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As concepts for physical spacecraft docking emerge to manage space debris and service
operational satellites, there is a growing need for implementable simulation software tools
modeling the resulting complex multi-body dynamics. To avoid the complexities arising from
analytically solving for single spacecraft models representing the post-docking spacecraft
dynamics, this work focuses on coupling the individual dynamics of the docked spacecraft
through holonomic constraints enforced by numerical penalty methods. Expanding upon prior
work, several constraints are derived and implemented in a software simulation including a
2-degree-of-freedom (DOF) sliding arm constraint and a 2-DOF rotating arm constraint. A
multi-arm rigid 6-DOF constraint is then developed that fully couples the relative dynamics
between the spacecraft using three of either 2-DOF constraint arms. Individual 2-DOF
constraint arms are first validated by analyzing that the appropriate degrees-of-freedom are
released. The multi-arm rigid constraint is then validated by showing all degrees-of-freedom
are constrained and that constraint violations are sufficiently small in magnitude compared
to spacecraft size. Finally the rigid constraint is tested with orbital and attitude maneuvers
applied to the chaser spacecraft to verify that constraint violations remain sufficiently small
when stressed with excited spacecraft motion.

I. Introduction
With the ever-increasing density of objects in space, the sustainability of Earth’s most desired orbits has become

a focus of both commercial and government space agencies. Whether the intention is to remove defunct satellites
from orbit or service operational satellites running out of fuel, physical spacecraft docking has become the dominantly
proposed architecture for doing so. Enabling technologies to in-space servicing, assembly, and manufacturing (ISAM)
has experienced significant advancements over the past decade. A review by Dr. Bryan L. Benedict of Intelsat from
2013 outlines servicing missions both completed and proposed including Northrop Grumman’s Mission Extension
Vehicle as an active provider of life extension technology to Intelsat [1]. Around the same time in 2020 the Institute
for Defense Analyses (IDA) conducted an extensive assessment of global trends in ISAM finding over 100 entities
internationally actively engaged in ISAM activities [2]. Although the IDA identifies guidance, navigation, and controls
as critical or desirable for all ISAM activities, it focuses on the rendezvous and proximity operations (RPO) aspect
leaving out attention to post-docked dynamics. Post-docking dynamics requires its own extensive simulation analysis to
ensure a successful mission design, and is the focus of this paper.

Simulating the post-docked joint dynamics of a resulting two spacecraft system is often performed using a surrogate
single spacecraft model. This requires deriving new equations of motion tracking the translation and rotation of a joint
center of mass with all the same components of each individual spacecraft. Analytically solving for the post-docking
dynamics of each spacecraft is a complex and lengthy process requiring precise knowledge of each spacecraft’s
components, making it a mission-specific process. The resulting dynamics is far from trivial as each spacecraft can
have active attitude control devices, articulated hinged solar panels or antennas, thrusters, and more resulting in a large
state space. In such a single spacecraft model assuming a rigid docking arm, the structural forces and torques from
the docking arm disappear. Alternatively, these otherwise internal forces can be applied as external forces to each
individual spacecraft model to simulate the same resulting motion using the already existing individual equations of
motion. However, the exact internal force is just as complex to analytically solve for as a single spacecraft model.
Instead numerical penalty methods can be used to approximate a constraint force that corrects any constraint violations.
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Vaz Carneiro et al. take this approach by applying constraint forces approximated using the Baumgarte Stabilization
Method (BSM) [3] to couple the dynamics of two spacecraft docked in orbit through a single arm and implement it in
several scenarios [4,5]. Vaz Carneiro et al. validate this constrained dynamics approach in [4] with simplified spacecraft
in Matlab simulations. Vaz Carneiro et al. then validate with complex models in [5] using the Basilisk Simulation
Framework∗[6]. Basilisk’s modular architecture enabled complexity through the addition of its models for reaction
wheels [7], flexing solar panels [8], and a sloshing fuel tank [9]. The results showed that the existing dynamical models
of two different spacecraft can be coupled through constraints to create a system that accurately replicates the joint
dynamics as if the equations of motion had been re-derived as a single spacecraft after docking.

