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ABSTRACT

The increasing number of resident space objects (RSO) in low Earth orbit poses significant challenges for autonomous
Space Situational Awareness (SSA). Unlike Earth observation, space-based SSA requires agile imaging of fast-moving
targets under stringent constraints on power, line-of-sight, and illumination. This work researches having a satellite
taking images of space objects with known trajectories. The paper formulates the space-to-space RSO inspection prob-
lem as a partially observable Markov decision process and trains a reinforcement learning (RL) agent for simulatenous
dynamic target selection and onboard resource management. Using the BSK-RL environment and the Basilisk high-
fidelity spacecraft simulator, an actor-critic RL agent learns to autonomously image RSOs while maximizing coverage
and adhering to subsystem limitations. Results show that the learned policy generalizes across orbital configurations,
exploits eclipse periods for proactive downlinking, maintains energy margins quasi-autonomously, and achieves more
timely and useful image delivery than a myopic heuristic. These findings support the potential of RL-enabled auton-
omy for future scalable SSA missions.

1. INTRODUCTION

The rapid growth in resident space objects (RSOs), fueled by the deployment of numerous low Earth orbit (LEO)
constellations and the reduced barrier to space access, has led to a surge in cataloged space assets. Estimates indicate
over 9700 active satellites currently orbiting in LEO, with projections of tens of thousands more in the next decade
[1, 2]. This surge is creating significant strain on existing space domain awareness (SDA) capabilities and necessitating
further advancements to keep up with the ever-growing number of space assets. While for decades satellite tracking
and imageing has been predominantly conducted from ground-based telescopes, they are subject to various challenges
such as weather, atmospheric effects, fixed field-of-regard (FOR) and limited to observations only during nighttime.
These limitations have significant impact and in some cases only allow for 25% operability in some instances[3].
Conversely, space-based sensors for satellite tracking and imaging are not impacted by most of these and additionally,
over the course of the orbit, possess an effective FOR covering the entire sky [4].

Ongoing research in the broader field of space-based space surveillance (SBSS) also addresses the challenging prob-
lem of orbit determination using short-arc optical measurements from narrow field-of-view (FoV) sensors. These
measurements often span only a few seconds due to the high relative velocities between sensor and target, leading
to significant uncertainty in orbital state estimation [5, 6, 7]. To mitigate this, recent work has explored advanced
estimation techniques including batch and sequential estimators, genetic algorithms, and multiple shooting methods
[8, 9, 10, 11].

If a space object has a well-estimated orbit then space-to-space imaging of this Resident Space Object (RSO) is
possible. The observing satellite must carefully track the RSO object during the imaging to compensate for the fast
relative motion. Scheduling such imaging tasks is challenging as the Earth orbits are in a broad range of orbit planes



Fig. 1: Space-based RSO imaging under lighting constraints

and altitudes. The focus of this paper is developing autonomous on-board space-to-space imaging tasks using a
shielded neural network to ensure satellite safety.

Scheduling the tasking of sensors for SSA and SBSS has been shown to be NP-hard, similar to the vehicle routing
problem with time windows [12]. As such, exact optimization approaches, including mixed-integer programming and
constraint satisfaction formulations [13], can only guarantee optimality for small instances. To address scalability,
a variety of non-RL heuristic and metaheuristic approaches have been explored, including greedy algorithms [14],
multi-objective genetic algorithms (NSGA-II) [15], and information-gain–driven schedulers [16], many of which have
been applied to both ground- and space-based SSA contexts. While these methods can produce high-quality schedules,
they typically require rerunning the optimization whenever new target opportunities or updated orbital data become
available, limiting their responsiveness in highly dynamic environments.

In contrast, reinforcement learning (RL) can learn reusable policies that generalize across scenarios, enabling rapid
real-time decision-making without solving a new optimization problem from scratch at each step[17]. RL methods
can also directly incorporate complex operational constraints, stochastic events, and multi-objective trade-offs into
the decision process, avoiding the need for simplifications often required in MILP or heuristic formulations. Hence,
some research has also been conducted in optimizing the task scheduling of ground-based sensors using RL [18, 19,
20, 21, 22]. Nonetheless, the use of RL applied to space situational awareness is still in its early steps, particularly
when applied to space-based sensor tasking [23]. The many advantages of space-based sensor tasking have been
recognized for decades [24, 25, 26], yet its operational environment, characterized by rapidly changing fields-of-
regard and dynamic target geometry, poses significantly greater scheduling challenges than for ground-based sensors
with fixed FOR. These complexities make it an especially compelling domain for RL-based approaches, which can
adapt to such variability in real time.

