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Reinforcement learning (RL) is a highly adaptable framework for generating autonomous agents across a wide domain
of problems. While RL has been successfully applied to highly complex, real-world systems, a significant amount of the
literature studies abstractions and idealized versions of problems. This is especially the case for the field of spacecraft
tasking, in which even traditional preplanning approaches tend to use highly simplified models of spacecraft dynamics
and operations. When simplified methods are tested in a full-fidelity simulation, they often lead to conservative
solutions that are suboptimal or aggressive solutions that are infeasible. As a result, there is a need for a high-fidelity
spacecraft simulation environment to evaluate RL-based and other tasking algorithms. This paper introduces BSK-RL,
an open-source Python package for creating and customizing reinforcement learning environments for spacecraft tasking
problems. It combines Basilisk — a high-speed and high-fidelity spacecraft simulation framework — with abstractions
of satellite tasks and operational objectives within the standard Gymnasium API wrapper for RL environments. The
package is designed to meet the needs of RL and spacecraft operations researchers: Environment parameters are
easily reproducible, customizable, and randomizable. Environments are highly modular: satellite state and action
spaces can be specified, mission objectives and rewards can be defined, and the satellite dynamics and flight software
can be configured, implicitly introducing operational limitations and safety constraints. Heterogeneous multi-agent
environments can be created for more complex mission scenarios that consider communication and collaboration.
Training and deployment using the package are demonstrated for an Earth-observing satellite with resource constraints.
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1. Introduction
Autonomous spacecraft planning and scheduling has

become of increasing interest as the number of satellites
and complexity of mission architectures have grown in
response to easier access to space [1]. For large con-
stellations, ground-based, operator-driven planning is
expensive or infeasible due to the number of satellites,
while onboard distributed autonomy provides robustness
to any single point of failure. In missions where the
objective changes rapidly or the ability to communicate
with the satellites is limited, the ability to adapt onboard to
new information is crucial for maximizing performance.

Many of the methods commonly used for spacecraft
scheduling have two key limitations when compared to
distributed, autonomous systems: 1) They use open-loop,
ground-based planners, with online plan correction limited
by solver complexity and spacecraft hardware constraints;
and 2) they plan over expert-designed abstractions of the
problem space [2]. Such planners for task scheduling
use a variety of common combinatorial optimization al-
gorithms, such as mixed-integer linear program (MILP),
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iterative local search (ILS), constraint programming, and
genetic methods [3–6]. Generally, these methods work
by generating a representation of the problem as a graph
[7] and/or a combination of binary and continuous con-
strained variables based on an expert understanding of
the problem. The size of the optimization problem grows
combinatorially with the number of spacecraft and tasks,
leading to problems that can be computationally pro-
hibitive to solve, or that result in suboptimal solutions
due to a limited solution time. The resulting plans are
not responsive to the actual system dynamics, so unex-
pected performance or opportunistic events may depress
the performance of the plan. In some cases, uncertainty
is accounted for in the deterministic plan [8, 9]. In other
cases, replanning over a short horizon is necessary, but
the cost of common solvers can easily exceed onboard
capabilities [10].

Reinforcement learning (RL) offers a promising al-
ternative that addresses these challenges to generate au-
tonomous agents. Agents learn in a simulation of the
satellite tasking environment, allowing for arbitrarily com-
plex models of the system’s dynamics, constraints, and
objectives to be maximized over. The resulting policy is a
closed-loop, computationally low-cost system that can be
deployed on the spacecraft, allowing it to react in real-time
to new information or unexpected events (e.g. faults or op-
portunistic events) that it encounters. Research applying
RL to spacecraft control and tasking problems has prolifer-
ated in the past five years. The first formulations of tasking
as varieties of Markov decision processes (MDPs) appear
by Harris [11], Eddy [12], and Hadj-Salah [13] applied to
Earth-observing scheduling problems. This domain has
expanded into algorithms that are fine-tuned for particular
problem statements [14, 15], challenges associated with
applying RL in a more flight-like scenario [16, 17], and
various treatments of the multiagent scheduling problem
[18–21]. Relative motion control for inspection of small
bodies [22, 23] and rendezvous and docking [24, 25] have
emerged as popular continuous control applications of RL
in the space domain. Even among these examples, many
use highly simplified models of the system dynamics for
task transitions, task completion, and resource constraints;
as a result, they do not fully leverage the capabilities of
RL to work on arbitrarily complex environments.

