrDJAoVS2hEFz9fdEiiOtJ1FgOyNsRnrZm4n/ed3EhFd+ykScGCrIYlGYcGQkmn2PBkxRYvjEEkwUs7ciMsIKE2MzKtgQvOWXV0nrouLVKrW7aql+ncWRhxM4hTJ4cAl1uIUGNIFABM/wCm+Ocl6cd+dj0Zpzsplj+APn8we6Qo+5</latexit>

o(1)4

<latexit sha1_base64="4N+8vYEcyYgbDDZIgzPLykF2bsQ=">AAAB/XicbVDLSgMxFM34rPU1PnZugkWomzJTSnVZdOOygn1AOw6ZNNOGZpIhyQh1KP6KGxeKuPU/3Pk3ZtpZaOuBwOGce7g3J4gZVdpxvq2V1bX1jc3CVnF7Z3dv3z44bCuRSExaWDAhuwFShFFOWppqRrqxJCgKGOkE4+vM7zwQqajgd3oSEy9CQ05DipE2km8f9xM+IDKLQ3GflqvnU7/m2yWn4swAl4mbkxLI0fTtr/5A4CQiXGOGlOq5Tqy9FElNMSPTYj9RJEZ4jIakZyhHEVFeOrt+Cs+MMoChkOZxDWfq70SKIqUmUWAmI6RHatHLxP+8XqLDSy+lPE404Xi+KEwY1AJmVcABlQRrNjEEYUnNrRCPkERYm8KKpgR38cvLpF2tuPVK/bZWalzldRTACTgFZeCCC9AAN6AJWgCDR/AMXsGb9WS9WO/Wx3x0xcozR+APrM8ffIqUmw==</latexit>

o
(2)
4

<latexit sha1_base64="I3alKwSXLkInvt5k7Vm2iNznCuI=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9nVUj0WvXisYD+kXUs2zbahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDP1W09UaRbJezOOqS/wQLKQEWys9BA9pqWLs0mv0isU3bI7A1omXkaKkKHeK3x1+xFJBJWGcKx1x3Nj46dYGUY4neS7iaYxJiM8oB1LJRZU++ns4Ak6tUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhFd+ymScGCrJfFGYcGQiNP0e9ZmixPCxJZgoZm9FZIgVJsZmlLcheIsvL5Pmedmrlqt3lWLtOosjB8dwAiXw4BJqcAt1aAABAc/wCm+Ocl6cd+dj3rriZDNH8AfO5w+9Uo+7</latexit>

o(3)4

<latexit sha1_base64="vEXziOWQKEMT613+DgEe5rlvXSk=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquaPVY9OKxgv2Qdi3ZNNuGZpMlyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrK6tb+Q3C1vbO7t7xf2DppaJIrRBJJeqHWBNORO0YZjhtB0riqOA01Ywupn6rSeqNJPi3oxj6kd4IFjICDZWepCPadk7nfQuesWSW3FnQMvEy0gJMtR7xa9uX5IkosIQjrXueG5s/BQrwwink0I30TTGZIQHtGOpwBHVfjo7eIJOrNJHoVS2hEEz9fdEiiOtx1FgOyNshnrRm4r/eZ3EhFd+ykScGCrIfFGYcGQkmn6P+kxRYvjYEkwUs7ciMsQKE2MzKtgQvMWXl0nzrOJVK9W781LtOosjD0dwDGXw4BJqcAt1aACBCJ7hFd4c5bw4787HvDXnZDOH8AfO5w+7xo+6</latexit>

o(1)5

<latexit sha1_base64="9vknBdLSA+Ykyx5lUHbA+FRiCVM=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9ktWj0WvXisYD+kXUs2zbahyWZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhU8tEEdogkkvVDrCmnEW0YZjhtB0rikXAaSsY3Uz91hNVmsno3oxj6gs8iFjICDZWepCPaalyNuld9ApFt+zOgJaJl5EiZKj3Cl/dviSJoJEhHGvd8dzY+ClWhhFOJ/luommMyQgPaMfSCAuq/XR28ASdWqWPQqlsRQbN1N8TKRZaj0VgOwU2Q73oTcX/vE5iwis/ZVGcGBqR+aIw4chINP0e9ZmixPCxJZgoZm9FZIgVJsZmlLcheIsvL5NmpexVy9W782LtOosjB8dwAiXw4BJqcAt1aAABAc/wCm+Ocl6cd+dj3rriZDNH8AfO5w+9To+7</latexit>

