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REINFORCEMENT LEARNING FOR SATELLITE AUTONOMY
UNDER DIFFERENT CLOUD COVERAGE PROBABILITY

OBSERVATIONS

Lorenzzo Quevedo Mantovani*, Yumeka Nagano*, Hanspeter Schaub†

This paper investigates the use of Deep Reinforcement Learning (DRL) to address
the Agile Earth Observing Satellite (AEOS) scheduling problem when consider-
ing cloud coverage. Earth Observing satellites play a crucial role in acquiring data
from Earth using sensing instruments. However, clouds are a constant presence on
Earth and impose a major challenge by obscuring targets and prohibiting data col-
lection. In this study, the AEOS scheduling problem is modeled as a Partially Ob-
servable Markov Decision Process (POMDP), and a DRL-based approach is pro-
posed to obtain a policy for on-board decision-making considering cloud coverage
uncertainty. Five different observation capabilities of cloud coverage are consid-
ered, and two distinct reward models – binary and linear – are tested based on the
percentage of cloud coverage. Additionally, two distinct cloud models are used
for training, one based on historical cloud data and another based on a stochas-
tic cloud model. A high-fidelity simulation environment is used to train and test
the agents’ performance under realistic conditions. The results demonstrate that
agents with the ability to observe cloud information outperform those without such
capabilities. Furthermore, agents trained in an environment with clouds but inca-
pable of observing cloud information show comparable performance and better
resource management than agents trained in a cloud-free environment. Besides,
agents trained with the stochastic cloud cover model show comparable or superior
performance than those trained with historical cloud data.

INTRODUCTION

This paper investigates using Deep Reinforcement Learning to solve the Agile Earth Observing
Satellite (AEOS) scheduling problem when considering cloud coverage. Earth observing satellites
are used to acquire data from Earth using sensing instruments, while agile indicates satellites that
can maneuver along- and across-track, increasing their flexibility to collect data. In this context,
the scheduling problem consists of determining the sequence of tasks to be executed by the satellite
to maximize the mission objective while considering the satellite’s constraints. Traditionally, the
ground segment performs the planning and scheduling steps using operators or optimization algo-
rithms. However, these approaches have limitations, such as the need to re-plan when new requests
are added, the inability to adapt to changing conditions quickly, and the difficulty to account for
uncertainties. Such uncertainties can be weather conditions affecting image quality, such as snow
covering ground areas of interest, humidity affecting the quality of the image, or the presence of
clouds obscuring the target and prohibiting the satellite from collecting data. For example, the
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annual mean cloud cover in LandSat ETM+ acquisitions was more than 30%, even when using a
Long-term Acquisition Plan (LTAP), which also tries to reduce the amount of clouds in the acquired
images.1

Traditional optimization methods have been shown to solve the scheduling problem for non-
agile and agile Earth Observing Satellites (EOS). Lemaı̂tre et al (2002) investigated the AEOS
and showed that even with simplification assumptions, the problem is NP-hard;2 the authors also
compared a greedy algorithm, dynamic programming, constraint programming, and local search al-
gorithm to solve the problem. Over time, other methods have been proposed to solve the scheduling
problem for agile satellites. Bianchessi et al (2007) investigate the use of heuristics for multi-
satellite systems while Tangpattanakul et al (2015) employ local search algorithm to maximize the
total reward obtained by an agile satellite while minimizing the difference in reward of individual
users that share the platform.3, 4 Eddy and Kochenderfer (2021) propose the use of an infeasibility-
based graph, where the best solution corresponds to the maximum independent set of the graph.5

The method is investigated with up to 10,000 requests and 24 satellites; the satellite is assumed to
slew at a constant rate, and power constraints are not considered. Wang et al (2021) provide an
overview of the scheduling problem for the AEOS and the different methods proposed to solve it.6

Still, these optimization methods are brittle to initial conditions, present challenges to incorpo-
rate more complex constraints and require total or partial replanning when new requests are added
to the system. The use of machine learning techniques has been proposed to mitigate these prob-
lems. More specifically, Deep Reinforcement Learning (DRL) has shown the ability to effectively
solve the scheduling problem under complex constraints while presenting high adaptability. A
DRL approach has been investigated to solve the multi-AEOS scheduling problem,7 and different
information-sharing methods have been analyzed to create collaboration among agents.8 DRL has
also been applied to the planning and scheduling of spacecraft for small-body science operations.9

In-depth comparisons of different DRL algorithms for the scheduling of Earth-observing satellites
were also performed by Herrmann and Schaub (2023) while Stephenson and Schaub (2024) pro-
vide a comparison between DRL and Mixed Integer Linear Programming (MILP) under different
target distributions.10, 11 Yet, these works do not consider cloud coverage in the AEOS scheduling
problem.