Whereas Northrop Grumman’s MEV [10] and NASA’s proposed OSAM-1 [11] missions use a single arm to dock,
ESA’s ClearSpace-1 [12] and Astroscale’s LEXI [13] planned servicing architectures includes four connection points.
Multiple docking arms distributed and controlled symmetrically with respect to an axis coincident with the servicing
spacecraft’s center of mass helps reduce reactionary translation of the spacecraft hub when attempting to dock with a
chaser spacecraft. Therefore, the concept of enforcing multi-arm spacecraft coupling is of interest as an extension to
previous work. Concept renders of multi-arm architectures are shown in Fig. 1.

(a) Astroscale’s LEXI model [ 13]. (b) ESA’s ClearSpace-1 model [ 12].

Fig. 1 Model renders of single vs. multi-arm constraint architectures.

Motivated by this alternative multi-arm architecture, this work explores applying multiple holonomic constraints to
simulate multi-arm coupling between two spacecraft. Gasbarri and Pisculli investigate post-docked maneuver control
using a two-arm architecture and apply holonomic constraints to enforce point compatibility between arm end effectors
and their respective connection points on the target vehicle restricting all degrees of freedom at each point [14]. Stolfi
et al. use a similar two-arm architecture with holonomic constraints enforcing point compliance between the robotic
arm end effectors and target vehicle connection points [15]. Gasbarri and Pisculli explicitly state the use of the BSM
to approximate constraint forces and torques whereas Stolfi et al. simply state the use of a Lagrange multiplier to
scale their constraint force. This work varies from both Gasbarri and Pisculli and Stolfi et al. by defining holonomic
constraints as a relationship between the base of the connecting arm on the chaser spacecraft and the connection point
corresponding to the end of the connecting arm on the target vehicle. Therefore, the constraint in this work defines
an attribute of the connecting arm whereas previous work considers only point coincident constraints. This allows
specific degrees-of-freedom (DOF) to be released in the constraint formulation emulating either a 1-DOF telescoping or
pivoting connection arm. In a nominal docking scenario the resulting fully constrained system would ideally no longer
expose the released DOF. Although in a capture phase of a mission during which some arms attach before others then
the resulting motion as well as knowledge of the constraint force applied by each arm are desired.

Vaz Carneiro et al. prove the single arm concept of the holonomic constraint in [5] by observing the resulting
constraint violations when enforcing several different constraint options including a length only constraint, a length
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constraint with one end completely rotationally fixed to a spacecraft, and a length constraint with both spacecraft
connection points completely rotationally fixed. In this work, two new constraint options are developed: a sliding
arm and a rotating arm. With a focus on the performance of controllers applied to the joint spacecraft system, neither
Gasbarri and Pisculli or Stolfi et al. show the resulting constraint violations using their constraint formulations whereas
the constraint performance is the primary concern of this work.

Section II defines the dual spacecraft system with multiple connecting arms followed by Section III which formulates
the constraints forces and torques applied to each spacecraft enforcing the connections between them. In Section IV the
individual arm constraint formulations are validated before combinations of three constraints are investigated to show
rigid coupling. Finally, orbital and attitude maneuvers are applied to a singular spacecraft to observe how the joint
system is maintained.

II. Problem Statement
The motivation of this work is to fully couple two spacecraft together in 6 DOF. Each of the two spacecraft initially

contributes 3 translation and 3 rotation DOF to the overall docked system’s DOF. Therefore, there are a total of 12-DOF
for the system. It is of interest to remove six of the system’s DOF through constraints so that the resulting system has
6-DOF as if it were one singular spacecraft translating and rotating through space. In [4] this was accomplished through
two 3-DOF constraints comprised as a single docking arm. This work achieves the same rigid spacecraft coupling using
three or more 2-DOF constraints each considered as its own docking arm, where a minimum of three accomplishes the
full 6-DOF constraint. The spacecraft system geometry of interest showing these degrees of freedom is illustrated in
Fig. 2. In this setup both the B1 and B2 frames can translate and rotate to provide the initial 12-DOF.

Fig. 2 Spacecraft system geometry, variables, and coordinate frames used for this derivation.

