
(Preprint) AAS 25-637

ENHANCING FAULT RESILIENCE IN RL-BASED SATELLITE
AUTONOMOUS TASK SCHEDULING

Yumeka Nagano*, and Hanspeter Schaub†

This paper investigates methods to enhance the resilience of policies trained using
deep reinforcement learning (DRL) for agile Earth-observing satellite scheduling,
with a focus on reaction wheel (RW) faults during operation. The problem is for-
mulated as a partially observable Markov decision process (POMDP), reflecting
real-world limitations in fault observability. Four common and critical RW fault
types are considered: complete loss of control, power draw limitations, increased
Coulomb friction, and faulty encoder measurements. These faults frequently cause
satellites to enter safe mode, leading to missed imaging opportunities. Previous
studies have shown that policies trained solely under nominal conditions exhibit
limited fault tolerance. To address this, the study evaluates three approaches: train-
ing policies in fault-injected environments, augmenting observation spaces with
fault information, and leveraging recurrent neural networks (RNNs) to capture
temporal patterns indicative of faults. Policies are trained using the Asynchronous
Proximal Policy Optimization (APPO) algorithm within Basilisk, a high-fidelity
spacecraft simulation framework. A curriculum learning (CL) policy is used as the
baseline for fault resilience. Results show that for severe faults such as uncontrol-
lable RWs, fault-adaptive training substantially improves performance. For milder
faults, incorporating fault information during training further enhances resilience
without compromising nominal performance. However, limitations remain: mod-
eling all real-world faults is infeasible, and when exposed to multiple fault types
and severities during training, policies may overly adapt to more frequent faults,
potentially neglecting rare but critical ones.

INTRODUCTION

Earth-observing satellites play a vital role in monitoring the environment, tracking natural disas-
ters, and managing resources.1 These satellites collect data through imaging instruments, which are
essential for a wide range of applications. The increasing number of target requests and the need for
efficient image scheduling have led to the development of agile Earth-observing satellite scheduling,
which can slew both along and across the orbital path.2 The primary goal of the scheduling prob-
lem is to organize satellite operations to maximize the value of collected images—by increasing
the number of imaged targets and prioritizing higher-value ones—while maintaining system safety,
such as battery charging and reaction wheel (RW) momentum management.

Traditionally, planning and scheduling are performed on the ground using optimization algo-
rithms, with the resulting plans sequenced and uplinked to the spacecraft for open-loop execution.3

Optimization-based scheduling techniques, such as branch-and-bound and mixed-integer linear pro-
gramming (MILP), have been developed to solve the problem with optimality guarantees, but they

*PhD Student, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder,
Boulder, CO, 80309.

†Distinguished Professor and Department Chair, Schaden Leadership Chair, Ann and H.J. Smead Department of Aerospace
Engineering Sciences, University of Colorado, Boulder, Boulder, CO, 80309.

1

Figure 1: Concept Illustration of RL for satellite task scheduling in fault environment.

are computationally intensive and not suitable for real-time or onboard applications.4, 5 Further-
more, MILP-based formulations often rely on simplified models that may not adequately capture
the complexity of real-world scenarios. Heuristic approaches, including greedy algorithms and local
search methods, offer near-optimal solutions within reasonable time frames,6 but struggle to han-
dle the high dimensionality and dynamic nature of real-time scheduling, particularly with frequent
task updates and a large volume of target requests. Stochastic methods such as genetic algorithms
and simulated annealing have also been explored,7 but these techniques face similar challenges in
managing complex constraints under operational time constraints.

To overcome these limitations, recent research has explored autonomous satellite scheduling
using machine learning (ML) techniques, enabling onboard real-time decision-making.8 In this
paradigm, the learning process is conducted on the ground, and the trained model is deployed on-
board, minimizing computational overhead while enabling closed-loop responses to dynamically
added tasks or unexpected events.9 While promising, many learning-based methods simplify sys-
tem dynamics and often neglect critical safety considerations such as RW momentum dumping and
energy constraints. To address these limitations, deep reinforcement learning (DRL) has been ap-
plied to satellite scheduling to optimize decision-making in complex and dynamic environments.10

DRL uses reinforcement learning (RL) algorithms to train policies parameterized by deep neural
networks, as illustrated in Figure 1. These problems are typically formulated as Markov deci-
sion processes (MDPs),11, 12 with recent work extending the formulation to include more realistic
operational factors such as charging, downlink windows, and RW momentum management.3 Al-
ternative formulations to effectively represent the mission objectives include semi-Markov decision
processes (semi-MDPs), which accommodate variable time steps,13 and partially observable MDPs
(POMDPs),14 which model limited observability of the system state.

Sequential decision-making models, such as incorporating long short-term memory (LSTM) net-
works, have been used to enhance the temporal understanding of DRL-based scheduling policies.15

To improve safety, formal shielding methods have been integrated with DRL frameworks,16 and cur-

2

riculum learning approaches have been shown to increase the robustness of policies to varying initial
conditions.17 While DRL-based scheduling policies are often designed to be robust to unexpected
events, their resilience under fault conditions remains insufficiently explored, as these policies are
typically trained under nominal conditions and are not explicitly exposed to faults during training.
The need for resilient policies capable of adapting to faults has been recognized.18

In conventional satellite operations, measurement faults—where sensor outputs deviate from ex-
pected ranges—typically trigger a safe mode response, halting mission tasks until the fault is re-
solved. Although this approach prioritizes safety, it can result in significant data loss. Existing
research on fault detection, isolation, and recovery (FDIR) has primarily focused on fault diagnosis
using expert systems or machine learning techniques,19–21 with limited attention to optimal recov-
ery actions. Some studies have addressed this by integrating fault diagnosis with spacecraft control
systems,22 exploring adaptive control for attitude regulation and collision avoidance,23, 24 and an-
alyzing trade-offs between mission success and operational safety.25 However, investigations into
the resilience of RL-based satellite autonomy under fault conditions remain scarce. While some
studies have shown that training under specific fault scenarios can improve policy performance,26

these approaches often require tailored training for each fault type. Other efforts, such as those
addressing communication faults during small body science missions, demonstrate the adaptabil-
ity of RL-based planning and scheduling under constrained conditions like Deep Space Network
outages.27

In the field of robotics, fault-tolerant control methods have been developed using RL to enhance
the resilience of robotic systems under fault conditions. Fault scenarios involving joint failures in
manipulators and locomotion systems have been studied under the assumption that the system can
detect faults through self-diagnosis.28 Additionally, meta-RL—where algorithms quickly adapt to
new tasks by leveraging training data from related scenarios29—has been applied to locomotion
fault scenarios.30 These approaches demonstrate adaptability to faults, with meta-RL in particu-
lar showing strong performance in handling unseen situations and sudden environmental changes.
Moreover, RL-based fault-tolerant control strategies for unmanned aerial vehicles (UAVs) under
actuator faults have been explored, demonstrating effective fault-handling capabilities.31 However,
this line of research primarily addresses actuator degradation rather than severe failure scenarios
that require switching to an alternative controller.