o(2)5

<latexit sha1_base64="hQOw6ur77RG1XDmgJMabi1tWwqY=">AAAB/XicbVDJTsMwFHRYS9nCcuNiUSGVS5WwFI4VXDgWiS5SGyLHcVqrjh3ZDlKJKn6FCwcQ4sp/cONvcNoeoGUkS6OZN3rPEySMKu0439bC4tLyymphrbi+sbm1be/sNpVIJSYNLJiQ7QApwignDU01I+1EEhQHjLSCwXXutx6IVFTwOz1MiBejHqcRxUgbybf3uykPiczjUNxn5dPjkX/u2yWn4owB54k7JSUwRd23v7qhwGlMuMYMKdVxnUR7GZKaYkZGxW6qSILwAPVIx1COYqK8bHz9CB4ZJYSRkOZxDcfq70SGYqWGcWAmY6T7atbLxf+8TqqjSy+jPEk14XiyKEoZ1ALmVcCQSoI1GxqCsKTmVoj7SCKsTWFFU4I7++V50jypuNVK9fasVLua1lEAB+AQlIELLkAN3IA6aAAMHsEzeAVv1pP1Yr1bH5PRBWua2QN/YH3+AH+WlJ0=</latexit>

o
(3)
5

<latexit sha1_base64="2Kcq0wAinSjzf2G9n7ELAYpTI6c=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSL0VBKR6kUoePFY0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut7O2vrG5tV3YKe7u7R8clo6OWzpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38789hMqzWP5aCYJ+hEdSh5yRo2VHsY3Xr9UdqvuHGSVeDkpQ45Gv/TVG8QsjVAaJqjWXc9NjJ9RZTgTOC32Uo0JZWM6xK6lkkao/Wx+6pScW2VAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7QheMsvr5LWRdWrVWv3l+V6JY+jAKdwBhXw4ArqcAcNaAKDITzDK7w5wnlx3p2PReuak8+cwB84nz+/6Y1i</latexit>

k = 1
<latexit sha1_base64="I0k+NEJrYZJvzhVsWQA774v3Vik=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaJQY8kXjxCIo8ENmR2aGBkdnYzM2tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mFmMfkjHko84o8ZKzeqgWHIr7hJkk3gZKUGGxqD41R9GLAlRGiao1j3PjY2fUmU4Ezgv9BONMWVTOsaepZKGqP10eeicXFllSEaRsiUNWaq/J1Iaaj0LA9sZUjPR695C/M/rJWZ066dcxolByVaLRokgJiKLr8mQK2RGzCyhTHF7K2ETqigzNpuCDcFbf3mTtKsVr1apNa9L9XIWRx4u4BLK4MEN1OEeGtACBgjP8ApvzqPz4rw7H6vWnJPNnMMfOJ8/d+GMpw==</latexit>

2
<latexit sha1_base64="gpezVoSYdSLibsyT56WLKBzlwPk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHbVoEcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS46pfLLkVdwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1460+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtC4rXrVSbVyXauUsjjycwTmUwYMbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AHlljKg=</latexit>

3
<latexit sha1_base64="EiQsZdXi6NLmOzvSeDLJewCC1s4=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XoqSQi1WPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRwPaxUvbq3BNkkfkGqUKA1rHwNRgnLYpSGCap13/dSE+RUGc4Ezt1BpjGlbErH2LdU0hh1kC8PnZNLq4xIlChb0pCl+nsip7HWszi0nTE1E73uLcT/vH5motsg5zLNDEq2WhRlgpiELL4mI66QGTGzhDLF7a2ETaiizNhsXBuCv/7yJulc1f1GvVFt1oowynAOF1ADH26gCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxCbi38=</latexit>