While RL has gained substantial traction in various space applications, previous research investigated the use of RL for
onboard (space-based) sensor tasking focusing primarily on Earth observation satellites (EOS) [27, 28, 29, 30, 31, 32].
These missions typically involve scheduling imagery of static or slowly moving ground targets, and RL agents have
been trained to manage complex trade-offs such as momentum buildup, limited power availability, and onboard data
storage [33, 34]. In these scenarios, the relative motion between the spacecraft and the targets is predictable and
constrained to a single hemisphere (only looking at targets below), simplifying both access modeling and decision-
making.

In contrast, space-based sensor tasking for space surveillance presents a significantly different challenge as targets in



space are themselves orbiting rapidly and may occupy entirely different orbital planes, leading to highly dynamic and
transient imaging opportunities. To date, only limited RL-based approaches have addressed this problem. Notably,
[23] applied RL for a LEO-based sensor imaging GEO targets with the aim to minimize the mean trace covariance
across all RSOs. However, this setup benefits from the quasi-stationary nature of GEO targets, which reduces the
relative motion complexity. Additionally, that work focused solely on target selection and did not incorporate realistic
spacecraft safety or operational constraints such as battery depletion, eclipse (illumination status of targets), reaction
wheel desaturation, or the need for downlink operations.

The focus of this paper is to research the more demanding scenario of LEO-to-LEO space-based imaging, where both
the sensor and the targets are in fast-moving and known orbits. The agent must reason over short-lived windows of
opportunity, rapid changes in line-of-sight (LOS), and tighter timing constraints. Furthermore, this study incorporates a
rich set of spacecraft operational constraints, including energy management across eclipse cycles, momentum buildup
and desaturation needs, and data storage limitations. The resulting on-board network is very responsive to a changing
target environment as the tasking decisions are made at each decision interval with the latest current states. Short-notice
injection of new high value targets can readily be addressed. The focus of this study is on the scheduling and onboard
decision-making aspects of a space-based imaging system. The simulation framework assumes known target states
and does not currently incorporate state uncertainty or simulate how those uncertainties might be reduced through the
imaging actions taken by the agent (as is done in [23]). By using the Proximal Policy Optimization (PPO) algorithm,
the policy does not make drastic changes in-between training steps and has the ability to learn in a stable fashion, with
reduced risk of unlearning good behavior [35]. By tackling onboard scheduling with safety and operational constraints,
this work helps to bridge the gap in the space-based SSA literature on deep RL for LEO-to-LEO imaging.

2. SPACE-BASED SPACE SURVEILLANCE ENVIRONMENT FORMULATION

Space-based SSA is inherently complex and cannot be accurately represented using static targets, as is commonly
done in agile Earth observation satellite (AEOS) scenarios, which focus on fixed ground locations[36, 37, 38]. In
contrast, a space-to-space scanning satellite must deal with the dynamic and hard-to-predict relative orbital motion of
the RSOs in the catalog, especially with imperfect knowledge of their state. These targets move in and out of the field
of view (FOV) from all directions due to their diverse inclinations and orbital regimes, ranging from low LEO to the
edge of MEO in this study. The maneuver times to lock the camera bore-sight onto another RSO are not analytically
predictable. As a result, it becomes significantly more difficult to anticipate which RSOs will be observable at any
given time. This problem is further complicated when considering the fast and frequently changing lighting conditions,
especially for LEO orbits. Consequently, the agent must dynamically update the list of visible unimaged targets at each
decision step-a challenge that will be detailed further in the next section.

2.1 Simulation Environment

A custom SBSS environment is developed to simulate the space-to-space imaging task, built upon the high-fidelity
Basilisk simulation package [39]1 and the BSK-RL framework [40] 2. The simulation models a single imaging space-
craft positioned in a 500 km LEO tasked with observing a catalog of RSOs, focusing on imaging rather than orbit
determination. The environment tracks the states of the spacecraft and RSOs, generates observations based on sensor
parameters, and computes rewards based on successful imaging and downlink actions according to the agents reward
function, while respecting operational constraints.

