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FAULT RESILIENCE OF REINFORCEMENT-BASED SATELLITE
AUTONOMOUS TASK SCHEDULING

Yumeka Nagano*, and Hanspeter Schaub†

This paper investigates the resilience of a policy trained using Deep Reinforce-
ment Learning (DRL) to address the Agile Earth Observing Satellite Scheduling
Problem (AEOSSP), with a focus on the impact of reaction wheel (RW) faults
during operations. Although DRL-based policies are designed to handle dynamic
and unforeseen scenarios, their resilience under fault conditions is not well under-
stood. This study evaluates the adaptability of such policies under various fault
scenarios, identifying thresholds for performance and safety degradation. The
scheduling problem is formulated as a Partially Observable Markov Decision Pro-
cess (POMDP) and solved using a policy trained in a fault-free environment. The
policy is then tested across various fault scenarios, including individual RW fail-
ures, power limitations, friction increases, encoder measurement errors, and re-
duced battery capacity. Results explore boundaries where significant performance
and safety degradation occur as a RW becomes increasingly faulted. Power limi-
tations, friction, and battery capacity faults cause gradual performance decline as
fault severity increases, with clear safety thresholds. Encoder faults, however, have
minimal performance impact due to the torque-based attitude control mechanism.

INTRODUCTION

Earth-observing satellites collect data using imaging instruments, playing a crucial role in dis-
aster tracking, environmental monitoring, and resource exploration.1 Agile satellites, capable of
maneuvering both along and across their orbital paths, offer increased flexibility in data collection.
However, this flexibility also adds complexity to the scheduling process. The Agile Earth Obser-
vation Satellite Scheduling Problem (AEOSSP) has garnered significant attention due to the rising
number of target requests and the need for more efficient image scheduling.2 The primary objective
of the AEOSSP is to organize satellite operations in a way that maximizes the value of the captured
images. Traditionally, planning and scheduling are conducted ground-based, where a plan is created
using optimizer, this plan is then sequenced and uplinked to the spacecraft for execution open-loop.3

While effective, this approach struggles to keep pace with the increasing volume of target requests,
particularly when rapid rescheduling is required for newly added tasks or the spacecraft behav-
ior differs from the modeled behavior. To address these challenges, researchers are investigating
autonomous satellite scheduling, enabling satellites to make real-time decisions onboard.4

The problem formulation of the AEOSSP optimization is presented, and it is demonstrated that
the problem remains NP-hard, even with simplifications.5 A problem is classified as NP-hard if
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Figure 1. Concept Illustration of a Group of Satellites using Shielded Neural Net-
works to Achieve Autonomous Agile Earth Observing Satellite Scheduling

it cannot be solved in polynomial time in the worst case.6 For potential onboard scheduling tech-
niques, two exact methods are developed: Branch and Bound (B&B) and Mixed-Integer Linear
Programming (MILP). The B&B method systematically explores and prunes potential scheduling
solutions to efficiently identify the optimal one.7 The MILP method formulates the AEOSSP as an
optimization model with linear constraints and objective functions, providing solutions with opti-
mality guarantees.8 While these methods can solve the AEOSSP optimally, they are computation-
ally intensive and are not suitable for real-time applications. Additionally, the MILP method sim-
plifies the problem, which poses a limitation in real-world scenarios. To accelerate the scheduling
process, heuristic methods are developed,9 offering near-optimal solutions within a reasonable time
frame. However, these methods struggle with the complexity of the AEOSSP, particularly when
dealing with a large number of target requests and task additions, as they require an impractical
number of rules to handle realistic scenarios. Additionally, other approaches, such as genetic algo-
rithms and search methods, were proposed to address AEOSSP.10, 11 Still, they also face challenges
in managing the complex constraints and large volume of target requests in real-time scenarios.

