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Abstract

This paper investigates the impact of auto-generated shields
on the performance of policies trained using Deep Reinforce-
ment Learning (DRL) in the context of autonomous schedul-
ing for Agile Earth Observing Satellites. The planning and
scheduling phase during spacecraft operations determines the
sequence of actions the satellite should take to meet the mis-
sion requirements while adhering to the system’s constraints.
Traditionally, the scheduling has been handled by human op-
erators or by offline optimization techniques. However, the
increasing number of satellites and the growing demand for
their services make the problem more challenging. Addition-
ally, the need for fast re-planning due to unexpected events
or additional requests pushes for the need for fast schedulers
that can provide solutions in real time. Recently, DRL has
shown promise for on-board scheduling, but deploying neural
networks in critical systems, such as satellites, raises reliabil-
ity concerns. To overcome this problem, recent research has
proposed using Shielded Neural Networks to provide safety
guarantees. This work provides a comprehensive analysis of
the impact of different shield formulations on agent perfor-
mance, considering agents trained in 3-orbit episodes and de-
ployed in 90-orbit episodes. Results show that despite the
decrease in the reward rate in shielded agents, the cumula-
tive reward is higher due to their longer survivability. More-
over, shields provide safety guarantees, allowing agents to
be deployed in episodes thirty times longer than their train-
ing episodes. While shields can prevent agents from dying,
policies trained with safety concerns can perform better than
policies trained without safety concerns, especially for higher
target densities.

Introduction
Earth Observing Satellites (EOS) are equipped with sensing
instruments to acquire images of Earth’s surface, which can
be used for multiple purposes such as crop monitoring, intel-
ligence gathering, and disaster response. During the space-
craft operation, there is a planning and scheduling phase re-
sponsible for providing the sequence of actions the satel-
lite should take to meet the mission requirements while re-
specting the system’s constraints. The advent of agile EOSs
(AEOSs) adds complexity to the problem due to their extra
maneuverability capabilities, both along- and across-track,
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increasing the solution space. The growing demand for satel-
lite imagery has led to oversubscribed systems, making the
scheduling problem increasingly complex.

Originally, optimization techniques were used to solve
the EOS scheduling problem. The AEOS scheduling prob-
lem was shown to be NP-hard, and different optimization
techniques were investigated to solve the problem, such as
greedy algorithms, dynamic programming, constraint pro-
gramming, and local search (Lemaı̂tre et al. 2002). Heuris-
tics were employed in the context of multi-satellite systems
(Bianchessi et al. 2007), and a local search algorithm to
maximize the total reward obtained by an AEOS while min-
imizing the reward difference of users sharing the platform
(Tangpattanakul, Jozefowiez, and Lopez 2015). More re-
cently, the use of an infeasibility-based graph was proposed,
where the best solution corresponds to the maximum inde-
pendent set of the graph (Eddy and Kochenderfer 2021). The
method was investigated with up to 10,000 requests and 24
satellites, assuming the satellite to slew at a constant rate and
not considering power constraints. Other papers proposed
the use of budgeted uncertainty to deal with cloud coverage
uncertainty and showed the possibility of solving the prob-
lem using column generation and simulated annealing meth-
ods (Wang et al. 2020, 2021a). On-board re-plans based on
cloud coverage information were also proposed (Zhang et al.
2022). Wang et al. (2021b) have an overview of the AEOS
scheduling problem and the methods proposed to solve it.

Despite advances in optimization techniques, the AEOS
scheduling problem remains challenging, especially when
accounting for the need for fast re-planning due to un-
expected events, such as cloud coverage or additional re-
quests. This pushes for the need for fast schedulers that
can provide solutions in real-time and closed-loop format.
The use of Reinforcement Learning combined with Deep
Neural Networks (DNNs), known as Deep Reinforcement
Learning (DRL), has shown the ability to effectively solve
the scheduling problem under complex dynamics constraints
while presenting high adaptability. The fast evaluation of
the DNNs after training shows the potential of DRL for
on-board autonomy. In these methods, the problem is for-
mulated as a Markov Decision Process (MDP) or as a Par-
tially Observable MDP (POMDP) when only partial infor-
mation about the states is available. Techniques such as
Monte Carlo Tree Search (MCTS) or Proximal Policy Op-