Each environment step corresponds to the spacecraft completing an action with a fixed duration, described in section
3.1. The RSOs are randomly initialized as described in Table 1 and it may downlink to any of the seven groundstations,
detailed in Table 8 of the appendix. The slant ranges shown in Fig. 2 were computed as defined in [41] to give a visual
representation of the visibility as seen from a 500 km LEO altitude.

Basilisk’s modular, message-passing architecture allows for the assembly of a flight-like closed-loop simulation in
which attitude, power, data handling, guidance, and actuation are explicitly coupled. Each block publishes and/or sub-
scribes to typed messages (states, commands, health), so subsystem implementations can be swapped without changing
interfaces. In our SBSS setup shown in Fig. 3, the LocPointTask is connected with the selected target’s navigation
message through the imageRSO() FSW Module. The computed attitude error and body-rate estimates are consumed

1https://avslab.github.io/basilisk/
2https://avslab.github.io/bsk_rl/



Table 1: Orbital Parameters for Scanning Satellite and Passive RSOs

Orbital Element Scanning Satellite Passive RSOs (N=100)

Semi-major axis (a) 6871 kma 6871 km to 8371 kmb

Eccentricity (e) 0 (circular orbit) [0.0, 0.02]
Inclination (i) 0◦ to 180◦ 0◦ to 180◦

Right Ascension (Ω) 0◦ to 360◦ 0◦ to 360◦

Argument of Periapsis (ω) 0◦ to 360◦ 0◦ to 360◦

True Anomaly ( f ) 0◦ to 360◦ 0◦ to 360◦

a Fixed at 500 km altitude above Earth’s mean radius (6371 km).
b Corresponds to altitudes of approximately 979–1329 km.

Fig. 2: Groundstation visibility for LEO imaging satellite at 500 km altitude

by an mrpFeedback controller3, which outputs reaction-wheel motor torques subject to per-axis speed/torque lim-
its. The wheel assembly returns the resulting bus torque to the rigid-body dynamics. Although this task focuses on
space-to-space imaging (rather than ground-target scheduling), the overall architecture aligns with [42].

2.2 Satellite Dynamics and Control

The scanning satellite used for the imaging operations mimics the well-tested setup used for many AEOS research
studies [43, 36]. The control law used to execute attitude maneuvers is Basilisk’s mrpFeedback controller imple-
mented as detailed in chapter 8 of [44]. To challenge the agent with the need to charge and downlink to maximize
performance, the battery charge is initialized between 25% and 50% and the data storage buffer is sized to fit only
half of the data needed to image all RSOs. This balance is chosen to neither make the problem trivially easy nor focus
primarily on these tasks since the aim for the agent is to perform effectively in terms of imaging (optimizing which
target to aim for next) and downlinking targets. The setup of the various satellite properties, controller gains, initial
conditions and power drains are summarized in Table 2. Unlisted values follow the BSK-RL defaults.

2.3 Targeting, Imaging and Downlink Constrains

At each action step, the environment identifies the unimaged RSOs within the spacecraft’s current FOR, defined by a
minimum elevation angle εmin. For a successful image action the targeting of the sensor needs to satisfy, the attitude
error requirement, the attitude rate requirement as well as be within for one evaluation of the flight software algorithm
(operating at 2 Hz).

3https://hanspeterschaub.info/basilisk/Documentation/fswAlgorithms/attControl/mrpFeedback/mrpFeedback.html
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Fig. 3: Basilisk simulation architecture

The various targeting, imaging, and downlink constraints are listed in Table 3.

In this study, the eclipse status was not considered as a binary (shadowed or illuminated) but as a continuum, to also
take into account the penumbra effect of a partially eclipsed sun as seen from the RSO, illustrated in Fig. 4.

2.4 Problem Objective

The objective of the satellite is to image and downlink as many RSOs in a given episode duration, while adhering to
battery, angular momentum and data storage constraints. For this work, the total time for a full simulation (episode
duration) was set to 150% of the time required to image all RSOs (150 imaging actions), which for 100 targets
corresponds to 45,000 seconds, around 8 orbits. This design variable is chosen to provide sufficient time for the
satellite to be in LOS with all the RSOs (if not the large majority) during at least one step of the episode. While for
any given moment only a small percentage of all the RSOs will be visible from the imaging spacecraft, over the course
of the entire episode, it essentially sees all (or most of) the targets once or more. Nonetheless, as the eclipse status of
the RSOs at every timestep is also considered in this work, the optimal performance given the fixed episode duration
is typically less than the total number of RSOs in the simulation.

