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SPACECRAFT DYNAMICS CONTAINING MOTION PLATFORMS
WITH DYNAMIC SUB-COMPONENTS

Leah Kiner* and Hanspeter Schaub†

The ability to model, simulate, and analyze complex spacecraft designs is crucial
to verify mission requirements and ensure the long-term success of space mis-
sions. Previous work used the Backsubstitution Method to formulate the dynam-
ics for N chained translational or rotational components attached to a central rigid
hub. This work develops the new ability to simulate select branching of space-
craft components using the Backsubstitution Method, where ultimately N force or
torque-actuated sub-components can be directly attached to a hub-connected pre-
scribed motion platform. The dynamics for the general system consisting of a hub-
connected prescribed motion body with a single attached dynamic sub-component
are derived and implemented into the Backsubstitution Method for future integra-
tion into a spacecraft simulation software. The modularity of the derived equations
enables M of the described multi-body actuator components to be connected to the
central rigid hub.

INTRODUCTION

Spacecraft design concepts have seen a drastic evolution since the late 1950s. Advancements
in technology coupled with increasing ambition to explore the farthest edges of our solar system
have contributed to the swift progression from modest, single-bodied designs containing only exter-
nal radio transmission antennas to immense, multi-body structures with an abundance of actuated
components onboard. For example, deep space missions such as the Lucy mission to the Trojan
asteroids, the EMA mission to the main asteroid belt, and the Dart binary asteroid impact mission
have required solar array and thruster design advancements in order to meet mission power, momen-
tum storage, and thrust-vector alignment requirements. To meet power generation needs, the Lucy
and EMA mission designs feature a central spacecraft hub with two large symmetrically-attached
circular flexible-substrate solar arrays. These arrays articulate using stepper motors to track the
Sun and are the first of their kind to deploy using a motor-driven lanyard.1–3 Similarly, the Dart
spacecraft uses two articulated rectangular flexible-substrate arrays to track the Sun. The arrays
demonstrated a new roll-out technology method to deploy the large 8 meter long arrays.4 Further,
to meet thrust-vector alignment requirements for deep space missions such as EMA,5 Deep Space
1,6 Dawn,7 and Psyche,8 spacecraft ionic thruster designs have advanced from hub-fixed configu-
rations to dual-axis gimballed configurations.5, 9–11 Moreover, the interest to establish the presence
of humans in space drove advancements in space orbiters such as the Space Shuttle and the ISS,
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where multi-link robotic arms such as the Canadarm12–14 were developed to aid in complex orbital
servicing and docking operations.

There are an abundance of existing methods that could be chosen to derive the dynamics of
these complex multi-body systems. Although commercial software packages such as COMSOL,15

Adams,16 and MathWork’s Simscape Multibody17 are available to compute and provide the equa-
tions of motion for intricate multi-body systems, it is especially important to choose a method that
is both general and computationally efficient so that a wide range of spacecraft configurations can
be modeled and simulated rapidly in software. These software packages are unable to provide gen-
eralized dynamics formulations. Using Newtonian and Eularian mechanics, this work leverages the
Backsubstitution Method18–20 to generally and modularly develop the spacecraft system equations
of motion so that they may be readily implemented into a spacecraft simulation software. Relying
on a hub-centric spacecraft design, this method achieves greater computational efficiency compared
to other software tools by analytically back-solving all component coupling to the central rigid hub
in order to avoid inversion of the entire system mass matrix.

The Backsubstitution Method has been demonstrated for a wide variety of hub-centric space-
craft configurations including single and N -hinged solar panels,21, 22 reaction wheels,23 control
moment gyroscopes,24 chained rotational bodies,25, 26 chained translational bodies,27 and general
prescribed motion components.3, 11, 28, 29 While these formulations are useful to simulate chains of
hub-connected spacecraft components such as robotic arms, they are limited in that no formulations
have enabled branching of elements relative to the hub base. Although previous work by Kiner et
al. formulated the dynamics to simulate N prescribed motion bodies that are not required to be
directly connected to the rigid spacecraft hub,3, 29 the developed dynamics formulation requires the
hub-relative states of all components to be known. Thus, even these prescribed motion effectors are
not providing branching but hub-relative descriptions.

Figure 1. Prescribed solar array boom (green) with connected dynamic sub-components (blue).

This paper builds upon prior work in multi-body prescribed motion dynamics and expands the
existing simulation space to capture hub-relative prescribed spacecraft components with branching
behavior relative to the prescribed motion component. This will allow attached sub-components
to dynamically move subject to the fully coupled system equations of motion. The Backsubstitu-
tion formulation enables a general, extendable implementation of this branching without having to
re-derive the full equations of motion for each spacecraft configuration. Such a formulation will
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be useful to simulate actuated spacecraft components with flexible components such as the large
deploying solar arrays of the ISS, Lucy, or DART. An example of this type of multi-body actuator
is illustrated in Fig. (1), where individual flexing solar panels are attached to an articulated truss
modeled as a rigid hub-relative prescribed motion component.

The organization of this paper is as follows. The following section provides an overview of the
general spacecraft design of interest and presents the required frame definitions and parameters used
for the dynamics derivation. Next, the spacecraft system translational and rotational dynamics are
derived in the third section, followed by derivation of the sub-component equations of motion in the
fourth section. The sub-component equations are then decoupled so that they may be readily substi-
tuted back into the system equations of motion. The fifth section organizes the full system equations
of motion into the Backsubstitution Method18–20 to facilitate a modular software implementation.
The concluding remarks are offered in the final section of this paper.

PROBLEM STATEMENT

This work develops the equations of motion for a spacecraft system consisting of a rigid hub
(gray) with an attached multi-body actuator component suitable for implementation with the Back-
substitution Method. The actuator component consists of a single hub-connected prescribed motion
platform (green) that contains an attached dynamic sub-component (blue). The equations are de-
rived with complete generality so that a wide variety of spacecraft concepts can be modeled and
simulated using an identical derivation. The prescribed motion body actuates relative to the space-
craft hub, while the second-order states of the dynamic sub-component can be derived relative to
the prescribed motion component. The modularity of the derived formulation ultimately enables N
sub-components to be connected to the prescribed motion component and M of the described multi-
body actuator components to be attached to the central spacecraft hub. The spacecraft geometry of
interest for this derivation is illustrated in Fig. (2). Although only one dynamic sub-component is
shown, the formulation can be similarly derived assuming N sub-components are connected gener-
ally to the prescribed motion platform.