Figure 1: Illustration of AEOS running DRL-based policies
for on-board closed-loop decision-making.

timization (PPO) are then used to obtain a policy.
For example, MCTS with Neural Networks has been

tested to solve the scheduling problem for EOS and AEOS,
performing similarly to a genetic algorithm (Herrmann and
Schaub 2022, 2023b). An in-depth comparison of different
DRL algorithms for EOS scheduling, such as A2C, DQN,
and PPO, is provided in (Herrmann and Schaub 2023a). Per-
formance comparison of DRL with PPO and Mixed Inte-
ger Linear Programming (MILP) under different target dis-
tributions was also investigated, showing promising results
(Stephenson and Schaub 2024b). DRL has also been shown
to be effective in multi-satellite deployment when commu-
nication is used to create collaboration among agents (Her-
rmann, Stephenson, and Schaub 2023; Stephenson, Manto-
vani, and Schaub 2024). The uncertainty of clouds above
targets was also accounted for in the AEOS scheduling prob-
lem, and the performance of agents with different observa-
tion capabilities was investigated (Mantovani, Nagano, and
Schaub 2024). Figure 1 illustrates AEOSs running DRL-
based policies in a closed-loop format.

However, the use of such policies obtained from NN for
autonomy with minimal human intervention in critical sys-
tems, such as satellites, raises concerns about their reliabil-
ity. To overcome this problem, recent papers proposed the
use of Shielded Neural Networks (SNN) to provide guaran-
tees on safety (Alshiekh et al. 2018). Shields are reactive
systems that check the action selected by the agent and cor-
rect it if it leads to an unsafe state. They can be designed
using the temporal logic specification.

Shields have been applied to the satellite scheduling prob-
lem, where the spacecraft must maximize its rewards ob-
tained by scanning nadir (Harris and Schaub 2020). The
problem is formulated as a POMDP, and the simulation
is implemented in Basilisk1, which provides high-fidelity
dynamics and constraints (Kenneally, Piggott, and Schaub
2020). Two safety aspects are considered: battery levels and
reaction wheel speeds (since speeds over the limit can drive
the system unstable). The authors construct a safety MDP
from the original POMDP, which includes unsafe states that
the agent should avoid. While the policy is obtained using
PPO, the PRISM-games solver is used to solve the safety

1https://avslab.github.io/basilisk/

MDP and obtain the shield; agents are trained with and with-
out shields for comparison. The results indicate that shielded
agents effectively avoid unsafe states and return to safe re-
gions of the state space.

SNNs have also been used in the scheduling of AEOS
with point targets, and, in addition to battery levels and re-
action wheel speeds, the satellite’s angular velocity is also
considered a safety aspect (Nazmy et al. 2022). Although
the agent was trained to image a specific location on Earth,
the results indicate that the SNN could still keep the agent
safe when deploying in different environments, such as the
Moon, due to the use of canonical coordinates. The perfor-
mance of DRL and a rule-based policy, both shielded, were
compared in a multi-satellite system (Bajenaru et al. 2023).
The results indicate that the DRL policy outperforms the
rule-based policy with more imaged targets while showing
less action interference from the shield. The problem con-
sidered up to 1,000 requests submitted to the satellites.

The work of shields for autonomous spacecraft operations
was expanded using Linear Temporal Logic (LTL) to specify
the safety requirements and presents a methodology to cre-
ate a safety MDP used to obtain the shields (Reed, Schaub,
and Lahijanian 2024). Three distinct shield algorithms were
presented: One-Step, Two-Step, and Q-Optimal. The One-
Step shield provides actions that will lead the agent to a safe
state. The Two-Step shield provides actions that will lead the
agent to a state that is safe and has an action that will also
lead to a safe state. The Q-Optimal shield uses the Q-value
of the optimal safety MDP to determine the probability of
an action remaining safe under that strategy. It only allows
actions that have a safe probability above a threshold. Their
results indicate that policies trained without shields in an en-
vironment with safety constraints but deployed with shields
lead to the best interaction between policy and shield, seen
in fewer safety violation and lower shield interference.