Different methods were investigated to mitigate the problem imposed by clouds and incorporate
it into the scheduling process. Wang te al (2016), for example, account for clouds in a single non-
agile satellite scheduling problem;12 the authors introduce clouds as a stochastic process and use a
chance constraint programming (CCP) method combined with a sample approximation to transform
the problem into an integer linear programming and a branch and cut algorithm used to solve it. In
the work of Wang et al (2019), clouds are also modeled as stochastic processes, but the authors
introduce the possibility of targets being imaged more than once to increase the probability of being
successfully imaged due to cloud coverage.13 Additionally, Wang et al (2020) studies the scheduling
of multiple satellites considering cloud coverage.14 Their proposed approach using the branch-and-
price algorithm is compared with the CPLEX and demonstrated to solve the problem faster. Still,
satellites are considered non-agile, and only a small number of 400 requests are considered.

In the work of Valika et al (2019), the authors introduce an MIP approach to solve the scheduling
problem from one to an arbitrary number of satellites with weather uncertainty.15 More specifically,
they introduce cloud coverage as a function of time and demonstrate that their stochastic approach
outperforms deterministic models. The quality of the acquired image is assumed to be inversely pro-
portional to the cloud coverage of the target. Additionally, the authors demonstrate the feasibility
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of solving their problem formulation using off-the-shelf solvers such as the CPLEX solver for MIP.
With a different approach, Hadj-Salah (2019) propose using DRL to minimize the time required to
image a given region of interest subject to cloud coverage.16 The authors model the problem as a
POMDP and use an Advantage Actor Critic (A2C) algorithm to find the policy. Predicted cloud
coverage is passed to the agent to decide whether to image the targets; Cloud data is extracted from
the ERA-Interim dataset. The authors’ findings indicate that the policy obtained with A2C outper-
forms a heuristics-based approach. Nevertheless, their work does not consider satellite dynamics or
power and storage constraints.

An approach based on budgeted uncertainty is proposed by Wang et al (2020) to deal with cloud
coverage uncertainty.17 Additionally, the authors propose a heuristic that outperforms standard
solvers. Their work considers instances with up to 300 targets and is limited to non-agile satellites.
Wang et al (2021) expand the use of budget uncertainty with AEOS and show the possibility of
solving it using column generation and simulated annealing (SA) methods.18 The combination of
column generation with SA and CPLEX takes an average of 770 and 1900 seconds, respectively, for
250 targets. Still, the number of targets in the problem is limited to 300. The authors comment that
limited attention was given to the AEOS scheduling problem with cloud uncertainty and highlight
limitations in previous work due to computation requirements in the context of cloud uncertainty
and consideration of only binary reward models, where rewards are calculated only based on a cloud
coverage threshold and not proportional to it. In future work, the authors propose investigating real-
time scheduling. Zhang et al (2022) highlight that previous research do not account for real cloud
information and cloud change over time and proposes an on-board cloud detection and re-plan.19

The satellite is assumed to have a cloud-detecting sensor in addition to the optical camera used
to image targets; the satellite can decide to continue with the original plan, abandon the image
opportunity, or re-plan based on new window opportunity depending on the actual cloud coverage.

In addition to the simplification of cloud models and associate rewards, Gu et al (2022) also men-
tion the lack of use of real cloud information as a limitation seen in previous studies.20 Therefore,
the authors introduce a method to allow re-planning based on reliable cloud forecasts provided by
a neural network leveraging previous imaging taken by the satellite. The initial and proactive plan
is formulated using CCP (similar to the approach used by Wang et al (2016)).12 Then, the full plan
horizon is divided into smaller intervals for re-plan based on the updated cloud forecast. A linear
reward model is introduced based on actual cloud coverage, where the reward assigned to a request
is inversely proportional to the cloud coverage. The author investigates replanning horizons of 1,
2, and 3 hours and up to 200 observation targets; their results indicate that the proposed replanning
method outperforms other techniques.

A CCP approach is also used by Han et al (2023) to investigate the multi-agile EOS problem under
cloud uncertainty.21 CCP is used with a sample approximation and an improved SA algorithm.
The cloud coverage is simplified to be a binary case of cloud or no cloud and is represented by
a stochastic process. The research results indicate that the proposed method can obtain higher
rewards while taking less time to find a solution (ranging from a few seconds to a few minutes) when
compared to a genetic algorithm, adaptive large neighborhood search, and bidirectional dynamic
programming-based iterated local search. Still, the maximum number of targets considered is 950,
and the maneuver times between different targets are simplified.