Two types of constraint arms are investigated in this work. The first constraint is a linear sliding arm constraint,
where point 𝑃2 on spacecraft two is constrained to move along a line relative to point 𝑃1 on spacecraft one defined
in its local B1 frame. This 2-DOF constraint reduces the degrees of freedom of the system from 12 to 10. A second
2-DOF constraint is implemented where spacecraft two is constrained to follow planar circular motion relative to 𝑃1 on
spacecraft one. Finally, combinations of three of the linear sliding arms or rotating arms are used to lock the full 6-DOF
between the spacecraft. Fig. 3 illustrates the three constraint formulations considered.

III. Mathematical Overview
A holonomic constraint 𝜓 is a one-dimensional equation that depends on the system’s generalized coordinates 𝑞𝑖:

𝜓(𝑞1, ..., 𝑞𝑛) = 0 (1)

The constraint is enforced through a constraint force that is implemented into the system equations of motion:

𝑭𝑐 = 𝜆∇𝜓 (2)
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(a) Sliding arm constraint. (b) Rotating arm constraint.
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(c) Multiple arms achieving a rigid constraint.

Fig. 3 Implemented constraint types.

where 𝜆 is a Lagrange multiplier and ∇ is the spatial derivative operator. The spatial derivative ensures that the constraint
force acts perpendicular to the constraint surface. This enforces the system motion to remain on the constraint surface,
and hence ensures that the system does not violate the given constraints.

The Lagrange multiplier in a formulation with complex spacecraft can be difficult to solve for analytically. To get
around this, the BSM is utilized where a proportional-derivative (PD) controller acts to feed back on the scalar violation
of the constraint and constraint rate of change:

𝜆 = 𝑘𝜓 + 𝑐 ¤𝜓 (3)

Although effective at scaling the constraint force, this method does demand careful balancing of the simulation time-step
along with the gain values in order to ensure stability.

A. Constraint Formulations
To formulate the constraint arms, the translational states of connection points 𝑃1 and 𝑃2 are considered in the inertial

reference frame N :

N𝒓𝑃1/𝑁 =

N 
𝑥𝑃1

𝑦𝑃1

𝑧𝑃1

 ,
N𝒓𝑃2/𝑁 =

N 
𝑥𝑃2

𝑦𝑃2

𝑧𝑃2

 (4)
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The derivatives of these vectors with respect to the inertial frame are also considered as:

N ( Nd
d𝑡

𝒓𝑃1/𝑁

)
= N¤𝒓𝑃1/𝑁 =

N 
¤𝑥𝑃1

¤𝑦𝑃1

¤𝑧𝑃1

 ,
N ( Nd

d𝑡
𝒓𝑃2/𝑁

)
= N¤𝒓𝑃2/𝑁 =

N 
¤𝑥𝑃2

¤𝑦𝑃2

¤𝑧𝑃2

 (5)

The position and velocity vectors of point 𝑃2 relative to 𝑃1 can then be written as:

N𝒓𝑃2/𝑃1 =
N𝒓𝑃2/𝑁 − N𝒓𝑃1/𝑁 =

N 
𝑥𝑃2 − 𝑥𝑃1

𝑦𝑃2 − 𝑦𝑃1

𝑧𝑃2 − 𝑧𝑃1

 ,
N¤𝒓𝑃2/𝑃1 =

N¤𝒓𝑃2/𝑁 − N¤𝒓𝑃1/𝑁 =

N 
¤𝑥𝑃2 − ¤𝑥𝑃1

¤𝑦𝑃2 − ¤𝑦𝑃1

¤𝑧𝑃2 − ¤𝑧𝑃1

 (6)

B. Sliding Arm Constraint
The sliding arm constraint restricts spacecraft two to linear motion relative to spacecraft one. This constraint is

formulated by fixing the distance of 𝑃2 relative to 𝑃1 along two orthogonal axes of motion 𝑖. Modelling a telescoping
arm in any arbitrary direction can be performed by specifying 𝑖 to be two principle axes of an alternative reference
frame aligned with the arm and with its origin at the base 𝑃1. For the purposes of validating this constraint the two
orthogonal axes of motion are chosen in this paper to be subsets of the three principle axes of the chaser body frame B1:

