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FAST SPACECRAFT SOLAR RADIATION PRESSURE MODELING
BY RAY-TRACING ON GRAPHICS PROCESSING UNIT

Patrick W. Kenneally∗ and Hanspeter Schaub†

A description of a method for computing on the graphics processing unit the force
and torque on a spacecraft due to solar radiation pressure. The method employs
ray-tracing techniques, developed in the graphics rendering discipline, to resolve
spacecraft self-shadowing and self-reflections at faster than real-time computation
speed. The primary algorithmic components of the ray-tracing process which con-
tribute to the method’s computational efficiency are described. These components
include bounding volume hierarchy acceleration data structures, fast ray to bound-
ing box intersection testing using the slab intersection algorithm and fast triangle
intersection testing using the Möller-Trumbore algorithm. The process is imple-
mented using C++ and OpenCL and executed on a consumer grade graphics pro-
cessing unit. Initial model validation is presented comparing computed values to
both the analytic cannonball model and ray traced LAGEOS II spacecraft model.
A performance analysis and characterization of the effect on performance of mul-
tiple ray bounces is presented using the Mars Reconnaissance Orbiter spacecraft.

INTRODUCTION

Effective orbit determination, maneuver and mission design and mission numerical simulations
require tools that enable accurate modeling of the spacecraft dynamical system. Solar radiation
pressure (SRP), the momentum imparted to a body by impinging solar photons, becomes a dominant
non-conservative force above the Low Earth Orbit (LEO)1 region. For example, to maintain a
desired spacecraft attitude, the SRP-induced torque on a spacecraft is absorbed using reaction wheel
devices. Under the influence of sustained torque in a constant direction, the reaction wheels will
reach an operational maximum angular rate and require desaturation. The requirement to perform
desaturation operations may be mitigated through a judicious choice of reaction wheel orientation or
more typically by a momentum unloading process using spacecraft thrusters.2 Given the importance
of SRP, knowledge of the resultant forces upon a body due to SRP are a primary consideration in
the modeling and analysis of spacecraft operating above the LEO region.3, 4

The video game industry’s pursuit for more vivid artificial worlds has driven the development of
highly optimized vector processing software and graphics processing unit (GPU) computer hard-
ware capable of carrying out many thousands of floating point operations in parallel.5 In the anima-
tion and movie industry, the pursuit of photo-realistic modeling has pushed the techniques employed
in ray-tracing algorithms to produce rendering results at near real-time computation speeds. Two
key themes in ray-tracing research are the pursuit of algorithmic techniques and efficient hardware
utilization, which increase computing efficiency, and therefore reduce the time of a photo-realistic
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model rendering.6 The algorithmic techniques developed in the pursuit of photo-realistic model
rendering have provided the tools which are leveraged in the faster than real-time SRP ray-tracing
methodology presented in this paper.

A survey of the current landscape of SRP research reveals a variety of approaches. The nature
of the approaches can be characterized as analytic, semi-analytic or empirical. Whereas analytic
models rely only on pre-launch engineering information, empirical models are constructed post-
launch using flight data. Commonly, a semi-analytic model is used during a mission. These models
are comprised of both analytic and empirical components with tunable parameters. Prior to flight,
the tunable parameters are determined using an analytic model. Following launch, the parameters
are incorporated into a parameter estimation process which tunes the model to more closely match
flight data. Prominent examples of the three modeling approaches include the ROCK42 analytic
model, the Bern semi-analytic model and the Jet Propulsion Lab (JPL) empirical model.7, 8

The most basic analytic model employed is referred to as the cannonball model. The cannonball
model, given in Eq. (1), is computed from the surface area upon which radiation is incident A,
solar flux Φ�, the spacecraft mass M , speed of light c, heliocentric distance to the spacecraft r and
the reflection, absorption and emission characteristics of the spacecraft surface which are grouped
together within the coefficient of reflection Cr.

a� = −Cr
AΦ�
Mc

(
1AU

r

)2

ŝ (1)

Increased accuracy in analytic models is often achieved by representing the spacecraft as an
approximation of various volumes. A common approximation is to model the spacecraft bus and
solar panels as a box and panels respectively. Additionally, the individual reflection, absorption
and emission material characteristics are kept distinct for each surface and set based on known
spacecraft material properties.9 However, common among shape approximation methods is that
they are augmented and become semi-analytic models where much of the modeling uncertainty is
delegated to a parameter estimation process and the model is ’tuned’ post-launch to more accurately
match spacecraft tracking data.