Candela et al (2023) consider a satellite with a lookahead instrument to collect information about
upcoming targets and the presence of clouds.22 Then, the algorithm decides where to target the
radar (the primary instrument) to avoid or target clouds, depending on the clouds’ characteristics
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and mission goals. Their results indicate that having information about upcoming targets can sig-
nificantly improve the system’s performance. Still, their work does not consider the full satellite
dynamics to account for maneuver time between targets and more realistic power consumption.

A DRL approach is used to tackle the multi-AEOS problem with targets being obscured by clouds
by Naik et al (2024).23 The authors employ the Basilisk* software (see Kenneally et al (2018)24)
to have a high-fidelity simulation environment and consider targets with stochastic cloud coverage.
The problem is modeled such that the satellite can image one of the targets, downlink the data to a
ground station, or enter a battery charge mode. Their result indicates the capability of the agent to
learn how to react to cloud coverage on the fly.

Overall, these works do not consider high-fidelity satellite dynamics to account for realistic ma-
neuver time between targets and constraints such as power consumption. Also, previous methods
tend to be limited in their ability to quickly re-plan based on cloud information and other states of
the spacecraft, such as battery levels. Additionally, few works consider the use of historical and
realistic cloud data to evaluate the system.

Therefore, this paper presents the use of DRL to obtain a policy for on-board decision-making to
solve the AEOS scheduling problem considering cloud coverage. Cloud data from the ERA5 dataset
is used for training and testing the agent.25 A high-fidelity simulation environment is used to test the
agent’s performance under realistic conditions such as maneuver time and power consumption. The
problem formulation allows to incorporate cloud information provided by ground stations, relays of
other satellites, on-board weather forecast tools (such as the one investigated by Gu et al (2022)),
or cloud-sensing instruments (as proposed by Zhang et al (2022) and Candela et al (2023)).19, 20, 22

Further, two distinct reward models are considered based on the percent of cloud coverage, binary
and linear. The number of requests considered in this work is also higher than in most previous
works, varying from 1,000 to 10,000, allowing for a more comprehensive analysis of the system’s
performance.

Therefore, the main contributions of this work are the use of DRL to solve the AEOS scheduling
problem considering cloud coverage, the analysis of the impact of different observation capabilities
of cloud coverage in the agent’s performance, and the investigation of two different reward models
based on cloud coverage percentage. Hence, the paper is organized as follows: we formulate the
problem as a Partially Observable Markov Decision Process (POMDP) in Section Problem Formu-
lation. Next, we present the simulation and training environments in the Solution Approach Section.
In Results, we show results and discuss findings. Finally, we conclude the work in the Conclusion.

PROBLEM FORMULATION

The satellite scheduling problem can be modeled as a Partially Observable Markov Decision
Process (POMDP) to be solved by Reinforcement Learning. Therefore, first, we present the problem
as a POMDP. Then, we describe the two considered reward functions.

Partially Observable Markov Decision Process

A Markov Decision Process (MDP) can represent a sequential decision process under the Markov
assumption, where the next state s′ depends only on the current state s and action a taken.26 In
the case where the agent cannot observe all states of the environment, the problem is modeled

*https://hanspeterschaub.info/basilisk
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Table 1. Observation Space of the Satellite.

Parameter Normalization Description
Pr̂B/N 6378136.6 Position of the satellite with respect to the inertial frame N , ex-

pressed in the planet frame P and normalized by the Earth’s
radius.

Pv̂B/P 7616.5 Velocity of the satellite with respect to the planet frame, ex-
pressed in the planet frame and normalized by |PvB/N |.

ĉB/P π Orientation of the satellite’s sensing instrument with respect to
the planet frame.

PωB/P 0.03 Angular velocity of the satellite with respect to the planet frame,
expressed in the planet frame.