The standardization of RL environments has been of
key importance for improving the quality, efficiency, and
reproducibility of research in the field of reinforcement
learning as a whole [26]. Widespread adoption of the
Python-based Gymnasium (formerly Gym, developed by
OpenAI) environment API and PettingZoo multiagent
API has led to a de facto standard for interfacing RL algo-
rithms with environments [27, 28]. Specific environments
implemented using these APIs have also emerged as stan-
dard benchmarks for RL algorithms: Atari games like

Breakout, Tetris, and Adventure have become key bench-
marks for image-input, discrete control environments [29]
[30]. The MuJoCo physics engine has been interfaced
with Gymnasium to create a variety of continuous con-
trol environments like Ant, Hopper, and Half-Cheetah,
as well as arbitrarily complex multibody physics-based
environments [31]. Gymnasium interfaces have been
developed for modern video games such as Minecraft [32]
and Starcraft II [33], providing challenging benchmarks
for RL algorithms in complex, high-dimensional, and
partially observable environments. While these environ-
ments provide a diversity of open-source environments (or
open-source interfaces into closed-source software) for
RL research, they are primarily seen as a testing ground
for algorithms; the environments themselves are not the
focus of research. MuJoCo is an exception, as arbitrary
physics-based environments of interest can be created
within the engine and interfaced with Gymnasium.

Within the space domain, open-source RL environ-
ments are lacking. Other than BSK-RL, the only example
identified in a search is “KSPDG: Kerbal Space Pro-
gram Differential Games”, which implements various
non-cooperative spacecraft control tasks using the Gym-
nasium API and the video game Kerbal Space Program
(KSP) as a physics engine [34]. This environment is
designed primarily as a real-time evaluation environment
of policies and control methods developed externally
to the environment, encouraging users to treat KSPDG
as “reality” when trying to overcome the sim-to-real
gap. As a result, it is not appropriate for training agents
due to the high computational overheads and real-time
simulation of the KSP backend. While aforementioned
spacecraft RL research has defined and implemented
environments for particular problems, they tend to be low-
fidelity, problem-specific models that lack a maintained,
open-source repository for general use.

BSK-RL aims to fill this gap by providing a high-fidelity,
high-speed, open-source, and modular environment for
spacecraft tasking problems with an open-source repos-
itory∗ and user-friendly documentation†. At its core,
BSK-RL combines Basilisk [35], a spacecraft dynam-
ics simulation package, with abstract mission objectives,
wrapped together in the Gymnasium API. The primary
focus of the package is discrete tasking, but it can be
extended to continuous control. In this work, the design
and capabilities of BSK-RL are reviewed, and an example
environment is presented.

2. Background
The two packages of open-source software that BSK-RL

is built upon are Basilisk, a spacecraft simulation frame-

∗https://github.com/AVSLab/bsk_rl/
†https://avslab.github.io/bsk_rl/
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work, and Gymnasium, a standard API for reinforcement
learning environments.

2.1. Basilisk
Basilisk‡ is a modular spacecraft simulation framework

written in C and C++ with a Python interface [35]. The
package is capable of simulating spacecraft with features
such as multibody dynamics (including reaction wheels
and actuated solar arrays), environmental effects (such
as planetary gravitational forces and atmospheric drag),
power and data storage subsystems, and onboard flight
software with actuator-level control. The architecture
enables relatively complex configurations to achieve sim-
ulation speeds of about 500 to 1000× real time. This
combination of speed and configurability makes Basilisk
an attractive environment for reinforcement learning. Al-
ternative commercial options suffer from having large
computational overheads, limited APIs, and other draw-
backs of closed-source software.