Previous work demonstrated efficient ways to construct
shields for DNN and their applicability. Still, there is a need
to investigate the impact of shields on the performance of the
autonomous agent policy in more detail and in more com-
plex scenarios. Therefore, this work provides a comprehen-
sive analysis of the impact of shields on autonomous agent
performance and evaluates the trade-offs between safety and
performance. The main contribution of this paper is to ana-
lyze the impact of different shield formulations introduced
by Reed, Schaub, and Lahijanian (2024) on agent’s perfor-
mance with more detailed test cases; agents were trained in
3-orbit episodes and deployed in 90-orbit episodes to ana-
lyze long-term survivability. This paper also investigates the
performance of different policies with similar shields, intro-
ducing an agent trained in an environment without safety
concerns as a baseline. The number of requests submitted to
the satellite varies from 1,000 to 10,000, providing a more
comprehensive analysis than previous related works.

Methodology
Problem Formulation
The AEOS scheduling problem can be formulated as a
decision-making process using a POMDP, a version of an



MDP where the agent does not have full observability of
the state space. As an MDP, a POMDP has a reward func-
tion R, state space S, action space A, and a transition func-
tion T where the next state s′ depends only on the cur-
rent state s and action a (Markov independence (Sutton and
Barto 2020)). Additionally, POMDPs possess an observa-
tion space O and observation function Z being defined by a
tuple ⟨S,A, T,O, Z,R⟩ (Kaelbling, Littman, and Cassandra
1998) where:

• State space S: Contains information about the spacecraft
states, targets, and internal variables to the simulator. S
consists of continuous and discrete states.

• Action space A: Contains 35 discrete actions that the
agent can take. The satellite can enter charge mode
(acharge), downlink mode (adownlink), momentum manage-
ment mode (adesat), or image one of the 32 upcoming tar-
gets (Aimage = {aim,j |j ∈ [1, 32]}).

• Transition probability function T (s′|s, a): Transitions
are deterministic and generated by a generative model G
that simulates the spacecraft dynamics (s′ = G(s, a)).

• Reward function R(s, a, s′): A target request ti is defined
by its priority ρi and position ri such that ti = (ρi, ri).
Initially, all targets are in an unfulfilled list of requests U ;
a target is moved to a fulfilled list F when it is success-
fully imaged. The agent receives a reward based on the
target’s priority, ρi such that:

R(s, a, s′) =

{
ρi if ti ∈ U and a ∈ Aimage

0 otherwise
(1)

• Observation space O: Is a subset of the dimensions in
S and contains information the agent can observe and
is useful for the decision-making problem. It includes
data on the next 32 upcoming targets in U , while inter-
nal simulator variables and targets beyond this set at a
given timestep remain unobserved. Table 1 describes the
observation space (normalized to be between -1 and 1, a
common practice for DNNs).

• Observation function Z(o|s′, a): The observation func-
tion is deterministic since the satellite is assumed to ob-
serve the observation space perfectly with o ∈ O.

Although all targets are created at the beginning of each
episode, only a subset of them is available for imaging and
in the observation space at each time step. This subset con-
tains the following N upcoming targets in U in terms of
their imaging window, making the system scalable to any
number of targets in the environment. From the agent’s per-
spective, targets are arriving dynamically. Stephenson and
Schaub (2024b) investigate the agent’s performance with
different N in the observation and action spaces, showing
N = 32 to lead to good performance, and compared it to a
MILP solution.

Simulation Environment
The simulation was implemented in BSK-RL2, a Python
package focused on environments for spacecraft planning

2https://avslab.github.io/bsk rl/

Parameter Description
Pr̂B/N Position of the satellite with respect to the in-

ertial frame N , expressed in the planet frame
P and normalized by the Earth’s radius.

Pv̂B/P Velocity of the satellite with respect to P , ex-
pressed in P and normalized by |PvB/N |.

ĉB/P Orientation of the satellite’s sensing instru-
ment with respect to P , normalized by π.

PωB/P Angular velocity of the satellite with respect
to P , expressed in P . Normalized by 0.03.