Notably, Ziebart et al., develop an analytic modeling approach based on ray-tracing techniques
for the assessment of SRP force analysis of spacecraft in the GLONASS constellation.10 Ziebart’s
method precomputes the body forces over all 4π steradian attitude possibilities. Ziebart’s approach
is also capable of modeling self-shadowing and multiple solar radiation ray reflection by ray-tracing
a spacecraft model that comprises a set of volume primitives (boxes, cylinders etc.). McMahon
and Scheeres extend Ziebart’s approach to a semi-analytic model by aggregating the resultant SRP
forces into a set of Fourier coefficients of a Fourier expansion.9 The resulting Fourier expansion is
available for both online and offline evaluation within a numerical integration process. Evaluation
of the Fourier expansion in numerical simulation demonstrates successful prediction of the periodic
and secular effects of SRP. Additionally, the Fourier coefficients may replace spacecraft material
optical properties as parameters estimated during the orbit determination effort.

More recently, methods that make use of the parallel processing nature of GPUs have been devel-
oped. Tanygin and Beatty employ modern GPU parallel processing techniques to provide a signif-
icant reduction in time-to-solution of Ziebart’s “pixel array” method.11 In previous work presented
by the authors the GPU computation environment OpenGL, a vector graphics software interface
common in video games, is used to dynamically evaluate the force of the incident solar radiation
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across a spacecraft structure approximated by many thousands of facets.12

The method presented here leverages advances in ray-tracing and the OpenCL application pro-
gramming interface (API) to produce a ray-tracing SRP modeling approach at faster than real-time
computation speeds. OpenCL is an API and C based programming language which facilitates the
execution of massively-parallel computations on heterogeneous computation devices. OpenCL is
a cross-platform standard for parallel programming across a range of devices including multicore
CPUs, GPUs and other computation accelerators.

This ray-tracing method is a departure from previous approaches presented by the authors. Previ-
ous approaches have focused on employing the OpenGL vector graphics render pipeline to compute
the per facet force and torque of a triangulated mesh model.12 The OpenGL method provides a
high-geometric fidelity SRP computation of the spacecraft mesh, however, it is unable to capture
self-reflections. The approach presented addresses the shortcomings of the OpenGL method by
using proven ray-tracing algorithms implemented with OpenCL on the GPU and provides the fol-
lowing features:

• Faster than real-time SRP induced force and torque.

• Capturing spacecraft self-shadowing and multiple light ray bounces.

• Employing a wide variety of material optical properties.

In the remainder of this paper the fundamental components and initial results are outlined for
the OpenCL ray-tracing methodology. In section two, primary considerations are given to porting
the serial and recursive CPU ray-tracing execution to the parallel and iterative GPU execution en-
vironment. Additionally, an overview of the ray-tracing methodology implemented is provided. In
section three, key algorithm components are described and their importance in a GPU ray-tracing
implementation is discussed. Finally, in sections four and five the effect of multiple ray bounces in
resolving the SRP force and the faster than real-time computational performance is discussed.

PARALLEL RAY-TRACING

The goal of ray-tracing is to compute the color in a pixel within a view port. The light arriving at
the pixel is traced backwards through the scene where its scene interactions are modeled providing
the final color of the view port pixel. In a serial execution environment ray reflections are computed
using a recursive algorithm. The recursive algorithm tests for a ray intersection in the scene, and
in the case where it finds an intersection, the same intersection search algorithm is initiated again
to trace the ray in the new reflected direction. A common recursion termination condition is a
maximum number of ray reflections.

The parallel GPU computing environment requires two primary changes to the serial ray-tracing
algorithm. The first is required because recursive function execution is not available in current GPU
execution environments. As a result, the recursive computation of ray reflections must be achieved
through iteration. The second change is that rather than making the algorithm parallel by pixel
as is suggested by the serial implementation, the algorithm should be parallel by ray. The Single
Instruction Multiple Device (SIMD) GPU execution environment is most efficient when developers
ensure that each compute unit on the GPU is actively working. In the case that the algorithm is
parallel by pixels, rays from certain pixels will terminate sooner than others. This leaves compute
units inactive resulting in poor utilization of the GPU’s computing resources. Rather, an algorithm
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which is parallel by rays cast may discard terminated rays at each iteration. The reflected rays are
then repacked for a second iteration ensuring all compute units marshaled are active.