Given an imaged RSO, the environment evaluates whether imaging constraints (e.g., LOS, eclipse conditions) are
satisfied at time of imaging, and assigns a reward accordingly. The episode rollout is limited to a finite horizon,
typically spanning several orbits, to evaluate the performance over extended durations. This setup ensures that the
environment captures the dynamic and constrained nature of space-based SDA, providing a realistic platform for



Table 2: Spacecraft and control parameters

Parameter Value(s)

Physical
Mass, Inertia m = 330kg, [Ixx, Iyy, Izz] = [82.1,98.4,121.0] kgm2

Actuators 3× Reaction Wheels (orthogonal axes)
RW max torque umax = 0.4Nm (per-axis)
RW speed limit 6000 RPM
Initial RW Speeds ±500 RPM
Initial Body Rates <0.0001 rads−1 (random tumble)
Battery Capacity 500 Wh
Initial Stored Charge 25–50% of capacity
Solar panel size 1 m2 (efficieny 20 %)

Power Drains
Base Power Draw 10 W
Instrument Power Draw 30 W
Transmitter Power Draw 25 W
Thruster Power Draw 80 W

Other Properties
Sensor-boresight-axis Spacecraft z-axis
Desaturation Attitude Sun-pointing

Control (mrpFeedback)
Steering gains K = 7.0, P = 35.0

Table 3: Targeting, Imaging, and Downlink Constraints for the SDA Environment

Constraint Value Unit/Description

Attitude Error Requirement ≤0.01 MRP
Attitude Rate Requirement ≤0.05 rad/s Eclipse Threshold ethresh
0.5
Single Image Data Size 0.5 Mb
Storage Capacity 25 Mb (50 images)
Initial Storage Fill Level 0 Mb

training and evaluating the RL agent.

The numerical objective function is to maximize the fraction of successfully imaged targets Iill out of all the targets
T :

maximize
Iill

T
(1)

subject to the mission dynamics, target visibility constraints, and spacecraft constraints (including battery and limited
onboard data storage). When an image is taken, the imaging reward is only given if the target RSO is sufficiently lit,
defined by sssi > ethresh, where sssi is the i-th target illumination factor. Illuminated and non-illuminated images are both
downlinked as they occupy space in the buffer (and it is assumed in this study that images are not analyzed on board),
but only those taken under valid illumination contribute to the reward.

The numerical objective in 1 is to maximize the number of RSO targets that are both imaged and successfully down-
linked and therefore the task-scheduling must balance data collection and communication opportunities with limita-
tions on energy availability and attitude control authority. This constrained SDA environment formulation encourages
planning strategies that achieve high mission performance without compromising long-term operability, and episodes
terminate immediately upon critical constraint violation such as battery or reaction wheel failure.



Fig. 4: Space-based RSO imaging under eclipse and LOS restrictions. Green represents a successful imaging, whereas
shaded may give partial reward to the agent as it is partially eclipsed. Red would violate the LOS constraint and hence
no reward would be given for imaging that target.

3. REINFORCEMENT LEARNING SETUP

Autonomous space-based tasking in a dynamic orbital environment presents a natural setting for RL, where an agent
must make sequential decisions to maximize long-term returns under uncertainty[17]. In this study, we formalize the
autonomous imaging and downlink scheduling problem for RSO observation as a partially observable Markov decision
process (POMDP). This framework allows the agent to learn policies that reason over incomplete state information,
adapt to changing target visibility, and manage limited onboard resources and operational constraints.

A POMDP models decision-making under uncertainty about the system state. It consists of a state space S , action
space A , transition function T , and reward function R. Because the true state is not fully observable, the agent
receives observations from O , governed by the observation model Z . The discount factor γ ∈ [0,1] balances immediate
and future rewards. The objective is to choose actions that maximize the expected cumulative reward over time, taking
into account the stochastic dynamics of the environment.

Because the true system state is not fully observable, the agent must learn to infer sufficient information from obser-
vations ooot ∈ O to select actions ak ∈ A that maximize the expected discounted sum of future returns:

E

[
T

∑
k=0

γ
krk

]
, (2)

where k is the step of the environment.

The specific challenges this work addressed include:

• Adapting to orbital dynamics and Earth shadow (eclipse) conditions.

• Operating under limited energy, momentum, and data buffer resources.

• Respecting geometric constraints such as LOS and FOV.