There are five coordinate frames required for the system dynamics derivation. The dynamics are
developed with respect to an inertial reference frame indicated by N : {N, n̂1, n̂2, n̂3}. The hub
body frame B : {B, b̂1, b̂2, b̂3} describes the motion of the rigid spacecraft hub. The origin of this
frame is located at a hub-fixed point B. The point Bc is defined as the center of mass of the hub,
which is also body-fixed as a result of the rigid body assumption. Note that although points B
and Bc are often assumed to coincide for a simpler dynamics formulation, they are kept as distinct
locations in order to improve the ease of technical exchanges between different spacecraft mission
teams. For example, a structures frame is often defined by the structural engineering team that is
used to define the location of all the spacecraft components relative to a single fixed location on the
spacecraft hub.

Next, the prescribed motion component body frame is designated by P : {P, p̂1, p̂2, p̂3}. This
frame describes the motion of the prescribed body attached to the hub through the hub-fixed mount
interface indicated by the frame M : {M, m̂1, m̂2, m̂3}. The origin of the prescribed motion body
is located at the point P that is fixed to the prescribed body. The point Pc denotes the center of
mass of the prescribed body. The mount frame is fixed with respect to the hub at the point M and is
introduced as a matter of kinematic convenience. The prescribed body motion is profiled relative to
this body-fixed frame to simplify the associated kinematic description.
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sub-component

Figure 2. Spacecraft geometry, variables, and coordinate frames of interest.

Next, the dynamic sub-component frame is denoted S : {S, ŝ1, ŝ2, ŝ3}, where the point S indi-
cates the origin of the sub-component body frame and the point Sc is the center of mass point of the
sub-component. Further, the vector c designates the center of mass location C of the entire space-
craft system relative to the hub frame origin point B. Note that for a completely general equation
of motion formulation, the points B,Bc,M, P, Pc, S, Sc and C are assumed to be not necessarily
coincident.

The translational and rotational states of the prescribed motion body with respect to the spacecraft
hub are assumed to be known and therefore prescribed in this derivation. These prescribed states
are provided in Table (1). The left super-script indicates the frame of reference the parameters
are expressed in, while the right v

′
superscript indicates a hub B frame relative time derivative.

The attitude coordinates chosen to express the relative orientations between reference frames are
Modified Rodriguez Parameters.30 Because all bodies in this derivation are rigid, the center of mass
locations of each body relative to the origin of each body’s respective frame are constant. As a result
of the hub-fixed orientation of the mount frame, the mount frame location and attitude relative to
the hub frame are constant and its angular rates are zero.

EQUATIONS OF MOTION DERIVATION

This section uses Newtonian and Eulerian mechanics to derive the spacecraft hub translational
and rotational equations of motion. The hub dynamics are derived rather than the system center
of mass dynamics in order to leverage the Backsubstitution Method18–20 for future software imple-
mentation and verification of the derived dynamics.
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Table 1. Prescribed motion component profiled states and fixed derivation parameters.

Prescribed Motion Component States Fixed Parameters

rP/M
BrBc/B

r′

P/M
PrPc/P

r′′

P/M
SrSc/S

σP/M
BrM/B

ωP/M σM/B
ω

′

P/M
MωM/B
Mω

′

M/B

The Backsubstitution Method relies on a hub-centric spacecraft design configuration, where all
dynamical components are attached to a central rigid body hub. This method has been shown to
solve critical issues of software maintainability, scalability, and testability, while also achieving
computational efficiency compared to other software tools. Further, this method eliminates the
need to invert an entire system mass matrix that scales with the cube of the number of system
states. Instead, the component-hub coupling is back-solved using only 3×3 matrix inversions. This
drastically reduces the computational overhead to simulate complex spacecraft systems.

The dynamics of complex dynamical systems are often derived in the form [M ]Ẋ = f(X, t),
where [M ] is the system mass matrix, X is the system state vector, Ẋ is the time derivative of the
state vector, and f(X, t) is a function of the state vector and time. Instead, the Backsubstitution
Method uses the following hub-centric form to modularize the equation of motion development:[

[A] [B]
[C] [D]

] [
r̈B/N

ω̇B/N

]
=

[
vtrans
vrot

]
(1)

The hub second-order inertial translational acceleration r̈B/N and inertial rotational angular velocity
ω̇B/N states are separated from the other terms and are brought to the left-hand side of the expres-
sion. The translational and rotational equation terms coupled with the hub inertial translational
acceleration are contained in the 3 × 3 [A] and [C] elements, respectively; while the translational
and rotational terms coupled with the hub inertial angular acceleration are incorporated in the 3 ×
3 [B] and [D] elements, respectively.

Translational Equations of Motion

Derivation of the spacecraft hub translational equations of motion begins by applying Newton’s
second law30 to the spacecraft system center of mass point C:

mscr̈C/N = Fext (2)

where msc is the total mass of the spacecraft system, rC/N is the position vector of the system center
of mass point relative to the inertial frame origin point N , and Fext is the sum of all external forces
acting on the system. The notation used for an inertial time derivative of a vector v is denoted by v̇
in this derivation.
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Note that the acceleration of the hub frame origin point B must be defined in order to derive the
hub translational equations of motion. Accordingly, the inertial acceleration of the spacecraft hub
point B can be expressed as:

r̈B/N = r̈C/N − c̈ (3)

where c is the vector rC/B that describes the location of the system center of mass point relative to
the hub frame origin point. In order to find the inertial acceleration of the center of mass vector c̈,
first the transport theorem30 is used to define the center of mass inertial velocity:

ċ = c
′
+ ωB/N × c (4)

The notation used for a hub (body) frame time derivative of a vector v is designated by v
′

in this
derivation. Next, taking the inertial time derivative of Eq. (4) gives the inertial acceleration of the
center of mass vector:

c̈ = ċ
′
+ ωB/N × ċ (5)

The hub-relative time derivative of Eq. (4) must be evaluated in order to define the ċ
′

term seen in
Eq. (5):

ċ
′
= c

′′
+
(
ω̇B/N × c

)
+
(
ωB/N × c

′
)

(6)

Incorporating Eqs. (4) and (6) into Eq. (5) yields the expanded form:

c̈ = c
′′
+ 2[ω̃B/N ]c

′
+ [ ˙̃ωB/N ]c+ [ω̃B/N ]2c (7)

Note that this derivation uses two notations for the cross-product operator: v × w = [ṽ]w where
v × w is the vector cross product and [ṽ]w is the vector cross product expressed in matrix form
where [ṽ] is a 3 × 3 skew-symmetric matrix and the components of v and w are expressed in the
same frame.30 Viewing Eq. (7), it is evident that both the hub-relative velocity c

′
and acceleration

c
′′

of the center of mass vector must be found in order to determine the inertial acceleration.