4
<latexit sha1_base64="9qrph1qlZTk0hGlVO8NmgBo+CWs=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaNokcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS47pfLLkVdwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1460+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtC4rXrVSbVyVauUsjjycwTmUwYMbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AHxtjKo=</latexit>

5

<latexit sha1_base64="A7qa/0sNqia9RwZxkNOux7dYjCo=">AAAB8HicdVDJSgNBEK1xjXGLevTSGIR4CTMi0WPAi8cIZpFkDD2dnqRJL0N3jxCGfIUXD4p49XO8+Td2FiFuDwoe71VRVS9KODPW9z+8peWV1bX13EZ+c2t7Z7ewt98wKtWE1oniSrcibChnktYts5y2Ek2xiDhtRsPLid+8p9owJW/sKKGhwH3JYkawddIt7gZ3WSk4GXcLxaDsT4H8X+TLKsIctW7hvdNTJBVUWsKxMe3AT2yYYW0Z4XSc76SGJpgMcZ+2HZVYUBNm04PH6NgpPRQr7UpaNFUXJzIsjBmJyHUKbAfmpzcR//LaqY0vwozJJLVUktmiOOXIKjT5HvWYpsTykSOYaOZuRWSANSbWZZRfDOF/0jgtB5Vy5fqsWC3N48jBIRxBCQI4hypcQQ3qQEDAAzzBs6e9R+/Fe521LnnzmQP4Bu/tE5lsj48=</latexit>

a
(1)
1

<latexit sha1_base64="EPD0MijxDpjI6cxI3nLX1odaR9Y=">AAAB8HicdVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxgnlIsobZyWwyZGZ2mZkVwpKv8OJBEa9+jjf/xskmQnwVNBRV3XR3BTFn2rjuh5NbWV1b38hvFra2d3b3ivsHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8eXMb99TpVkkb8wkpr7AQ8lCRrCx0i3ue3dpuXo67RdLXsXNgNxf5MsqwQKNfvG9N4hIIqg0hGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKrGg2k+zg6foxCoDFEbKljQoU5cnUiy0nojAdgpsRvqnNxP/8rqJCS/8lMk4MVSS+aIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqLAcwv+kVa14tUrt+qxULy/iyMMRHEMZPDiHOlxBA5pAQMADPMGzo5xH58V5nbfmnMXMIXyD8/YJmvKPkA==</latexit>

a
(2)
1

<latexit sha1_base64="XBe0UJFGKXod4/qRCILQYKLravk=">AAAB8HicdVDLSgNBEOyNrxhfUY9eBoMQL2FXJXoMePEYwTwkWcPsZDYZMjO7zMwKYclXePGgiFc/x5t/42wSIb4KGoqqbrq7gpgzbVz3w8ktLa+sruXXCxubW9s7xd29po4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB6DLzW/dUaRbJGzOOqS/wQLKQEWysdIt73l1aPj2e9Iolr+JOgdxf5MsqwRz1XvG9249IIqg0hGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKrGg2k+nB0/QkVX6KIyULWnQVF2cSLHQeiwC2ymwGeqfXib+5XUSE174KZNxYqgks0VhwpGJUPY96jNFieFjSzBRzN6KyBArTIzNqLAYwv+keVLxqpXq9VmpVp7HkYcDOIQyeHAONbiCOjSAgIAHeIJnRzmPzovzOmvNOfOZffgG5+0TnHiPkQ==</latexit>

a
(3)
1

<latexit sha1_base64="xRsDTAyj/Qf8f/iWa/nY/LwgF1s=">AAAB8HicdVDLSgNBEOyNrxhfUY9eBoMQL2E3SPQY8OIxgnlIsobZyWwyZGZ2mZkVwpKv8OJBEa9+jjf/xskmQnwVNBRV3XR3BTFn2rjuh5NbWV1b38hvFra2d3b3ivsHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8eXMb99TpVkkb8wkpr7AQ8lCRrCx0i3uV+/Ssnc67RdLXsXNgNxf5MsqwQKNfvG9N4hIIqg0hGOtu54bGz/FyjDC6bTQSzSNMRnjIe1aKrGg2k+zg6foxCoDFEbKljQoU5cnUiy0nojAdgpsRvqnNxP/8rqJCS/8lMk4MVSS+aIw4chEaPY9GjBFieETSzBRzN6KyAgrTIzNqLAcwv+kVa14tUrt+qxULy/iyMMRHEMZPDiHOlxBA5pAQMADPMGzo5xH58V5nbfmnMXMIXyD8/YJmvaPkA==</latexit>