Pf Battery charge fraction.
Sf Buffer storage space fraction.
Ŵf Wheel speeds normalized by the maximum

wheel speed.
Φs Angle between solar panels and sun vector.

Normalized by π.
ρi Priority of target i for the 32 upcoming targets

in U .
αi Angle of target i with respect to the satellite’s

sensing instrument for the 32 upcoming tar-
gets in U . Normalized by π.

eb Time until next eclipse. Normalized by or-
bital period.

ef End of next eclipse. Normalized by orbital
period.

gb Time until next ground station pass. Normal-
ized by orbital period.

gf End of next ground station pass. Normalized
by orbital period.

t Time since the beginning of the episode. Nor-
malized by the episode duration.

Table 1: Observation space

and tasking (Stephenson and Schaub 2024a). BSK-RL com-
bines the Gymnasium Python package used for RL stud-
ies with Basilisk, which is used as the generative model G.
Basilisk is an astrodynamics simulation framework that can
simulate high-fidelity spacecraft dynamics and its systems
and subsystems (Kenneally, Piggott, and Schaub 2020). It
is written in C and C++ and has a Python interface, which
makes it easy to interact and fast for training and testing.

The simulation environment accounts for the spacecraft
dynamics, reaction wheels, battery subsystem, storage, and
downlink capabilities. Therefore, if the agent tasks an ac-
tion to image an incoming target, it is not guaranteed to suc-
ceed. The tasked action specifies the desired attitude to the
closed-loop control module, which then computes the reac-
tion wheel torques, with the spacecraft’s attitude being prop-
agated by the high-fidelity simulator. During the maneuver,
the simulator will check if the imaging constraints are met,
such as the relative angle between the target and the space-
craft, the relative angle rate, and the observation window. If
the constraints are met, the image is taken, and the target
is moved to the fulfilled list. When successfully imaging a
target, the storage space available is reduced.

Similar to imaging actions, the downlink action is not



guaranteed to succeed unless the spacecraft meets the re-
quirements and is within the reach of a ground station.
The downlink action frees storage space, accounting for the
amount of stored data and downlink rate. Although rewards
are not awarded for downlinking information, the agent can-
not add more images to storage space if it is full, which re-
quires it to downlink data.

When tasking action charge, the satellite will maneuver
to position its solar panels to maximize its energy genera-
tion. Still, charging is not guaranteed to be successful, as
the satellite must not be in eclipse. Despite the charge ac-
tion, the satellite will passively charge its batteries when-
ever there is adequate solar incidence, with the charging rate
as a function of the solar incidence angle. At all times, the
satellite has a baseline power consumption to represent es-
sential subsystems, in addition to the power consumption of
the imaging and downlink instruments when in use and the
reaction wheels as a function of their speed.

Lastly, the momentum management action is responsible
for desaturating the reaction wheels. Reaction wheels are
used to control the spacecraft’s attitude and accumulate mo-
mentum over time in the presence of external torques. The
momentum management action aligns the spacecraft with an
inertial reference frame and fires thrusters to desaturate the
reaction wheels.

Table 2 shows some spacecraft parameters, such as mass,
inertia, and subsystem information, such as storage space.
Values not mentioned here are set as the standard values for
the modules in BSK-RL.

Altitude 500 km
Inclination 45◦

Mass 330 kg
Battery capacity 160 W·s
Base power consumption 20 W
Data storage capacity 50 MB
Relative angle limit for imaging 28◦

Relative angular rate limit for imaging 0.01 rad/s
Minimum target image elevation 45◦

Reaction wheels maximum torque 0.2 N·m
Reaction wheels maximum speed 1500 RPM
K1 gain for the MRP steering control 0.5
Initial battery charge fraction [0.4, 1.0]
Initial storage space fraction [0.0, 0.75]
Initial reaction wheels speed fraction [−0.5, 0.5]
Number of requests [1000, 10000]
ρi [0, 1]

Table 2: Spacecraft parameters

The implemented simulation uses an event-based tasking
method, where, after the agent takes an action, the simula-
tor will propagate the simulation until certain conditions are
met (Stephenson and Schaub 2024b). For imaging actions,
the satellite simulator will propagate the dynamics until the
target is successfully imaged, the opportunity to image it
is missed, or a determined maximum time step is reached.
Similarly, downlink actions will be propagated until the data
is successfully downlinked, the opportunity is missed, or

a determined time step is reached. Charge and momentum
management actions will be propagated until the determined
time step is reached. The maximum time step for imaging
and downlink actions is 300 seconds; for other actions, the
maximum time step is 60 seconds.