2.2. Gymnasium and PettingZoo
Gymnasium is the standard interface for defining MDPs

in Python [27]. All major reinforcement learning libraries,
such as RLlib [36], and Stable Baselines [37] are compat-
ible with the Gymnasium API.

Environments implement two main functions: The
reset function obs, info = env.reset(seed) sets
up the initial state of an environment and han-
dles environment condition randomization. The
step function obs, reward, term, trunc, info =

env.step(action) provides the fundamental means of
interaction between an agent and its environment: The
environment is updated depending on the action selected
by the agent, and the new state and reward are returned
(along with information about the episode’s status).

To supply the environment interface to the
learning agent, the environment implements the
observation_space and action_space properties,
respectively define the domains for the observations the
agent expects to receive and the actions that it can take.

PettingZoo extends the Gymnasium API to handle
cooperative and competitive multiagent scenarios [28].
In particular, BSK-RL adopts the PettingZoo Parallel API
for the multiagent scenario ConstellationTasking.

3. Design
BSK-RL’s architecture can be broadly categorized into

three areas: 1) the underlying Basilisk simulation, which
gives the physical behavior of the satellites in the environ-
ment; 2) the satellite agents that act in the environment,
with configurable interfaces for observations and actions;

‡http://hanspeterschaub.info/basilisk/

3) the optimization objective of the environment, which
is specialized for data collection tasks but generalizes
to other objectives. Working together, the environment
connects the dynamics of the high-fidelity simulation to
abstract tasks and goals that must be achieved. Finally,
multiagent capabilities are built-in, allowing for complex,
constellation-based scenarios to be created with com-
munication between agents. Figure 1 shows the overall
architecture of the BSK-RL environment.

3.1. Spacecraft Simulation
The Basilisk simulation is taken as the ground-truth

for the physical behavior of the satellite as controlled by
flight software modes in the simulation environment. The
lifecycle of the simulator is as follows:

1) A new Basilisk simulation is constructed each time
the environment is reset. First, the models — col-
lections of Basilisk modules — used by each part of
the simulator are identified. One is for the “world”
that the satellites act in, containing simulations of
gravity, the atmosphere, and solar position among
other effects. Each satellite has two models asso-
ciated with it: The dynamics module includes all
of the physical components of the satellite, such as
the bus, actuators, solar arrays and batteries, and
data collection and transmission systems. The flight
software model defines flight modes — sets of algo-
rithms — that can be enabled and disabled on the
satellite to command specific actuator behavior.

2) The models are initialized from a dictionary of
simulation parameters. These values include mass
properties, power draws, data rates, orbit parameters,
epoch, and flight software algorithm settings, among
others. A dictionary of default values can be easily
generated from the classes that define the models.
This allows the user to see how the simulation can
be configured without needing to set all parameters.
Parameters can be set directly by value or with
functions that randomize the parameter on each
reset. The latter is useful for randomizing initial
conditions, such as the epoch and orbit in order
to learn a policy that generalizes over domains.
The appendix gives an example of a dictionary of
satellite parameter overrides and randomizers.

3) When the environment is stepped, flight software
modes are enabled and disabled depending on the
action selected. In some cases, additional values
in the flight software are changed to correspond
to the selected action, such as setting the desired
pointing direction to a particular target in the attitude
controller. The translation between actions and
flight software is discussed in the next section. Once
the flight software is configured, the simulation is
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Fig. 1 The architecture of the BSK-RL environment.

propagated until one of a few conditions is met.
In many cases, these conditions are action-specific
task durations or global maximum step durations.
However, some actions that take an unpredictable
time to complete may add additional checks for
propagator termination. In light of the variable-
duration environment steps, it is possible to view
the resulting environment as a semi-MDP, which
groups MDP substeps into multi-step actions or
tasks [12, 38, 39].

4) Once the episode is complete, the simulator is
deleted to prevent memory leaks.

Key to the realism of this environment is that the only
interaction between the agent and the simulation is via the
flight software, as would be the case on a real satellite.

Predefined models with custom parameters are gener-
ally sufficient for most environment configurations, but the
user can define their own models by subclassing the pro-
vided models. This allows for the use of mission-specific
flight software algorithms and satellite geometries.