a
(1)
2

<latexit sha1_base64="g6bpThwid/6iewcWlCARhSSpuNc=">AAAB8HicdVDJSgNBEK2JW4xb1KOXxiDES5gxIXoMePEYwSySjKGn05M06e4ZunuEMOQrvHhQxKuf482/sbMIcXtQ8Hiviqp6QcyZNq774WRWVtfWN7Kbua3tnd29/P5BU0eJIrRBIh6pdoA15UzShmGG03asKBYBp61gdDn1W/dUaRbJGzOOqS/wQLKQEWysdIt75bu0WD6d9PIFr+TOgNxf5MsqwAL1Xv69249IIqg0hGOtO54bGz/FyjDC6STXTTSNMRnhAe1YKrGg2k9nB0/QiVX6KIyULWnQTF2eSLHQeiwC2ymwGeqf3lT8y+skJrzwUybjxFBJ5ovChCMToen3qM8UJYaPLcFEMXsrIkOsMDE2o9xyCP+T5lnJq5aq15VCrbiIIwtHcAxF8OAcanAFdWgAAQEP8ATPjnIenRfndd6acRYzh/ANztsnn4yPkw==</latexit>

a
(3)
3

<latexit sha1_base64="FkCisnPMXPW9ax6boGxys5CM1MI=">AAAB8HicdVDJSgNBEK2JW4xb1KOXxiDES5gxGj0GvHiMYBZJxtDT6UmadPcM3T1CGPIVXjwo4tXP8ebf2FmEuD0oeLxXRVW9IOZMG9f9cDJLyyura9n13Mbm1vZOfnevoaNEEVonEY9UK8CaciZp3TDDaStWFIuA02YwvJz4zXuqNIvkjRnF1Be4L1nICDZWusXds7u0WD4ed/MFr+ROgdxf5MsqwBy1bv6904tIIqg0hGOt254bGz/FyjDC6TjXSTSNMRniPm1bKrGg2k+nB4/RkVV6KIyULWnQVF2cSLHQeiQC2ymwGeif3kT8y2snJrzwUybjxFBJZovChCMTocn3qMcUJYaPLMFEMXsrIgOsMDE2o9xiCP+TxknJq5Qq16eFanEeRxYO4BCK4ME5VOEKalAHAgIe4AmeHeU8Oi/O66w148xn9uEbnLdPoqCPlQ==</latexit>

a
(3)
5
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Fig. 4 The asynchronous decentralized semi-MDP framework.

• Action Space A: Each satellite has an action space corresponding to different flight software modes and settings.
The satellite has 𝑁 = 32 imaging actions 𝑎im,𝑛 that task the satellite with collecting an image of the 𝑛th upcoming
fire. The availability of an action does not imply feasibility: a fire may leave the field of regard before the satellite
can slew to and settle the instrument in the pointing direction. This action is executed until either collection is
successful, or the fire leave the field of regard (i.e. collection is unsuccessful). Additionally, the satellite has a
downlink action 𝑎down which frees space in the data buffer for new collects if the satellite is within range of a
ground station; this action is attempted for one minute.

In multiagent settings, agents may act asynchronously (Figure 4) [23]. This implies two equivalent
interpretations of the action space: 1) the action space at a given step is the product of action spaces only of
agents that have completed their current task; or 2) the action space of all agents that are mid-task when another
agent requires a new action is a single “continue current action” action.

