
American Institute of
Aeronautics and Astronautics

AAS 16-500

HIGH GEOMETRIC FIDELITY MODELING OF
SOLAR RADIATION PRESSURE USING

GRAPHICS PROCESSING UNIT

Patrick W. Kenneally and Hanspeter Schaub.

AAS/AIAA 26th Spaceflight Mechanics
Meeting

Napa, California February 14-18, 2016
AAS Publications Office, P.O. Box 28130, San Diego, CA 92198



(Preprint) AAS 16-500

HIGH GEOMETRIC FIDELITY MODELING OF SOLAR RADIATION
PRESSURE USING GRAPHICS PROCESSING UNIT

Patrick W. Kenneally∗ and Hanspeter Schaub†.

This paper presents a method for the fast computation of spacecraft force and
torque due to solar radiation pressure (SRP). The method uses the highly par-
allel execution capabilities of commodity Graphics Processing Unit (GPU) and
the Open Graphics Library (OpenGL) vector graphics software library to render
a Computer Aided Design (CAD) generated spacecraft model on the GPU. The
SRP forces and torques are resolved per model facet in the custom-developed ren-
der pipeline. Material properties are encoded with the model to provide realistic
specular, diffuse and absorption surface light interactions.

INTRODUCTION

Effective orbit determination, maneuver and mission design, and numerical mission simulations
require tools that enable accurate modeling of the spacecraft dynamical system. Solar radiation
pressure (SRP), the momentum imparted to a body by impinging solar photons, can become the
dominant non-conservative force above Low Earth Orbit (LEO)1 regime. Given this importance of
SRP, knowledge of the resultant forces upon a body due to SRP are a primary consideration in the
modeling and analysis of spacecraft operating in the high LEO region and above.2, 3

The video game and animated video industries have driven the pursuit to create more vivid and
realistic artificial worlds. This pursuit has resulted in highly optimized vector graphics software
and GPU computer hardware capable of carrying out many thousands of floating point operations
in parallel.4 While these artificial worlds are visually persuasive, their implementation of electro-
magnetic radiation physics is understandably inaccurate. However, it is the parallel hardware and
efficient vector graphics software implementations which may be used to simplify the steps of the
SRP computation with great effect.

The ability to model and compute, at orders of magnitude faster than real-time, the SRP forces
and torques on flexible and time varying spacecraft structures presents compelling opportunities.
Current SRP evaluation approaches are capable of modeling the resultant force of an articulated
spacecraft where the articulation motion is known prior to evaluation.5 However, there are many
instances in which the articulation motion and the spacecraft state are dependent on the myriad
spacecraft control inputs and constraints. Accounting for all possible permutations of the spacecraft
dynamical state is further challenged by the inclusion of flexing in the spacecraft structure.

It is evident then that a method of SRP evaluation characterized by an ability to include time
varying information of the spacecraft state has potential for a wide range of applications. For exam-
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ple, large deployable structures, such as the IKAROS solar sail, would gain the ability to iteratively
evaluate with greater fidelity the time varying control actuation of the solar sail during and after
deployment.6 Additional opportunities exist in the design and simulation of atypical spacecraft ma-
neuvers. Maneuvers which utilize SRP as an actuator are exemplified by the maneuver designed for
the rescue of the Hayabusa spacecraft. Hayabusa lost attitude control due to a failure of the reaction
control system. Upon returning to a power positive state ground teams regained attitude control via
the electric propulsion system at the expense of valuable fuel reserves. As a result, a cruise ma-
neuver was designed which incorporated SRP to balance the torque induced by the swirling electric
thrusters and thus save fuel for the return to Earth.7

A survey of the current landscape of SRP research reveals a variety of approaches. Ziebart char-
acterizes SRP evaluation as a two step process.8 The first step is the development of an analytic
model; the second is to compute a result from the analytic model.