Despite recent advances in DRL for agile satellite task scheduling, enhancing policy resilience
under actuator fault conditions remains a largely unexplored area. While prior work such as Ref-
erence 17 has demonstrated that CL can improve robustness against environmental variations, its
effectiveness in the presence of actuator faults—particularly RW failures—has not been evaluated.
Previous research assessed fault resilience by testing policies trained in nominal environments un-
der faulted conditions, without using CL or incorporating fault-specific training.18 Building on that
foundation, this study focuses on evaluating DRL-based policies with CL training approach under
RW faults, including four representative fault types: complete RW failure (uncontrollable), power
draw limitation, increased Coulomb friction, and encoder measurement fault. The CL framework is
adapted to the satellite imaging task, and its performance is evaluated using two key metrics: reward,
which reflects imaging task success, and aliveness, defined as the satellite’s ability to complete three
full orbits without battery depletion or RW overspeed.

To explore ways of improving policy resilience under RW fault conditions, three training ap-
proaches are evaluated. The first approach involves training the policy in environments that include
fault scenarios, without assuming the agent has access to explicit fault information. For this case,

3

policies are trained both with and without an LSTM architecture to examine whether leveraging tem-
poral dependencies in the observation history enables the agent to infer latent fault states and make
more informed, context-aware decisions. The second approach augments the observation space with
explicit fault information, assuming that onboard systems can accurately detect and identify faults.
Two types of fault observability are considered: a binary indicator specifying the presence or ab-
sence of a fault, and a RW identifier indicating which RW is faulty. These policies are tested under
RW uncontrollable scenarios and compared with a strategy that disables the faulty RW upon detec-
tion. The third approach introduces varied fault types and severities during training. In this setting,
the agent is informed of which RW is faulted but not the specific fault type or severity—reflecting
more realistic operational uncertainty. This scenario assesses whether the policy can find effective
actions when the RW is partially degraded but not completely failed. Together, these approaches
provide a broad assessment of DRL-based strategies aimed at enhancing fault resilience in satellite
task scheduling under representative actuator fault conditions.

The remainder of the paper is organized as follows. The Problem Statement section introduces
the formulation of the satellite scheduling problem. The Solution Approach section details the
curriculum learning methodology and the various training strategies employed to improve policy
resilience. The Results section presents an in-depth analysis of policy performance under multiple
fault conditions. Finally, the paper concludes with a summary of findings.

PROBLEM STATEMENT

This paper investigates methods to enhance the fault resilience of policies trained using DRL
algorithms for autonomous task scheduling in satellites. The focus is specifically on faults in RWs,
which are critical components for attitude control and precise target pointing. The study considers
a single satellite equipped with four reaction wheels: three aligned with the principal axes (yaw,
pitch, and roll), and a fourth redundant wheel tilted at equal angles relative to the others. While
three RWs are sufficient for full attitude controllability under nominal conditions, the inclusion of a
fourth RW provides redundancy in the presence of faults.

Problem Formulation

To account for limited state observability, the satellite scheduling problem is formulated as a
POMDP defined by tuple (S,A, T,R,O, Z),32 where:

• State Space S: The state space comprises the satellite and environmental states required to
propagate the simulation at each discrete time step k, denoted sk ∈ S.

• Action Space A: The action space consists of 34 distinct actions, including a charging action,
a momentum management action for desaturating the reaction wheels, and 32 imaging actions
corresponding to the upcoming 32 targets. At time step k, the agent selects an action ak ∈ A.
Both the charging and momentum management actions have a fixed duration of 60 seconds.

• Transition Function T (sk+1 | sk, ak): The transition function is deterministic and generated
by the simulator, such that

T (G(sk, ak) | sk, ak) = 1 (1)

where G(sk, ak) = sk+1 represents the generative model provided by the environment.
• Reward Function R(sk, ak, sk+1): At each time step k, the reward for each target i is defined

4

as:

Ri =

{
ρi, if target i ∈ Uk

0, otherwise
(2)

where ρi is the priority of target i, and Uk is the unfulfilled target list at time k. A target is
moved from Uk to the fulfilled list Fk upon successful imaging.

• Observation Space O: At each time step k, the agent receives an observation ok ∈ O, which
is a subset of the full state sk and is normalized as described in Table 1.

• Observation Function Z(ok | sk, ak): The observation function is deterministic, assuming
that the satellite can observe the states within the observation space without uncertainty.

• Discount Factor γ: The discount factor γ = 0.999 balances immediate and future rewards.

An episode terminates when a failure condition occurs: the battery charge level drops to zero, or
any of the satellite’s reaction wheels reaches its maximum angular speed. Otherwise, the episode is
truncated when the duration reaches three orbits.

The objective is to find a policy π that maps observations to actions and maximizes the expected
discounted return starting from state s0:

V π(s) = E

[∞∑
k=0

γkR(sk, ak, sk+1)

∣∣∣∣∣ ak = π(ok), sk+1 = G(sk, ak)

]
∀s ∈ S (3)

Table 1: Observation Space of the Satellite

Parameter Normalization Description
P r̂B/N Earth’s radius Position of the satellite with respect to the inertial frame

N , expressed in the planet frame P .
P v̂B/P |vB/N | Velocity of the satellite with respect to the planet frame,

expressed in the planet frame.
ĉB/P π Orientation of the satellite’s sensing instrument with re-

spect to the planet frame.
PωB/P 0.03 Angular velocity of the satellite with respect to the planet

frame, expressed in the planet frame.
Pf Maximum battery capacity Battery charge level.
Φs π Angle between solar panels and the sun vector.
Ωi Maximum RW angular speed RW angular speed of each RW i.
estart Orbital period Next eclipse start time.
eend Orbital period Next eclipse end time.

P r̂Ri/B Earth’s radius Position of the target i in the planet frame
θi π Angle between target i and the current pointing direction

of the satellite.
ρi - Priority of upcoming target i.
t Episode duration Simulation time.

SOLUTION APPROACH

In order to improve the fault resilience of RL-based scheduling policies, several approaches are
explored:

1. Evaluating Curriculum Learning (CL) Policy in Fault Environments: This approach in-
volves training a policy using CL method described in Reference 17. This CL approach

5

shows the effectiveness for the satellite task scheduling problem to make the policy more
robust to conditions differ from nominal conditions. Therefore, the CL-based policy is used
as a baseline to evaluate its performance in fault environments. The policy is not exposed
to faults during training, while it experiences wide range of battery capacity, external torque,
and initial conditions.

2. Training in Fault Environments: This approach involves training the policy in environments
that include fault scenarios. The policy is trained to maximize the reward while being exposed
to various fault conditions, focusing on reaction wheel failures. This method allows the policy
to learn how to handle faults during training, potentially improving its performance in fault
scenarios. That algorithm includes incorporating observation history through recurrent archi-
tectures. The policy is trained using a recurrent neural network (RNN) architecture, such as
LSTM, to capture temporal dependencies in the observation history. This allows the policy to
infer latent information—such as undetected faults—from patterns in past observations and
take context-aware actions. In this approach, the agent cannot observe the fault information.