• Prioritizing targets based on policy goals.

3.1 POMDP Formulation
The elements of the POMDP tuple for the inspection task are as follows:

• State Space: The underlying simulator state provides the generative model for the MDP and includes the phys-
ical dynamics of the inspector spacecraft and RSOs, internal subsystem states (e.g., battery level, data storage,
wheel momentum), and external environmental states (e.g., lighting, eclipse windoes, visibility windows for
ground stations).



• Observation Space: The agent observes a partial view of the full simulator state, composed of normalized
quantities relevant to the imaging and planning tasks. The components of the observation vector are listed in
Table 4.

Table 4: Observation space elements provided to the agent at each timestep.

Element Description Dim.
sdata Fraction of onboard data storage used 1
sbatt Normalized battery charge level 1
smom Normalized wheel momentum 1
εεε i Elevation angles of visible target i N
rrrH

BR,i Relative position vectors to target i in Hill frame, H 3×N
θθθ i Angle between boresight and target i N
dddi Distance to target i N
sssi Illumination factor (shadowing value) for target i N
eeestart, eeeend Eclipse Normalized start/end times 2
gggopen, gggclose Normalized ground stations window open/close times 2x5

• Action Space: At each timestep, the agent selects one action from a discrete action set:

– Image(i) – Image a selected RSO from N = 10 visible targets (for 5 minutes),

– Charge – Enter charging mode for 5 minutes,

– Downlink – Initiate data downlink for 3 minutes,

– Desat – Perform momentum desaturation for 2.5 minutes.

The imaging action targets one of the top-N RSOs sorted by elevation angle. Other actions are global spacecraft
operations.

• Reward Function: The reward r(t) at time t is determined by whether the selected imaging target was success-
fully imaged under valid illumination conditions and whether a previously collected image was downlinked.
Rewards are only granted for illuminated captures (not shadowed ones), and downlinked data is only valuable if
the original image was illuminated.

r(t) = wi (3)
s.t. sssi > ethresh, (4)

LOSi, (5)

∠
(
ẑzzb, ρ̂ρρ i

)
≤ MRP(0.01) (6)

here:

– wwwi is the priority of the i-th target,

– sssi is the illumination factor of the i-th target,

– ethresh is the illumination threshold to be considered sufficiently lit,

– LOSi is the binary measure of whether line-of-sight is present between the scanning satellite and the i-th
target,

– ẑzzb is the spacecraft body z-axis,

– ρ̂ρρ i is the unit vector from the spacecraft to target i,

– the angle constraint enforces alignment within 0.01 Modified-Rodriguez Parameters (equivalently, ≤
2.29◦).



The agent’s goal is to maximize the cumulative reward over the episode as defined in Eq. 2, subject to operational
constraints like energy availability, data storage, momentum limits, and imaging cadence.

• Transition Model: The environment dynamics are implemented as a deterministic generative model rather
than a probabilistic transition function. At each timestep, the agent selects one discrete action (e.g., imaging,
charging, downlinking), which is then executed over a fixed time interval. The environment simulates the
spacecraft’s dynamics, onboard resource state updates, orbital lighting conditions, and RSO visibility during
that interval. The environment state is then used to calculate the associated reward for the agent as well as
passing it the next observation.

3.2 RL Training

Due to the high dimensionality of spacecraft dynamics and the complexity of sensor-based observation models, deep
RL with the Proximal Policy Optimization (PPO) algorithm [35] is employed. PPO is an actor-critic architecture,
where the actor represents the policy network that chooses actions based on current observations and the critic evaluates
the performance of the policy and compares it to its own predictions. To improve the policy over iterations, the critic is
used as feedback for the actor to improve, while the prediction error is used in turn to update the critic. This algorithm
is a leading on-policy method that achieves a favorable trade-off between sample efficiency and training stability. It
does so by limiting how much the policy is allowed to change at each step, using a clipped surrogate objective to
prevent overly aggressive updates that could destabilize learning. Training was done using the ray ”RLlib” library,
which can interface with BSK-RL, on an Apple Silicon M4 CPU typically over a span of 24 hours, until 20 million
environment steps have been completed. As part of the training optimization, a range of hyperparameter were varied
including the learning rate, discount factor, training batch size, network size, clip parameters of the PPO as well as the
gradient. The set of hyperparameter used is found in Table 9 of the appendix (otherwise the default Rllib values were
used. Given the different duration of the actions, a time discounted generalized advantage estimate was used, meaning
the discount factor is applied per second and not per step. It is worth noting that the training of the policies was a big
challenge and required a large search of hyperparameters.