Pb Pbmax Battery charge level.
Φs π Angle between solar panels and sun vector.
Pp̂i 6378136.6 Position of the target with respect to the planet frame, expressed

in the planet frame and normalized by the Earth’s radius.
ρi - Priority of target i.
cfi - Cloud coverage forecast of target i.
σi - Standard deviation of the cloud coverage forecast of target i.

as a Partially Observable Markov Decision Process (POMDP). For the satellite scheduling prob-
lem, the agent observes only states of the environment that are considered to be relevant to the
decision-making process. Therefore, the problem is formulated as a POMDP defined by the tuple
⟨S,A, T , R,O, Z, γ⟩, where:

• State Space S: The states available in the simulation, including the satellite’s position, veloc-
ity, angular position, angular velocity, targets’ information, and cloud coverage;

• Action Space A: The action space has length 33, which includes actions charge and 32 imag-
ing actions, corresponding to the upcoming 32 target window opportunities;

• Transition Function T (s′|s, a): Transition probabilities are generated by a deterministic model
with the satellite’s dynamics from a high-fidelity simulator;

• Reward function R: Maps states and actions into rewards. Two distinct reward functions are
tested;

• Observation Space O: Subset of the state space which the agent can observe. The observation
space includes states that are relevant for decision-making in the problem;

• Observation function Z: The satellite can observe without uncertainty the states in the obser-
vation space;

• γ: Discount factor.

The satellite observation space is described in Table 1, showing the states the satellite can observe
and the normalization used to keep the values between −1 and 1 (a good practice when using neural
networks).
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There are 2 terminal states that are reached either when the episode ends or when the battery
charge level reaches zero (Pb ≤ 0). As mentioned, the transition probability function is determinis-
tic, such that T (G(s, a)|s, a) = 1, where G is the generative model and s′ = G(s, a).

A high-fidelity simulation environment is used as the generative model (s′ = G(s, a)) to train
and test the agent under realistic scenarios, considering maneuver times and power consumption.
Therefore, the simulation is implemented using BSK-RL*, which is an open-source Python pack-
age focused on spacecraft tasking. BSK-RL combines the Gymnasium environment with Basilisk,
which is a high-fidelity astrodynamics simulator with flight-proven software. Basilisk allows the
simulation of spacecraft dynamics, sensors, actuators, and environment models.24

Reward Functions

Two distinct reward functions are tested, inspired by previous research accounting for cloud cov-
erage. First, a binary reward model is considered, where the target is deemed either occluded by
clouds or not. The reward is given by

R =

{
ρi if cpi ≤ ct

0 otherwise
(1)

where cpi is the true cloud coverage of target i, ct is a threshold value, and ρi is target i priority.
Sometimes, the binary reward model is referred to as a simplification of the problem since partial
credit could be assigned to targets partially occluded by clouds.20 Therefore, a second reward
model is considered, where the reward is proportional to the cloud coverage of the target until a
given threshold, given by:

R =

{
ρi(1−

cpi
ct
) if cpi ≥ 0 and cpi ≤ ct

0 otherwise
(2)

Although these two reward models are considered in this paper, other reward functions can be
easily employed in the proposed DRL framework to better meet the needs of satellite operators and
other stakeholders. Figure 1 provides a visual representation of the two reward models. In both
cases, rewards are only awarded to targets not imaged before; imaging a target more than once
won’t provide additional rewards.

0 ct 1
Cloud Coverage (cp)

0
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i
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Binary Reward

0 ct 1
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Figure 1. Binary and Linear Reward Models as a function of cp for a given ct.

*https://avslab.github.io/bsk_rl/
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SOLUTION APPROACH

Simulation and Training Environment

The simulation model implemented in Basilisk for this paper accounts for a baseline power con-
sumption at all times and an additional power consumption to image targets (instrument consump-
tion). Additionally, maneuvering towards a target or sun to charge the battery requires using reaction
wheels to provide torques, impacting power consumption. The satellite will passively charge dur-
ing the simulation whenever the solar panels are facing the sun – and not in eclipse –, even when
performing another action. When taking charge actions, the spacecraft maneuvers to align the solar
panels’ faces with the sun to maximize energy generation. Additionally, when the satellite is tasked
with an imaging action, it is not guaranteed to succeed since the simulator will check if the imaging
angle and the relative angular rate are within the specified limits. An example script named Cloud
Environment is available at the BSK-RL GitHub repository*, which includes the simulation model,
satellite dynamics, target models, and linear reward function used in this work.