As safety constraints, the satellite must always keep the
battery charge level above zero. Further, the reaction wheels
must be below a maximum angular speed threshold. The
episode terminates if any of the conditions are not fulfilled.

Target Distribution
The spacecraft was tested in two different scenarios of target
distributions, uniform and city-based. Uniformly distributed
targets are randomly distributed over the Earth’s surface;
city-based targets are distributed according to the world’s
most populated cities (Stephenson and Schaub 2023). The
essential difference between the two distributions is the clus-
tering of targets in the city-based distribution. Although
tested with both distributions, agents were trained with a
Swiss-cheese model, which generates areas of low and high
target densities (Stephenson and Schaub 2024b). The Swiss-
cheese model is obtained by sampling targets uniformly
across the globe and up to fifteen exclusion zones with dif-
ferent radii. Targets inside the exclusion zones are removed,
creating empty space regions. The Swiss-cheese presents
more diverse cases from which the agent can learn.

Training and Testing Environments
Training Environment
A training environment was set up to train the agent and ob-
tain a policy using DRL. The Asynchronous PPO (APPO)
algorithm (Luo et al. 2020) from RLlib (Liang et al. 2018)
was used, which is a variant of PPO (Schulman et al. 2017).
Table 3 contains the hyperparameters used for training; other
parameters were set as the standard values in RLlib version
2.6.3. See Herrmann and Schaub (2023a) for hyperparame-
ter analysis for the AEOS scheduling problem. The training
was performed in the University of Colorado Research Com-
puting (CURC) (University of Colorado Boulder Research
Computing 2023) using 32 cores and up to 20M steps.

Number of workers 32
Number of Training steps 20 · 106
Learning rate 3 · 10−5

Training bath size 10, 000
Minibatch size 250
Epochs 50
Neural Network 2 layers, 512 neurons each
Discount factor 0.999
Failure penalty 0

Table 3: Training hyperparameters

The training was performed without any shield mecha-
nisms, so agents would need to learn the safety aspects of the
problem related to battery charge and reaction wheels’ max-
imum speed. This work focuses on policies trained without
shields because they show better policy-shield interaction



when deployed with shields (after training) (Reed, Schaub,
and Lahijanian 2024).

In total, three different policies were trained. Policy π1

was trained in the nominal environment, while policy π2 was
trained with the external torque set to 1 · 10−4 N·m to simu-
late a more challenging environment. External torque leads
to higher momentum on the reaction wheels, also increasing
power consumption. Due to the more difficult environment,
the agent was expected to be more conservative regarding
safety and present a higher survivability rate. The third pol-
icy, π3, was trained using a modified simulation environment
with excessive battery capacity and reaction wheel speeds so
that it would not need to learn the safety aspects of the prob-
lem. Therefore, π3 is extremely greedy, taking only imaging
and downlink actions; it is used as a baseline to compare the
performance of the safety-aware policies (π1 and π2) when
deployed with shields.

All policies were trained with zero failure penalty since,
as investigated by Stephenson and Schaub (2024b), policies
trained with zero failure penalty and no shields but deployed
with shields outperform policies trained with a large failure
penalty. Still, the discount factor was set close to one, pro-
viding a small discount on future rewards and incentivizing
survivability. Also, the three-orbit-long episodes are treated
as truncated episodes.