First, the center of mass vector is expressed using the mass contributions from the hub, prescribed
motion body, and the sub-component:

c =
mhubrBc/B +mPrPc/B +mSrSc/B

msc
(8)

where
msc = mhub +mP +mS (9)

Next, the hub-relative velocity of the center of mass vector can be found:

c
′
=

mhubr
′

Bc/B
+mPr

′

Pc/B
+mSr

′

Sc/B

msc
(10)

Using the rigid body assumption for the hub, Eq. (10) simplifies to

c
′
=

mPr
′

Pc/B
+mSr

′

Sc/B

msc
(11)

where
r

′

Pc/B
= r

′

Pc/P
+ r

′

P/M + r
′

M/B (12)
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and

r
′

Sc/B
= r

′

Sc/P
+ r

′

P/M + r
′

M/B (13)

Recall that point M is considered hub-fixed in this work; therefore r
′

M/B = 0. Using the rigid body
assumption and the transport theorem to simplify Eqs. (12) and (13) yields:

r
′

Pc/B
= r

′

Pc/M
= [ω̃P/M]rPc/P + r

′

P/M (14)

and

r
′

Sc/B
= r

′

Sc/M
=

Pd
dt

rSc/P + [ω̃P/M]rSc/P + r
′

P/M (15)

Next, the hub-relative acceleration of the center of mass vector is found by taking the B frame
time derivative of Eq. (11):

c
′′
=

mPr
′′

Pc/M
+mSr

′′

Sc/M

msc
(16)

The product rule is applied to Eq. (14) to solve for r
′′

Pc/M
:

r
′′

Pc/M
=
(
[ω̃

′

P/M] + [ω̃P/M]2
)
rPc/P + r

′′

P/M (17)

Similarly, solving for r
′′

Sc/M
:

r
′′

Sc/M
=

Pd2

dt2
rSc/P + 2[ω̃P/M]

Pd
dt

rSc/P +
(
[ω̃

′

P/M] + [ω̃P/M]2
)
rSc/P + r

′′

P/M (18)

Now that the inertial acceleration of the center of mass vector is known, Eq. (3) can now be
expressed using Eq. (7):

r̈B/N = r̈C/N − c
′′ − 2[ω̃B/N ]c

′ − [ ˙̃ωB/N ]c− [ω̃B/N ]2c (19)

The hub translational equations of motion are obtained by substituting Eq. (19) into Eq. (2):

msc

(
r̈B/N + c

′′
+ 2[ω̃B/N ]c

′
+ [ ˙̃ωB/N ]c+ [ω̃B/N ]2c

)
= Fext (20)

Incorporating Eq. (16) into Eq. (20) and bringing the second-order hub state variables to the left-
hand side results in a system mass matrix-type form ideal for software implementation:

mscr̈B/N +msc[ ˙̃ωB/N ]c = Fext − 2msc[ω̃B/N ]c
′ −msc[ω̃B/N ]2c−mPr

′′

Pc/M
−mSr

′′

Sc/M
(21)

Equation (21) gives the translational equations of motion for the spacecraft hub point B with re-
spect to the inertial frame. This general, frame-independent vector equation enables flexible analysis
of a broad range of spacecraft mission design configurations.
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Rotational Equations of Motion

Next, the hub rotational equations of motion are derived. Separating the kinematic and kinetic
differential equations enables convenient use of the angular velocity vector ωB/N in the kinetic rota-
tional equations of motion while not limiting the choice of attitude coordinates used to describe the
kinematic orientation of the hub. The hub kinetic rotational equations of motion are derived start-
ing from Euler’s equation applied to the case where the spacecraft angular momentum is expressed
about the hub-fixed point B not coincident with the system center of mass:30

Ḣsc,B = LB +msc(r̈B/N × c) (22)

where Hsc,B is the inertial angular momentum of the spacecraft system about point B and LB is
the total external torque acting on the system about point B.

First, the system inertial angular momentum about point B must be defined:

Hsc,B = Hhub,B +HP,B +HS,B (23)

The general definition of the hub angular momentum about point B is:

Hhub,B = Hhub,Bc +mhub(rBc/B × ṙBc/B) (24)

The hub inertial angular momentum about its center of mass point Bc is:

Hhub,Bc = [Ihub,Bc ]ωB/N (25)

where [Ihub,Bc ] is the moment of inertia of the hub about its center of mass point. Because the hub
is considered rigid in this derivation, Eq. (24) simplifies to the compact form:

Hhub,B = [Ihub,B]ωB/N (26)

where
[Ihub,B] = [Ihub,Bc ]−mhub[r̃Bc/B]

2 (27)

Next, the angular momentum of the prescribed motion body about point B is:

HP,B = HP,Pc +mP(rPc/B × ṙPc/B) (28)

where
ṙPc/B = r

′

Pc/M
+ [ω̃B/N ]rPc/B (29)

The inertial angular momentum of the prescribed body about its center of mass point Pc is:

HP,Pc = [IP,Pc ]ωP/N (30)

Rewriting Eq. (28) using Eqs. (29) and (30) yields:

HP,B = [IP,B]ωB/N + [IP,Pc ]ωP/M +mP[r̃Pc/B]r
′

Pc/M
(31)

Next, the angular momentum of the dynamic sub-component about point B is found:

HS,B = HS,Sc +mS(rSc/B × ṙSc/B) (32)
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where
ṙSc/B = r

′

Sc/M
+ [ω̃B/N ]rSc/B (33)

The inertial angular momentum of the sub-component about its center of mass point Sc is:

HS,Sc = [IS,Sc ]ωS/N (34)

Rewriting Eq. (32) using Eqs. (33) and (34) yields:

HS,B = [IS,B]ωB/N + [IS,Sc ]ωS/M +mS[r̃Sc/B]r
′

Sc/M
(35)