• Transition Probability Function 𝑇 (𝑠′ |𝑠, 𝑎) and Per-Agent Step Duration Function 𝐹 (Δ𝑡 |𝑠, 𝑎, 𝑠′): Transitions
are deterministic and generated by the simulator. The simulator propagates until at least one agent requires a
new action (i.e. one of the conditions for an action to complete has be satisfied). In the sMDP framework, the
transition time Δ𝑡, the time elapsed between the previous state and the current state (Figure 4), is used in learning.
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• Reward Function 𝑅(𝑠, 𝑎, 𝑠′): The reward function is defined as the sum of the rewards of all collects completed
during the step. The reward for each collect is proportional to the intensity of the fire at the time of the collect,
minus a penalty for high-frequency reimaging, as described above. Mathematically,

𝑅(𝑠, 𝑎, 𝑠′) =
∑︁

𝑐∈C′\C
𝑟 (𝑐) (5)

where C′ is the set of all collects completed after the step and C is the set of all collects completed before the step;
thus, the reward is the sum of the rewards of all collects completed during the step.

With the MDP defined, RL can be applied to the problem to learn a policy that maximizes the value of the data collected
by the constellation.

3. Methodology
A brief overview of RL is given, followed by the necessary modifications to RL algorithms to account for

asynchronous, variable-duration actions in the Dec-POsMDP framework.

3.1. Reinforcement Learning
RL is a strategy for solving a MDP by learning a policy (that is, a mapping of states to actions 𝜋(𝑠) = 𝑎) that

maximizes the expected discounted sum of future rewards. Discounting multiplies future rewards 𝑘 steps in the future
by a factor 𝛾𝑘 , 𝛾 ∈ [0, 1) to ensure that the sum converges for infinite horizons. This discounted sum is called value:

𝑉 𝜋 (𝑠) = E
[ ∞∑︁
𝑘=1

𝛾𝑟𝑘 |𝑠𝑘+1 ∼ 𝑇 (𝑠𝑘 , 𝜋(𝑠𝑘))
]

(6)

where 𝑟1, ...𝑟𝑘 is the sequence of rewards received by following policy 𝜋 from state 𝑠. The policy optimization problem
is thus

𝜋∗ = arg max
𝜋

𝑉 𝜋 (𝑠) |𝑠 ∈ 𝑆 (7)

Reinforcement learning finds a good policy by iterative improvement of the policy while interacting with the environment.
The algorithm does not have knowledge of the MDP’s properties. Rather, it must learn by interacting with the environment
to find what behaviors lead to beneficial results, trading off exploration of new behaviors with exploitation of known
good behaviors.

In this work, proximal policy optimization (PPO) is selected as the algorithm used to generate policies, given its
strong performance over a wide domain of problems [22]. PPO is a DRL algorithm that represents the policy with a
neural network and updates the policy with clipped policy gradient updates. Prior work has demonstrated that this
algorithm performs well across a variety of spacecraft tasking problems [12, 18].

3.2. Asynchronous Semi-Markov Decision Processes Discounting
In the sMDP framework, actions have a duration associated with them. This duration can be used to properly

account for the time-cost of actions. In this paper, the convention that reward is yielded at the end of a step is assumed
(as opposed to having some distribution throughout the step). Since PPO calculates the value of rollouts encountered in
training, properly computing value for the sMDP accounting for variable-duration timesteps is beneficial.

3.2.1. Single-Agent
In the single-agent case, the agent takes an action at every step. The value function is thus

𝑉 (𝑠) = 𝛾Δ𝑡1𝑟1 + 𝛾Δ𝑡1+Δ𝑡2𝑟2 + ... (8)

=

∞∑︁
𝑘=1

𝛾
∑𝑘

𝑖=1 Δ𝑡𝑖𝑟𝑘 (9)

This equation can be incorporated into PPO’s generalized advantage estimation (GAE) calculation to be used in learning,
by substituting instances of value in the GAE equation. However, the GAE 𝜆 parameter continues to average over steps
instead of time.
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3.2.2. Multi-Agent
In the multi-agent case, we assume that agents’ actions are not highly coupled; agents do not need to anticipate when

other agents will complete their actions, and completion of one agent’s action should not interrupt another agent’s action,
as shown in Figure 4. Interaction and communication between agents is implicit to the environment. In effect, each agent
can be treated as a single-agent sMDP, training only on observations 𝑜 that occur when the agent requires retasking.