3.1.1. Failure
The simulation models also check for failure conditions.

In the single-agent environment, failure terminates the
episode; in the multiagent environment, failure removes
the failed satellite from the list of active agents. Optionally,
a penalty can be subtracted from the step reward on failure.

Each dynamics and flight software model can define
functions decorated with @aliveness_checker that
will be evaluated at each step to ensure that the state of
the Basilisk simulation is valid. As a result, arbitrary
checkers can be easily defined. Commonly used checkers
include the evaluation battery charge level, reaction wheel
saturation, and orbital altitude.

3.2. Defining The RL Interface
A satellite is the basic agent unit in the environment.

The observations visible to the agent and the actions it can
take are defined by the satellite class. Satellite configura-
tions are defined as subclasses to streamline the creation
of multiple satellites of the same type in constellation sim-
ulations, or to reuse them across experiments. A satellite
subclass defines a list of observation and action objects
as class properties, as well as optionally specifying the
dynamics and flight software models to use in the Basilisk
simulation:

1 class ScanningSatellite(Satellite):
2 observation_spec = [SatProperties(...),

...]
3 action_spec = [Charge(), Desat(), ...]
4 dyn_model = MyDynamicsModel
5 fsw_model = MyFSWModel

This class can then be instantiated to create new agents in
the environment.
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3.2.1. Observation Specification

The observation is specified as a list of observation
objects. These can be configured to fetch values from
the Basilisk simulation and other abstractions within
the environment; normalization of these values — as
is commonly necessary in deep reinforcement learning
(DRL) — is also supported. The observation space is
automatically inferred from the specification. An example
observation specification is given:

1 observation_spec = [
2 obs.SatProperties(
3 dict(prop="storage_level_fraction"),
4 dict(prop="battery_charge_fraction"),
5 dict(prop="wheel_speeds_fraction"),
6 dict(prop="instrument_pointing_error",

norm=np.pi),
7 dict(prop="solar_pointing_error", norm=np.

pi),
8 ),
9 obs.OpportunityProperties(

10 dict(prop="opportunity_open", norm=5700),
11 dict(prop="opportunity_close", norm=5700),
12 type="ground_station",
13 n_ahead_observe=1,
14 ),
15 obs.Eclipse(norm=5700),
16 obs.Time(),
17 ]

In this specification, five properties (some scalar and
some vector) are observed from the satellite and nor-
malized. Information for each of the next 16 upcoming
ground targets is also included. Information about the
next eclipse time and overall episode time is also included.

A variety of useful observation types are defined in the
package, including:

• SatProperties: Used to extract and normalize
arbitrary properties from the satellite’s flight software
and dynamics models. Commonly desired properties
are included in the default models, but additional
arbitrary properties can be easily added by extending
the model classes, as is demonstrated in the appendix.

• OpportunityProperties: Used to fetch infor-
mation about the next 𝑁 upcoming ground access
opportunities of a particular type. These can include
imaging targets or ground stations for downlink.

• Eclipse: The time until the start and end of the
soonest (or current) eclipse.

• Time: The current time in the simulation, by default
normalized by episode length. This can help with
learning semi-MDPs.

The resulting observations can be returned in a flat-
tened array or as a human-readable dictionary; this yields
compatibility with most RL libraries while allowing for
easy debugging and interpretation.

3.2.2. Action Specification
Similar to the observation, the actions are specified as

a list of configurable action objects. The list of actions
translates the policy’s output (e.g. the index of a task) to
the flight software settings that will be used to perform
the task in simulation. Taking a discrete list of tasks as an
example, the action specification could look as follows:

1 action_spec = [
2 act.Scan(duration=180.0),
3 act.Charge(duration=120.0),
4 act.Downlink(duration=60.0),
5 act.Desat(duration=60.0),
6 ]

Many actions are defined to enable a certain mode for
a set duration:

• Charge: Maneuvers the satellite to point its solar
arrays at the sun to maximize the battery charge rate.
Charging is ultimately dependent on the underlying
simulation, so if the satellite is in eclipse or is maneu-
vering from a non-sun pointing attitude, this mode
does not guarantee charging.