Machine Learning (ML) methods are proposed to enhance onboard scheduling by integrating
offline learning with real-time onboard decision-making.12 This combination keeps the onboard
computational cost low, and the closed-loop policy allows the system to respond to newly added
tasks or unexpected events. Although these learning-based approaches show promise for onboard
real-time scheduling, they often simplify system dynamics and overlook critical safety factors, such
as reaction wheel (RW) desaturation and energy constraints. To address these limitations, Deep
Reinforcement Learning (DRL) is applied to the AEOSSP to optimize satellite scheduling, as il-
lustrated in Figure 1. In this context, the AEOSSP is formulated and solved as a Markov Decision
Process (MDP),13, 14 considering a single satellite scenario that incorporates more realistic elements
such as charging, downlink, and desaturation actions.3 The AEOSSP can also be formulated as a
semi-MDP or Partially Observable Markov Decision Process (POMDP) to effectively represent the
mission objectives.15, 16 This approach is further extended to the multi-agent scheduling problem by
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incorporating communication capabilities between satellites after deployment.17 To ensure satellite
safety, which is often overlooked in Reinforcement Learning (RL) approaches, shields are inte-
grated with the DRL algorithm.18 Additionally, cloud coverage is considered for the single satellite
case to enhance the selection of more effective imaging opportunities.19 The RL-based planning
and scheduling approach for small body science operations is evaluated in scenarios involving com-
munication faults due to Deep Space Network outages.20 This analysis highlights the advantages
of the RL-based method in adapting to environmental changes. However, while these DRL-based
policies are designed to handle unexpected events, its effectiveness under fault conditions remains
insufficiently understood. These policies are typically trained across a range of nominal conditions
but are not directly exposed to faults during training.

Traditionally, when a satellite experiences a measurement fault—defined as a measurement falling
outside the nominal range—it is placed in safe mode, rendering it unable to perform any tasks until
the fault is resolved. This approach, while ensuring satellite safety, is suboptimal for the AEOSSP
as it can lead to missed data collection opportunities. Consequently, significant research is con-
ducted on Fault Detection, Isolation, and Recovery (FDIR). Most of this research focuses on fault
diagnosis using Fault Tree Analysis (FTA) with expert knowledge or machine learning (ML) meth-
ods.21 Because relying on expert knowledge can miss unforeseen anomalies, implementing onboard
AI to detect anomaly is investigated.22 The Polaris project provides an open-source suite of ML
tools designed to analyze spacecraft telemetry data, identify transitions between different spacecraft
behaviors, and detect the most anomalous behavior changes.23 However, these studies typically
emphasize isolating the faulty system without addressing the optimal actions to take after a fault is
detected.

Some research focuses on determining appropriate actions following fault occurrences. For ex-
ample, attitude control is integrated with fault detection and isolation,24 and fault-tolerant adaptive
control of spacecraft attitude is investigated.25 Satellite safety, particularly in collision avoidance
scenarios, is also addressed in the presence of thruster faults.26 Additionally, the trade-offs between
mission completion and safe operation is explored by formulating spacecraft science mission con-
trol as a Markov Decision Process (MDP), solved using approximate dynamic programming, which
simplifies both spacecraft dynamics and mission requirements.27 Despite these advances, research
on the resilience of RL-based approaches for satellite autonomy under fault conditions remains lim-
ited. Although some studies demonstrate the effectiveness of training policies under fault scenarios,
these approaches often require specific training for each individual fault condition.28 Therefore, this
paper aims to investigate the resilience of a DRL-based policy performance in satellite autonomous
tasking under fault conditions, with a focus on RW faults.