4. RESULTS

To evaluate the performance of the proposed RL scheduling approach, we compare it against a myopic heuristic policy.
The heuristic policy is provided with the full list of unimaged targets currently within LOS. Out of those targets, it
chooses the one with the smallest angular pointing error, without consideration for future opportunities or resource
states. Two sepatate comparisons are made. Firstly, only the imaging performance is tested with consideration of just
the eclipse threshold ethresh to obtain illuminated images, with otherwise unlimited spacecraft resources. Secondly,
another comparison with the inclusion of restricted resources and need to downlink to specified ground stations is
made. In this second test case, both approaches operate under an identical safety shield that intervenes when the
onboard data storage exceeds 99% capacity or when the battery state-of-charge drops below 20%. In those instances
the shield overrides the agent’s decision to enforce downlinking or charging actions, respectively. In the scenario
where the battery as well as the storage shield intervention is triggered,the charging action will be tasked to keep
the spacecraft alive. Notably, for the chosen episode duration used for training and testing, the spacecraft did not
accumulate a large enough amount of angular momentum to require desat maneuvers. It has been shown that when the
agent is exposed to artificial external torques in training, it is able to learn to utilize the desat action to keep the agent
alive [45]. For the comparisons shown in this paper, no artificial external torque is applied.

4.1 Baseline Comparison

First the sensing problem is isolated from spacecraft resource management by removing all operational constraints (no
battery, storage, or desaturation limits). In this setting the shield is inactive for both methods, and downlink/charging
actions are never required. As a result, performance is dominated by line-of-sight (LOS) geometry and target selection
alone. For this study a separate RL-policy was trained with exactly this environment setup. The main metrics of this
study are summarized in Table 5.

As expected, both methods achieve similar end-to-end performance when resource limits are removed. Over 100
Monte Carlo episodes, the heuristic attains an average of 89.54±2.99 (mean±std) successful images, while the RL-
policy reaches 90.47±2.95, a small average gain of around 0.9 images per run.



Table 5: Baseline (imaging-only) comparison over 100 runs. Values are mean±std. No resource actions or shield
interventions occur in this setting.

Metric Heuristic RL policy

Illuminated images (count) 89.54±2.99 90.47±2.95
Illumination fraction (%) 71.28±2.90 88.97±3.79

Although overall performance is close, the RL-policy exhibits a clear preference for better lighting. The illumination
fraction (fraction of targets that are illuminated when selected) increases from 71.28%±2.90% (heuristic) to 88.97%±
3.79% (RL-policy).

Qualitatively, this manifests as the RL-policy biasing its pointing toward better-lit geometry especially around eclipse
transitions: near eclipse entry the agent often “looks back” to capture still-lit targets, and near exit it “looks forward” to
acquire the first illuminated opportunities. In this constraint-free regime, no charging/downlink/desat events or shield
interventions occur for either method, as designed.

4.2 Aggregate Results under Eclipse Constraints and Resource Limits

Next, the two approaches are compared again with eclipse constraints but also under resources restrictions, namely:
battery, data storage and angular momentum constraints. This makes the task more challenging as the agent needs to
ensure it keeps its battery alive, while also necessitating downlinks when in range to groundstations, to free up storage
and allow for more targets to be imaged. Again, 100 Monte Carlo (MC) episodes per policy were run in the restricted
resource environment with the same intervention shield (storage≥ 99% ⇒ downlink; battery≤ 20% ⇒ charge) for
both approaches. The resulting statistic are shown reported in Table 6 .

Table 6: Restricted-resources, eclipse-constrained MC study (100 runs each). Values are mean± std unless noted.
Downlink yield is useful/total.

Metric Heuristic + Shield RL + Shield

Illuminated images (mean) 86.85±4.43 84.45±3.71
Illumination fraction (%) 71.96 ±3.38 87.23 ±3.61
Total downlinks 77.15±8.85 78.42±13.69
Useful downlinks 69.80±9.13 71.08±13.02
Downlink yield (%) 90.47 90.64

Charge events over 100 runs 96 16
Shield interventions / run 22.82 3.26

Across the MC population, the heuristic yields +2.8% more successful images than the RL-policy (86.85± 4.43 vs.
84.45±3.71).