• Desat: Fire the reaction control thrusters to desat-
urate the reaction wheels. Since the reaction wheel
power draw is a function of wheel speeds, desatura-
tion is necessary to minimize power consumption or
to prevent wheel saturation.

• Downlink: Enable the downlink transmitter and
associated power costs. If within range of a ground
station, data will be offloaded at a fixed baud rate,
freeing space in the storage unit for new data.

• Scan: Point the instrument nadir and continuously
collect data once the instrument is within some thresh-
old of the desired direction. This action is used for
continuous imaging tasks, where no choices are made
about what to image.

For point-imaging scenarios, the Image action has
more complex behavior. The action object generates
configurable 𝑁 actions that correspond to imaging each of
the next 𝑁 upcoming targets. When selected, the action
sets the flight software mode to point the instrument at the
target and collect an image once within range of the target
and settled within some threshold. The simulation is then
propagated until the target has been successfully imaged,
until the opportunity has closed without imaging the
target, or until some maximum step duration is reached.
This prevents the satellite from having idle time once
the task is complete (or can no longer be completed).
This behavior can be overriden by disabling the satellite’s
variable_interval setting to make all steps propagate
for the same duration.

Currently, only discrete tasking actions are imple-
mented. However, the package is designed to allow
for the definition of continuous action types for control
problems.
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3.3. Objective Abstractions
The final components of the environment define the

mission objectives. The scenario represents what is
of interest to the satellites, such as imaging requests
and obstructions. The data collection system translates
between the simulation state and data that contributes to
the mission objective. The rewarder calculates the per-
agent reward based on the scenario and the data collected
by each agent.

3.3.1. Scenario
The scenario represents what is of interest to agents

toward the mission objective. BSK-RL’s current primary
focus is Earth-observing tasks, so nadir scanning scenarios
and point-target imaging scenarios are included in the
package. The scenario could be extended to represent
other objectives, such as inspection tasks or rendezvous
and docking.

Many scenarios in BSK-RL are point imaging-based,
which demonstrates a range of scenario capabilities. In
these scenarios, a new list of requests is generated at
the start of each episode, according to some distribu-
tion of locations and priorities. UniformTargets and
CityTargets supply apriori lists of requests distributed
uniformly over Earth or at the locations of randomly
selected cities. The scenario could be used to model
obstructions, such as cloud coverage, or targets that are
not persistently available and change over time, such as
wildfires.

3.3.2. Data Collection
The data collection system determines how each agent

is contributing to the mission objective, by converting the
simulation state and scenario information into units of
data collected. Data does not necessarily correspond to a
scientific/information product; it is a unit that represents
effort towards the objective.

For example, consider an agile Earth-observing satellite
(AEOS) scenario. If in the Basilisk simulation the amount
of data in the storage unit buffer corresponding to a given
request increases, the data manager identifies that the
corresponding request defined in the scenario has been
fulfilled and creates a unit of data to store with the satellite
(to represent the satellite’s knowledge of fulfillment) and
to use in the reward calculation. See subsubsection 3.4.1
for a discussion on how this data can be shared with other
agents.

3.3.3. Reward Allocation
Finally, the rewarder acts akin to a global critic for the

environment. Given the per-agent new data at a given
step and the current state of the environment, a reward

is calculated for each agent. For example, in an AEOS
scenario, the rewarder yields reward based on priority for
each previously unfulfilled request fulfilled.

3.4. Multiagent Capabilities
A major motivation for this package is the prolifer-

ation of complex, multiagent space systems. Towards
this end, multiagent scenarios are natively supported
with ConstellationTasking and defined similarly to
single-agent scenarios. This environment can be used
either as a multiagent training environment or as a way of
testing single-agent policies in a distributed system.

3.4.1. Communication Methods
In some scenarios, knowing what data has been col-

lected by other agents is important for completing a
goal. Transmitting data may prevent duplication of effort
on already-complete tasks or inform other agents about
tasks that require collaboration to satisfy. Towards this,
a general notion of communication is implemented for
multiagent scenarios.