The total spacecraft inertial angular momentum expressed in Eq. (23) can now be rewritten by
combining Eqs. (26), (31), and (35):

Hsc,B =([Ihub,B] + [IP,B] + [IS,B])ωB/N

+ [IP,Pc ]ωP/M +mP[r̃Pc/B]r
′

Pc/M

+ [IS,Sc ]ωS/M +mS[r̃Sc/B]r
′

Sc/M
(36)

To simplify Eq. (36), first the inertias of the rigid bodies about point B can be combined to yield
the total spacecraft inertia about point B:

[Isc,B] = [Ihub,B] + [IP,B] + [IS,B] (37)

Equation (36) becomes:

Hsc,B = [Isc,B]ωB/N + [IP,Pc ]ωP/M +mP[r̃Pc/B]r
′

Pc/M

+[IS,Sc ]ωS/M +mS[r̃Sc/B]r
′

Sc/M
(38)

The final task to develop the hub rotational equations of motion is to take the inertial time deriva-
tive of the system angular momentum about point B using the transport theorem:

Ḣsc,B = H
′
sc,B + [ω̃B/N ]Hsc,B (39)

First, the hub B frame time derivative of Eq. (38) is given by:

H
′
sc,B = [I

′
sc,B]ωB/N + [Isc,B]ω̇B/N +

(
[I

′
P,Pc

]ωP/M + [IP,Pc ]ω
′

P/M +mP[r̃Pc/B]r
′′

Pc/M

)
+
(
[I

′
S,Sc

]ωS/M + [IS,Sc ]ω
′

S/M +mS[r̃Sc/B]r
′′

Sc/M

)
(40)

Using the inertia tensor transport theorem31 to solve for the prescribed body and sub-component
inertia derivatives using the rigid body assumption gives:

[I
′
P,Pc

] = [ω̃P/M][IP,Pc ]− [IP,Pc ][ω̃P/M] (41)

[I
′
S,Sc

] = [ω̃S/M][IS,Sc ]− [IS,Sc ][ω̃S/M] (42)

Solving for [I
′
sc,B] using the rigid body assumption for the hub yields:

[I
′
sc,B] = [I

′
P,B] + [I

′
S,B] (43)
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where using the parallel axis theorem gives the inertia of the prescribed motion body and the sub-
component about point B:

[IP,B] = [IP,Pc ] +mP[r̃Pc/B][r̃Pc/B]
T (44)

[IS,B] = [IS,Sc ] +mS[r̃Sc/B][r̃Sc/B]
T (45)

The B frame time derivatives of Eqs. (44) and (45) using the chain rule are given by:

[I
′
P,B] = [I

′
P,Pc

] +mP

(
[r̃

′

Pc/M
][r̃Pc/B]

T + [r̃Pc/B][r̃
′

Pc/M
]T
)

(46)

[I
′
S,B] = [I

′
S,Sc

] +mS

(
[r̃

′

Sc/M
][r̃Sc/B]

T + [r̃Sc/B][r̃
′

Sc/M
]T
)

(47)

Incorporating the above results yields the full expression for [I
′
sc,B]

[I
′
sc,B] = [ω̃P/M][IP,Pc ]− [IP,Pc ][ω̃P/M] +mP

(
[r̃

′

Pc/M
][r̃Pc/B]

T + [r̃Pc/B][r̃
′

Pc/M
]T
)

[ω̃S/M][IS,Sc ]− [IS,Sc ][ω̃S/M] +mS

(
[r̃

′

Sc/M
][r̃Sc/B]

T + [r̃Sc/B][r̃
′

Sc/M
]T
)

(48)

Next, evaluating the transport term in Eq. (39) gives the result:

[ω̃B/N ]Hsc,B = [ω̃B/N ][Isc,B]ωB/N

+ [ω̃B/N ][IP,Pc ]ωP/M +mP[ω̃B/N ][r̃Pc/B]r
′

Pc/M

+ [ω̃B/N ][IS,Sc ]ωS/M +mS[ω̃B/N ][r̃Sc/B]r
′

Sc/M
(49)

Substituting Eqs. (40) and (49) into Eq. (39) and equating the result with Eq. (22) gives the
following intermediate result for the hub rotational equations of motion:

[I
′
sc,B]ωB/N + [Isc,B]ω̇B/N + [I

′
P,Pc

]ωP/M + [IP,Pc ]ω
′

P/M +mP[r̃Pc/B]r
′′

Pc/M

+ [I
′
S,Sc

]ωS/M + [IS,Sc ]ω
′

S/M +mS[r̃Sc/B]r
′′

Sc/M

+ [ω̃B/N ][Isc,B]ωB/N

+ [ω̃B/N ][IP,Pc ]ωP/M +mP[ω̃B/N ][r̃Pc/B]r
′

Pc/M

+ [ω̃B/N ][IS,Sc ]ωS/M +mS[ω̃B/N ][r̃Sc/B]r
′

Sc/M

= LB −msc[c̃]r̈B/N (50)

Bringing the hub second-order states to the left-hand side and grouping similar terms yields the final
form of the hub rotational equations of motion:

msc[c̃]r̈B/N + [Isc,B]ω̇B/N = LB −
(
[I

′
sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

−
(
[I

′
P,Pc

] + [ω̃B/N ][IP,Pc ]
)
ωP/M

−
(
[I

′
S,Sc

] + [ω̃B/N ][IS,Sc ]
)
ωS/M

−mP[r̃Pc/B]r
′′

Pc/M
−mS[r̃Sc/B]r

′′

Sc/M

− [IP,Pc ]ω
′

P/M − [IS,Sc ]ω
′

S/M

− [ω̃B/N ]
(
mP[r̃Pc/B]r

′

Pc/M
+mS[r̃Sc/B]r

′

Sc/M

)
(51)
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Indeed, the rotational equations of motion confirm the aforementioned dynamic coupling be-
tween the spacecraft system components. The rotational dynamics of the hub are clearly influenced
by both the translational and rotational states of the sub-components, as seen on the right-hand side
of the expression. Note that because the prescribed motion body’s hub-relative states are completely
prescribed, no differential equations need to be integrated for these components. The hub-relative
prescribed states rP/M , r

′

P/M , r
′′

P/M ,ωP/M,ω
′

P/M and σP/M are assumed to be known and ac-
cordingly kinematically profiled at each instant in time during all phases of the simulated spacecraft
motion. Therefore, there are 12 coupled kinetic differential equations needed to fully define the hub
motion.