𝜓𝑖 =

(
B1𝒓𝑃2/𝑃1

) 𝑖
−
(
B1𝑹

) 𝑖
(7)

where 𝑖 = 2, 3 for linear motion along the spacecraft one body x-axis, 𝑖 = 1, 3 for motion along the body y-axis, or
𝑖 = 1, 2 for motion along the body z-axis. Note that this defines a line relative to 𝑃1 in the B1 reference frame as the
vector 𝒓𝑃2/𝑃1 is rotated to be evaluated in. The desired connecting arm vector between points 𝑃2 and 𝑃1 is denoted 𝑹.

The constraint time derivatives are:
¤𝜓𝑖 =

(
B1¤𝒓𝑃2/𝑃1

) 𝑖
(8)

Taking the spatial gradient of the scalar constraints for 𝑖 = 1, 2 gives the constraint force acting on points 𝑃1 and 𝑃2
where [NB1] is the direction cosine matrix rotation from the body frame B1 to the inertial frame 𝑁:

N𝑭𝑃1 = [NB1]

B1 
−𝜆1

−𝜆2

0

 ,
N𝑭𝑃2 = [NB1]

B1 
𝜆1

𝜆2

0

 (9)

where 𝜆𝑖 is the Lagrange multiplier from constraint 𝜓𝑖 . Note that the forces are equal and opposite, meaning that when
the system is considered as a whole, these forces cancel one another out.

Because the constraint forces are acting on points not coincident with either spacecraft’s center of mass (COM), a
torque is produced about the COM of each spacecraft:

𝑳𝐵1 = 𝒓𝑃1/𝐵1 × 𝑭𝑃1 𝑳𝐵2 = 𝒓𝑃2/𝐵2 × 𝑭𝑃2 (10)

C. Rotating Arm Constraint
The rotating arm constraint restricts the motion of connection point 𝑃2 to connection point 𝑃1 to follow a specified

azimuth angle 𝜙 or elevation angle 𝜃 considering the arm defined through spherical coordinates with specified fixed
scalar arm length 𝑅. The azimuth angle is measured counter-clockwise from the positive x-axis, and the elevation angle
is measured from the positive z-axis. This 2-DOF constraint imposes that the position vector between points 𝑃2 and 𝑃1
sweeps out a cone shape with its vertex at 𝑃1. Let the position of 𝑃2 be defined in spherical coordinates relative to 𝑃1,
noting that 𝒓𝑃2/𝑃1 is now expressed in the body frame B1:

B1𝒓𝑃2/𝑃2 =

B1 
𝑥𝑃2/𝑃1

𝑦𝑃2/𝑃1

𝑧𝑃2/𝑃1

 =
B1 

𝑅 sin(𝜃) cos(𝜙)
𝑅 sin(𝜃) sin(𝜙)

𝑅 cos(𝜃)

 (11)
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Therefore the constraints can be defined as utilizing a length constraint 𝜓𝑟 shown in Eq. (12) plus a second constraint
either fixing the azimuth angle as shown in Eq. (13) or the elevation angle as shown in Eq. (14).

𝜓𝑟 =

√︃
𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1

+ 𝑧2
𝑃2/𝑃1

− 𝑅 (12)

𝜓𝑎𝑧 = tan−1
(
𝑦𝑃2/𝑃1

𝑥𝑃2/𝑃1

)
− 𝜙 (13)

𝜓𝑒𝑙 = cos−1 ©­­«
𝑧𝑃2/𝑃1√︃

𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1

+ 𝑧2
𝑃2/𝑃1

ª®®¬ − 𝜃 (14)

With the constraints defined, next the time derivative of the constraints must be found in order to use the BSM to define
the Lagrange multiplier. Taking the time derivative of the constraints gives Eq. (15) for the length constraint, and
Eqs. (16) and (17) for the azimuth and elevation constraint options respectively.