Each communication method specifies which agents
should share information at the end of each step. Of
the implemented methods, NoCommunication allows
for no data sharing, FreeCommunication allows ev-
ery agent to share data with every other agent, and
LOSCommunication and its variants allow for commu-
nication between satellites that had a clear line-of-sight
during the previous step. The system is extendable to in-
clude more complex constraints on communication, such
as requiring an explicit “communicate” action to trigger
the data sharing step.

3.5. Formalized as a POMDP
It is beneficial to consider how the resulting environ-

ment maps to the partially-observable Markov decision
process (POMDP) formalism. A POMDP is defined by the
tuple (S,A, 𝑇, 𝑅,O, 𝑍), with the environment providing
a generative model 𝐺 (𝑠, 𝑎) = 𝑠′:

• State Space S: The state space is the combination
of state spaces required for each component of the
Basilisk simulation and environment. The space is
impractically large to learn on directly. Many of the
elements, such as internal integrator substates, are
non-physical and not relevant to the tasking problem.

• Observation Space O and Observation Probabil-
ity Function 𝑍: The observation space is defined
by the composition of satellite observation specifi-
cations and generally takes the form of a subset of
the elements of the state space and transformations
thereof (e.g. normalization, frame transformations,
etc.). Generally, the observation is a deterministic
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function of the state, though noise could be added
in the observation specification to perform analysis
similar to that in [40].

• Action SpaceA: The action space is likewise defined
by the composition of satellite action specifications.

• Reward Function 𝑅(𝑠, 𝑎, 𝑠′): The reward function
is arbitrary and defined by the rewarder.

• Transition Probability Function 𝑇 (𝑠′ |𝑠, 𝑎): The
transition function is deterministic and generated by
the simulator, resulting in 𝑇 (𝐺 (𝑠, 𝑎) |𝑠, 𝑎) = 1. The
simulator is propagated until some condition is met to
stop propagation, such as the completion of a task or
a maximum step duration. It is valid to treat steps as
single steps in a MDP where time is part of the state,
or as the concatenation of substeps in a semi-MDP.

4. Results
A demonstration of BSK-RL is given for a single-

satellite environment in which the satellite must maximize
the amount of data collected in a nadir-pointing scanning
mode while managing power and storage constraints. The
environment is trained using RLlib’s implementation of
proximal policy optimization (PPO) [36, 41].

4.1. Demonstration Environment
The demonstration environment consists of a single

satellite with four flight modes: nadir-pointing scanning,
downlink, reaction wheel desaturation, and charging. The
objective of the satellite is to collect as much data as possi-
ble in the nadir-pointing scanning mode while maintaining
resources at proper levels. The reward function yields
a reward proportional to the amount of data collected,
normalized such that the maximum reward for continuous
data collection over the entire episode is 1.0. A penalty of
-1.0 is applied if the satellite dies (i.e. violates a resource
constraint). The action space corresponds to the set of four
flight modes; the observation space is a set of properties
of the satellite and the environment, such as the battery
charge level, the amount of data in the storage buffer, and
the time until the next eclipse and downlink opportunity.

Data collection is subject to two conditions. First, the
satellite’s instrument must be pointing nadir within a 0.1
radian threshold to collect images. This is a constraint
enforced by the flight software running within the Basilisk
simulation. When the scanning mode is enabled, the
satellite may need to slew to the nadir-pointing attitude,
preventing immediate data collection. Second, there must
be available space in the data buffer to collect images. This
constraint is implicit to the Basilisk dynamics simulation,
which does not allow the data buffer to overflow. Since
the reward is generated from data collected, a full buffer
prevents any reward from being yielded. The satellite
must enter the downlink mode when over one of the
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Fig. 2 Average episode returns over the course of
training.

seven default ground stations (Boulder, Merritt Island,
Singapore, Weilheim, Santiago, Dongara, and Hawaii) to
decrease the amount of data in the buffer and free space
for new data.