SUB-COMPONENT EQUATIONS OF MOTION

Sub-Component Translational Equations of Motion

The sub-component translational equations of motion are derived starting with Newton’s second
law applied to the sub-component’s center of mass point Sc:

mSr̈Sc/N = Fext (52)

where the sub-component inertial translational acceleration can be written as:

r̈Sc/N = r̈Sc/P + r̈P/N (53)

The first inertial time derivative of rSc/P can be written using the transport theorem with the pre-
scribed motion body frame P:

ṙSc/P =
Pd
dt

rSc/P + [ω̃P/N ]rSc/P (54)

Similarly, the second inertial time derivative is:

r̈Sc/P =

Pd2

dt2
rSc/P + 2[ω̃P/N ]

Pd
dt

rSc/P − [r̃Sc/P ]ω̇P/N + [ω̃P/N ]2rSc/P (55)

Substituting Eq. (55) into Eq. (53) followed by substitution of the result into Eq. (52) gives the
translational equation of motion for the sub-component:

mS

(Pd2

dt2
rSc/P + 2[ω̃P/N ]

Pd
dt

rSc/P − [r̃Sc/P ]ω̇P/N + [ω̃P/N ]2rSc/P + r̈P/N

)
= Fext (56)

Re-arranging Eq. (56) by bringing the sub-component’s second-order states to the left-hand side
gives the final form of the sub-component translational equations of motion:

mS

Pd2

dt2
rSc/P =−mSr̈P/N +mS[r̃Sc/P ]ω̇P/N

+ Fext − 2mS[ω̃P/N ]
Pd
dt

rSc/P −mS[ω̃P/N ]2rSc/P (57)
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Sub-Component Rotational Equations of Motion

Next, the sub-component rotational equations of motion are developed. Because the sub-component
is a rigid body, the angular momentum of the sub-component about its body-frame origin point S is
given by:

HS,S = [IS,S ]ωS/N (58)

Equation (58) can be written by introducing the prescribed motion body frame P as:

HS,S = [IS,S ]ωS/P + [IS,S ]ωP/N (59)

Next, taking the inertial time derivative of Eq. (59) using the transport theorem with the prescribed
motion body frame yields:

ḢS,S =
Pd
dt

HS,S + [ω̃P/N ]HS,S (60)

The P frame time derivative of Eq. (59) is:
Pd
dt

HS,S =
Pd
dt

[IS,S ]ωS/N + [IS,S ]
Pd
dt

ωS/P + [IS,S ]ω̇P/N (61)

Equation (60) becomes:

ḢS,S =
Pd
dt

[IS,S ]ωS/N + [IS,S ]
Pd
dt

ωS/P + [IS,S ]ω̇P/N + [ω̃P/N ][IS,S ]ωS/N (62)

To further develop the sub-component’s rotational equations of motion, Euler’s equation is next
applied about point S:

ḢS,S = LS −mS(rSc/S × r̈S/N ) (63)

Equation (63) can be expanded as:

ḢS,S = LS −mS[r̃Sc/S ]
(
r̈S/Sc

+ r̈Sc/P + r̈P/N

)
(64)

where
ṙS/Sc

= [ω̃S/N ]rS/Sc
(65)

and similarly
r̈S/Sc

= [ ˙̃ωS/N ]rS/Sc
+ [ω̃S/N ]2rS/Sc

(66)

The inertial time derivative of ωS/N is given by:

ω̇S/N = ω̇S/P + ω̇P/N =
Pd
dt

ωS/P + [ω̃P/N ]ωS/P + ω̇P/N (67)

Rewriting Eq. (66) using Eq. (67) yields the result:

r̈S/Sc
=

(Pd
dt

ωS/P + [ω̃P/N ]ωS/P + ω̇P/N

)
× rS/Sc

+ [ω̃S/N ]2rS/Sc
(68)

Equation (64) can now be re-written using the results from Eq. (55) and (68):

ḢS,S = LS −mS[r̃Sc/S ]

{(Pd
dt

ωS/P + [ω̃P/N ]ωS/P + ω̇P/N

)
× rS/Sc

+ [ω̃S/N ]2rS/Sc

+

Pd2

dt2
rSc/P + 2[ω̃P/N ]

Pd
dt

rSc/P − [r̃Sc/P ]ω̇P/N + [ω̃P/N ]2rSc/P + r̈P/N

}
(69)
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Finally, substitution of Eq. (62) into the left-hand side of Eq. (69) with some re-arranging of terms
gives the rotational equations of motion for the sub-component:

Pd
dt

[IS,S ]ωS/N + [IS,S ]
Pd
dt

ωS/P + [IS,S ]ω̇P/N + [ω̃P/N ][IS,S ]ωS/N = LS

−mS[r̃Sc/S ]

{
[r̃Sc/S ]

(Pd
dt

ωS/P + [ω̃P/N ]ωS/P + ω̇P/N

)
− [ω̃S/N ]2rSc/S

+

Pd2

dt2
rSc/P + 2[ω̃P/N ]

Pd
dt

rSc/P − [r̃Sc/P ]ω̇P/N + [ω̃P/N ]2rSc/P + r̈P/N

}
(70)

Bringing the sub-component’s second-order states to the left-hand side of Eq. (70) results in the
system mass-matrix form of the sub-component rotational equations of motion:

mS[r̃Sc/S ]

Pd2

dt2
rSc/P + [IS,Sc ]

Pd
dt

ωS/P =−mS[r̃Sc/S ]r̈P/N

−
(
[IS,Sc ]−mS[r̃Sc/S ][r̃Sc/P ]

)
ω̇P/N

+LS − 2mS[r̃Sc/S ][ω̃P/N ]
Pd
dt

rSc/P

−
(Pd

dt
[IS,S ] + [ω̃P/N ][IS,S ]

)
ωS/N

−mS[r̃Sc/S ]
2[ω̃P/N ]ωS/P

+mS[r̃Sc/S ]
(
[ω̃S/N ]2rSc/S − [ω̃P/N ]2rSc/P

)
(71)

Decoupling The Sub-Component Equations of Motion

Next, the sub-component equations of motion must be decoupled in order to incorporate the sub-
component’s second-order states into the system equations of motion. This approach eliminates
the explicit dependency on the sub-component equations of motion from the system equations of
motion.