3. Augmenting Observation Space with Fault Information: This approach assumes that faults
are detected and accurately identified onboard. The corresponding fault information is ap-
pended to the observation space in addition to the features listed in Table 1. By providing
explicit knowledge of the fault state, the policy can learn to take corrective or compensatory
actions.

Simulation Environment

All simulations are conducted using BSK-RL,* an open-source Python package that provides
modular, high-fidelity reinforcement learning environments for spacecraft tasking and planning.33

BSK-RL integrates the Gymnasium framework, widely used in reinforcement learning research,
with Basilisk,† a high-fidelity astrodynamics simulation software developed for spacecraft flight
dynamics and operations.34

Basilisk, written in C and C++ with a Python interface, serves as the generative model G(s, a)
in this framework, enabling realistic simulation of spacecraft dynamics, subsystems, maneuvering
times, and power constraints. Its fast runtime and flight-proven capabilities make it particularly
well-suited for reinforcement learning applications that require both physical accuracy and compu-
tational efficiency.

Actions The simulation environment models the spacecraft dynamics, RWs, battery subsystem,
and momentum management capabilities. When an imaging action is chosen, the simulator calcu-
lates the control torque to align the satellite with the target. During the maneuver, the simulator
checks the imaging constraints, the relative angle between the target and the satellite, and the rel-
ative angular rate. If the constraints are satisfied, the target is successfully imaged, the reward is
awarded proportional to the targets priority, and the target is moved to the fulfilled list. If the con-
straints are not met, the imaging action fails, and the target remains in the unfulfilled list. This study
exclusively considers point-by-point imaging; however, the approach can be extended to support
strip imaging.6

The simulator also accounts for the battery charge level, incorporating baseline power consump-
tion to represent essential subsystems, maneuver power consumption for providing torques to the

*https://avslab.github.io/bsk_rl
†https://avslab.github.io/basilisk

6

https://avslab.github.io/bsk_rl
https://avslab.github.io/basilisk

Table 2: Satellite Parameters

Parameter Value

Altitude 500 km
Mass 330 kg
Inertia [121, 98, 82] kg m2

Battery capacity 160 Wh
Base power consumption 20 W
Initial battery charge fraction [0.4, 1.0]
Relative angle limit for imaging 28°
Relative angular rate limit for imaging 0.01 rad/s
RW maximum torque 0.2 Nm
RW maximum speed 1500 RPM
Initial RW speed [-900, 900] RPM
Number of requests [1000, 10000]
Target priority ρi [0, 1]
External torque 0.1 mNm

RWs, and imaging power consumption for operating the imaging instrument. The satellite can pas-
sively charge during the simulation whenever its solar panels face the Sun and are not in eclipse,
even while performing other actions. The charging rate depends on the solar incidence angle. When
the charging action is selected, the satellite maneuvers to position its solar panels perpendicular to
the Sun, maximizing energy generation.

The momentum management action is designed to desaturate the RWs, which are used to control
the spacecraft’s attitude. Over time, RWs accumulate momentum due to external torques, necessi-
tating periodic desaturation. This action aligns the spacecraft with an inertial reference frame and
then fires thrusters to remove the excess momentum from the RWs.

Targets The targets are uniformly distributed across the Earth’s surface, with the number of
imaging requests (targets to be imaged) ranging from 1,000 to 10,000. This variation directly influ-
ences the target density. The target type can be extended to city targets.32

Satellite Configuration

The simulation employs satellite parameters, along with initialization and target parameters, as
detailed in Table 2. The satellite follows a circular orbit with a period of 95 minutes. The initializa-
tion and target parameters are randomly selected within the predefined ranges for each episode, and
the direction of external torque is also chosen randomly for each episode. Parameters not explicitly
listed are set to their default values as provided by BSK-RL.

The RW configuration used in this simulation is shown in Figure 2. The RWs are arranged such
that three wheels align with the yaw, pitch, and roll axes, while a fourth redundant wheel is tilted at
an equal angle relative to the others. Due to the redundant RW, there are infinitely many solutions
for mapping the required body control torque to the individual RW torques. Therefore, once the
torque to be mapped is calculated, the RW null space is used to decelerate the wheels without
exerting additional torque on the spacecraft.35 In this setup, RW 1 is aligned with the across-track
direction and RW 2 with the along-track direction, so they are used more frequently than the others
during nominal operations such as imaging and charging maneuvers. This explains why the results
are more sensitive to some RW failing than others For RW speed measurements, the simulator uses
a simple encoder model that provides the angular velocity of each RW, with a resolution of 1024

7

counts per revolution.

Figure 2: RW Configuration.

Fault Scenarios

This study focuses on RW faults, which are common in satellite systems. RWs are critical for
satellite attitude control, and faults in these components can significantly affect the satellite’s ability
to maneuver and complete imaging tasks. All faults are introduced at the beginning of each episode.
The fault scenarios are as follows:

1. Uncontrollable RW Fault: One of the RWs becomes uncontrollable, with its power draw
limited to 1.0 × 10−12 W, therefore, allowing the wheel to rotate passively but rendering it
incapable of contributing to attitude control.

2. Power Limit Fault: The RW’s power draw is constrained, causing it to operate at reduced
speed compared to nominal conditions. By default, while there is a torque limit, no restric-
tions on power draw are imposed.

3. Friction Fault: The RW’s Coulomb friction, which remains constant regardless of changes
in RW speed, is increased, resulting in slower operation and higher power consumption com-
pared to nominal conditions. The default Coulomb friction is 0.5mNm.

4. Encoder Measurement Fault: Two types of encoder faults are considered: (1) the RW en-
coder measurement is turned off, and (2) the RW encoder measurement becomes stuck at its
initial value.

An example script of a fault modeling for spacecraft tasking is available at the BSK-RL website*.

Training Environment

Once the problem was formulated, a training environment was established to train a policy using
DRL. The training process assumed no fault scenarios. The Asynchronous Proximal Policy Opti-
mization (APPO) algorithm from RLlib,36 a library that provides scalable software primitives for
RL, was used.37 The hyperparameters used for training the policy are listed in Table 3, while all
other parameters, including those related to the LSTM architecture, are set to their default values in
RLlib. A detailed hyperparameter analysis can be found in Reference 38. Training was performed
on the University of Colorado Boulder’s computing cluster (CURC), using 32 CPU cores and up to
30 million environment steps per policy.

*https://avslab.github.io/bsk_rl/examples/fault_environment.html

8

https://avslab.github.io/bsk_rl/examples/fault_environment.html

The training environments are summarized in Table 4, with detailed descriptions provided in the
following sections.