The satellite must also maintain power above zero for
the full five-orbit episode. Power draws are implicit to
the dynamics simulation and include baseline draws for
bus operation, reaction wheel power draws as a function
of wheel speeds, and mode-specific power draws for
activating the instrument or transmitter. Charging always
occurs based on the solar panel orientation and the eclipse
status. However, the satellite can enter the charging flight
mode to point the panels directly at the sun (which is
ineffective if the satellite is in eclipse) and the reaction
wheel desaturation mode to fire the thrusters to desaturate
the reaction wheels, decrease the power draw due to high
wheel speeds.

Code for the demonstration environment is given in the
example code snippets throughout the paper and appendix,
as well as in the online documentation§.

4.2. Training Results
The environment was trained using PPO for 50M steps.

Figure 2 shows the overall training curve: the cumula-
tive reward returned by each episode over the course of
training. There are two components to this curve: Is the
satellite staying alive? and, how much data is the satellite
collecting?

Regarding aliveness, Figure 3 shows that the satellite
quickly learns that it must manage its power to survive
for the full five orbits by desaturating reaction wheel
speed and by entering a charging flight mode. By the
end of training, 94.5% of the episodes are completed
successfully. These failures represent a combination of
cases: those with poor resource management and those
where the satellite is initialized in a no-win situation (e.g.

§https://avslab.github.io/bsk_rl/examples/
rllib_training.html
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low power during eclipse). Practically, shielding could
be used to guarantee safe operation, but those methods
are outside the scope of this paper [42, 43].

The satellite also successfully learns the task of data
collection. Figure 4 shows that the satellite’s policy adapts
to collect more data over the course of training. Initially, it
achieves this by increasing the time spent in the scanning
mode while decreasing excess time spent in the charging
mode. However, the satellite is also limited by its storage
capacity. Figure 5 shows that at around 17M steps, the
policy begins to better optimize downlink, with average
storage levels at the end of each episode decreasing as a
result of fewer episodes ending with a full storage buffer.

Training was performed on an Apple M2 Pro CPU. On
this system, the environment trained at an average of 103k
steps/core/hr, with a simulation-to-realtime ratio of 165.5
sim-days/core/hr. More complex environments can be
expected to train at a slower — but still acceptable — rate.

5. Discussion
BSK-RL has been used in a variety of RL-based satellite

tasking papers, demonstrating its flexibility and utility.
The stability and configurability of the environments has
allowed for rapid iteration on research questions, with
less time spent on debugging and environment setup.
A few recent papers and the utility of BSK-RL in their
preparation are highlighted here:

In “Reinforcement Learning For Earth-Observing Satel-
lite Autonomy With Event-Based Task Intervals” [44],
BSK-RL is used to configure an AEOS tasking envi-
ronment, demonstrating that RL can learn a policy that
performs near-optimally with significantly less computa-
tion time than a MILP-based solver. BSK-RL enables the
paper to perform ablation studies over different observa-
tion sizes and parameterizations with minimal effort. It
also allows for easy deployment and analysis of the learned
policy over various test cases by changing the scenario
parameters. Even the MILP-based solutions [45] use
BSK-RL due to its streamlined interface and high-fidelity
simulation, providing a good test of the abstraction-to-real
gap present in planning algorithms.

The paper “Using Enhanced Simulation Environments
to Improve Reinforcement Learning for Long-Duration
Satellite Autonomy” [17] performs a study on curriculum
learning-like methods for training a satellite with resource
constraints. The paper demonstrates that it may be benefi-
cial to train an agent in a more challenging environment
for greater fault tolerance. BSK-RL was used to be able
to easily modify the environment difficulty by changing
the satellite and environment parameters dictionaries.

“Intent Sharing for Emergent Collaboration in Au-
tonomous Earth Observing Constellations” [21] explores
the use of single-agent-trained policies in a multiagent
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scenario. For this study, the single-agent environment
used for training is easily extended to a multiagent envi-
ronment for evaluation through the addition of satellites.
The communication module of BSK-RL is used to share
data between agents, allowing for emergent collaboration
between agents.