A common approach and one of the most basic with regard to the analytic development is referred
to as the cannonball model. The cannonball analytic model is given in Eq. (1), is computed from the
surface area upon which radiation is incidentA, solar flux Φ�, the spacecraft massM , speed of light
c, heliocentric distance to the spacecraft r and the reflection, absorption and emission characteristics
of the spacecraft surface which are grouped together within the coefficient of reflection Cr. It is
often the case that the Cr parameter is continually estimated and updated by an orbit determination
effort. This model was most notably used during the LAEGOS missions and continues to prove
useful for initial mission analysis.9

a� = −Cr
AΦ�
Mc

(
1AU

r

)2

ŝ (1)

Increased modeling accuracy is often achieved by departing from the cannonball assumption
and defining shape approximations of the spacecraft. A common shape approximation is to model
the spacecraft bus and solar panels as a box and panels respectively. Additionally the individual
reflection, absorption and emission characteristics are kept distinct for each surface and set based on
known spacecraft material properties.10 However, common among shape approximation methods
is that much of the modeling uncertainty occurs in an estimation process within the second step
of the SRP evaluation. It is the model’s computation, the second step of the process, in which
much work is being done. Notably Zeibart, proposes a SRP evaluation procedure which computes
the body forces over all 4π steradian attitude possibilities as step one.8 Ziebart’s approach is also
capable of modeling self-shadowing by using ray-tracing techniques and spacecraft re-radiation via
reduced spacecraft thermal model. McMahon and Scheeres extend such a model by aggregating the
resultant SRP forces into a set of Fourier coefficients of a Fourier expansion.10 The resulting Fourier
expansion is available for both online and offline evaluation within a numerical integration process.
Evaluation of the Fourier expansion in numerical simulation demonstrates successful prediction of
the periodic and secular effects of SRP. Additionally, the Fourier coefficients may replace spacecraft
material optical properties estimated during the orbit determination effort.

More recently methods which make use of the parallel processing nature of GPUs have been
developed. Tanygin and Beatty employ modern GPU parallel processing techniques to provide a
significant reduction in time-to-solution of Ziebart’s ”pixel array” method.11 Inspiring some of the
methods presented in this paper Tichey et al. use OpenGL, a vector graphics GPU software interface
common in video games, to dynamically render the spacecraft model and evaluate the force of the
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(a) Solid MRO CAD model (b) MRO triangle primitives

Figure 1. Example of Computer Aided Design (CAD) spacecraft model.

incident solar radiation across a spacecraft structure approximated by many thousands of facets.12

This paper presents a method for computation of the spacecraft accelerations using the parallel
execution capabilities of a graphics processing unit (GPU). The method effectively leverages and re-
purposes software tools and techniques from the computer graphics discipline. The SRP forces and
torques are resolved at a per facet level and summed over the surface of a CAD based spacecraft
model. Material properties are encoded into the model to provide realistic secular, diffuse and
absorptive surface light interactions. Finally, surface properties and spacecraft model articulation
are available as inputs to define arbitrary time varying model parameters.

SRP EVALUATION PIPELINE

The proposed method utilizes a computer vector graphics rendering pipeline to compute the SRP
forces over the spacecraft surface. Computer vector graphics systems process sets of points defined
in three dimensions. These points, referred to as vertices, are combined into groups of three to define
a triangle shape primitive. A computer aided design (CAD) model is approximated as a system of
many thousands of small triangle primitives, combined into a data structure referred to as a mesh.
Where a flat plate surface such as a solar panel may be modeled by a single rectangle resolved as two
triangles, a curved surface may be approximated by many smaller triangles. Such an approximation
is shown in Figures 1(a) and 1(b). In these figures it is evident that the Mars Reconnaissance Orbiter
(MRO) high gain antenna shown Figure 1(a) is approximated by many thousands of primitives while
the solar panels are approximated in Figure 1(b) by ten.

The entire spacecraft may be defined by one or more sub-meshes. Each mesh is assigned a
material definition which describes the mesh’s diffuse, specular and absorptive optical properties.
Material definitions are typically and most conveniently defined within a CAD software tool, how-
ever, they also can be declared manually and assigned to each mesh in the custom-render pipleline
presented in this paper. The density of primitives used to approximate the spacecraft’s structure
determines the geometric fidelity. Further, where relevant, an increased number of mesh material
definitions will provide a more accurate SRP evaluation.

This method employs the Open Graphics Library (OpenGL) to facilitate the processing of the
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spacecraft model primitives and evaluate the SRP forces and torques. OpenGL is a language in-
dependent application programming interface (API) for rendering computer vector graphics.13 The
API provides tools to send, retrieve and process data on an OpenGL compliant GPU.