PROBLEM STATEMENT

This study considers a single satellite equipped with four RWs arranged in a configuration where
three wheels align with the yaw, pitch, and roll axes, and a fourth redundant wheel is tilted at an
equal angle relative to the others. The scenario involves the satellite scheduling observations of
Earth targets, formulated as a POMDP. The policy is initially trained in an environment where no
faults occur. Once trained, the policy is deployed in an environment where faults are introduced. The
study first investigates the impact of each different RW fault out of four RW, and then tests different
types of RW faults including power limit, friction, encoder measurement, and battery capacity faults.
Simulations are conducted using Basilisk,* a high-fidelity and fast satellite simulation software

*https://avslab.github.io/basilisk
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with flight-proven capabilities.29 Basilisk is integrated with Gymnasium through BSK-RL,* which
provides modular high-fidelity RL environments for spacecraft tasking.30

Problem Formulation

The satellite scheduling problem is formulated as POMDP defined by tuple (S,A, T,R,O, Z),
where:

• State Space S: The state space comprises the satellite and environment states necessary for
the Basilisk simulation, including the satellite’s position, velocity, attitude, charge level, as
well as the locations and priorities of image targets.

• Action Space A: The action space consists of 34 distinct actions, including a charging action,
a momentum management action for desaturating the reaction wheels, and 32 imaging actions
corresponding to the upcoming 32 targets. Both the charging and momentum management
actions have a duration of 60 seconds.

• Transition Function T (s′|s, a): The transition function is deterministic and generated from
the simulator, ensuring T (G(s, a)|s, a) = 1, where G(s, a) = s′ represents a generative
model provided by the environment.

• Reward Function R(s, a, s′): The reward is calculated as the sum of the priorities of the
images captured during the episode. Each targets’ reward is defined as:

R =

{
ρi, if target i in U

0, otherwise
(1)

where ρi is the priority of target i, and all the target requests are initially in an unfulfilled list
U , then a target are moved to a fulfilled list F when the target is successfully imaged.

• Observation Space O: The observation space is a subset of the state space which the agent
can observe and use for decision-making in the problem. The observation space is normalized
and listed in Table 1.

• Observation Function Z(o|s, a): The observation function is deterministic, assuming that the
satellite can observe the states within the observation space without uncertainty.

Three terminal conditions are defined for the episode: (1) the episode ends when it reaches the
episode duration (three orbits), (2) the episode ends when the battery charge level reaches zero, and
(3) the episode ends when one of the satellite’s RW reaches the maximum angular speed. When the
episode ends with case 2 or 3, the episode is considered as a failure.

SOLUTION APPROACH

Simulation Environment

BSK-RL The simulation environment is implemented using BSK-RL, an open-source Python
package tailored for spacecraft tasking and planning. BSK-RL integrates the Gymnasium frame-
work, widely used in reinforcement learning studies, with Basilisk, a high-fidelity astrodynamics

*https://avslab.github.io/bsk_rl
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Table 1. Observation Space of the Satellite

Parameter Normalization Description
P r̂B/N Earth’s radius Position of the satellite with respect to the inertial frame

N , expressed in the planet frame P .
P v̂B/P |vB/N | Velocity of the satellite with respect to the planet frame,

expressed in the planet frame.
ĉB/P π Orientation of the satellite’s sensing instrument with re-

spect to the planet frame.
PωB/P 0.03 Angular velocity of the satellite with respect to the planet

frame, expressed in the planet frame.
Pf Maximum battery capacity Battery charge level.
Φs π Angle between solar panels and the sun vector.
Ωi Maximum RW angular speed RW angular speed of each RW i.
estart Orbital period Next eclipse start time.
eend Orbital period Next eclipse end time.
ρi - Priority of upcoming target i.
t Episode duration Simulation time.

simulator capable of modeling spacecraft dynamics, systems, and subsystems with precision. In
this setup, Basilisk serves as the generative model G(s, a), facilitating the training and testing of
policies under realistic scenarios that account for maneuver times and power consumption. Written
in C and C++ with a Python interface, Basilisk ensures efficient interaction and rapid simulation,
making it ideal for reinforcement learning applications.