Shielded Neural Networks
Shield mechanisms are combined with the policy during de-
ployment to prevent the agent from taking actions that can
lead to unsafe states. The framework utilized in this paper is
based on the work of Reed, Schaub, and Lahijanian (2024),
which uses an SNN to provide guarantees on safety. There-
fore, the agent will decide on an action, which is verified by
the shield afterward (post-posed) (alternatively, action mask-
ing could be combined with APPO, where only safe actions
are available to the agent (Tang et al. 2020)). If the shield
detects that an action would lead to an unsafe state, it over-
rides the agent’s choice and selects an action most likely to
take the agent to a safe region.

In this paper, four different shields are investigated. Three
shields are from the work of Reed, Schaub, and Lahijanian
(2024), where a lower dimensional safety MDP is abstracted
from the original POMDP. The safety MDP is obtained by
partitioning safety relevant states, keeping it trackable while
preserving the Markov property; transition probabilities are
obtained through simulations. The fourth shield is handmade
based on expert knowledge of the problem. The shields con-
sider battery charge level and reaction wheel speeds as safety
aspects in all cases. The shields are described as follows:

• One-Step: Provides a guarantee that the agent will remain
in a safe state for at least one step.

• Two-Step: Provides a guarantee that the agent will re-
main in a safe state in the next step and will have at least
one action leading to a safe state in the second time step.

• Q-Optimal: Checks the Q-value (of the safety MDP, ab-
stracted from the POMDP; see Reed, Schaub, and Lahi-
janian (2024)) of each action and allows only action that
results in a safe probability larger than a threshold

• Handmade: Is based on expert knowledge of the problem,
having heuristic rules to enforce safety.

The Handmade shield is based on the works of Herrmann
and Schaub (2023a) and Stephenson and Schaub (2024b)
and will override the agent’s selection to take action charge
if it is not in eclipse and the battery charge is below a cer-
tain threshold. The battery threshold depends on a minimum
energy threshold, Pmin, and the time until the next eclipse.
Therefore, the Handmade shield will obtain the eclipse du-
ration, ed, and estimate the energy consumption during the
eclipse, Pe, in that period with

Pe = edPd (2)

where Pd is an estimate of the satellite’s power consumption.
The minimum energy threshold, Pt, is calculated as

Pt = Pe + Pmin − tePc (3)

where Pc is the passive charging rate of the satellite, and te is
the time to the next eclipse. The Handmade shield will also
force the agent to take the momentum management mode
to desaturate the wheels if any of the wheels’ angular speed
fraction is above a threshold Ŵt. If both conditions are met,
the Handmade shield will select the charge action. Despite
using expert knowledge, the Handmade shield is expected to
fail in edge cases that are not considered in the design. For
this work, Pmin = 0.25, Pd = 1.0, Pc = 1.0, and Ŵt = 0.7.

These shields were designed to be checked every 60 sec-
onds, which may not meet the retasking time because of the
variable event-based tasking method. Therefore, the shields
are checked every 60 seconds, even if the agent has an on-
going task. If no correction is needed, the agent continues
the ongoing task; otherwise, the shield overrides the ongo-
ing action with a safe action.

Results
The results present the performance comparison of the dif-
ferent policies with different shields. The number of re-
quests, |R|, was varied from 1,000 to 10,000 (where R =
U ∪ F , with all targets initially in U). Fifty test cases were
run for each combination of policy, shielded case, target dis-
tributions, and number of requests; results report the aver-
age of those runs and the associated standard error of the
mean. As aforementioned, policies were trained in 3-orbit-
long episodes. However, the final goal is a policy that can
be deployed for the mission’s lifetime. Therefore, tests were
conducted with 90-orbit-long episodes, representing a thirty
times increase in episode length, to identify the effect of
long-term deployment. First, the performance of each policy
with different shields is presented. Later, the performance of
different policies with the same shield is investigated.

Performance of Policies with Different Shields
The agent’s performance is evaluated in terms of the cumu-
lative reward collected in the episode and the reward per or-
bit (reward rate), which is the cumulative reward divided by
the number of orbits the agent was alive. Additionally, the
percentage of shield interference is calculated, which is the



percentage of times the shield corrected the agent’s action
divided by the total number of actions taken. The number of
failures per orbit is also reported.