Table 3: Training Parameters

Parameter Value

Number of workers 32
Number of training steps 3 · 107
Learning rate 3 · 10−5

Training batch size 10,000
Minibatch size 250
Number of SGD iterations 50
Neural Network 2 layers with 512 neurons each
Discount factor 0.999
Failure penalty 0

Table 4: Training Environment Configurations for Each Policy

Policy Name Fault Observation Training Scenario

CL None Curriculum learning: battery capacity gradually de-
creases and external torque increases over time.

Fault None Nominal environment (50%) and RW uncontrollable fault
(50%).

Fault-LSTM None Nominal environment (50%) and RW uncontrollable fault
(50%) using LSTM.

Fault-bool Fault presence Nominal environment (50%) and RW uncontrollable fault
(50%).

Fault-num Faulty RW Nominal environment (50%) and RW uncontrollable fault
(50%).

Fault-random Faulty RW Nominal environment (25%) and random RW faults:
power limit (25%), increased friction (25%), or encoder
failure (25%).

Curriculum Learning Curriculum learning provides a framework for structuring the training en-
vironment to help the agent progressively acquire more complex skills.39 Training begins with sim-
pler tasks and gradually increases in difficulty. In this study, the curriculum selected is the one that
demonstrated the best performance in the experiments presented in Reference 17. This curriculum
uses the parameters listed in Table 5, in which battery capacity is linearly decreased and external
torque magnitude is linearly increased over the course of training. Initial conditions are randomly
sampled from wider ranges than those used in the nominal environment.

Table 5: Training Parameters

Parameter Nominal Value CL Progression

Battery Capacity 160 W Decreased from 160 to 64 W
External Torque 0.1 mNm Increased from 0.01 to 0.4 mNm
Initial Battery Charge Level [40, 100]% Sampled from [0, 100]%
Initial RW Speeds [–900, 900] RPM Sampled from [–1500, 1500] RPM
Episode Horizon 3 orbits 15 orbits

Training with Reaction Wheel Faults To account for fault scenarios, the training environment
was extended to include conditions where one of the four RWs becomes uncontrollable, as described

9

in the Fault Scenarios section. The environment was configured such that each episode has a 50%
chance of being fault-free (nominal) and a 50% chance of including a fault. In the fault case, one of
the four single-RW faults is selected uniformly at random. As a result, the training set includes five
scenarios: the nominal case and four distinct single-RW fault cases.

Policies were trained both with and without the use of a LSTM architecture, referred to as the
Fault and Fault-LSTM policies, respectively. The LSTM enables the agent to capture temporal de-
pendencies and infer latent information—such as undetected faults—from sequences of past obser-
vations, thereby facilitating context-aware decision-making. The implementation leverages RLlib’s
native support for recurrent policies.

Augmenting Observation Space with Fault Information In an alternative training strategy, fault
information is explicitly included in the observation space. The environment setup remains identical
to the fault-inclusive case above, but the agent receives additional input describing the fault status.
Two types of augmented observations are considered:

1. A binary indicator specifying the presence or absence of a fault (Fault)
2. A categorical identifier indicating the specific fault status - 0: no fault, 1: RW1 fault, 2: RW2

fault, 3: RW3 fault, 4: RW4 fault, (Fault-num policy).

Various Fault Conditions In practice, RW faults may be less severe and still allow partial func-
tionality. To reflect this, the training environment is further extended to encompass a variety of RW
fault types, including power draw anomalies, increased Coulomb friction, and encoder malfunc-
tions. The environment includes four equally probable scenarios: nominal, power fault, friction
fault, and encoder fault. If a fault is selected, one of the four RWs is randomly chosen to exhibit the
fault. Fault severity is varied within the following predefined ranges:

1. Power Limit Fault: 0.001 W to 10 W
2. Friction Fault: 10 to 1000 times the nominal Coulomb friction
3. Encoder Fault: either the encoder is disabled or its output is stuck at the initial value

In this setup, the agent receives information indicating which RW is faulted, but no details about
the fault type or severity are provided. This setting encourages the agent to generalize across fault
types and develop resilient fault-adaptive control strategies. This configuration is referred to as the
Fault-random policy.

Testing Environment

The trained policies are evaluated under both fault-free (nominal) and fault-induced scenarios.
For each target count—1,000, 2,000, 3,000, 4,000, 6,000, 8,000, and 10,000—the policy is tested
under nominal conditions and each defined fault type. All testing is conducted using the nominal
parameter settings listed in Table 5, unless a specific fault is introduced. For each configuration, 50
trials are run using different random seeds, with the same seed set applied across all cases to ensure
consistency in evaluation.

To improve robustness during evaluation, a safety mechanism—referred to as a shield—is em-
ployed for all the testing cases to prevent the agent from executing potentially unsafe actions. The
shield used in this study is adapted from the Handmade shield described in Reference 40. It enforces
two safety constraints:

• The agent is forced to take a charging action when the battery level drops below 25% of its
maximum capacity.

10

• The agent is required to perform a momentum management action when any reaction wheel
(RW) angular speed exceeds 70% of its maximum allowable value.

Fault scenarios are evaluated with specific configurations for each fault type, as detailed below:

1. Uncontrollable RW Fault: One of the four reaction wheels (RW 1–4) becomes completely
unresponsive.

2. Power Limit Fault: The RW power draw is constrained to one of the following limits: 0.001,
0.01, 0.1, 1.0, or 10.0,W.

3. Friction Fault: The nominal Coulomb friction of 0.5 mNm is scaled by factors of 10, 100,
200, 300, 400, and 1000.

4. Encoder Measurement Fault: Two encoder failure modes are considered: (1) the RW en-
coder measurement is disabled, and (2) the encoder becomes stuck at its initial value.

The testing environments are summarized in Table 6. All refers to testing under every fault type
considered in this study: uncontrollable RW, power limit, increased friction, and encoder faults.

Table 6: Testing Environment Configurations

Policy Name Tested Faults

CL All
Fault Uncontrollable RW
Fault-LSTM Uncontrollable RW
Fault-bool Uncontrollable RW
Fault-num Uncontrollable RW
Fault-random Power limit, friction decrease, and encoder failure

In addition to testing each policy, an additional scenario is considered under the assumption that
onboard fault detection and identification are available. Specifically, in the case of a severe RW fault
where one wheel becomes fully unresponsive, this evaluation investigates whether deactivating the
faulty RW and operating the spacecraft with the remaining three wheels is effective when using
the CL policy, which was not exposed to faults during training. This is assessed by disabling the
identified faulty RW upon detection and controlling the spacecraft attitude using only the remaining
three RWs.

RESULTS

The performance of policies is evaluated based on the total reward obtained during the episode
and the safety aspect, where failure is defined as either the battery running out or the angular speed
of one of the reaction wheels exceeding the maximum limit during the three-orbit episode.