Actions The simulation environment models the spacecraft dynamics, RWs, battery subsystem,
and momentum management capabilities. When an imaging action is chosen, the simulator calcu-
lates the control torque to align the satellite with the target. During the maneuver, the simulator
checks the imaging constraints, the relative angle between the target and the satellite, and the rel-
ative angular rate. If the constraints are satisfied, the target is successfully imaged, its priority is
added to the reward, and the target is moved to the fulfilled list. If the constraints are not met, the
imaging action fails, and the target remains in the unfulfilled list. This study exclusively considers
point-by-point imaging; however, the approach can be extended to support strip imaging.5

The simulator also accounts for the battery charge level, incorporating baseline power consump-
tion to represent essential subsystems, maneuver power consumption for providing torques to the
RWs, and imaging power consumption for operating the imaging instrument. The satellite can pas-
sively charge during the simulation whenever its solar panels face the Sun and are not in eclipse,
even while performing other actions. The charging rate depends on the solar incidence angle. When
the charging action is selected, the satellite maneuvers to position its solar panels perpendicular to
the Sun, maximizing energy generation.

The momentum management action is designed to desaturate the RWs, which are used to control
the spacecraft’s attitude. Over time, RWs accumulate momentum due to external torques, necessi-
tating periodic desaturation. This action aligns the spacecraft with an inertial reference frame and
then fires thrusters to remove the excess momentum from the RWs.

Targets The targets are uniformly distributed across the Earth’s surface, with the number of
imaging requests (targets to be imaged) ranging from 1,000 to 10,000. This variation directly influ-
ences the target density.
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Table 2. Satellite Parameters

Parameter Value

Altitude 500 km
Mass 330 kg
Inertia [121, 98, 82] kg m2

Battery capacity 160 W
Base power consumption 20 W
Initial battery charge fraction [0.4, 1.0]
Relative angle limit for imaging 28°
Relative angular rate limit for imaging 0.01 rad/s
RW maximum torque 0.2 Nm
RW maximum speed 1500 RPM
Initial RW speed [-900, 900] RPM
Number of requests [1000, 10000]
Target priority ρi [0, 1]
External torque 0.1 mNm

Satellite Configurations

The simulation employs satellite parameters, along with initialization and target parameters, as
detailed in Table 2. The satellite follows a circular orbit with a period of 95 minutes. The initializa-
tion and target parameters are randomly selected within the predefined ranges for each episode, and
the direction of external torque is also chosen randomly for each episode. Parameters not explicitly
listed are set to their default values as provided by BSK-RL.

The RW configuration used in this simulation is shown in Figure 2. The RWs are arranged such
that three wheels align with the yaw, pitch, and roll axes, while a fourth redundant wheel is tilted at
an equal angle relative to the others. Due to the redundant RW, there are infinitely many solutions for
mapping the required body control torque to the individual RW torques. Therefore, once the torque
to be mapped is calculated, the RW null space is used to decelerate the wheels without exerting
additional torque on the spacecraft.31

Figure 2. RW Configuration.

Training Environment

Once the problem was formulated, a training environment was established to train a policy using
DRL. The training process assumed no fault scenarios. The Asynchronous Proximal Policy Opti-
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mization (APPO) algorithm from RLlib, a library that provides scalable software primitives for RL,
was used.32 APPO is a variant of Proximal Policy Optimization (PPO).33 The hyperparameters used
for training the policy are listed in Table 3, with other parameters set to their default values in RLlib.
A detailed hyperparameter analysis can be found in Reference 34. The training was conducted on
the University of Colorado Boulder cluster (CURC), utilizing 32 cores and up to 20 million steps.

