: " P .‘ . 7
R , (A\ o
S % C Lab%‘tory ‘

Laboratory for Atmospheric and Space Physics
University of Colorado Boulder

Flight Software Development
Through Python

Scott Piggott, Maria Cols Margenet, John Alcorn,
P. Kenneally, and Hanspeter Schaub

& SLASP %5

Collaboration between
LASP and the Autonomous
Vehicle Systems
Laboratory at the University
of Colorado

— Named for the South

American Common Basilisk
Simulation internally runs in
C/C++ objects

SWIG creates Python
bindings that allow each
module to be treated as
Python objects

Cmake allows the whole
package to be built cross-
platform

— Windows, OSX, Linux

&

Relevant Basilisk Design Features
‘ « Diagram greatly simplified!
" . Algorithm interfaces are
" handled via message
i passing
— Pieces work like “Legos”

« System abstraction allows
user to sandbox messages

— Dynamics, FSW, analysis,
etc.

_ * Interface abstraction for
s multi-process

3 — Separate FSW Attitude Vehicle [
* Granularity at the Python Navigation Control

|

“brick” level I

— Completely scalable up to full I

. integrated model :

l FSW System

& SLASP

l~) s ey

« Qverall design philosophy
Is to capture what was
executed
— Python is very good at
Introspection
Configuration parameters
are captured post-
initialization
— Python can obtain all
parameters from models
Messaging map is obtained
from messaging singleton
post-run

« Task/Algorithm prioritization
s reflected in code

& SLASP

t « Unit testing of algorithms performed via Python scripting
— Significantly easier test setup than with C test-stubs
— Inline test analysis easily performed with Python/numpy/matplotlib/etc

* Integrated system-level tests can be based around a central test
base-class

— Data display/analysis, remote communication configuration, scenario-
macros

— Post-run products can be generated automatically
- Automated testing can be easily integrated with continuous
iIntegration methodologies
— Basilisk utilizes pytest for system checkout
» Approximately 300 distinct tests running today
- Complex analysis like code coverage can be performed against
the test-suite

« Mission-unique code can be separated from Basilisk and built/run/
tested separately

— Basilisk compatible code can also be integrated directly

& SLASP

l - Basilisk is designed to
' facilitate analysis using
Python-standard tools

— numpy/matplotlib/pytest/etc.
* Any C/C++ variable

FSW Estimated Error

— o [deg]

— widegs] accessible via SWIG/Python
can be logged and
. interrogated

~ control (0=ON, 1=0FF) — Haven’t found a type yet that

we can’t make work!
» All system messages that are
exchanged can be logged
— User-specified rate
s a SR » All logs are returned as

rime s numpy arrays to simplify
analysis

& SLASP

i ' e) \ e

parsed_imu_data

sunSafePoint | sun
css_wls_est

P
adcs_config_data

controlTorqueRaw
res_config_dat thrForceMapping | acs_thruster_cmds
adcs_config_data

reactionwheel_cmds . .
FSWProcess2DynamicsProcessInterface

acs_thruster_cmds

« Each Basilisk task can have boilerplate architecture generated
— Queries itself to determine how to generate that data

« All model parameters are specified in a single function
— Complex objects (arrays of structures for example) are totally usable with simple SWIG directives
« Each task requested is then configured with top-level function calls
* Separate rate-groups can be autocoded separately for multi-rate designs
* Analogous to Simulink or Labview autocode

[, * LASP is working on a project that is using CFS running

on the RTEMS operating system

— Basilisk is being used for the ADCS application development

 All algorithm functionality dispatched from a single
application (multi-rate) using an internal blackboard
messaging system
— CFS’ messaging is ill-suited to Basilisk’'s messaging

: requirements

~ * Inter-application messages are mirrored out to CFE

software bus

* Autocode is easily inserted into the main ADC app and
called from CFS

& SLASP %5

[* Cyan line shows a
’ distributed all-Basilisk
| simulation

* Blue line shows that same
‘ simulation running
distributed with CFS

 Now we have easy
reconfigurability
— Python is our main
development testbed
« Complex vehicle behaviors
can be assembled from
successive bricks

* All internal code can be
examined and analyzed by
you

& SLASP

t - _ L P Ay ot » N P

Attitude Control Thrusters

o L | o
. .
r
y RW Verbose
:
00:01:11.800 (max, ~0x)
nnnnnnnnnn
13585 km
0.7000
Scene Options
+0.0 deg
lestial Obje bits.
Q +0.00 hrs DI ERE
[JReaction Wheel Pyramid
— S CET [¥] Spacecraft Body Frame Axe:
f 170.1 deg [ISpacecraft Hill Frame Axes
[Spacecraft Orbit
4075 km [Ispacecra ft Sun-Direction Vector
ft Velocity Fi A
& 23094 km [ISpacecraft Velocity Frame Axes
b 9701 km
.

* + |Initial Alpha open-source release available January 15t
— Invitations readily available!

. Anticipate a full open-source beta release sometime in 2017
« Simulation model verification (unit-level) complete
« Majority of software will be undergoing CDR review in 2017
A c Simulation will serve as flatsat driver for flight program

— Integration starting 2017
Algorithms should be on-orbit by late 2020

& SLASP

v s ey - N p—
[f

'« Basilisk is a free and open-source simulation and
algorithm-development testbed

» Entire package is designed from the ground up for the
full spacecraft lifecycle on programs of arbitrary
complexity
* The entire Basilisk system can be run on most PC
operating systems with the addition of some free and a
open-source products
— Tested daily on Windows, OSX, and Linux (Mint)
— Python, Cmake, SWIG, and your favorite compiler

* The topics covered today are not even the coolest parts
of the system!
— Full fidelity vehicle dynamics, vehicle visualization, etc.

% SLASP ¥

& SLASP

Questions?

o WO g AR e -

r.rsVs
.5 \
-
.
*
-
=
—2