To initialize the process, a spacecraft CAD model is input as a triangulated mesh with material
definitions for the absorption, diffusion and specular optical characteristics. The mesh is then pro-
cessed to generate the bounding volume hierarchy (BVH) data structure to accelerate the processes
of intersection testing. With initialization now complete, the parallel ray-tracing algorithm can be
executed on the GPU. The ray plane definition is copied to the GPU along with the BVH traver-
sal structure and the spacecraft mesh material definitions. The algorithm then iterates through ray
generation, BVH traversal, intersection testing and SRP computation until all rays have reached the
set termination condition. In this work, the conditions for ray termination are that a ray either exits
the scene or completes three ray reflections. The aggregated force and torque values are then re-
turned to the CPU bound process where the values can be integrated into the dynamics propagation
component of a spacecraft numerical simulation.

ALGORITHM COMPONENTS

The presented approach employs a number of key algorithms to minimize the otherwise high
computational load of a naive ray-tracing algorithm. These techniques include:

• Generation of an acceleration data structure in particular that of a BVH.

• Bounding box intersection testing algorithm using clipping planes.

• The computationally fast Möller-Trumbore ray and triangle facet intersection algorithm to
test for intersections with a spacecraft facet and ray.

Acceleration Structures

Many acceleration structures are presented in ray and path tracing literature. Each of these struc-
tures offer advantages and disadvantages which are typically dependent on the model to be ren-
dered.13 This method employs a simple BVH to efficiently reduce the ray intersection search space
and therefore the required ray intersection computations performed. Figure 1(a) portrays a notional
BVH, demonstrating that the example ray need only test two volumes before testing for a triangle
intersection. To begin building the BVH, a bounding volume is computed for each triangular facet
in the spacecraft mesh model. In this implementation, the bounding volume is computed as a bound-
ing box aligned to the spacecraft model body frame. The list of bounding volumes is sorted along
the first spacecraft body frame axis, then divided in half and a new bounding volume is computed
around each half of the list. This process is carried out recursively while, at each new division, the
sort axis selected is sequentially the next axis in the body frame triad. This results in a BVH that
groups successive bounding volumes as containing facets spatially near to each other.

An efficient method of traversing the BVH is a key aspect of the development of real-time SRP
ray-tracing.13 This implementation uses as the BVH traversal method a depth-first search array as
described by Smits.13 An example BVH comprising 6 nodes is shown in Figure 1(b) first as a recur-
sive depth-first search-tree and second as a depth-first search array with precomputed skip pointers.
In the recursive tree structure, if bounding volume node A is intersected, the search recursively de-
scends to test for an intersection against node B. If no intersection is found at node B the recursion
meets a termination condition and the search moves back up the tree and proceeds down the next
branch to test node C.
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(a) Notional BVH intersection testing

A

B C

D E F

A

B

D

E

F

C

(b) Two BVH traversal structures

Figure 1. The BVH traversal structures are constructed to provide efficient traversal.
The left structure demonstrates a simple recursive BVH traversal. The right demon-
strates the same BVH as shown on the left yet organized as a depth-first search array
with precomputed node skip pointers.

For the depth-first search array, if bounding volume A is intersected, then the next node to be
tested is the next node sequentially in the array, node B. If the bounding volume at node B is not
intersected, the next node is found by following the precomputed skip pointer to the next sibling in
the array, which for node B is node C.

The depth-first search array avoids the function call overhead inherent in a recursive search-tree
traversal and takes advantage of the fact that the next node in the search-tree can be precomputed
and stored with the left-most sibling as a skip-pointer to the next node. An additional benefit to the
array BVH traversal, particularly for large meshes, is the greater memory coherency which yields
more efficient contiguous memory accesses on the GPU.13

Bounding Volume Intersection

Bounding volume intersection uses the algorithm originally presented by Kay and Kajiya.14 The
algorithm models the bounding box as 3 sets of parallel planes. The algorithm employs each set of
parallel planes as clipping planes. As demonstrated in Figure 2, once the ray is clipped by each set of
planes, any remaining portion of ray inside the bounding volume indicates an intersection. The al-
gorithm is particularly suited to implementation in the GPU environment because it does not require
code branching (the execution of divergent code paths based on conditional code statements). Mod-
ern floating-point instruction sets are capable of computing the minimum or maximum, between
two values, without code branching. This parallel plane algorithm employs the non-branching min-
imum and maximum functions and results in an intersection test with no code branching or division
operations.