First, the sub-component equations of motion presented in Eqs. (57) and (71) are written in the
coupled system-mass matrix form given by:

[M6×6]

[Pd2
dt2 rSc/P
Pd
dtωS/P

]
= [N∗

6×3]r̈P/N + [P ∗
6×3]ω̇P/N + [Q∗

6×1] (72)

where

[M6×6] =

[
mS[I3×3] [03×3]
mS[r̃Sc/S ] [IS,Sc ]

]
(73)

[N∗
6×3] =

[−mS[I3×3]
−mS[r̃Sc/S ]

]
(74)

[P ∗
6×3] =

[
mS[r̃Sc/P ]

−
(
[IS,Sc ]−mS[r̃Sc/S ][r̃Sc/P ]

)] (75)

13



[Q∗
6×1] =



Fext − 2mS[ω̃P/N ]
Pd
dt rSc/P −mS[ω̃P/N ]2rSc/P

LS − 2mS[r̃Sc/S ][ω̃P/N ]
Pd
dt rSc/P

−
(

Pd
dt [IS,S ] + [ω̃P/N ][IS,S ]

)
ωS/N

−mS[r̃Sc/S ]
2[ω̃P/N ]ωS/P

+mS[r̃Sc/S ]
(
[ω̃S/N ]2rSc/S − [ω̃P/N ]2rSc/P

)


(76)

Inverting the mass matrix to solve for the sub-component second-order states yields the result:[Pd2
dt2 rSc/P
Pd
dtωS/P

]
= [N ]r̈P/N + [P ]ω̇P/N + [Q] (77)

where
[N ] = [M ]−1[N∗] (78)

[P ] = [M ]−1[P ∗] (79)

[Q] = [M ]−1[Q∗] (80)

The sub-component second-order states are therefore given by:
Pd2

dt2
rSc/P = [N1]r̈P/N + [P1]ω̇P/N + [Q1] (81)

Pd
dt

ωS/P = [N2]r̈P/N + [P2]ω̇P/N + [Q2] (82)

Next, Eqs. (81) and (82) must be written in terms of the hub second-order states:
Pd2

dt2
rSc/P = [N1]r̈B/N + [P1]ω̇B/N + [N1]r̈P/B + [P1]ω̇P/M + [Q1] (83)

Pd
dt

ωS/P = [N2]r̈B/N + [P2]ω̇B/N + [N2]r̈P/B + [P2]ω̇P/M + [Q2] (84)

where
r̈P/B = r

′′

P/M + 2[ω̃B/N ]r
′

P/M + [r̃P/B]ω̇B/N + [ω̃B/N ]2rP/B (85)

ω̇P/M = ω
′

P/M + [ω̃B/N ]ωP/M (86)

Finally, substituting Eqs. (85) and (86) into Eqs. (83) and (84) gives the desired form of the
sub-component second-order states to be substituted into the system equations of motion:

Pd2

dt2
rSc/P = [N1]r̈B/N +

(
[P1] + [N1][r̃P/B]

)
ω̇B/N

+ [N1]
(
r

′′

P/M + 2[ω̃B/N ]r
′

P/M + [ω̃B/N ]2rP/B

)
+ [P1]

(
ω

′

P/M + [ω̃B/N ]ωP/M

)
+ [Q1] (87)

Pd
dt

ωS/P = [N2]r̈B/N +
(
[P2] + [N2][r̃P/B]

)
ω̇B/N

+ [N2]
(
r

′′

P/M + 2[ω̃B/N ]r
′

P/M + [ω̃B/N ]2rP/B

)
+ [P2]

(
ω

′

P/M + [ω̃B/N ]ωP/M

)
+ [Q2] (88)
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BACKSUBSTITUTION METHOD IMPLEMENTATION

Finally, the system equations of motion can be written in the Backsubstitution formulation form
given by: [

[A] [B]
[C] [D]

] [
r̈B/N

ω̇B/N

]
=

[
vtrans
vrot

]
(89)

First, however, note that the r
′′

Sc/M
and ω

′

S/M terms seen in Eqs. (21) and (51) must be expanded
in order to incorporate Eqs. (87) and (88) into the system equations of motion. Using the transport
theorem, r

′′

Sc/M
is determined in Eq. (18) and ω

′

S/M is given by:

ω
′

S/M =
Pd
dt

ωS/P + [ω̃P/M]ωS/P + ω
′

P/M (90)

Rewriting Eqs. (18) and (90) using Eqs. (87) and (88) yields:

r
′′

Sc/M
= [N1]r̈B/N +

(
[P1] + [N1][r̃P/B]

)
ω̇B/N

+ [N1]
(
r

′′

P/M + 2[ω̃B/N ]r
′

P/M + [ω̃B/N ]2rP/B

)
+ [P1]

(
ω

′

P/M + [ω̃B/N ]ωP/M

)
+ [Q1]

+ 2[ω̃P/M]
Pd
dt

rSc/P +
(
[ω̃

′

P/M] + [ω̃P/M]2
)
rSc/P + r

′′

P/M (91)

ω
′

S/M = [N2]r̈B/N +
(
[P2] + [N2][r̃P/B]

)
ω̇B/N

+ [N2]
(
r

′′

P/M + 2[ω̃B/N ]r
′

P/M + [ω̃B/N ]2rP/B

)
+ [P2]

(
ω

′

P/M + [ω̃B/N ]ωP/M

)
+ [Q2]

+ [ω̃P/M]ωS/P + ω
′

P/M (92)

Combining similar terms in the above expressions gives the following results:

r
′′

Sc/M
= [N1]r̈B/N +

(
[P1] + [N1][r̃P/B]

)
ω̇B/N

+ ([N1] + [I3×3]) r
′′

P/M

+
(
[P1]− [r̃Sc/P ]

)
ω

′

P/M

+ [N1]
(
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
+ 2[ω̃P/M]

Pd
dt

rSc/P + [ω̃P/M]2rSc/P

+ [P1][ω̃B/N ]ωP/M + [Q1] (93)

ω
′

S/M = [N2]r̈B/N +
(
[P2] + [N2][r̃P/B]