To accomplish this, each agents’ rollouts are condensed by concatenating non-acting steps. For example, the rollout
used in training for agent 3 in Figure 4 would become

(𝑜 (3)
1 , 𝑎

(3)
1 ,Δ𝑡1 + Δ𝑡2, 𝑟

(3)
2 ), (𝑜 (3)

3 , 𝑎
(3)
3 ,Δ𝑡3 + Δ𝑡4, 𝑟

(3)
4 ), (𝑜 (3)

5 , 𝑎
(3)
5 ,Δ𝑡5 + ... + Δ𝑡𝑘 , 𝑟

(3)
𝑘

), ... (10)

by using the observation and action at the time of retasking, a step duration consisting of the sum of the multiagent step
durations until the agent retasks, and the reward at the time of retasking.

3.3. Multiagent Training
In both single and multiagent cases, as single per-agent policy is trained for all satellites, with all agents contributing

to the training of a single policy. For constellations, this avoids a key challenge in multiagent RL for decentralized agents:
the nonstationarity of the super-environment consisting of the base environment and all other agents as their individual
policies change. All experience is used for training a single policy, and as such the possibility for feedback loops between
different policies is eliminated. This approach is also beneficial for the scalability of the method to constellations of
different sizes, as the same policy can be deployed on any agent. Because of the inclusion of communication implicitly
in the environment, the policy is not explicitly dependent on a certain agent count.

There is no inherent limitation preventing the training of different policies for different agents (i.e. differentiating
between roles for satellites) using this asynchronous sMDP framework; however, that may introduce the aforementioned
issues with nonstationarity in training, so it is not explored in this work.

Because the multiagent environment has additional computational overheads, a fine-tuning approach is taken for
training. A policy is trained in the single agent environment until training converges. Then, the policy is fine-tuned with
a second round of training performed in the multiagent scenario. All agents’ experience are used to training the single
shared policy, which is initialized the the single-agent base policy. This approach is reasonable because the bulk of the
agent’s strategy can be reasonably expected to be the same between the single and multiagent cases; the fine-tuning
allows for the agent to learn any improvements to the policy the leverage the interaction between agents.

The policy is trained using the RLlib implementation of PPO, with custom connectors configured for asynchronous
sMDP training [24]. Key hyperparameters are 𝛾 = 0.9997 (with Δ𝑡 in units of seconds), learning rate 3 × 10−5, and a
training batch size of 6000 steps/agent, as determined by a hyperparameter search. Training is performed on 30 parallel
copies of the environment, so the learner receives 200-step rollouts, on average.

4. Results
The single agent environment is trained for 4 days of wall-clock time, or a total of 6.4M steps across the 30 parallel

workers; this corresponds to 17k one-day simulation time episodes. Then, it is fine-tuned on the 4-agent “string”
constellation for an additional wall-clock day (1.3M steps) and separately on the 12-agent Walker-delta constellation for
an additional wall-clock day (0.7M steps). Each training time was sufficient to reach a point at which the policy was
no longer improving. First, the single agent policy is benchmarked in a single agent scenario. Then, each policy is
compared when deployed on the two constellations used for fine-tuning. Finally, the scalability of the policy is tested by
deploying it on a 48-satellite constellation.

4.1. Single Agent Performance
First, the base policy is evaluated in a single-agent environment. Figure 5 compares the available rewards in the

environment to the reward collected by the policy across 150 day-long trials. It is evident that the policy is primarily
relying on the low-resolution estimates of value to select fires to collect, as seen by the step-function-like ratio of
collected to available rewards. This is expected, as the single satellite rarely re-encounters the same fire, and thus has
little opportunity to learn from fire intensities obtained from previous collections.