The simulation includes power as a constraint, so the battery level should not reach zero. There-
fore, the charge action is added as an option to the satellite. Although not considered here to focus
on the cloud coverage aspect of the problem, the simulation model can be expanded to include other
constraints such as memory and reaction wheels speed, and actions such as data downlink and re-
action wheels momentum management.8, 27 Also, the proposed framework focuses on one satellite,
but the approach can be extended to accommodate multiple satellites using the intent-sharing com-
munication method to create collaboration among agents, as discussed by Stephenson and Schaub
(2024).27

The solution approach is based on using DRL to obtain a policy to maximize cumulative rewards.
Then, the RLlib Ray Python package is used to obtain the policies. RLlib is a scalable reinforcement
learning library that provides a unified API for a variety of reinforcement learning algorithms. The
policy is trained using the Asynchronous Proximal Policy Optimization (APPO) algorithm, which
is a variant of the Proximal Policy Optimization (PPO).28 The training algorithm was deployed in
the University of Colorado Boulder Research Computing (CURC) using 32 cores.29

Five agents with different observation capabilities of cloud coverage were considered:

• CloudSat cf and σ: The agent can observe the cloud coverage forecast (cf ) and standard
deviation of the cloud coverage forecast (σ).

• CloudSat cf : The agent can observe the cloud coverage forecast (cf ).

• CloudSat σ: The agent can observe the standard deviation of the cloud coverage forecast (σ).

• CloudSat: The agent cannot observe cloud coverage information but is trained in an environ-
ment with clouds (reward function still considers the true cloud coverage).

• NormalSat: The agent cannot observe cloud coverage information and is trained in an envi-
ronment without clouds (all targets have zero cloud coverage).

These five agents were trained with the two different reward models and two cloud models, re-
sulting in 20 distinct training runs and policies.

*https://avslab.github.io/bsk_rl/examples/cloud_environment.html
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While the agent should learn to charge when required during training and prepare for eclipse
periods, the obtained policy can still lead to unsafe states and failures. For a long-term deployment,
the policy would be combined with shields to guarantee safety.30–32 However, shields can interfere
with the selected actions and the agents’ performance. Therefore, shielded neural networks are
not used during training or deployment to focus on the agent’s relative performance with different
observations and scenarios.

Targets and Cloud Model

The targets are uniformly distributed around the world, while the number of requests (number of
targets to be imaged) changed randomly during training, varying from 1,000 up to 10,000, which
impacts the target density. Although a point-and-shoot model is used, regions of interest can be
decomposed into points.5 Additionally, each target has an individual cloud coverage associated
with it.

The true cloud coverage of the targets was modeled using two different scenarios for training: one
where the cloud coverage is randomly assigned to the targets and another where the cloud coverage
is based on historical data. The historical cloud coverage data was obtained from the ERA5 dataset
from the total cloud coverage parameter, which contains hourly data on cloud coverage probability
since 1940.25 The dataset combines different measurement sources using an assimilation process
to have a global coverage with discretization of 15 minutes of latitude and longitude. The targets’
latitude and longitude were used to interpolate the cloud coverage from the dataset. Figure 2 shows
the cloud coverage extracted from the ERA5 dataset for the globe and the result of the interpolation
for the targets.

Figure 2. Comparison between cloud coverage from the ERA5 dataset from the year
2023 (top) and targets’ cloud coverage obtained interpolating the data (bottom).

A stochastic cloud model is desirable for training when compared to historical cloud data from
datasets since the latter requires more storage space and is limited in time. Therefore, the stochastic
cloud coverage scenario is approximated with a uniform distribution, with a mean similar to the
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Figure 3. Cloud coverage probability from ERA-5 data (blue) and using the stochastic
cloud coverage from Equation (3) (orange).

historical data. In this case, the cloud coverage probability is randomly assigned to the targets
following

cp = max (0,min (U(0, 2µ), 1)) (3)

such that the output of cloud coverage is clipped between 0 and 1. This stochastic model preserves
the mean cloud coverage of the data while generating more targets completely occluded by clouds
than free of clouds, similar to the distribution seen in the historical data. The approximation given
by Equation (3) aims at providing a simple and coarse representation of the cloud coverage scenario;
more complex models can be used instead if needed. A mean of µ = 0.674 was obtained consid-
ering three years of hourly data from the ERA5 dataset. Figure 3 compares the cloud coverage
probability from the ERA5 dataset and the stochastic cloud coverage scenario. A main difference
from the stochastic cloud coverage scenario is the lack of spatial correlation between the cloud
coverage probabilities of the targets.

Both stochastic cloud coverage and historical data were used to train the agents and are compared
in the results section. For training, hourly cloud data was randomly sampled from the years 2011 to
2022. All agents were tested with historical cloud data sampled from the ERA5 dataset from 2023.
In all scenarios, the cloud coverage was assumed to be constant during the training and testing
episodes (not time-varying).