Table 3. Training Parameters

Parameter Value

Number of workers 32
Number of training steps 5 · 106
Learning rate 3 · 10−5

Training batch size 10,000
Minibatch size 250
Number of SGD iterations 50
Neural Network 2 layers with 512 neurons each
Discount factor 1.0
Failure penalty 0

Faults

This study focuses on RW faults, which are common in satellite systems. RWs are critical for
satellite attitude control, and faults in these components can significantly affect the satellite’s ability
to maneuver and complete imaging tasks. The investigation begins with scenarios where one of the
four RWs becomes uncontrollable. In this case, the power supplied to the affected RW is limited
to 1.0 × 10−12 W, therefore, allowing the wheel to rotate passively but rendering it incapable of
contributing to attitude control. After analyzing the impact of faults on individual RWs, the study
considers various types of RW-related faults, including power limitations, friction increases, encoder
measurement errors, and battery capacity reductions. For each fault type, RW 1, which controls the
satellite’s cross-track direction, is selected for evaluation because the individual RW fault analysis
revealed that faults in this maneuver had the greatest impact on overall performance. It is also noted
that battery capacity faults are not specifically associated with RWs. All faults are introduced at the
start of each episode. The fault scenarios are as follows:

1. Power Limit Fault: The RW’s power draw is constrained, causing it to operate at reduced
speed compared to nominal conditions. By default, while there is a torque limit, no restric-
tions on power draw are imposed. Power limits of 0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 5.0, and
10.0W are tested.

2. Friction Fault: The RW’s Coulomb friction, which remains constant regardless of changes
in RW speed, is increased, resulting in slower operation and higher power consumption com-
pared to nominal conditions. The default Coulomb friction is 0.5mNm, and it is scaled by
factors of 10, 100, 200, 300, 400, and 1000.

3. Encoder Measurement Fault: Two types of encoder faults are considered: (1) the RW en-
coder measurement is turned off, and (2) the RW encoder measurement becomes stuck at its
initial value.

4. Battery Capacity Fault: The battery capacity is reduced to 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, and 90% of its nominal value, leading to faster depletion of the satellite’s
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charge.

Testing Environment

The trained policy is tested under both fault-free and fault-induced scenarios. The number of
requests varies from 1,000 to 10,000, with tests conducted for 1,000, 2,000, 3,000, 4,000, 6,000,
8,000, and 10,000 targets. Each fault scenario is run 50 times (with different random seeds) for each
target count. The same set of seed numbers is used across all fault cases. A shield is employed
to prevent the agent from taking actions that could lead to failures during testing. The shield used
in this study is based on the Handmade shield described in Reference 35. The shield forces the
agent to take a charging action when the battery level falls below a specified threshold, and it also
mandates a momentum management action if the reaction wheel (RW) angular speed exceeds its
threshold. The threshold for the battery level is set to 25% of the maximum battery capacity, while
the threshold for the RW angular speed is set to 70% of the maximum RW angular speed.

RESULTS

The performance of the policy is evaluated based on the total reward obtained during the episode
and the safety aspect, where failure is defined as either the battery running out or the angular speed
of one of the reaction wheels exceeding the maximum limit during the three-orbit episode. All fault
scenarios are assessed in comparison to the fault-free case.

Individual RW Fault

First, the policy’s performance is evaluated for each reaction wheel (RW) fault scenario. Figure
3 presents the following metrics relative to the fault-free case: rewards obtained, the percentage of
episodes successfully completed without failures (e.g., battery depletion or RW speed exceeding
the limit), and the image success rate (defined as the ratio of successfully imaged targets to the
total number of imaging actions). Additionally, the figure shows the average battery level as a
ratio of the maximum battery capacity. RW 1, 2, and 3 are aligned with the principal body frame
axes, respectively, while RW 4 is tilted at an equal angle relative to the first three. Performance
deteriorates significantly when any of the reaction wheels (RWs) becomes uncontrollable, as most
actions fail to succeed under such conditions. In particular, when the across-track (RW 1) or along-
track (RW 2) maneuver is uncontrollable, it not only leads to a more pronounced performance
degradation but also negatively impacts safety. This is because a higher number of charging actions
fail to succeed in these cases compared to faults in the other RWs.

Power Limit Fault

The performance of the policy is evaluated under a power limit fault scenario. Figure 4 illustrates
the reward obtained and the image success rate relative to the fault-free case. It also shows the
average angular speed of RW1 (the across-track maneuver where the fault occurs) and the average
battery level. Performance gradually deteriorates as the power limit is further reduced, primarily
because the image success rate decreases progressively due to the reaction wheel operating at slower
speeds compared to nominal conditions. Additionally, performance declines further as the number
of requests increases, since a higher number of targets requires quicker maneuvers, exacerbating the
impact of the power limit.