Figure 6 looks at a single instance of the policy in action. Reflecting the aggregate performance (Figure 5), the
policy is seen to tend toward collecting high-value fires. The policy is also aggressive in regard to filling the data buffer,
opting to almost always have a full buffer before the next downlink opportunity. This behavior makes sense in relation

IWSCFF-2024 Page 8 of 15



0 2 4 6 8 10
Collect Reward

100

101

102

103

104

105

Co
un

t
Opportunities
Collects

0 2 4 6 8 10
Collect Reward

0.0

0.2

0.4

0.6

0.8

1.0

Co
lle

ct 
to 

Op
po

rtu
nit

y R
ati

o

Fig. 5 In the single satellite environment, distribution of rewards obtained by the policy versus those available
in the environment.
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Fig. 6 An instance of the base policy in the single-satellite environment. (Top) Each line corresponds to a fire
intensity, with wide spots indicating a collection opportunity; markers are successful image collections; (bottom)
satellite data buffer fullness over time.

to the reward model: the downside of not collecting images as much as possible is greater than the upside of leaving the
buffer with open space for a collect of a rarer high-value fire.

4.2. Multiagent Fine-Tuning Performance
The two fine-tuned policies are evaluated against the base policy when deployed on the string and Walker-delta

constellations in Figure 7. The string fine-tuned policy shows markedly improved performance (on average, an 18%
improvement over the base policy) when deployed on the string constellation. This can be attributed to the relatively high
interaction between close satellites, which allows the policy to leverage the information collected by other satellites to
make better decisions. However, the Walker-delta fine-tuned policy does not improve over the base policy. It may be that
improvement over the base policy on the Walker-delta constellation is not easily attainable, as the large spacing results in
an environment that is effectively a collection of single-agent environments without enough interaction between agents
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Fig. 7 Deployment of each policy on (left) string constellation and (right) 12-satellite Walker-delta constellation.
Performance is normalized by the single-agent policy’s return for that case.
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Fig. 8 In the string constellation environment, distribution of rewards obtained by the string fine-tuned policy
versus those available in the environment. Right plot is compared to the single agent policy results from Figure 5.

to be exploitable.
The key to the improved performance of the string fine-tuned policy becomes evident in Figure 8. While the single

agent policy experienced relatively few cases of reencountering the same fire multiple times and thus relied on the low
fidelity estimate of intensity to select targets, the multiagent fine-tuned policy gained experience in a domain where
previously encountered fires could be reimaged. As a result, the fine-tuned policy learned to reimage fires based on a
high observed intensity in previous images, as is evident for fires of value greater than one in the right plot of Figure 8:
the string fine-tuned policy collects a higher proportion of high-value targets than the single agent policy.

The behavior of the string fine-tuned policy is shown in Figure 9. Many of the behaviors are qualitatively similar to
the single-agent base policy, such as the tendency to fill the data buffer before downlink opportunities and a bias towards
high-value fires. This constellation architecture does allow for more rapid recollection of the same fire, as satellites
have a roughly 5-minute difference in revisit times, which is lower than the 30-minute rapid recollection penalty in
Equation 4. Occasionally, the agents opt to collect a fire multiple times in quick succession, since the behavior is
not strongly penalized: a high-value fire with an 80% revisit penalty is equally attractive as a low-value fire. If rapid
reimaging behavior was strongly undesired, the penalty could be increased to discourage it. A positive aspect of the
reimaging behavior is evident from the upper subplot: higher interest fires tend to be imaged multiple times over the
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Fig. 9 An instance of the string fine-tuned policy in the string constellation environment. (Top) Each line
corresponds to a fire intensity, with wide spots indicating a collection opportunity; markers are successful image
collections; (bottom) satellite data buffer fullness over time.
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Fig. 10 Relative performance of each policy when deployed on the 48-satellite constellation.

course of a day, which aligns with the objective of the tasking problem. This indicates that the selected reward function
effectively represents the abstract goal of the mission, even with the constellation being clearly oversubscribed with the
number of satellites relative to the number of fires.

4.3. Constellation Scalability
Finally, to test the scalability of the method, each policy is evaluated on the 48-satellite constellation. Directly

fine-tuning on this constellation would be prohibitively expensive in the high-fidelity simulation environment. When
comparing on 6-hour long episodes in Figure 10, the string fine-tuned policy again outperforms the base policy, by
about 8%. Since the relative satellite spacing in the 4-satellite string constellation and the 48-satellite constellation
are similar, this result makes sense: the behavior learned to optimize between satellites in the string constellation is
still effective in the larger constellation. The Walker-delta fine-tuned policy, however, does not improve over the base
policy, as in the 12-satellite constellation. This result suggests that the Walker-delta constellation is not well-suited to
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the reimaging behavior learned by the fine-tuned policy, as the large spacing between satellites makes it difficult to
leverage the information collected by other satellites.