Figure 2 shows the number of cases alive as a function
of the number of orbits for each shielded case for policy
π1. While the number of cases alive at the end of 90-orbit
episodes is 49.8% for the unshielded cases, it is 99.67% for
the Handmade shield, 99.8% for Q-Optimal and Two-Step
shields, and 100% for One-Step shields.
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Figure 2: Number of cases alive per orbit for π1 for city and
uniform targets. Lines for shielded cases overlap, showing
similar survivability between 99.67% and 100%.

Figure 3 shows the results for policy π1 with city-based
targets. Despite unshielded cases showing the highest re-
ward per orbit, all shielded cases achieve higher cumulative
rewards. This result indicates that, despite the lower reward
per orbit, the fact that the agent is alive for longer allows it to
collect more reward. On average, Q-Optimal, One-Step, and
Two-Step shields interfered in actions 6.00%, 5.67%, and
5.68% of the time, respectively, for city-based targets; for
uniform targets, the average shield interference is 5.92%,
5.64%, and 5.92%, respectively. The Handmade shield in-
terfered 1.54% with city targets and 1.60% with uniform
targets. On the other hand, 0.33% of the Handmade cases
failed, while the other shields showed 0.17% or fewer fail-
ures. Despite the different interference levels, all shielded
cases present similar cumulative rewards.

Since dead satellites affect the total reward in the episode,
Fig. 4 shows the cumulative reward obtained in the episode,
similar to Fig. 3, but only considering the elite group - cases
that survived the 90-orbit episodes for city and uniform tar-
gets. It shows that elite unshielded cases have a similar cu-
mulative reward to the shielded cases, indicating that the
shields have little effect on the reward collected by the agent
while adding safety guarantees.

Policy π2 was trained in a similar environment as π1, but
with a slightly external torque, which leads to a different
and more conservative policy. As expected, π2 showed better
survivability than π1, with 76.67% of the unshielded cases
surviving the 90-orbit episodes and all shielded cases show-
ing 100% survivability. Figure 5 indicates the cumulative re-
ward obtained by the different shielded cases for policy π2

when using city and uniform based targets. The difference
between the unshielded case and shielded cases in terms of
rewards is smaller for policy π2 than for policy π1 due to its
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Figure 3: Performance metrics for π1 for city-based tar-
get distribution. While shielded policies cumulative reward
overlap, the handmade shield shows less interference.

higher survivability. The average shield interference across
city and uniform target distributions are below 3.66% for
the Q-Optimal, One-Step, and Two-Step shields. The Hand-
made shield has an average shield interference of 0.75%.
These results indicate that policy π2 is more conservative
than π1, which is reflected in the higher survivability and
lower shield interference compared to π1.

Policies π1 and π2 were trained without a shield and
learned the safety aspects of the problem. For comparison,
π3, which was trained in an environment without safety
concerns, was also tested. Figure 6 reports the number of
cases alive as a function of the number of orbits and shows
that all unshielded cases died before the end of the 90-
orbit episodes (agents survived for 2.38 orbits on aver-
age). In contrast, 99.5% and 99.83% of the cases with the
Handmade and Two-Step shields survived, respectively. All
agents with Q-Optimal and One-Step shields survived the
90-orbit episodes.

Similarly to Fig. 3, Fig. 7 indicates that shielded cases
achieve higher cumulative rewards than unshielded cases.
The average shield interference for the Q-Optimal, One-
Step, and Two-Step shields is 37.96%, 37.48%, and 37.49%,
respectively. The Handmade shield has an average shield in-
terference of 26.77%.

Among shielded cases in Fig. 3, the Handmade shield has
the lowest shield interference and tends to show the high-
est reward per orbit. Still, it presents more failure cases than
other shields since it is constructed using expert knowledge
but has no mathematical guarantees on safety, still being sus-
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Figure 4: Policy π1 results for elite groups. City (top) and
uniform (bottom) targets. All lines overlap, showing similar
performance among the best performing cases.

ceptible to edge cases leading to failure. On the other hand,
Q-Optimal, One-Step, and Two-Step shields presented the
smallest amount of failures in the test cases. As discussed by
Reed, Schaub, and Lahijanian (2024), the small differences
across these three shields indicate that they are overly con-
servative, which is an issue to be addressed in future work.