Figure 5 depicts the percentage of episodes successfully completed without failures and the break-
down of failure causes (battery depletion and RW angular speed exceeding the limit) for varying
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Figure 3. Each RW Fault’s Reward, Alive, and Imaged Success Percentage Relative
to Nominal Case and Average Battery.

numbers of requests relative to the fault-free case. Table 4 provides the ratio of time spent in eclipse
at the episode’s end due to failures, indicating that battery depletion does not strongly correlate with
eclipse timing. The safety aspect is significantly compromised when the power limit drops to 0.01
W or lower, as the maneuver speed becomes insufficient even for charging actions, which have a
longer time window compared to imaging actions.

Table 4. Ratio of Time in Eclipse for Power Limit Fault Scenarios

Power Limit Ratio of Time in Eclipse

Without fault 0.67
0.001 W 0.34
0.01 W 0.35
0.1 W 0.65
0.5 W 0.43
1.0 W 0.50
2.0 W 0.44
3.0 W 0.25
5.0 W 0.50
10.0 W 0.33

Friction Fault

The performance of the policy is evaluated under the friction fault scenario. Figure 6 illustrates
the reward obtained and the image success rate relative to the fault-free case. It also shows the
average angular speed of RW1 and the average battery level. Performance deteriorates significantly
when friction increases to 400 times the nominal value, with a gradual decline observed at lower fric-
tion levels. The severe performance degradation at high friction levels is due to the reaction wheel
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Figure 4. Reward and Imaged Success Percentage Relative to Nominal Case, RW1
Average Speed, and Average Battery for Power Limit Fault Scenario.
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Figure 6. Reward and Imaged Success Percentage Relative to Nominal Case, RW1
Average Speed, and Average Battery for Friction Fault Scenario.

operating at excessively slow speeds, rendering most actions unsuccessful. Additionally, as with the
power limit fault scenario, performance declines further as the number of requests increases, since
more targets demand quicker maneuvers.

Figure 7 shows the percentage of episodes successfully completed without failures, along with a
breakdown of failure causes for varying numbers of requests relative to the fault-free case. Table 5
presents the ratio of time spent in eclipse at the episode’s end due to failures. The safety aspect is
significantly compromised when friction reaches 400 times the nominal value. As shown in Table
5, this is because charging becomes insufficient to support actions during eclipse conditions, given
the higher power consumption caused by increased friction.

Table 5. Ratio of Time in Eclipse for Friction Fault Scenarios

Friction Multiplier Ratio of Time in Eclipse

Without fault 0.67
10 0.67
100 0.67
200 0.75
300 0.57
400 0.81

1000 0.85

Encoder Measurement Fault

The performance of the policy is evaluated under the encoder measurement fault scenario. Figure
8 presents the reward obtained and the image success rate relative to the fault-free case. It also shows
the average measured angular speed of RW1 alongside the actual angular speed and the average
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Figure 7. Percentage of Episodes Successfully Completed, Battery Depletion and RW
Speed Exceeding the Limit Over the Number of Requests for Friction Scenario.

battery level. Figure 9 illustrates the percentage of episodes successfully completed without failures,
along with a breakdown of failure causes for varying numbers of requests relative to the fault-free
case. Overall, performance deteriorates slightly due to more frequent failures. However, the encoder
measurement fault has minimal impact on performance because the attitude control system relies on
torque-based control rather than speed-based control. The safety aspect is also slightly affected, as
errors in RW angular speed measurements occasionally prevent successful momentum management
actions when required.