The cloud coverage provided by cp represents the true cloud coverage of the target and is used
to calculate the reward, as seen in Equations (1) and (2); this information is never provided to the
agent. Instead, the agent uses the cloud coverage forecast, cf , when observed, to decide whether to
image the target or not. The cloud coverage forecast is obtained from the cloud coverage, cp, and
the standard deviation of the cloud coverage forecast, σ, using a Gaussian distribution given by

cf = max(0,min(N (cp, σ), 1)) (4)

where σ is also given by a uniform distribution U(0.01, 0.05) for each target. In this context, σ
represents confidence in the cloud coverage forecast. The range of σ was chosen to represent a
reasonable range of confidence in the forecast but can be adjusted to represent different scenarios.
As mentioned before, the proposed framework can be easily adapted to use cloud coverage forecasts
from other sources, such as neural networks or weather forecast tools.
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Table 2. Satellite Parameters

Altitude 500 km
Mass 330 kg
Inertia [121, 98, 82] kg m2

Battery capacity 160 W
Initial battery charge fraction [0.4, 0.6]
Instrument power draw 30 W
Relative angle limit for imaging 28◦

Relative angular rate limit for imaging 0.01 rad/s
ct for binary case 0.2
ct for linear case 0.7
Number of requests [1000, 10000]
σi [0.01, 0.05]
ρi [0, 1]

Table 3. Training Parameters

Number of workers 32
Number of raining steps 5 · 106
Learning rate 3 · 10−5

Training bath size 10, 000
Minibatch size 250
Number of SGD itera-
tions

50

Neural Network 2 layers with 512 neurons
each

Discount factor 1.0
Failure penalty 0

Satellite and training parameters

The satellite parameters used for the simulation are shown in Table 2 in addition to the initializa-
tion and targets’ parameters. Parameters not listed here, such as control gains, are set to the standard
values available in BSK-RL.

The training parameters for APPO were based on the work of Herrmann and Schaub (2023),10

which provides an in-depth analysis of hyperparameters selection for the imaging satellite case. The
parameters are shown in Table 3. All other parameters were set as the standard values in RLLib.
The training was terminated when a policy reached 5 · 106 training steps or 24 hours of wall clock
time. Further, when the satellite battery charge level reaches zero, the episode is terminated, but no
penalty is assigned to it.

After training, evaluating the neural network at each decision-making step takes about 10 mil-
liseconds in a MacBook with an M2 Pro chip and 16Gb of RAM, showing its potential for on-board
real-time decision-making.
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RESULTS

All 20 trained policies were tested in a similar environment. The test environments varied the
number of requests from 1,000 up to 10,000 (in increments of 1,000), with the true cloud coverage
being assigned based on randomly hourly data sampled from the year 2023 of the ERA5 dataset.
Each agent was tested on 100 three-orbit long runs for each number of targets, and the average
results are presented. The performance of each agent is analyzed based on the average reward
obtained over the 100 runs, the number of acquired images, and the cloud-free metric, which relates
the number of cloud-free images to the total number of images acquired by:

Cloud-free metrics =
Number of cloud-free images

Total number of images
(5)

In the following results, agents trained with historical cloud data differ from agents trained with
stochastic cloud data by the “data” suffix in the legends. Initially, the results for the binary reward
model (shown in Equation (1)) are presented. Then, the results for the linear reward model (shown
in Equation (2)) are discussed. An additional baseline case, NormalSat pre-filtered, was added
for comparison in the binary reward model. The NormalSat pre-filtered has the same policy as
the NormalSat, but only requests with a predicted cloud coverage of less than 0.2 are considered,
representing the ground station filtering the requests before sending them to the satellite.

Binary reward model.

Agents performance. The agents with five different observation capabilities were tested in the
cloud environment. The results for the CloudSat σ case were not included since the performance
was similar to the CloudSat case. Figure 4 presents the reward for each agent across the number
of requests (targets), in addition to the number of cloud-free and cloud-covered images and the
cloud-free ratio. The reward indicates that the agents that observe cf obtain better performance
than those that cannot observe it, which is expected since it is the main parameter associated with
cloud coverage. The agents that can observe σ in addition to cf perform comparable or slightly
better than cases that can observe only cf ; this result can be attributed to the fact that the standard
deviation of the cloud coverage forecast is not as relevant as cf in this scenario. Further, agents
that cannot observe cf nor σ show worse performance but are still superior to the NormalSat until
6,000 requests. When comparing agents trained with stochastic cloud data and historical data, the
performance is similar in terms of reward, but the cloud-free ratio is higher for agents trained with
historical data.