Triangle Facet Intersection

The spacecraft model mesh is comprised of many thousands of triangular facets. To compute a
ray to triangle intersection, the Möller-Trumbore algorithm is used. This algorithm is a fast and
memory-efficient ray to triangle intersection algorithm making it ideal for use in the memory con-
strained GPU computation environment. The basis of the algorithm is the knowledge that the point
of intersection of a line through a triangle in barycentric coordinates (u, v) must lie within coor-
dinate bounds which are easily testable as boolean values. The bounds defined by the barycentric
coordinate system require u ≥ 0, v ≥ 0 and u+ v ≤ 1.15
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Figure 2. Example results of the parallel plane bounding box intersection algorithm.
For the top left ray intersection, the algorithm returns t max as greater than or equal
to t min. For the bottom right ray miss, the algorithm returns t max as less than
t min.

To begin, a point, T (u, v), on a triangle described by vertices V0,V1 and V2 and mapped to
barycentric coordinates is described as given in Eq. (2).

T (u, v) = (1− u− v)V0 + uV1 + vV2 (2)

The ray equation is given in Eq. (3) where O is the ray origin, t the distance from the ray origin to
the intersection point and D the ray direction.

R(t) = O + tD (3)

It is then evident that for a ray to intersect the barycentric description of the triangle, the ray equation
must be equal to a point on the triangle, R(t) = T (u, v), and results in the expression at Eq. (4).

O + tD = (1− u− v)V0 + uV1 + vV2 (4)

Rearranging the equation into a matrix form yields Eq. (5) where it is evident that the terms V1−V0

and V2−V0 are the edges of the triangle and are substituted for E1 = V1−V0 and E2 = V2−V0.
Additionally, the substitution T = O−V0 can be made and is interpreted as a translation of the ray
origin to the barycentric coordinate frame origin.

[−D,V1 − V0,V2 − V0]

tu
v

 = O − V0 (5)

Using Cramer’s rule, a solution can be found for u, v and t as shown in Eq. (6). The solution
for u, v and t will provide the values with which to test against the barycentric coordinate bounds
conditions. tu

v

 =
1

| −D,E1,E2|

 |T ,E1,E2|
| −D,T ,E2|
| −D,E1,T |

 (6)
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A final solution is computed with slightly more efficiency by recognizing that each determinant of
the form |A,B,C| = −(A×B) ·C, is shown in Eq. (7). This is further simplified by computing
the cross products P = (D×E2) and Q = (T ×E1) once and then substituting, yielding Eq. (8).tu

v

 =
1

(D ×E2) ·E1

(T ×E1) ·E2

(D ×E2) · T
(T ×E1) ·D

 (7)

=
1

P ·E1

(Q ·E2)
(P · T )
(Q ·D)

 (8)

COMPUTING SOLAR RADIATION PRESSURE

At each time update, a new wave of ray vectors is generated. The spacecraft-to-sun unit direction
vector ŝB is computed and used as the first axis in an orthogonal Sun S frame. The direction cosine
matrix [SB] which defines the rotation from the body frame B to the S frame is constructed and
used to generate an S frame axis-aligned bounding box of the mesh model. As shown in Figure
3(a), the side of the bounding box nearest the sun is used as a finite plane from which the origins of
all ray vectors is defined. The wave of rays are computed in parallel using a dedicated OpenCL ray
generation kernel.

The ray plane is divided into unit areas determined by the resolution units chosen by the user.
For example, a 2 m x 1 m plane can be divided into 10 mm sized squares giving a plane of 200 x
100 squares, producing 20000 rays. The discretization of the incident radiation wave front has the
potential to introduce errors into the computation. The error source is due to the discretization of
the surface area over the spacecraft which is intersected by the unit area of an individual ray. Ziebart
shows in a study of this discretization error that for representative test geometries, the error, for a
maximum ray cross section of 10 mm2, is 2% and decreases to less than a percent for ray cross
sections of less than 5 mm.10 Paying heed to Ziebart’s study, the maximum ray resolution used in
this method is 10 mm. The origin for a ray is taken as the corresponding center of a unit area and the
direction for all rays is taken as−ŝB . The ray intersection testing must occur in the same coordinate
frame in which the spacecraft vertices are defined. As a result, the ray vectors are mapped from Sun
frame S to the body frame B using the [BS] rotation matrix.

Each compute unit on the GPU launches an instance of the coded OpenCL kernel program. Each
kernel instance accesses the ray wave front data in the GPU global memory space copying a specific
ray and the BVH traversal array to local memory in the compute unit. A wave of rays is then tested
for intersections until all rays have been tested. If a BVH intersection is found and the intersection
is a terminal node, then the triangle intersection is computed and the index of the facet and the
intersection location are recorded and placed in an intersection array. If no intersection is computed,
the miss is similarly recorded in the intersection array.