Battery Capacity Fault

The performance of the policy is evaluated under the battery capacity fault scenario. Figure
10 illustrates the reward obtained and the image success rate relative to the fault-free case. It also
shows the imaging action rate (the number of imaging actions relative to the total number of actions)
and the average angular speed of RW1. Performance deteriorates gradually as the battery capacity
decreases, as more charging actions are required when the battery capacity is lower.

Figure 11 shows the percentage of episodes successfully completed without failures, along with
a breakdown of failure causes for varying numbers of requests relative to the fault-free case. Table
6 presents the ratio of time spent in eclipse at the episode’s end due to failures. The safety aspect is
significantly compromised when the battery capacity is 40% or less of the nominal value. As shown
in Table 6, this is because charging becomes insufficient to support actions during eclipse conditions
due to the reduced battery capacity.
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Figure 8. Reward and Imaged Success Percentage Relative to Nominal Case, RW1
Average Speed, and Average Battery for Encoder Fault Scenario.
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Figure 10. Reward and Imaged Success Percentage Relative to Nominal Case, RW1
Average Speed, and Average Battery for Battery Fault Scenario.

10%
20%

30%
40%

50%
60%

70%
80%

90%

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Orbits completed

0

50

100

Al
ive

/N
on

-fa
ult

 (%
)

2000 4000 6000 8000 10000
Requests |R|

0

20

40

60

80

100

Ba
tte

ry 
ali

ve
/N

on
-fa

ult
 (%

)

2000 4000 6000 8000 10000
Requests |R|

92

94

96

98

100

RW
 al

ive
/N

on
-fa

ult
 (%

)

Figure 11. Percentage of Episodes Successfully Completed, Battery Depletion and
RW Speed Exceeding the Limit Over the Number of Requests for Battery Scenario.
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Table 6. Ratio of Time in Eclipse for Battery Fault Scenarios

Battery Capacity Reduction (% of Nominal) Ratio of Time in Eclipse

Without fault 0.67
10 1.00
20 0.99
30 0.99
40 0.98
50 0.88
60 0.85
70 0.43
80 0.50
90 0.50

CONCLUSION

This study investigates the resilience of DRL-based policy performance in autonomous satellite
tasking under fault conditions, with a focus on RW faults. The problem involves scheduling satellite
observations of Earth targets, formulated as a POMDP. The policy is trained in a fault-free environ-
ment and subsequently tested under various fault scenarios. The analysis evaluates the impact of
individual RW faults among the four wheels and examines different fault types, including power
limitations, friction, encoder measurement errors, and battery capacity reductions.

The policy’s performance is assessed based on the total reward accumulated during an episode
and safety criteria, where failure is defined as either a depleted battery or an RW exceeding its maxi-
mum angular speed during the three-orbit episode. Results reveal at which level of a component fail-
ure that the policy’s performance deteriorates significantly when any RW becomes uncontrollable,
as most actions fail under these conditions. Safety is also compromised, with a higher incidence
of failed charging actions. Furthermore, power limitations, friction, and reduced battery capacity
result in a gradual decline in performance as fault severity increases, while safety thresholds are
clearly defined. For less severe faults—such as power limits above 5.0 W, friction multipliers be-
low 100 times the nominal value, and battery capacities exceeding 90% of the nominal value—the
policy demonstrates resilience, with performance comparable to the fault-free case. In contrast,
encoder faults have minimal impact on performance due to the torque-based attitude control mecha-
nism. This study underscores the importance of addressing fault conditions in autonomous satellite
tasking and highlights the need for resilient policies capable of adapting to such scenarios.

Future work should focus on enhancing the policy’s resilience to faults. One potential direction is
to train the policy in environments that include fault scenarios, allowing it to learn adaptive strategies
for handling such conditions. Another approach is to integrate onboard fault detection capabilities
and incorporate fault information into the observation space, enabling the agent to respond more
effectively to anomalies. Additionally, the scope of this research could be expanded to include other
fault types, such as thruster malfunctions, sensor failures, and solar array deployment issues, to
provide a more comprehensive evaluation of DRL-based policy performance under fault conditions.
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