CL Policy Baseline

To quantify the performance gap between fault and nominal environments, the change in reward
is measured as the normalized difference relative to the nominal environment cases:

∆R =
Rfault,i −Rnominal,i

Rnominal,mean
(4)

Here, Rfault,i is the reward under the policy trained in fault environments for seed i, Rnominal,i is
the corresponding reward under the nominal policy, and Rnominal,mean is the average nominal policy

11

Tested environment
RW 1 Fault RW 2 Fault RW 3 Fault RW 4 Fault

2000 4000 6000 8000 10000
Requests |R|

100

90

80

70
No

rm
ali

ze
d r

ew
ard

 di

ffe
ren

ce
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

20

40

60

80

100

Al
ive

/N
on

-fa
ult

 al
ive

 (%
)

Figure 3: Reward and alive ratio under RW uncontrollable fault conditions, relative to the nominal
environment, for the CL baseline policy.

reward for the number of requests. A positive value indicates improved performance over the nom-
inal policy, and a negative value indicates a decline. Additionally, the alive rate is reported relative
to the nominal case, defined as the proportion of runs that do not end in failure—where failure is
determined by either the satellite’s battery depleting or one of the reaction wheels exceeding its
maximum angular speed. If the relative alive rate is above 100%, the policy has better survivability
than the nominal baseline; if below 100%, it performs worse in maintaining satellite health.

Uncontrollable RW Fault The performance of the CL policy is first evaluated under the uncon-
trollable RW fault scenario. All fault cases are assessed relative to the fault-free (nominal) case.
In the nominal environment, 100% of episodes were completed without failure—defined as battery
depletion or RW speed limit violations—indicating that the combination of the CL policy and the
shield yields a highly robust approach. To isolate the shield’s effectiveness, nominal environment
tests were also conducted without it. In this unshielded setting, one episode failed out of 350 trials.
Based on this result, the shield is applied in all subsequent tests and comparisons.

Figure 3 presents the reward and alive ratio for each RW fault, expressed relative to the nominal
case. RW 1, 2, and 3 are aligned with the principal body axes, while RW 4 is tilted at an equal angle
relative to the others. Performance degrades substantially when any RW becomes uncontrollable,
as most actions fail to execute successfully. In particular, faults in reaction wheels aligned with
the across-track (RW 1) and along track directions (RW 2) result in more pronounced performance
degradation and increased safety violations. These cases exhibit a higher number of failed charging
attempts compared to faults in the other RWs.

For the remaining fault types, RW 1—responsible for control in the cross-track direction—is
selected for evaluation. This choice is based on the results of the individual RW fault analysis, which
indicated that faults affecting this axis have the greatest impact on overall performance. Although
all RWs were tested, the observed trends were consistent across cases.

Power Limit Fault The performance of the policy is next evaluated under a power limit fault
scenario. Figure 4 illustrates the reward obtained and alive rate relative to the fault-free case. Per-
formance gradually deteriorates as the power limit is further reduced, primarily because the image
action attempts failed progressively due to the reaction wheel operating at slower speeds compared

12

Tested environment (Power limit)
0.001 W
0.01 W

0.1 W
1.0 W

10.0 W

2000 4000 6000 8000 10000
Requests |R|

100

80

60

40

20

0
No

rm
ali

ze
d r

ew
ard

 di

ffe
ren

ce
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

20

40

60

80

100

Al
ive

/N
on

-fa
ult

 al
ive

 (%
)

Figure 4: Reward and alive ratio under power limit fault conditions, relative to the nominal envi-
ronment, for the CL baseline policy.

to nominal conditions. Additionally, performance declines further as the number of requests in-
creases, since a higher number of targets requires quicker maneuvers, exacerbating the impact of
the power limit. The safety aspect is significantly compromised when the power limit drops to 0.01
W or lower, as the maneuver speed becomes insufficient even for charging actions, which have a
longer time window compared to imaging actions.

Friction Fault The performance of the policy is also evaluated under the friction fault scenario.
Figure 5 illustrates the reward obtained and the alive rate relative to the fault-free case. Performance
deteriorates significantly when friction increases to 400 times the nominal value, with a gradual de-
cline observed at lower friction levels. The severe performance degradation at high friction levels
is due to the reaction wheel operating at excessively slow speeds, rendering most actions unsuc-
cessful. Additionally, as with the power limit fault scenario, performance declines further as the
number of requests increases, since more targets demand quicker maneuvers. The safety aspect
is significantly compromised when friction reaches 400 times the nominal value. This is because
charging becomes insufficient to support actions during eclipse conditions, given the higher power
consumption caused by increased friction.

Encoder Measurement Fault The policy’s performance is finally evaluated under the encoder
measurement fault scenario. Figure 6 presents the reward and alive ratio relative to the fault-free
case. Overall, the performance remains comparable to the nominal environment, with similar re-
ward levels and no observed failures across all cases. This robustness is attributed to the attitude
control system’s reliance on torque-based control rather than direct dependence on RW angular
speed measurements

Training in Fault Environments

In this section, the policy is trained in an environment that includes both nominal and fault con-
ditions, where the fault type is limited to the uncontrollable RW scenario. The agent, however, does
not receive explicit information about the fault state; instead, it must infer fault conditions from
observation.

13

Tested environment (Friction Increase)
×10
×100

×200
×300

×400
×1000

2000 4000 6000 8000 10000
Requests |R|

80

60

40

20

0
No

rm
ali

ze
d r

ew
ard

 di

ffe
ren

ce
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

95
96
97
98
99

100

Al
ive

/N
on

-fa
ult

 al
ive

 (%
)

Figure 5: Reward and alive ratio under friction fault conditions, relative to the nominal environment,
for the CL baseline policy.

Tested environment (Encoder Fault)
Signal off Signal stuck

2000 4000 6000 8000 10000
Requests |R|

3

2

1

0

1

2

No
rm

ali
ze

d r
ew

ard

 di
ffe

ren
ce

 (%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

96

98

100

102

104
Al

ive
/N

on
-fa

ult
 al

ive
 (%

)

Figure 6: Reward and alive ratio under encoder fault conditions, relative to the nominal environ-
ment, for the CL baseline policy.

To quantify performance changes, the improvement in reward is measured as a normalized dif-
ference relative to the CL policy like in Equation 4:

∆R =
Rfault,i −RCL,i

RCL,mean
(5)

Here, Rfault,i is the reward under the policy trained in fault environments for seed i, RCL,i is the
corresponding reward under the CL policy, and RCL,mean is the average CL policy reward for the
number of requests. In addition to reward comparison, the alive rate is reported relative to the CL
case, where alive rate is defined as the proportion of episodes that do not end in failure.