Currently, this method accommodates only the modeling of specular ray reflections. The angle
of incidence is equal to the angle of reflection for a specularly reflected ray.10 The reflected unit
direction vector for the ith ray intersection is computed as given in Eq. 9, where r̂iref is the reflected
unit direction vector, r̂i the impinging ray direction and nk is the kth triangle facet unit normal
vector.

r̂iref = r̂i − 2(r̂i · n̂k)n̂k (9)

7



-2
-2

-1

-2

0

1

z 
[m

]

0

x [m]

2

0

y [m]

3

22
4

(a) S frame generated rays

-3

-2

-1

2

0

4

1

z 
[m

]

2

20

3

y [m] x [m]

4

0
-2 -2

-4

(b) S frame rays mapped to the B frame

Figure 3. The MRO mesh model surrounded by a B frame oriented bounding box
(dashed black) and an S frame bounding box (blue solid). The red, green and blue
vectors are theB frame axes and the black vectors indicates rays originating from the
blue ray-plane.

As shown in Eq. 10, this work uses Ziebart’s formulation to compute the radiance, where the irradi-
ance is scaled per unit area by the reflectivity ν and specularity µ of the intersected triangular facet’s
material.

Iref = µνIi (10)

Force and Torque Computation

Where an intersection is found, the force on the spacecraft due to the incident radiation flux of
the ray is evaluated in the spacecraft body frame using the expression for the normal and shear
components of the force as given in Eq. (11) and Eq. (12) respectively. In these two expressions
P (|r�|) is the solar radiation pressure scaled by the heliocentric distance to the spacecraft, k is
the ray index, i is the index of the intersected facet, Ak is the cross sectional area of the ray, θk
defines the sun angle of incidence relative to the intersected facet normal vector and ŝ′k is the shear
direction vector as defined by Ziebart.10

Fnormalk = −P (|r�|)Ak cos(θk)

[
(1 + µiνi) cos(θk) +

2

3
νi(1− µi)

]
n̂k (11)

Fsheark = −P (|r�|)Ak cos(θk) sin(θk)(1− µiνi)ŝ′k (12)

The total force is computed by summing the force components for each ray as shown in Eq. (13),
where n equals the total number of rays.

F� =
n∑

k=1

(Fsheark + Fnormalk) (13)

Following the force computation, the torque Lk contribution of a single intersection, as given in
Eq. (14), is computed as the cross product of the vector defined from the body frame origin to the
ray intersection point ck and the total ray force F�k

.

Lk = ck × F�k
(14)
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Figure 4. LAEGOS mesh model.

Table 1. SRP acceleration for each method.

Model SRP Acceleration
Cannonball 3.58×10−9 [m/s2]

Ray-Traced Cannonball 3.56×10−9 [m/s2]

INITIAL MODEL VALIDATION

The initial validation is performed by comparing results from an analytic cannonball model and
a sphere-shaped spacecraft model evaluated by the OpenCL ray-tracing method. The values for
the LAGEOS II spacecraft are as follows; a mass of 405.38 kg, area of 0.2817 m2, Φ (at 1 AU) is
1.38×103 W/m2 and a coefficient of reflection Cr of 1.12. These parameters are used in both the
cannonball and ray-traced evaluations. A spherical model spacecraft is generated to replicate the
LAGEOS II spacecraft parameters. Figure 4 illustrates the spherical spacecraft model being tested.
The perturbative acceleration due to SRP as given by the cannonball model and the OpenCL model
are given in Table 1. The agreement between the cannonball model and the ray-traced method
provides initial confidence of the method’s correctness.

FORCE RESOLUTION

A key feature of the ray-tracing approach is its ability to capture and resolve the impact of space-
craft self-reflection on the resultant SRP force. An initial analysis is performed to demonstrate the
impact that the number of live reflected rays has on the resultant force magnitude and direction. For
this analysis, a 1424 primitive mesh of the MRO spacecraft is processed at a heliocentric distance
of 1AU where the sun vector defined in the body frame as ŝB = [−0.44, 0.90, 0.06]T . The ray
resolution used is 10 mm which, results in a ray plane width of 497 and height of 286, generating
142,142 rays in the first wave.