Despite imaging more targets on average, the heuristic downlinks slightly fewer useful images than the RL-policy
(69.80±9.13 vs. 71.08±13.02), with a nearly identical downlink yield (90.47% vs. 90.64%). Notably, the standard
deviation in the number of useful downlinks is significantly higher than the equivalent for the illuminated images. This
is particularly because the groundstations in the environment are in fixed locations and therefore, for some randomly
generated orbit of the scanning satellite, provide potentially minimal coverage. On the other hand, since the targets
are also generated randomly, there is no large deviation in the imaging performance when the scanning satellite is
placed on a different orbit. This robustness of imaging to the orbit plane of the agent was also demonstrated in [23].
Moreover, while the heuristic outperforms the RL-policy, it also requires on average six times more charging actions
compared to the trained model.

Overall, the MC study shows that the learned policy internalizes resource-aware scheduling and timely downlinking,
yielding comparable illuminated collection (slightly lower than the updated heuristic baseline here) while improving
delivery yield and autonomy (substantially fewer shield interventions).



4.3 Case Study for Representative Episode

In this section, a single episode is analyzed in more detail to highlight the different behaviour between the heuristic
and the RL-policy.

4.3.1 Qualitative Behavior

Fig. 5 shows the temporal evolution of battery and storage usage, cumulative imaging and downlink counts, and to-
tal accumulated reward for the RL-policy in a representative simulation run. Key mission phases, including eclipse
(umbra) and ground station visibility windows, are marked for reference. The RL-policy consistently exploits eclipse
periods, when many LEO-to-LEO targets are also in darkness and therefore unobservable, to prioritize data downlink-
ing. This behavior emerges naturally from training and results in productive use of otherwise idle time.
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Fig. 5: RL-policy time series: battery/storage fractions, cumulative imaging and downlink counts, reward, with eclipse
(umbra), and ground-station windows annotated.

Fig. 6 illustrates that the heuristic policy is fully dependent on shield interventions to avoid critical battery depletion.
Rather than preemptively scheduling downlinks or aligning observations with energy margins, it continues to select
imaging actions until the shield forces corrective measures. As a result, the heuristic spends less time in effective
downlink operations and approaches high storage levels that limit further imaging. This behaviour entails that the
downlinked images are typically older since they were taken longer ago. In contrast, the RL-agent learns to downlink
every eclipse, which means more recent, and therefore valuable, images are sent to the ground.

A notable emergent strategy in the RL-agent is dual-use target selection, rarely requiring a dedicated charging action.
In several intervals, the agent selects imaging opportunities that are spatially and temporally aligned with favorable
solar illumination, permitting battery recharge while collecting images. This hybrid action profile maintains higher
battery levels without requiring explicit charging actions in this example.

4.3.2 Quantitative Performance

Across multiple seeds, the RL-policy maintains higher autonomy (fewer shield interventions) and timelier delivery to
ground stations relative to the heuristic baseline as well as better battery management. For the representative single
episode shown in Fig. 5–6, the RL-policy produced fewer illuminated images than the heuristic (82 vs. 90) but achieved
a higher imaging success rate (74.55% vs. 68.18%), performed more downlink operations (93 total; 79 useful vs. 83
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Fig. 6: Heuristic policy time series: the policy relies fully on shield interventions for charging and downlinking,
leading to delayed deliveries and lower energy margins.

total; 75 useful), and required zero shield interventions (vs. 26 for the heuristic). Importantly, the RL-policy also
improves timeliness: images taken during the day are typically downlinked in the following nighttime pass, i.e., within
roughly one orbit. Conversely, the heuristic relies on the shield to initiate downlinks, when storage is entirely full. This
delays the delivery and in this case only resulted in two successful donwlink action, meaning the resulting imagery is
older on arrival at the ground and thus of reduced operational value.

Table 7: Single-episode performance summary comparing the RL-policy (with
shield) to the myopic heuristic (with shield).a

Metric RL + Shield Heuristic + Shield

Illuminated images (count) 82 90
Imaging success rate (%) 74.55 68.18
Useful downlinks (count) 79 75
Mean target illumination fraction (%) 82.73 72.79
a “Useful downlinks” are those that deliver an illuminated image to the ground. Imaging success

rate is computed as illuminated images divided by the total number of imaging actions.