¤𝜓𝑟 =
𝒓𝑃2/𝑃2 · ¤𝒓𝑃2/𝑃2

|𝒓𝑃2/𝑃2 |
(15)

¤𝜓𝑎𝑧 =
𝑥𝑃2/𝑃1 ¤𝑦𝑃2/𝑃1 − 𝑦𝑃2/𝑃1 ¤𝑥𝑃2/𝑃1

𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1

(16)

¤𝜓𝑒𝑙 =
𝑧𝑃2/𝑃1 (𝑥𝑃2/𝑃1 ¤𝑥𝑃2/𝑃1 + 𝑦𝑃2/𝑃1 ¤𝑦𝑃2/𝑃1 ) − ¤𝑧𝑃2/𝑃1 (𝑥2

𝑃2/𝑃1
+ 𝑦2

𝑃2/𝑃1
)

(𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1

+ 𝑧2
𝑃2/𝑃1

)
√︃
𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1

(17)

Next, the constraint forces acting on each spacecraft must be defined. The constraint force acting on spacecraft one is:

𝑭𝑃1 = 𝜆𝑟∇𝜓𝑟 + 𝜆2∇𝜓2 (18)

where 𝜓2 is either 𝜓𝑎𝑧 or 𝜓𝑒𝑙 with spacial gradients defined as:

∇𝜓𝑟 =
−1

|𝒓𝑃2/𝑃2 |


𝑥𝑃2/𝑃1

𝑦𝑃2/𝑃1

𝑧𝑃2/𝑃1

 (19)

∇𝜓𝑎𝑧 =
−1

𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1


𝑦𝑃2/𝑃1

𝑥𝑃2/𝑃1

0

 (20)

∇𝜓𝑒𝑙 =
−1

(𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1

+ 𝑧2
𝑃2/𝑃1

)
√︃
𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1


𝑥𝑃2/𝑃1 𝑧𝑃2/𝑃1

𝑦𝑃2/𝑃1 𝑧𝑃2/𝑃1

−(𝑥2
𝑃2/𝑃1

+ 𝑦2
𝑃2/𝑃1

)

 (21)

The constraint force acting on 𝑃2 is equal and opposite to the force acting on 𝑃1:

𝑭𝑃2 = −𝑭𝑃1 (22)

and the torque about the COM of each spacecraft is the same as for the linear sliding arm constraint in Eq. (10).

D. Rigid Constraint
The rigid constraint combines three of either arm to lock the full translational and rotational motion of the second

spacecraft relative to the first spacecraft by connecting the three arms at different 𝑃1 and 𝑃2 connection points on each
spacecraft. It is required that the released axes of all arms not be the same axis. For example, three 2-DOF linear sliding
arm constraints can be used to achieve the desired six degree-of-freedom lock as:

𝜓1 = 𝒓𝑖
𝑃21/𝑃11

− 𝑹𝑖
1 𝑖 = 1, 2 (23)
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𝜓2 = 𝒓 𝑗
𝑃22/𝑃12

− 𝑹 𝑗

2 𝑗 = 2, 3 (24)

𝜓3 = 𝒓𝑘
𝑃23/𝑃13

− 𝑹𝑘
3 𝑘 = 1, 3 (25)

Because 𝜓1, 𝜓2, and 𝜓3 each restrict the spacecraft motion along a different axis, the combination of the three constraints
locks the full translational and rotational states of spacecraft two relative to spacecraft one. This can similarly be done
with three rotating arm constraints.

IV. Numerical Results
The numerical simulation of the different constraints is performed in Matlab. The two spacecraft are placed in a low

Earth orbit (LEO), and the mass of the chaser spacecraft (spacecraft one) is approximately half of the mass of the target
spacecraft (spacecraft two). The two spacecraft are initialized with the arm extending through the along-track direction
of their mutual orbit. Additionally, both spacecraft start with a zero angular rate relative to the inertial frame. The
exact simulation parameters are included in Table 1. The results for each simulation run are presented in this section as
relative motion plots and constraint violation time history. Note that the relative motion plots are displayed in the B1
reference frame, and thus only the motion of spacecraft two is shown relative to spacecraft one. Therefore, all plots show
points 𝐵1 and 𝑃1 as fixed because they are rigidly attached to spacecraft one. The time history of points 𝐵2 and 𝑃2 are
plotted to show the motion of spacecraft two. Grey lines are also plotted to show the connection sequence from 𝐵1 to 𝐵2.
The constraint violation plots show the constraint differences calculated by either Eqs. (7) or (12)-(14) at each timestep.