In “Learning For Satellite Autonomy Under Differ-
ent Cloud Coverage Probability Observations” [46], an
Earth-observing point target environment is extended to
feature randomized cloud coverage. This environment
with stochastic success for imaging tasks was imple-
mented just by modifying the scenario and the rewarder,
demonstrating the modularity of the BSK-RL package.

6. Conclusion
BSK-RL offers a high-fidelity, modular, and open-

source environment for spacecraft tasking and control
RL environments. Its architecture ensures that underly-
ing physical dynamics and flight software are accurately
represented within the RL environment, while an outer
layer of abstractions allows for the definition of mission
objectives and rewards; together complex missions can
be defined around a physically realistic simulation. The
high degree of configurability and the ease of training
with off-the-shelf tools is demonstrated in an example
environment; BSK-RL’s use in a variety of other problem
formulations further demonstrates its utility across vari-
ous research questions. BSK-RL should be considered
a valuable tool for advancing the application of RL to
spacecraft tasking and control problems.
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Appendix: Additional Code Listings

Custom Simulator Models
An example of an extended dynamics model is shown

below. This model composes two already-implemented
dynamics models (ContinuousImagingDynModel
for a nadir-pointing imaging instrument and

GroundStationDynModel for ground station down-
link) and adds custom properties to be included in the
observation space.

1 class ScanningDownlinkDynModel(
2 ContinuousImagingDynModel,

GroundStationDynModel
3 ):
4 @property
5 def instrument_pointing_error(self) ->

float:
6 r_BN_P_unit = self.r_BN_P / np.linalg.

norm(self.r_BN_P)
7 c_hat_P = self.satellite.fsw.c_hat_P
8 return np.arccos(np.dot(-r_BN_P_unit,

c_hat_P))
9

10 @property
11 def solar_pointing_error(self) -> float:
12 a = (
13 self.world.gravFactory.spiceObject

.planetStateOutMsgs[self.world.sun_index]
14 .read()
15 .PositionVector
16 )
17 a_hat_N = a / np.linalg.norm(a)
18 nHat_B = self.satellite.sat_args["

nHat_B"]
19 NB = np.transpose(self.BN)
20 nHat_N = NB @ nHat_B
21 return np.arccos(np.dot(nHat_N,

a_hat_N))

Overriding Satellite Parameters
An example of a dictionary of satellite parameter over-

rides and randomizers is shown below. The data storage
capacity and fill rates are set and the power system param-
eters are set, among other parameters.

1 sat_args=dict(
2 # Data
3 dataStorageCapacity=5000 * 8e6, # bits
4 storageInit=lambda: np.random.uniform(0.0,

0.8) * 5000 * 8e6,
5 instrumentBaudRate=0.5 * 8e6,
6 transmitterBaudRate=-50 * 8e6,
7 # Power
8 batteryStorageCapacity=200 * 3600, # W*s
9 storedCharge_Init=lambda: np.random.

uniform(0.3, 1.0) * 200 * 3600,
10 basePowerDraw=-10.0, # W
11 instrumentPowerDraw=-30.0, # W
12 transmitterPowerDraw=-25.0, # W
13 thrusterPowerDraw=-80.0, # W
14 panelArea=0.25,
15 # Attitude
16 imageAttErrorRequirement=0.1,
17 imageRateErrorRequirement=0.1,
18 disturbance_vector=lambda: np.random.

normal(scale=0.0001, size=3), # N*m
19 maxWheelSpeed=6000.0, # RPM
20 wheelSpeeds=lambda: np.random.uniform

(-3000, 3000, 3),
21 desatAttitude="nadir",
22 )
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Environment Instantiation
Code for the complete instantiation of the RL environ-

ment used in the examples is given below, when combined
with the code listings throughout the paper.

1 env = SatelliteTasking(
2 satellite=ScanningSatellite("Scanner-1",

sat_args=sat_args),
3 scenario=UniformNadirScanning(

value_per_second=1 / (5 * 5700.0)),
4 rewarder=ScanningTimeReward(),
5 time_limit=5 * 5700.0, # About 5 orbits
6 failure_penalty=-1.0,
7 terminate_on_time_limit=True,
8 )
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