Figure 7 illustrates the performance of the Fault policy, relative to the CL baseline policy, using
the reward and alive ratio metrics. The results show that while the fault-trained policy improves the
alive ratio in fault scenarios, it generally sacrifices reward performance—particularly in the nominal

14

Tested environment
Without Fault
RW 1 Fault

RW 2 Fault
RW 3 Fault

RW 4 Fault

2000 4000 6000 8000 10000
Requests |R|

100

50

0

No
rm

ali
ze

d r
ew

ard

 di
ffe

ren
ce

 (%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

100

110

120

Al
ive

/C
L

ali
ve

 (%
)

Figure 7: Reward and alive ratio of the Fault policy, relative to the CL baseline policy.

environment and under lower target request counts. This trade-off arises from the policy’s action
decisions. By encountering RW faults during training, the policy learns that desaturation actions of-
fer limited benefit under such conditions and instead favors more frequent charging actions. While
this behavior enhances survivability in fault cases, it compromises efficiency in fault-free scenar-
ios. This highlights a key challenge: designing a policy that is resilient to faults while preserving
performance in nominal conditions.

To address the lack of explicit fault observability, the policy is also trained using an LSTM ar-
chitecture, which incorporates temporal information to help infer latent states such as faults (Fault-
LSTM policy). Figure 8 presents the training curves for both the Fault and Fault-LSTM policies.
The curves show reward progression and alive ratio over training steps. The Fault-LSTM policy,
however, demonstrates limited learning within the training horizon. It fails to adopt effective charg-
ing behavior until around 30 million steps and continues to prioritize imaging actions throughout
most of training. Although longer training and hyperparameter search may improve its performance,
the rate of convergence remains significantly slower than that of the Fault policy. Furthermore, ex-
tended training time would benefit all policy architectures, not only LSTM, and may not resolve the
underlying inefficiency.

Augmenting Observation Space with Fault Information

Building on the previous results, the next strategy incorporates fault information into the obser-
vation space.

RW Uncontrollable Fault Conditions First, the RW uncontrollable fault scenario is revisited, us-
ing the same evaluation metric defined in Equation 5 to assess policy performance. Figure 9 presents
the reward and alive rate relative to the CL baseline policy. Overall, when the agent is provided with
fault information, it can adapt its actions to mitigate the impact of the fault, leading to improvements
in both reward and alive rate. The Fault-num policy, which receives detailed information identify-
ing the specific faulty RW, consistently outperforms the Fault-bool policy—which only receives a
binary fault indicator—in terms of reward, while both policies achieve comparable alive rates.

For the Fault-bool policy, the policy tends to favor charging actions over desaturation actions to

15

Without LSTM With LSTM

0 10M 20M 30M
Steps (Millions)

0

20

40

60

80

100
Re

wa
rd

0 10M 20M 30M
Steps (Millions)

0

20

40

60

80

Al
ive

 ra
tio

 (%
)

Figure 8: Training curve for policies with and without LSTM.

Tested environment
Without Fault
RW 1 Fault

RW 2 Fault
RW 3 Fault

RW 4 Fault

2000 4000 6000 8000 10000
Requests |R|

0

250

500

750

1000

1250

No
rm

ali
ze

d r
ew

ard
 di

ffe
ren

ce
 (%

)

Trained with fault obs (bool)
Trained with fault obs (RW #)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

100

150

200

250

300
Al

ive
/C

L
ali

ve
 (%

)

Figure 9: Reward and alive ratio of the Fault-bool and Fault-num policy, relative to the CL baseline
policy.

avoid failures. In contrast, the Fault-num policy—where the exact faulty RW is identified—enables
the agent to strategically prioritize imaging actions over desaturation, thereby improving perfor-
mance while managing operational risk. The policies learn that, in the presence of a faulty RW,
momentum dumping via desaturation action is ineffective, as the faulty wheel cannot offload the
accumulated angular momentum.

As discussed in the Solution Approach section, an important question is whether it is more ef-
fective to shut down the faulty RW in the case of severe faults, such as RW uncontrollable faults,
rather than training a policy to handle them. To address this, the CL policy was evaluated under
the RW uncontrollable fault scenario, with the faulty RW being shut down immediately upon fault
detection. The results, presented in Figure 10, compare the reward and alive rate achieved by the
shutdown strategy and by the policy trained with fault information, both relative to the original CL
policy.

In terms of reward, the Fault-num policy outperforms the shutdown strategy when RW 3 or RW 4

16

Tested environment
Without Fault
RW 1 Fault

RW 2 Fault
RW 3 Fault

RW 4 Fault

2000 4000 6000 8000 10000
Requests |R|

0

250

500

750

1000

1250
No

rm
ali

ze
d r

ew
ard

 di
ffe

ren
ce

 (%
)

RW shutdown with CL policy
Trained with fault obs (RW #)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

100

150

200

250

300

Al
ive

/C
L

ali
ve

 (%
)

Figure 10: Reward and alive ratio of the CL policy with shutdown strategy, relative to the CL
baseline policy.

is faulted, while the rewards are comparable in the other cases. Regarding the alive rate, the Fault-
num policy achieves higher survivability than the shutdown strategy in the RW 1 and RW 2 fault
cases, with similar performance observed in the remaining cases.Although the shutdown strategy
might be effective if specifically trained for such faults, it is highly tailored and difficult to extend to
other types of faults. Therefore, the next section shifts focus from severe faults to less critical ones,
where the RW retains partial functionality with certain limitations.

Random Fault Conditions The Fault-random policy is trained in an environment with random-
ized RW fault types, where the agent is informed of which RW is faulted but receives no information
about the specific fault type or its severity. Figures 11, 12, and 13 show the performance of this pol-
icy under power limit, increased friction, and encoder measurement faults, respectively. Evaluation
is conducted using RW 1 faults, as faults in the other RWs exhibit similar performance trends.

Under the power limit fault, the policy trained with fault information generally outperforms the
CL policy in both reward and alive rate across all fault scenarios. In particular, when the power
limitation is mild, the fault-trained policy shows a substantial performance gain, indicating that it
effectively adapts to slightly degraded conditions.

Under the friction fault scenario, the Fault-random policy generally achieves higher rewards than
the CL policy, particularly when the fault severity is mild. However, its performance deteriorates
at severe fault levels (multipliers of 400 and 1000), especially under high target request conditions,
where the number of failed episodes increases. This outcome appears to result from the CL policy
adopting more conservative action strategies, which are advantageous in severe fault conditions but
suboptimal for milder faults.

In the encoder measurement fault scenario, the Fault-random policy significantly outperforms the
CL policy in terms of reward. This improvement is attributed to the CL policy’s overly conserva-
tive behavior—even in nominal conditions—stemming from its exposure to high external torques
during training. While the Fault-random policy exhibits a slightly lower alive rate, the difference is
minimal, with only 3 failures observed out of 1050 test cases.

17

Tested environment (Power limit)
Without Fault
0.001 W

0.01 W
0.1 W

1.0 W
10.0 W

2000 4000 6000 8000 10000
Requests |R|

50

0

50

100
No

rm
ali

ze
d r

ew
ard

 di

ffe
ren

ce
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

100

120

140

160

180

Al
ive

/C
L

ali
ve

 (%
)

Figure 11: Reward and alive ratio of the Fault-random policy under power limit fault environment,
relative to the CL baseline policy.