)
ω̇B/N

+ [N2]
(
r

′′

P/M + 2[ω̃B/N ]r
′

P/M + [ω̃B/N ]2rP/B

)
+ ([P2] + [I3×3])ω

′

P/M

+ [P2][ω̃B/N ]ωP/M

+ [ω̃P/M]ωS/P + [Q2] (94)
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Note that only Eq. (93) must be substituted into the system translational equations of motion while
both Eqs. (93) and (94) must be substituted into the system rotational equations of motion. Integra-
tion of Eqs. (93) and (94) into Eq. (51) can be improved by first combining the following relevant
terms given in Eq. (51):

−mS[r̃Sc/B]r
′′

Sc/M
− [IS,Sc ]ω

′

S/M = −
(
mS[r̃Sc/B][N1] + [IS,Sc ][N2]

)
r̈B/N

−
(
mS[r̃Sc/B]

(
[P1] + [N1][r̃P/B]

)
+ [IS,Sc ]

(
[P2] + [N2][r̃P/B]

))
ω̇B/N

−mS[r̃Sc/B] ([N1] + [I3×3]) r
′′

P/M

−mS[r̃Sc/B]
(
[P1]− [r̃Sc/P ]

)
ω

′

P/M

−mS[r̃Sc/B][N1]
(
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
− 2mS[r̃Sc/B][ω̃P/M]

Pd
dt

rSc/P −mS[r̃Sc/B][ω̃P/M]2rSc/P

−mS[r̃Sc/B][P1][ω̃B/N ]ωP/M −mS[r̃Sc/B][Q1]

− [IS,Sc ][N2]
(
r

′′

P/M + 2[ω̃B/N ]r
′

P/M + [ω̃B/N ]2rP/B

)
− [IS,Sc ] ([P2] + [I3×3])ω

′

P/M

− [IS,Sc ][P2][ω̃B/N ]ωP/M

− [IS,Sc ][ω̃P/M]ωS/P − [IS,Sc ][Q2] (95)

Simplifying Eq. (95) by combining similar terms yields:

−mS[r̃Sc/B]r
′′

Sc/M
− [IS,Sc ]ω

′

S/M = −
(
mS[r̃Sc/B][N1] + [IS,Sc ][N2]

)
r̈B/N

−
(
mS[r̃Sc/B]

(
[P1] + [N1][r̃P/B]

)
+ [IS,Sc ]

(
[P2] + [N2][r̃P/B]

))
ω̇B/N

−
(
mS[r̃Sc/B] ([N1] + [I3×3]) + [IS,Sc ][N2]

)
r

′′

P/M

−
(
mS[r̃Sc/B]

(
[P1]− [r̃Sc/P ]

)
+ [IS,Sc ] ([P2] + [I3×3])

)
ω

′

P/M

−
(
mS[r̃Sc/B][N1] + [IS,Sc ][N2]

) (
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
−mS[r̃Sc/B]

(
2[ω̃P/M]

Pd
dt

rSc/P + [ω̃P/M]2rSc/P

)
−
(
mS[r̃Sc/B][P1] + [IS,Sc ][P2]

)
[ω̃B/N ]ωP/M

− [IS,Sc ][ω̃P/M]ωS/P

−mS[r̃Sc/B][Q1]− [IS,Sc ][Q2] (96)

Next, substituting Eq. (91) into the system translational equations of motion and substituting Eq.
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(96) into the system rotational equations of motion gives the following expressions:

(msc[I3×3] +mS[N1]) r̈B/N +
(
mS[P1] +mS[N1][r̃P/B]−msc[c̃]

)
ω̇B/N = Fext

− 2msc[ω̃B/N ]c
′ −msc[ω̃B/N ]2c

−mPr
′′

Pc/M
−mS ([N1] + [I3×3]) r

′′

P/M

−mS
(
[P1]− [r̃Sc/P ]

)
ω

′

P/M

−mS[N1]
(
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
− 2mS[ω̃P/M]

Pd
dt

rSc/P −mS[ω̃P/M]2rSc/P

−mS[P1][ω̃B/N ]ωP/M −mS[Q1] (97)(
msc[c̃] +mS[r̃Sc/B][N1] + [IS,Sc ][N2]

)
r̈B/N

+
(
[Isc,B] +mS[r̃Sc/B]

(
[P1] + [N1][r̃P/B]

)
+ [IS,Sc ]

(
[P2] + [N2][r̃P/B]

))
ω̇B/N

= LB −
(
[I

′
sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

−
(
[I

′
P,Pc

] + [I
′
S,Sc

] + [ω̃B/N ] ([IP,Pc ] + [IS,Sc ]) +
(
mS[r̃Sc/B][P1] + [IS,Sc ][P2]

)
[ω̃B/N ]

)
ωP/M

−
(
[I

′
S,Sc

] + [ω̃B/N ][IS,Sc ] + [IS,Sc ][ω̃P/M]
)
ωS/P

−mP[r̃Pc/B]r
′′

Pc/M

− [ω̃B/N ]
(
mP[r̃Pc/B]r

′

Pc/M
+mS[r̃Sc/B]r

′

Sc/M

)
−
(
mS[r̃Sc/B] ([N1] + [I3×3]) + [IS,Sc ][N2]

)
r

′′

P/M

−
(
[IP,Pc ] +mS[r̃Sc/B]

(
[P1]− [r̃Sc/P ]

)
+ [IS,Sc ] ([P2] + [I3×3])

)
ω

′

P/M

−
(
mS[r̃Sc/B][N1] + [IS,Sc ][N2]

) (
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
−mS[r̃Sc/B]

(
2[ω̃P/M]

Pd
dt

rSc/P + [ω̃P/M]2rSc/P

)
−mS[r̃Sc/B][Q1]− [IS,Sc ][Q2] (98)

The final step in obtaining the system equations of motion requires expanding the terms r
′′

Pc/M
,

r
′

Pc/M
and r

′

Sc/M
given by Eqs. (14), (15), and (17):

(msc[I3×3] +mS[N1]) r̈B/N +
(
mS[P1] +mS[N1][r̃P/B]−msc[c̃]

)
ω̇B/N = Fext

− 2msc[ω̃B/N ]c
′ −msc[ω̃B/N ]2c

− (mP[I3×3] +mS ([N1] + [I3×3])) r
′′

P/M

−
(
mP[r̃Pc/P ] +mS

(
[P1]− [r̃Sc/P ]

))
ω

′

P/M

−mS[N1]
(
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
− 2mS[ω̃P/M]