A. Sliding Arm Constraint
First a singular sliding arm is simulated to verify the expected motion. As shown in Fig. 4, the relative 𝑥 and 𝑧

directions are constrained and the 𝑦 direction is released. As expected, this choice results in the motion of 𝑃2 exclusively
along the relative 𝑦 axis. Point 𝐵2 can be seen to trail freely around point 𝑃2. The constraint violations seen in subplot
4(b) also give confidence that the arm is performing as expected. The constraints in the 𝑥 and 𝑧 directions stay below
10−7 orders of magnitude while the 𝑦-axis difference between its initial and current value can be seen to grow unbounded
in magnitude. These constraint orders of magnitude are much smaller than the one meter connection arms between hubs
𝐵1 and 𝐵2 to their connection points 𝑃1 and 𝑃2 as well as the one tenth of a meter arm length between 𝑃1 and 𝑃2.

(a) 𝐵1 Relative motion in the B1 frame. (b) Linear sliding arm constraint violations per axis.

Fig. 4 Singular linear sliding arm constraint performance.
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Table 1 Simulation parameters for the joint spacecraft simulation.

Parameter Notation Value Units
Spacecraft 1’s mass 𝑚1 330 kg
Spacecraft 2’s mass 𝑚2 750 kg

Spacecraft 1’s inertia about its center of mass B1 [𝐼SC1 ,𝐵1 ]

82 0 0
0 98 0
0 0 121

 kg· m2

Spacecraft 2’s inertia about its center of mass B2 [𝐼SC2 ,𝐵2 ]

900 0 0
0 800 0
0 0 600

 kg· m2

Spacecraft 1’s connection locations 𝑃1 with respect to 𝐵1


B1 𝒓𝑃1,1/𝐵1
B1 𝒓𝑃1,2/𝐵1
B1 𝒓𝑃1,3/𝐵1




B1 [1, 1, 1]𝑇
B1 [1,−1,−1]𝑇
B1 [1,−1, 1]𝑇

 m

Spacecraft 2’s connection locations 𝑃2 with respect to 𝐵2


B2 𝒓𝑃2,1/𝐵2
B2 𝒓𝑃2,2/𝐵2
B2 𝒓𝑃2,3/𝐵2




B2 [−1, 1, 1]𝑇
B2 [−1,−1,−1]𝑇
B2 [−1,−1, 1]𝑇

 m

Spacecraft 2’s connection locations 𝑃2 with respect to 𝑃1


B1𝑹𝑃2,1/𝑃1,1
B1𝑹𝑃2,2/𝑃1,2
B1𝑹𝑃2,3/𝑃1,3



B1 [0.1, 0, 0]𝑇
B1 [0.1, 0, 0]𝑇
B1 [0.1, 0, 0]𝑇

 m

DCM of the initial 𝐵1 frame with respect to the inertial 𝑁 frame [B1N]

1 0 0
0 1 0
0 0 1

 –

DCM of the initial 𝐵2 frame with respect to the inertial 𝑁 frame [B2N]

1 0 0
0 1 0
0 0 1

 –

Spacecraft 1’s initial angular velocity B1𝝎𝐵1/𝑁
B1 [0, 0, 0]𝑇 rad/sec

Spacecraft 2’s initial angular velocity B2𝝎𝐵2/𝑁
B2 [0, 0, 0]𝑇 rad/sec

Baumgarte Stabilization proportional gain 𝑘 1E6 –
Baumgarte Stabilization derivative gain 𝑐 2E3 –

Orbital maneuver thrust vector B1𝑭 B1 [−0.25, 0, 0]𝑇 N
Attitude maneuver proportional feedback gain 𝑝 60 –
Attitude maneuver derivative feedback gain 𝑑 40 –