Tested environment (Friction Increase)
Without Fault
×10

×100
×200

×300
×400

×1000

2000 4000 6000 8000 10000
Requests |R|

20

0

20

40

60

No
rm

ali
ze

d r
ew

ard

 di
ffe

ren
ce

 (%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

85

90

95

100
Al

ive
/C

L
ali

ve
 (%

)

Figure 12: Reward and alive ratio of the Fault-random policy under friction fault environment,
relative to the CL baseline policy.

CONCLUSION

This study investigates the impact of reaction wheel (RW) faults on a satellite tasked with imaging
targets on Earth. Four types of RW faults are considered: power limit, friction, encoder measure-
ment, and uncontrollable RW faults. The investigation begins by identifying the performance degra-
dation points for each fault type using a curriculum learning (CL)-based policy, which is trained to
be robust under conditions that deviate from the nominal case. The study then employs a reinforce-
ment learning (RL) approach to train a fault-adaptive policy that maintains performance under both
nominal and faulted conditions.

The results demonstrate that in the case of severe RW faults—such as an uncontrollable RW—training
a fault-adaptive policy yields strong performance, as the agent learns to take more effective actions
when desaturation is no longer viable. For less severe faults, training under those fault conditions

18

Tested environment (Encoder Fault)
Without Fault Signal off Signal stuck

2000 4000 6000 8000 10000
Requests |R|

20

30

40

50

60
No

rm
ali

ze
d r

ew
ard

 di

ffe
ren

ce
 (%

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

99.7

99.8

99.9

100.0

Al
ive

/C
L

ali
ve

 (%
)

Figure 13: Reward and alive ratio of the Fault-random policy under encoder measurement fault
environment, relative to the CL baseline policy.

also enhances policy resilience and overall performance, as the agent benefits from exposure to fault
scenarios and information about which RW is affected.

Despite these promising results, the approach has limitations. The training environment can-
not realistically represent all possible real-world fault conditions, as modeling every fault type is
impractical. When exposed to a mix of fault types and severities during training, the policy may
disproportionately adapt to the more frequently encountered faults. This tendency can limit the pol-
icy’s ability to effectively generalize to rarer or more severe fault scenarios, potentially reducing its
robustness in critical situations.

ACKNOWLEDGMENTS

This work utilized the Alpine high-performance computing resource, jointly funded by the Uni-
versity of Colorado Boulder, the University of Colorado Anschutz, Colorado State University, and
the National Science Foundation (Award No. 2201538). Artificial intelligence tools were used to
help improve the grammar and clarity of the manuscript. Final editing and approval were performed
by the authors.

REFERENCES

[1] N. Bianchessi and G. Righini, “Planning and Scheduling Algorithms for the COSMO-SkyMed Constel-
lation,” Vol. 12, No. 7, pp. 535–544, 10.1016/j.ast.2008.01.001.

[2] X. Wang, G. Wu, L. Xing, and W. Pedrycz, “Agile Earth Observation Satellite Scheduling Over
20 Years: Formulations, Methods, and Future Directions,” Vol. 15, No. 3, pp. 3881–3892,
10.1109/JSYST.2020.2997050.

[3] A. Herrmann and H. Schaub, “Reinforcement Learning for the Agile Earth-Observing Satellite Schedul-
ing Problem,” pp. 1–13, 10.1109/TAES.2023.3251307.

[4] V. Gabrel, A. Moulet, C. Murat, and V. T. Paschos, “A New Single Model and Derived Algorithms
for the Satellite Shot Planning Problem Using Graph Theory Concepts,” Vol. 69, No. 0, pp. 115–134,
10.1023/A:1018920709696.

[5] C. G. Valicka, D. Garcia, A. Staid, J.-P. Watson, G. Hackebeil, S. Rathinam, and L. Ntaimo, “Mixed-
Integer Programming Models for Optimal Constellation Scheduling given Cloud Cover Uncertainty,”
Vol. 275, No. 2, pp. 431–445, 10.1016/j.ejor.2018.11.043.

19

[6] M. Lemaı̂tre, G. Verfaillie, F. Jouhaud, J.-M. Lachiver, and N. Bataille, “Selecting and Scheduling
Observations of Agile Satellites,” Vol. 6, No. 5, pp. 367–381, 10.1016/S1270-9638(02)01173-2.

[7] Y. Li, M. Xu, and R. Wang, “Scheduling Observations of Agile Satellites with Combined Genetic
Algorithm,” Third International Conference on Natural Computation (ICNC 2007), IEEE, pp. 29–33,
10.1109/ICNC.2007.652.

[8] A. Fukunaga, G. Rabideau, S. Chien, and D. Yan, “Towards an Application Framework for Au-
tomated Planning and Scheduling,” 1997 IEEE Aerospace Conference, IEEE, pp. 375–386 vol.1,
10.1109/AERO.1997.574426.

[9] J. Lu, Y. Chen, and R. He, “A Learning-Based Approach for Agile Satellite Onboard Scheduling,”
Vol. 8, pp. 16941–16952, 10.1109/ACCESS.2020.2968051.

[10] A. Hadj-Salah, R. Verdier, C. Caron, M. Picard, and M. Capelle, “Schedule Earth Observation Satellites
with Deep Reinforcement Learning,” , 10.48550/ARXIV.1911.05696

[11] A. Harris, T. Valade, T. Teil, and H. Schaub, “Generation of Spacecraft Operations Procedures Using
Deep Reinforcement Learning,” Vol. 59, No. 2, pp. 611–626, 10.2514/1.A35169.

[12] A. Hadj-Salah, R. Verdier, C. Caron, M. Picard, and M. Capelle, “Schedule Earth Observation Satellites
with Deep Reinforcement Learning,” , 10.48550/ARXIV.1911.05696

[13] K. Menda, Y.-C. Chen, J. Grana, J. W. Bono, B. D. Tracey, M. J. Kochenderfer, and D. Wolpert, “Deep
Reinforcement Learning for Event-Driven Multi-Agent Decision Processes,” Vol. 20, No. 4, pp. 1259–
1268, 10.1109/TITS.2018.2848264.

[14] M. Stephenson, L. Q. Mantovani, S. Phillips, and H. Schaub, “Using Enhanced Simulation Environ-
ments to Improve Reinforcement Learning for Long-Duration Satellite Autonomy,” AIAA Science and
Technology Forum and Exposition (SciTech), Orlando, FL, Jan. 8–12 2024, 10.2514/6.2024-0990.

[15] S. Peng, H. Chen, C. Du, J. Li, and N. Jing, “Onboard Observation Task Planning for an Autonomous
Earth Observation Satellite Using Long Short-Term Memory,” Vol. 6, pp. 65118–65129, 10.1109/AC-
CESS.2018.2877687.

[16] R. Reed, H. Schaub, and M. Lahijanian, “Shielded Deep Reinforcement Learning for Complex Space-
craft Specifications,” American Control Conference, Toronto, Canada, July 8–12 2024.