Table 7 summarizes key metrics for this individual episode. The heuristic captured more illuminated images (90 vs.
82), yet the RL policy was more efficient (74.55% vs. 68.18% imaging success) and delivered more useful imagery to
the ground (79 vs. 75). Notably, the RL-policy did not require any charging actions, while in the heuristic case, the
shield triggered charging eight times. Furthermore, successful downlink actions occurred six times compared to twice
for the heuristic. Both of these highlight the utility of the RL-policy’s eclipse-time downlink strategy and dual-use
imaging action behaviour.

4.4 Interpretation

These results indicate that the RL policy internalizes two complementary behaviors: (i) proactive eclipse-time down-
linking, which preserves daytime imaging opportunities and improves timeliness to the ground, and (ii) resource-aware
target selection that simultaneously supports battery charging during imaging. Together, these behaviors reduce re-
liance on the safety shield, sustain higher energy margins, while still yielding a comparable number of illuminated
images to the myopic baseline. Both the RL policies trained (one to just image with unlimited resources and the other



with spacecraft constraints), avoid imaging actions in the eclipse phase that target other nearby targets that are also
eclipsed. In those scenarios, both RL policies exhibit preferential behavior to farther targets which are beyond the
eclipse and hence still illuminated. Therefore, these perform better than the heuristic in terms of the illumination frac-
tion and similarly overall, despite a smaller number of imaging actions taken in the resource restricted environment.

5. CONCLUSIONS

With the growing population of RSOs in LEO, autonomous planning of imaging and downlink is essential for scalable
SDA. This work addressed space-to-space imaging from a LEO platform, first in an unconstrained setting and then
under strict operational constraints, by casting the problem as a partially observable Markov decision process and
training a PPO-based deep RL agent in a high-fidelity simulation environment. The agent balanced illuminated image
capture and timely ground delivery while respecting limits on energy, angular momentum, and data storage. Evaluation
over 100 MC runs showed comparable number of illuminated image taken under resource limits but preferential
downlink cadence was shown by the RL-policy. In the representative episode shown, the heuristic captured more
illuminated images (90 vs. 82), while the RL-policy delivered more useful images to the ground (79 vs. 75) more
frequently and operated with zero shield interventions (vs. 26), indicating greater autonomy and timeliness. The
learned policy exhibits behaviour that exploits eclipse periods for proactive downlink and selects targets that supported
passive battery charging during imaging, reducing reliance on safety overrides and improving use of observation
opportunities in a dynamic LEO-to-LEO environment.

The results highlight the potential for RL-based onboard autonomy to improve the responsiveness and efficiency of
space-based SSA missions. While this study assumed known target states and did not address orbital state uncertainty,
the demonstrated framework provides a foundation for integrating estimation processes, handling uncertainty, and co-
ordinating multiple spacecraft via Multi-Agent RL. Expanding to such scenarios could further enhance the scalability
and robustness of autonomous space surveillance, contributing to more sustainable and resilient space operations.

Future work will allow variable-duration imaging actions to relax fixed step lengths. Training will integrate safety
shields into the policy and encourage immediate downlink upon ground-station contact to avoid wasted actions. Ro-
bustness will be evaluated under varying RSO counts, longer horizons than training, and external torque disturbances.
Finally, incorporating state uncertainty with onboard estimation and extending to multi-satellite coordination would
bring the approach closer to operations and improve scalability and resilience.
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8. APPENDIX

Table 8: Ground Station Locations with ECEF Coordinates (in km), Geodetic Latitude/Longitude. The Minimum
Elevation Angle is 10◦ for all stations.

Ground Station Latitude [◦] Longitude [◦] X [km] Y [km] Z [km] Slant Range [km]

Boulder 40.01 -105.25 −1284.8 −4714.5 4101.7 1690.92
Merritt 50.11 -97.26 910.7 −5540.5 3025.6 1694.73
Singapore 1.34 103.81 −1523.1 6191.8 150.5 1694.71
Weilheim 47.82 11.09 4200.6 827.3 4728.4 1693.52
Santiago -33.45 -70.67 1761.8 −5022.2 −3515.9 1693.38
Dongara -29.25 114.87 −2346.0 5046.5 −3116.0 1694.81
Hawaii 20.71 -156.25 −5461.0 −2479.2 2170.7 1694.71

Table 9: RL Training Parameters

Name Value
Learning rate 1×10−6

Discount factor (γ) 0.9997
Gradient clip 1.0
PPO clip parameter (ε) 0.15
Training batch size 3200