B. Rotating Arm Constraint
Next, an individual rotating arm is simulated to verify the constraint development. The goal is to create an arm that

follows circular motion about 𝑃1 with 𝑃1 in the plane, but not all specified elevation angles achieve this. Elevation
angles other than 90◦ result in motion of the arm between 𝑃2 and 𝑃1 sweeping out a cone with its tip at 𝑃1 and its body
pointed through the 𝑧-axis. This result initially motivated use of the azimuth constraint, where a specified azimuth angle
and free elevation angle causes 𝑃2 to follow the desired circular motion. However, once the elevation angle neared
0◦ or 180◦, both the 𝑥 and 𝑦 coordinates shrink to zero, exposing a singularity in Eq. (13), for which the constraint is
undefined. To circumvent this problem, a fixed elevation angle of 90◦ is selected utilizing Eqs. (12) and (14), while
Eq. (13) is left free.

The simulation results for the single rotating arm are shown in Fig. 5. The resulting relative motion verifies the
developed constraint, as 𝑃2 can be seen to rotate about 𝑃1 in the 𝑥𝑧-plane with the COM 𝐵2 trailing freely behind.
The constraint violations also confirm the expected behavior, as both 𝜙𝑟 and 𝜙𝑒𝑙 stay bounded below 10−4 order of
magnitude meters and radians respectively while the azimuth angle accordingly grows unbounded.
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(a) 𝐵1 Relative motion in the B1 frame. (b) Rotating arm constraint violations.

Fig. 5 Singular rotating arm constraint performance.

C. Rigid Constraint
With the verification of the individual 2-DOF constraint arms, the next step is to combine multiple arms to achieve a

rigid 6-DOF coupling between the spacecraft. Sets of three arms are implemented and the results are included below.
As discussed in the problem statement, a goal of this work is to develop a rigid 6-DOF constraint utilizing multiple arms.
Because each individual arm constrains 2-DOF, implementing three arms will create a 6-DOF constraint if the free DOF
selected is different for each arm. The 6-DOF coupling in the context of the relative motion plot should illustrate points
𝑃2 and 𝐵2 remaining stationary. In the context of the constraint violation plots, it is expected for all constraints to be
satisfied despite one axis of each arm being free. The existence of three arms ensures that all constraints are inherently
maintained.

This hypothesis is first tested with the sliding arm as shown in Fig. 6. As expected, each of the connection points 𝑃2
remain stationary in the B1 frame as well as point 𝐵2. The constraint violation plot also confirms the expected behavior
showing all three arms peaking around 10−8 meters. Note that these constraint violations in Fig. 6(b) display the 2-norm
of all three axes are for each arm instead of individual axes constraint violations as was shown in Fig. 4(b).

In order to have mutually exclusive axes between the different rotating arms while still using the elevation constraint,
the 𝑥, 𝑦, and 𝑧 coordinates were swapped in Eq. (14) to change what principal axis the elevation angle is defined about.
It was ensured that the coordinates were swapped such that a right-handed coordinate system is maintained. Doing so
resulted in the simulation performance shown in Fig. 7. Once again, all connection points 𝑃2 as well as point 𝐵2 remain
fixed in the B1 frame. Both the relative motion and constraint violations confirm that this multi-arm formulation with
rotating arms appropriately couples the two spacecraft in 6-DOF. All constraint violations remain below 10−5 meters
and radians, consistently smaller than with a single rotating arm thanks to the slower joint spacecraft motion when fully
coupled.

D. Perturbation Analysis
Although the rigid constraint analysis shows that this method is effective at yielding adequately small constraint

violations, it has only considered the slow motion of free-floating spacecraft. Performance is further assessed by
applying perturbations that stress the constraints. For this analysis, both rigid implementations of three sliding arms
and three rotating arms are tested. Each maneuver only applies forces or torques to the chaser spacecraft, assuming
a scenario in which the target spacecraft does not contribute control and the arm between them is therefore stressed
greater than if the target spacecraft was cooperative. The first maneuver tested is an orbital maneuver adding a small but
sustained translational perturbation by applying a force representative of low-thrust electric propulsion. The perturbation
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Fig. 6 Three linear sliding arm constraints performance.
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Fig. 7 Three rotating arm constraints performance.

is turned on at minute five and lasts two minutes. The resulting performance of the rigid constraint using the sliding
arms is shown in Fig. 8(a) and rotating arms are shown in Fig. 8(b).