[17] L. Quevedo Mantovani and H. Schaub, “Improving Robustness of Autonomous Spacecraft Scheduling
Using Curriculum Learning,” AAS Guidance, Navigation and Control Conference, Breckenridge, CO,
Jan. 31 – Feb. 5 2025. Paper No. AAS 25-055.

[18] Y. Nagano and H. Schaub, “Fault Resilience of Reinforcement-Based Satellite Autonomous Task
Scheduling,” AAS Spaceflight Mechanics Meeting, Kauai, Hawaii, Jan. 19–23 2025. Paper No. AAS
25-159.

[19] S. K. Ibrahim, A. Ahmed, M. A. E. Zeidan, and I. E. Ziedan, “Machine Learning Techniques for Satellite
Fault Diagnosis,” Vol. 11, No. 1, pp. 45–56, 10.1016/j.asej.2019.08.006.

[20] B. Xiao and S. Yin, “A Deep Learning Based Data-Driven Thruster Fault Diagnosis Approach for
Satellite Attitude Control System,” Vol. 68, No. 10, pp. 10162–10170, 10.1109/TIE.2020.3026272.

[21] L. Manovi, A. Leboffe, A. Marchioni, E. Mariotti, M. Mangia, F. Corallo, D. Di Ienno, I. Pinci,
R. Rovatti, C. Ciancarelli, and G. Furano, “Onboard AI for Enhanced FDIR: Revolutionizing Spacecraft
Operations with Anomaly Detection,” Zenodo, 10.5281/ZENODO.13885531.

[22] H. Bolandi, M. Abedi, and M. Haghparast, “Fault Detection, Isolation and Accommodation for Attitude
Control System of a Three-Axis Satellite Using Interval Linear Parametric Varying Observers and Fault
Tree Analysis,” Vol. 228, No. 8, pp. 1403–1424, 10.1177/0954410013493230.

[23] G. Zhang, S. Qiu, and F. Wang, “Adaptive Fuzzy Fault-Tolerant Control of Flexible Spacecraft with
Rotating Appendages,” Vol. 25, No. 1, pp. 326–337, 10.1007/s40815-022-01338-4.

[24] J. Ragan, B. Riviere, F. Y. Hadaegh, and S.-J. Chung, “Online Tree-Based Planning for
Active Spacecraft Fault Estimation and Collision Avoidance,” Vol. 9, No. 93, p. eadn4722,
10.1126/scirobotics.adn4722.

[25] A. Nasir, E. M. Atkins, and I. Kolmanovsky, “Robust Science-Optimal Spacecraft Control for Circular
Orbit Missions,” Vol. 50, No. 3, pp. 923–934, 10.1109/TSMC.2017.2767077.

[26] M. Willoughby and H. Peng, “Satellite Reorientation Using Reinforcement Learning Under Unknown
Attitude Failure: Integrating Antenna and Solar Panel Controls,” AAS/AIAA Space Flight Mechanics
Meeting, Kaua’i, Hawaii, January 2025.

[27] A. Herrmann and H. Schaub, “Autonomous Small Body Science Operations Using Reinforcement
Learning,” Vol. 21, No. 10, pp. 865–884, 10.2514/1.I011376.

[28] F. Yang, C. Yang, D. Guo, H. Liu, and F. Sun, “Fault-Aware Robust Control via Adversarial
Reinforcement Learning,” 2021 IEEE 11th Annual International Conference on CYBER Technol-
ogy in Automation, Control, and Intelligent Systems (CYBER), IEEE, pp. 109–115, 10.1109/CY-
BER53097.2021.9588329.

20

[29] T. M. Hospedales, A. Antoniou, P. Micaelli, and A. J. Storkey, “Meta-Learning in Neural Networks: A
Survey,” pp. 1–1, 10.1109/TPAMI.2021.3079209.

[30] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn, “Learn-
ing to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning,” ,
10.48550/arXiv.1803.11347

[31] X. Liu, Z. Yuan, Z. Gao, and W. Zhang, “Reinforcement Learning-Based Fault-Tolerant Control for
Quadrotor UAVs Under Actuator Fault,” Vol. 20, No. 12, pp. 13926–13935, 10.1109/TII.2024.3438241.

[32] M. A. Stephenson, L. Q. Mantovani, and H. Schaub, “Learning Policies for Autonomous Earth-
Observing Satellite Scheduling over Semi-Markov Decision Processes,” pp. 1–11, 10.2514/1.I011649.

[33] M. A. Stephenson and H. Schaub, “BSK-RL: Modular, High-Fidelity Reinforcement Learning Envi-
ronments for Spacecraft Tasking,” 75th International Astronautical Congress, Milan, Italy, IAF, Oct.
2024.

[34] P. W. Kenneally, S. Piggott, and H. Schaub, “Basilisk: A Flexible, Scalable and Modular Astrodynamics
Simulation Framework,” Vol. 17, No. 9, pp. 496–507, 10.2514/1.I010762.

[35] H. Schaub and J. L. Junkins, Analytical Mechanics of Space Systems. AIAA Education Series, American
Institute of Aeronautics and Astronautics, Inc, fourth edition ed.

[36] M. Luo, J. Yao, R. Liaw, E. Liang, and I. Stoica, “IMPACT: Importance Weighted Asynchronous Ar-
chitectures with Clipped Target Networks,” , 10.48550/ARXIV.1912.00167

[37] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan, and I. Stoica,
“RLlib: Abstractions for Distributed Reinforcement Learning,” Proceedings of the 35th International
Conference on Machine Learning (J. Dy and A. Krause, eds.), Vol. 80 of Proceedings of Machine
Learning Research, PMLR, 10–15 Jul 2018, pp. 3053–3062.

[38] A. Herrmann and H. Schaub, “A Comparative Analysis of Reinforcement Learning Algorithms for
Earth-Observing Satellite Scheduling,” Vol. 4, p. 1263489, 10.3389/frspt.2023.1263489.

[39] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum Learning,” Proceedings of the 26th
Annual International Conference on Machine Learning, ACM, pp. 41–48, 10.1145/1553374.1553380.

[40] L. Q. Mantovani and H. Schaub, “Performance Evaluation of Shielded Neural Networks for Au-
tonomous Agile Earth Observing Satellites in Long Term Deployment,” American Control Conference,
Denver, CO, July 8–10 2025. Submitted.

21

	Introduction
	Problem Statement
	Problem Formulation

	Solution Approach
	Simulation Environment
	Actions
	Targets

	Satellite Configuration
	Fault Scenarios
	Training Environment
	Curriculum Learning
	Training with Reaction Wheel Faults
	Augmenting Observation Space with Fault Information
	Various Fault Conditions

	Testing Environment

	Results
	CL Policy Baseline
	Uncontrollable RW Fault
	Power Limit Fault
	Friction Fault
	Encoder Measurement Fault

	Training in Fault Environments
	Augmenting Observation Space with Fault Information
	RW Uncontrollable Fault Conditions
	Random Fault Conditions

	Conclusion
	Acknowledgments