5. Conclusions
The strengths of RL for spacecraft tasking are highlighted on the wildfire application, specifically formulated for the

asynchronous Dec-POsMDP framework introduced by this paper. Closed-loop planning of opportunistically available
targets is performed with low computational cost, as opposed to the open-loop methods typically used in spacecraft
scheduling. The per-agent policy also allows for scalability to constellations of any size. If properties of the deployment
constellation are known, the policy can be fine-tuned on a similar constellation to further improve performance by
leveraging constellation-specific interactions.

The results show raise questions to be addressed in future work: In particular, while this task can be better completed
with some multiagent interaction, it is not essential for success. Reformulating the objective in a way that necessitates
collaboration between agents, such as with a different reward function and different observability of states, could lead to
a more challenging problem that would require multiagent learning to solve. Theoretical analysis of the asynchronous
Dec-POsMDP framework could also be beneficial to understand the conditions under which multiagent learning possible
or limited.
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Appendix A: Generative Wildfire Model
A random process model for the global wildfire occurrence intensity function 𝜆(𝑡, 𝜔) in new fires per day is given

by the sum of a periodic function 𝜆 𝑓 (𝑡) to capture seasonal effects and a Gaussian process with exponential covariance
𝜆𝑒 (𝑡, 𝜔) to capture the stochastic nature of the process:

𝜆(𝑡, 𝜔) = 𝜆𝜇 + 𝜆 𝑓 (𝑡) + 𝜆𝑒 (𝑡, 𝜔) (11)

The Fourier series in the typical form
𝜆 𝑓 (𝑡) =

∑︁
𝑖

𝑎𝑖 cos(2𝜋 𝑓𝑖𝑡 + 𝜙𝑖) (12)

is fit to the daily new fire occurrence data from 2002 to 2018 using a fast Fourier transform (FFT). The Fourier model
parameters are given in Table 2.

Table 2 Fourier series fit parameters.

𝑓 [year−1] 𝑎 [fires/day] 𝜙 [rad]
𝜆𝜇 2972.9 -
1.0 796.2 2.109
2.0 570.2 -1.188
3.0 318.7 0.618

A Gaussian process 𝜆𝑒 (𝑡, 𝜔) with exponential covariance is used to model the stochastic nature of the global
occurrence intensity; specifically, this term should capture the statistics of the residuals of the data relative to the Fourier
term 𝜆 𝑓 (𝑡). The exponential covariance function is given by

𝐶𝑋𝑋 (Δ𝑡) = 𝜎2 exp
(
−Δ𝑡

ℓ

)
. (13)

with 𝜎 = 945.8 fires/day, ℓ = 2.935 years. Poisson point process sampling is used to generate ignition times for fires
given a realization of the intensity function at the time of year being generated.
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Fire locations are generated from a time-dependent distribution of fire occurrences 𝑓𝑋 (𝒙 |𝑡), which is derived from
the data set. Samples of the distribution are shown in Figure 11.

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec

Fig. 11 Probability density function 𝑓𝑋 (𝒙 |𝑡) of fire occurrences by season; blue: fewer fires, yellow: more fires.

Marginal distributions for fire duration and area are fit to the entire fire dataset, as no strong location or time
dependence is observed. The duration Δ𝑡𝑖 is sampled from a Pareto distribution

Δ𝑡𝑖 ∼ 157.5Pr(𝑎 = 133.1) days (14)

while the area 𝐴𝑖 is sampled from a normal distribution dependent on the duration

𝐴𝑖 ∼ N(𝜇 = 0.193Δ𝑡1.784
𝑖 + 0.755, 𝜎 = 0.234Δ𝑡2.234

𝑖 + 0.989)km2 (15)

All values are fit to a database containing global fire instances between 2002 and 2018, that includes information on
ignition date, burning area, and duration [25].
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