Prior to initiation of the orbital maneuver at minute five, the constraint violations for both formulations remain
at nominally small orders of magnitude similar to the unperturbed scenarios in Figures 6(b) and 7(b). While the
translational force is applied to spacecraft one between minutes five and seven, the constraint violations increase as a
new equilibrium is reached due to spacecraft one’s excited motion. The oscillatory pattern of the constraint violations at
this stage is due to the log scale plotting as the constraint bounces back and forth across zero. This is simply a macro
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(a) Linear sliding arm constraint violations for each arm. (b) Rotating arm constraint violations for each arm.

Fig. 8 Three arm rigid constraint performance with orbital maneuver applied.

version of the otherwise seeming noise at smaller orders of magnitude before the force is applied. After the maneuver
force is turned off at minute seven, some of the constraint violations drop back down to their pre-maneuver order of
magnitude while others settle at a new equilibrium. The higher new equilibria are due to a spin imparted on the joint
spacecraft system by the translational force not being perfectly aligned with the combined center of mass of the two
spacecraft. The spin rate demands a centripetal force from the connecting arm on each spacecraft and the constraint
violations vary more with this dynamic motion. Despite the increase, the constraint violations both during and after the
maneuver remain at least several orders of magnitude smaller than the size of the respective spacecraft.

Next an attitude maneuver is tested, applying a torque to the chaser spacecraft starting at minute five until it rotates it
by 22.5◦. The MRP feedback attitude control law used is shown in Eq. (26) where 𝝈𝐵1/𝑅 is the attitude error between
the B1 frame and a reference frame R initially 22.5◦ offset about the B1 z-axis.

B1 𝑳ext = 𝑝𝝈𝐵1/𝑅 + 𝑑B1𝝎𝐵1/𝑅 (26)

The resulting performance for the sliding arm and rotating arm constraints are shown in Figures 9(a) and 9(b) respectively.
Once again the constraint violations can be seen to increase at the start of the maneuver as spacecraft one begins its
rotation and the constraint arm enforces commensurate motion by spacecraft two. Due to the nature of this attitude
maneuver asymptotically closing in to its desired rotation, the eventual setting of the spacecraft motion results in a far
calmer post-maneuver state compared to the translational maneuver. When the maneuver reaches its desired attitude
around minute ten, the new equilibrium constraint violations are only slightly higher than they were pre-maneuver.
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(a) Linear sliding arm constraint violations for each arm. (b) Rotating arm constraint violations for each arm.

Fig. 9 Three arm rigid constraint performance with attitude maneuver applied.

V. Conclusions
Whereas prior work investigated several types of single-arm holonomic constraints, this paper derives and implements

multiple simultaneous constraints to simulate multi-arm coupling between two spacecraft. First, constraint formulations
for both an individual sliding arm and rotating arm were developed such that they constrained 2-DOF and a system of
combining multiple arms was laid out. Next the individual arm constraints were implemented in software to confirm
that the resulting spacecraft motion satisfied the constraint formulation by releasing desired DOF. Finally, two rigid
constraints were implemented in software as a combination of either three sliding arm or three rotating arm constraints.
Both rigid constraints demonstrated the expected behavior of full 6-DOF coupling between the two spacecraft with
constraint violations many orders of magnitude smaller than the size of each individual spacecraft and their connecting
arm. When applying orbital and attitude maneuvers to the chaser spacecraft, the constraints maintained coupled
motion with small constraint violations relative to vehicle size, showing that this method of simulation joint spacecraft
systems can handle more realistic dynamic scenarios. As the demand for satellite servicing increases, such post-docked
dynamical simulation will be increasingly required as well. Rapid dynamics simulation is valuable at the servicer design
phase evaluating vehicle choices when docked to different clients, at the client selection phase when evaluating whether
a potential client vehicle can be serviced, and at the inspection phase of a mission when updated information about the
client vehicle needs to be implemented to re-evaluate preliminary dynamical simulation. Using techniques such as this
constrained dynamics methodology contributes to an efficient simulation by eliminating the need for a surrogate single
spacecraft model to be simultaneously maintained.
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