The agent with the worst performance in terms of reward is the NormalSat pre-filtered. This
agent has a cloud-free ratio close to 1, but the number of cloud-free images is significantly lower
than all other agents. This is due to the pre-filter applied by the ground station, which results in
fewer requests being available to the satellite. Moreover, requests are pre-filtered based on the
predicted cloud coverage, cf , but can have a higher or lower true cloud coverage. In the case of
NormalSat, requests with cf > 0.2 are available and, once imaged, can still result in rewards if
the true cloud coverage is less than 0.2 (which is the threshold considered for the binary reward
model). In the case of the NormalSat pre-filtered, besides targets with cf > 0.2 not being available,
requests with cf < 0.2 can still have a true cloud coverage, cp, higher than 0.2, resulting in cloud-
covered targets being imaged. A cf = 0.2 filter was used to compare with the threshold used in
the binary reward model, but other values can be used; tests were conducted with different values,
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Figure 4. Reward, cloud-free metrics, and number of cloud-free and cloud-covered
images across the number of requests for binary reward model.

and the results indicate that the performance increases with the threshold value until matching the
NormalSat performance.

The different approach used by each agent is seen in Figure 5. Agents with the ability to observe
the cloud coverage forecast prioritize targets with lower cf , which results in a higher probability
of getting rewards. The two agents that can observe cf and are trained with historical data tend
to select targets with the lowest cf among all cases (except NormalSat pre-filtered). In terms of
priority, agents without knowledge of cf select targets with higher priority, on average. This is
seen mainly in the case of the NormalSat and NormalSat pre-filtered, which select targets with a
priority of around 0.8 or higher. In combination with the information in Figure 4, it indicates that the
NormalSat tries to select targets with higher priority to maximize the reward in sacrifice of the total
number of imaged targets. In comparison, CloudSat and CloudSat data try to image more targets,
sacrificing priority.

In an environment where clouds can occlude targets and no information about them is observed,
maximizing the number of targets is more likely to provide better rewards. However, when the
number of requests increases, CloudSat and CloudSat data miss more targets since they do not
have time to settle and take the picture, as indicated in the missed metrics, leading to a worse
performance than the NormalSat. Missed metrics relate the total number of missed targets to the
total number of imaging attempts. NormalSat pre-filtered shows the lowest average cf due to the
pre-filtering applied by the ground station. Lastly, the σ parameter does not seem to impact the
agent’s performance significantly since the average value of selected targets’ σ is the same as the
average σ. This explains why the CloudSat σ agent performs similarly to the CloudSat agent.
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Figure 5. Information of agents’ selected targets and missed metrics across the num-
ber of requests for binary reward model.

Resources management. The reward metrics in Figure 4 indicate that the CloudSat and CloudSat
data perform similarly to the NormalSat. However, Figure 6 shows that the NormalSat has a lower
average battery level than all other agents. Hence, although performance is similar, agents trained
in a cloud environment show better resource management even without observing the information.
Part of these results can be explained by the NormalSat agent being more selective with the requests
being tasked (priority), resulting in longer imaging actions and less time for charging actions. Nor-
malSat pre-filtered shows similar battery levels to the NormalSat, indicating that the pre-filtering
didn’t improve its resource management. The resource management reflects the number of cases
where the agents completed the three-orbit long episodes without dying; the NormalSat pre-filtered
and NormalSat completed the three-orbit episodes in 86.2% and 95.9% of the cases, respectively,
compared to more than 99.3% for the other agents.

Figure 6 also shows the average number of actions taken by each agent during each three-orbit-
long episode and the ratio of imaging actions compared to total actions. CloudSat and CloudSat
data agents take more actions than the NormalSat and have a high ratio of imaging actions, which
is consistent with the higher number of imaged targets. CloudSat cf and σ and CloudSat cf have
the lowest ratio of imaging actions, indicating that they leave more time for charging actions. The
NormalSat pre-filtered has a lower number of actions than the NormalSat, which happens due to
fewer requests being available to the satellite due to the filter. While NormalSat shows an interme-
diate number of actions compared to other agents, most of its actions are imaging actions, which is
consistent with its worse resource management.
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Figure 6. Average battery level for each agent across the number of requests for
binary reward model.

Linear reward model.