The resulting force direction, magnitude and number of live rays is recorded for increasing num-
bers of ray bounces. Figure 5 shows the difference in each of the x, y and z body frame components
between bounce one and two, bounce two and three, and so on. It is evident, for this spacecraft at
this attitude, that after three or more bounces the difference in the direction of the resultant SRP
force becomes significantly less than the difference prior to bounce three. Figure 6 presents the
magnitude of the resultant force and the number of live rays at successive ray bounces. It is simi-
larly evident that after three ray bounces, the force magnitude becomes stable with values between
3.60×10−5 N and 3.62×10−5 N. The number of live rays significantly decreases from 142,142 to
7551 between bounces one and three.

A visual demonstration of the above analysis is shown in Figures 7(a) to 7(c). Each figure shows

9



1-2 2-3 3-4 4-5 5-6
Successive bounces

-8

-6

-4

-2

0

2

4

6

8

 F
or

ce
 b

et
w

ee
n 

   
   

   
 

cu
rr

en
t a

nd
 p

re
vi

ou
s 

bo
un

ce
 [N

]

10-6

x
y
z

Body Frame  Force Components

Figure 5. The delta in the direction of the resultant force between each successive ray bounce.
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Figure 6. The number of live rays and resultant force magnitude at successive bounces.

the areas on the spacecraft mesh where initial, secondary and tertiary self-reflections occur. In-
creased grey scale brightness has been used to emphasize the areas impacted by successive bounces.
It is expected that different spacecraft geometries and ŝ orientations will yield variations in the
number of ray bounces required to approach a solution with a minimal delta in the resultant force
between successive ray bounces. This analysis reaffirms that resolving spacecraft self-reflections is
a significant component of computing a more accurate SRP force.

COMPUTATIONAL PERFORMANCE

A primary goal of the OpenCL ray-tracing method is efficient computational performance result-
ing in faster than real-time evaluation. An analysis is performed to characterize the execution time
of the method. The execution time is computed as the time point when ray generation begins to
the time point when the CPU-bound process receives the final force values. Intuitively, the execu-
tion duration is critically dependent on the number of rays cast during model evaluation. Increased
resolution increases the required number of rays to be traced and therefore the execution time. Ad-
ditionally, there is a fixed base duration due to latency introduced by the data transfer between the
CPU and GPU memory spaces. This latency can be larger or smaller depending on the CPU/GPU
architecture being employed. Generally, the latency is lower if the GPU resides on the same chip
as the CPU, as opposed to being a separate hardware device for which data is transfered across a
common transfer bridge such as PCI Express.16
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(a) One bounce (b) Two bounces (c) Three bounces

Figure 7. Increasing areas of brightness (left to right) indicate mesh areas where
self-reflected rays have impacted the spacecraft mesh.

To demonstrate the dependency of computation speed on ray resolution, the MRO model is eval-
uated for ray resolutions of 2.5 mm, 5 mm and 10 mm. The execution time is taken as an average
over 30 seconds whereby the computer is configured similarly for each test. The computer used to
produce the below results is a MacBook Pro with a 3.1 GHz Intel Core i7 CPU. The GPU employed
is an AMD Radeon Pro 560 4GB. The results of the evaluations are show in Figure 8. As expected
the, 10 mm ray resolution result in the fastest execution time of 1.15 ms, 1.83 ms and 2.4 ms for the
one, two and three bounce evaluations respectively. The 5 mm case executes slightly slower 1.27
ms, 2.06 ms and 2.41 ms for each number of bounce evaluations. The significantly slower execution
time of the 2.5 mm case can be explained by the fact that for particularly high ray resolutions the
GPU can no longer process all rays in one execution. The C++ code which supports the interface
between a numerical simulation and OpenCL on the GPU, is required to break up the ray plane into
’tiles’ sufficient to fill the GPU. Each tile is submitted to the GPU for evaluation and recombined
with all other tiles to provide the final ray-traced force evaluation.

CONCLUSIONS

This paper demonstrates how SRP forces and torques can be resolved for complex spacecraft
structures more accurately and at high speed using an OpenCL GPU-focused ray-tracing methodol-
ogy. Spacecraft self-shadowing and self-reflection are implicitly captured by a ray-tracing method-
ology resulting in faster than real-time spacecraft model evaluation. An initial analysis has shown
that three or more ray bounces resolves a large majority of SRP force magnitude and direction vari-
ations caused by spacecraft self-reflection. This method presents mission analysts with a tool that
requires minimal set up and makes use of the wealth of pre-launch spacecraft engineering data. Fur-
ther validation and characterization of the method is currently being conducted where more accurate
surface optical characteristics and their radiation interactions are modeled.
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