Pd
dt

rSc/P − [ω̃P/M]2
(
mSrSc/P −mPrPc/P

)
−mS[P1][ω̃B/N ]ωP/M −mS[Q1] (99)
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(
msc[c̃] +mS[r̃Sc/B][N1] + [IS,Sc ][N2]

)
r̈B/N

+
(
[Isc,B] +mS[r̃Sc/B]

(
[P1] + [N1][r̃P/B]

)
+ [IS,Sc ]

(
[P2] + [N2][r̃P/B]

))
ω̇B/N

= LB −
(
[I

′
sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

−
{
[I

′
P,Pc

] + [I
′
S,Sc

] + [ω̃B/N ]
(
[IP,Pc ] + [IS,Sc ]−mP[r̃Pc/B][r̃Pc/P ]−mS[r̃Sc/B][r̃Sc/P ]

)
+
(
mS[r̃Sc/B][P1] + [IS,Sc ][P2]

)
[ω̃B/N ]

}
ωP/M

−
(
[I

′
S,Sc

] + [ω̃B/N ][IS,Sc ] + [IS,Sc ][ω̃P/M]
)
ωS/P

−
(
mP[r̃Pc/B] +mS[r̃Sc/B] ([N1] + [I3×3]) + [IS,Sc ][N2]

)
r

′′

P/M

+
(
mP[r̃Pc/B][r̃Pc/P ]− [IP,Pc ]−mS[r̃Sc/B]

(
[P1]− [r̃Sc/P ]

)
− [IS,Sc ] ([P2] + [I3×3])

)
ω

′

P/M

− [ω̃B/N ]
(
mP[r̃Pc/B] +mS[r̃Sc/B]

)
r

′

P/M

−
(
mS[r̃Sc/B][N1] + [IS,Sc ][N2]

) (
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
−mP[r̃Pc/B][ω̃P/M]2rPc/P −mS[r̃Sc/B]

(
2[ω̃P/M]

Pd
dt

rSc/P + [ω̃P/M]2rSc/P

)
−mS[ω̃B/N ][r̃Sc/B]

Pd
dt

rSc/P −mS[r̃Sc/B][Q1]− [IS,Sc ][Q2] (100)

Finally, expressing the equations of motion above in the Backsubstitution form given in Eq. (89)
yields the final form of the system equations of motion for software implementation. The Backsub-
stitution contributions are given by:

[A] = msc[I3×3] +mS[N1] (101)

[B] = mS[P1] +mS[N1][r̃P/B]−msc[c̃] (102)

[C] = msc[c̃] +mS[r̃Sc/B][N1] + [IS,Sc ][N2] (103)

[D] = [Isc,B] +mS[r̃Sc/B]
(
[P1] + [N1][r̃P/B]

)
+ [IS,Sc ]

(
[P2] + [N2][r̃P/B]

)
(104)

vtrans = Fext − 2msc[ω̃B/N ]c
′ −msc[ω̃B/N ]2c

− (mP[I3×3] +mS ([N1] + [I3×3])) r
′′

P/M

−
(
mP[r̃Pc/P ] +mS

(
[P1]− [r̃Sc/P ]

))
ω

′

P/M

−mS[N1]
(
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
− 2mS[ω̃P/M]

Pd
dt

rSc/P − [ω̃P/M]2
(
mSrSc/P −mPrPc/P

)
−mS[P1][ω̃B/N ]ωP/M −mS[Q1] (105)
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vrot = LB −
(
[I

′
sc,B] + [ω̃B/N ][Isc,B]

)
ωB/N

−
{
[I

′
P,Pc

] + [I
′
S,Sc

] + [ω̃B/N ]
(
[IP,Pc ] + [IS,Sc ]−mP[r̃Pc/B][r̃Pc/P ]−mS[r̃Sc/B][r̃Sc/P ]

)
+
(
mS[r̃Sc/B][P1] + [IS,Sc ][P2]

)
[ω̃B/N ]

}
ωP/M

−
(
[I

′
S,Sc

] + [ω̃B/N ][IS,Sc ] + [IS,Sc ][ω̃P/M]
)
ωS/P

−
(
mP[r̃Pc/B] +mS[r̃Sc/B] ([N1] + [I3×3]) + [IS,Sc ][N2]

)
r

′′

P/M

+
(
mP[r̃Pc/B][r̃Pc/P ]− [IP,Pc ]−mS[r̃Sc/B]

(
[P1]− [r̃Sc/P ]

)
− [IS,Sc ] ([P2] + [I3×3])

)
ω

′

P/M

− [ω̃B/N ]
(
mP[r̃Pc/B] +mS[r̃Sc/B]

)
r

′

P/M

−
(
mS[r̃Sc/B][N1] + [IS,Sc ][N2]

) (
2[ω̃B/N ]r

′

P/M + [ω̃B/N ]2rP/B

)
−mP[r̃Pc/B][ω̃P/M]2rPc/P −mS[r̃Sc/B]

(
2[ω̃P/M]

Pd
dt

rSc/P + [ω̃P/M]2rSc/P

)
−mS[ω̃B/N ][r̃Sc/B]

Pd
dt

rSc/P −mS[r̃Sc/B][Q1]− [IS,Sc ][Q2] (106)

CONCLUSION

Dynamic modeling and simulation of complex space vehicles is essential to support the launch
of any space mission. Especially as spacecraft concepts continue to grow in complexity with di-
verse types of appendages being attached to the central spacecraft hub, the ability to simulate these
spacecraft systems becomes crucial for mission success.

Advancements in spacecraft appendages such as deployable solar array booms containing M
connected solar panels or M multi-link robotic arms are nontrivial to model and simulate correctly.
Inspired by these complex spacecraft structures, this work thoroughly derives the generalized equa-
tions of motion for a spacecraft consisting of a rigid hub with an attached two-body actuator com-
ponent. The actuator component contains a hub-connected prescribed hub-relative motion platform
and a rigid dynamic sub-component that is attached to the prescribed motion platform. The mod-
ularity of the derived formulation ultimately enables N dynamic sub-components to be attached to
the prescribed motion body and further, M of the described multi-body actuator components to be
attached to the central spacecraft hub. The derived equations are useful to describe large hub-relative
deployable structures that contain other attached dynamic components.

Future work involves software verification of the derived equations of motion using angular mo-
mentum and energy conservation principles.
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