Agents performance. Different from the binary reward model, the cases trained with a linear
reward model show less difference between agents that can and cannot observe cloud information
as seen in Figure 7; this occurs due to the partial credit assigned based on cloud coverage and also
the higher cloud threshold considered (0.7 in comparison to 0.2). Still, there is a more significant
difference between agents trained with stochastic and historical cloud data. Surprisingly, the agents
trained with historical data show worse performance in terms of reward; still, the cloud-free ratio is
higher. The superior performance of the CloudSat cf and σ and CloudSat cf can be attributed to the
agents’ number of cloud-free images. The higher cloud-free metrics obtained by all agents in the
linear reward model are explained by the fact that only targets with more than 0.7 cloud coverage
are considered to be covered by clouds when compared to the threshold of 0.2 in the binary reward
model.

Similar to the agents with binary reward model, Figure 8 shows that CloudSat cf and σ and
CloudSat cf agents select targets with lower target priorities and higher cloud coverage, on aver-
age, than CloudSat cf and σ data and CloudSat cf data agents when using the linear reward model.
Therefore, the agents trained with the stochastic cloud coverage are less selective with targets, al-
lowing them to take more images, which leads to higher rewards. On the other hand, agents trained
with data are more conservative. Results obtained for both the binary and linear reward models
indicate that training the agent with the stochastic cloud model results in comparable or better per-
formance in terms of rewards, which removes the need to store a large cloud dataset for training.
Moreover, training with stochastic clouds leads to less spatial correlation between targets and more
variability, which tends to be beneficial since it introduces the agent to more diverse scenarios.
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Figure 7. Reward, cloud-free metrics, and number of cloud-free and cloud-covered
images across the number of requests for linear reward model.
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Resources management. The average battery levels shown in Figure 9 indicate that the agent
trained in an environment with clouds but deployed in the environment without clouds (NormalSat)
still has the worst resource management. CloudSat cf and σ data and CloudSat cf data also show
a lower battery level than the agents trained with stochastic cloud coverage. Still, agents trained
with the stochastic cloud model show higher average battery levels. Similar to the binary reward
model, the NormalSat agent successfully completed the three-orbit episodes in 95.8% of the cases,
while other cases had a success rate of more than 99.5%. The total number of actions and the ratio
of imaging actions for the linear reward model are similar to the binary case and are omitted for
brevity.

Comparative analysis.

The histogram in Figure 10 shows the distribution of cloud coverage probabilities of the targets
imaged by the CloudSat cf and σ with binary and linear reward models, helping to understand
the different approaches used for each reward model. The agents with binary reward models tend
to select targets with lower cloud coverage, while the agents with linear reward models are less
selective with their targets. This behavior happens due to the difference in the threshold used for
rewards and the partial credit assigned in the linear reward model. Such comparative analysis can
be used to guide the selection of reward models and thresholds for the agent.
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Figure 10. Histogram of cloud coverage of selected targets by the CloudSat cf and σ
with binary and linear reward models.
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CONCLUSION

In this paper, the AEOS scheduling problem is formulated as a POMDP, and the use of DRL is
proposed to solve the problem under cloud coverage. The results show that the agent’s performance
improves when observing the cloud coverage forecast, while the effect of the standard deviation
did not show a significant impact. Interestingly, agents trained with stochastic cloud coverage show
comparable or better performance than agents trained with historical cloud data, removing the need
to store a large cloud dataset for training. Moreover, agents trained in an environment with clouds
but incapable of observing cloud information show better resource management than agents trained
in an environment without clouds; considering that clouds are unavoidable in the real world, agents
training should consider the occlusion of clouds, even if they cannot directly observe the informa-
tion.

Therefore, this study shows that the proposed DRL framework can be used to solve the AEOS
problem under cloud coverage, considering on-board decision-making. Additionally, it can be com-
bined with other approaches to provide cloud coverage forecast as input. Despite being focused on
cloud coverage, the proposed framework can be adapted to consider other weather conditions with
uncertainty affecting image quality, such as humidity.

Two distinct and commonly seen reward models were tested, showing similar results. In practice,
the selection of reward models should be based on the needs of the satellite operator and other
stakeholders. The results obtained in this study can be used to guide the selection of reward models
and observation capabilities for the agent.

Future work should address the potential for satellite operators to prefer different reward models
for different targets, such as a binary model and a linear model for another, each with a specific
cloud coverage threshold. Therefore, having a single policy capable of accounting for different
reward formats would be beneficial. Moreover, the proposed framework should be extended to
consider the time-varying condition of clouds and evaluate the impact of outdated cloud information
on the agent’s performance. Additionally, future studies should address more constraints, such
as storage capacity, and actions like downlink and reaction wheels momentum management, in
addition to investigating a multi-satellite system to share information and improve the overall system
performance.
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