The results of this section indicate that shields can provide
safety guarantees for agents deployed in episodes 30 times
longer than their training episodes without a significant im-
pact on performance. Small differences are seen when com-
paring the shielded cases to the elite subset of unshielded
cases capable of surviving 90 orbits. Although 90 orbits are
far short of a typical mission’s lifetime, it provides an initial
baseline for deployments exceeding training duration. While
one could argue that training with longer episodes might re-
sult in policies with better safety aspects, this approach can
be computationally expensive due to the remaining need for
randomized environments to prevent overfitting. Even if fea-
sible, such policies would still lack the mathematical safety
guarantees provided by shields.

Performance of Different Policies with the Same
Shield
While the previous section compared the performance of
a policy with different shields, this section investigates the
performance a shield with different policies.

Figure 8 reports the cumulative reward for unshielded
agents and agents with the Q-Optimal shield. Policy π2

shows the best performance, followed by π1 in terms of cu-
mulative reward, while the performance of policy π3 is much
lower due to its low survivability rate. On the other hand, the
difference in cumulative reward between the shielded cases
is smaller; still, π3 shows the worst performance.

Figure 9 compares the cumulative reward of the cases
using the Handmade, One-Step, and Two-Step shields. As
shown in Fig. 8, π3, which was trained without safety con-
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Figure 5: Performance metrics for π2. City (top) and uni-
form (bottom) targets. The unshielded performance is closer
to the shielded cases when considering a uniform target dis-
tribution.
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Figure 6: Number of cases alive per orbit for π3 for city and
uniform targets. Shielded cases present a similar survivabil-
ity close to 100% while the unshielded case has a significant
decrease in the first ten orbits.

cerns, achieves a higher cumulative reward than the other
two policies for 1,000 and 2,000 targets; however, the other
two policies outperform π3 as the number of targets in-
creases. More targets result in greater target density, espe-
cially in the city-based distribution, leading to safety-aware
policies to perform better. These safety-aware policies select
better moments to charge and desaturate the wheels, leading
to higher cumulative rewards. On the other hand, the greedy
policy π3 only charges when forced by the shield, which can
occur when flying above regions with high target density,
leading to missed imaging opportunities and lower rewards.

Overall, this section’s results indicate similar average cu-
mulative rewards for different policies with the same shield.
This corroborates the results from the previous section, in-
dicating that shields have little impact on the reward col-
lected by the agent in the long run while providing safety
guarantees. Additionally, it indicates that it is possible to
train agents in environments without safety concerns and de-
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Figure 7: Performance metrics for π3. City (top) and uniform
(bottom) targets. Shielded cases show similar cumulative re-
ward for both target distributions. The unshielded case has
low performance due to the high number of failures.
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Figure 8: Policies unshielded and with Q-Optimal Shield
combining city and uniform targets. Policy π3 shows sim-
ilar performance to the other two policies when shielded in
environments with low target density.

ploy them with shields to keep them alive. Still, safety-aware
agents achieve higher performance as the target density (and
the number of targets) increases.

Conclusions
This paper explored the impact of shields on the per-
formance of autonomous agents in the context of AEOS
scheduling with tests conducted with different policies and
shields across two distinct target distributions. The findings
indicate that shields can provide safety guarantees for agents
deployed in episodes thirty times longer than their training
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Figure 9: Policies with Handmade, One-Step, and Two-Step
shields combining city and uniform targets. Policy π3 con-
sistently shows lower performance than the other two poli-
cies for higher target densities.

episodes without significantly impacting performance. Al-
though shielded cases show higher cumulative rewards than
unshielded cases, they present similar performance to the
elite group of unshielded cases. This shows that shields have
little impact on the reward collected by the agent while pro-
viding safety guarantees. Results also indicate that the av-
erage cumulative reward of the different shielded policies is
similar. Also, it indicates that it is possible to train agents in
environments without safety concerns and deploy them with
shields to keep them alive. Still, safety-aware agents show
better performance in scenarios with higher target density.

Future work will investigate the performance of agents
trained with shields in environments with safety concerns
and environments with more complex and restrictive safety
aspects.
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