The OpenGL rendering process, referred to as the pipeline, is divided into stages where each
stage in turn operates on either a vertex or primitive input data type. Each stage is defined by a
mini-program called a shader as shown in the pipeline Figure 2. For each pipeline stage many
thousands of parallel instances of a shader program are executed, each performing processing on
their specific input data type.14 It is this highly parallel per primitive operation for which GPU
devices have been specifically designed. The OpenGL method is implemented by a set of custom
shader stages which facilitate the evaluation the spacecraft force and torque due to SRP.

At a minimum, an OpenGL pipeline requires vertex and fragment shader stages. The vertex
shader’s purpose is to prepare the vertex data for the following render stages by mapping the body
frame defined vertex data to the inertial, camera view and screen projection coordinate spaces.14

Each of these coordinate frame mappings is carried out to support the on screen rendering of the
model. The fragment shader is not involved in the force and torque evaluation. It transforms the
rendered model into screen space coordinates to provide the final screen space pixel definition. The
on screen view generated by the vertex and fragment shader stages provides important first order
confirmation of a correctly implemented custom shader pipeline.

The SRP force and torque calculations are carried out within the geometry shader stage. As
shown in Figure 2 the geometry shader stage execution follows the vertex shader. The geometry
shader receives vertex data along with values for solar flux Φ� and the sun unit direction vector
defined in the body frame ŝB . The force for each kth primitive, F�k

, is evaluated in the spacecraft
body frame using the expression shown at Eq. (2), where P (|r�|) is the solar radiation pressure
scaled by the heliocentric distance to the spacecraft.16

F�k
= −P (|r�|)Ak cos(θk)

{
(1− ρsk)ŝ +

[
2

3
ρdk + 2ρsk cos(θk)

]
n̂k

}
(2)

The primitive area Ak is computed in Eq. (3), where e1 and e2 are edges of the primitive defined by
the vertices.

e1 = v2 − v1 (3a)

e2 = v3 − v1 (3b)

Ak =
1

2
‖e1 × e2‖ (3c)

The sun angle of incidence θk as given by Eq. (4), is simply the dot product of the primitive
surface normal n̂k and the sun unit vector ŝ.

n̂k =
e1 × e2
‖e1 × e2‖

(4a)

θk = n̂k · ŝ (4b)

The parameters ρsk and ρdk in Eq. (2) are respectively the specular and diffuse reflection coeffi-
cients of the material definition associated with the primitive. Additional radiation pressure sources
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Vertex Post-
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Rasterization
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ŝ

⇢dk ⇢sk
⇢ak

Vertex Specification
Parse CAD 
model vertex 
and materials

Vertex Shader

Tessellation Shader

Geometry Shader

Solution: Transform Feedback to CPU

Prepare 
vertices for 
later stages

Perform any 
additional 
tessellation 

Compute per-primitive 
radiation interactions

Fragment Shader
Map to pixel 
space for 
screen display

Figure 2. The custom OpenGL render pipeline demonstrating the discrete steps car-
ried out by shader operations.15 Gold fill stages are custom shader stage implemen-
tations. Blue full stages are OpenGL built-in shader stages. A Solid border stage
indicates a required pipeline stage, while a broken border indicates optional stages.
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such as albedo from planetary bodies may be accounted for through an additional contribution in the
P (|r�|) term. Following the force computation, the torque Lk contribution of a single primitive, as
given in Eq. (5), is computed as the cross product of the vector defined from the body frame origin
to the primitive’s centroid ck and the per primitive force F�k

.

Lk = ck × F�k
(5)

A simplified geometry shader code implementation is shown in Listing 3. To output the final
evaluated primitive the geometry shader must make three calls to EmitPrimitve(), one for
each vertex, and a final call to EmitPrimitve() as shown on lines 39 and 42 in the listing
in Figure 3. The force and torque computations are made when processing the first vertex or a
primitive and no operations are executed for the remaining two vertices. The GPU executes many
thousands of geometry shader instances in parallel resulting in the force and torque contributions
of many thousands of primitive being evaluated simultaneously. To retrieve the resulting force and
torque from the GPU a Transform Feedback buffer mechanism is used. The Transform Feedback
feature of OpenGL allows for the retrieval of data from the GPU process to the CPU process via an
OpenGL buffer. Once the force and torque data is returned to the CPU the values are summed to
evaluate the total spacecraft force and torque vectors due to SRP.

The OpenGL method provides an ease of setup and configuration, which the authors believe,
is not present in other techniques. The easy model import process allows the user to select the
level of model vertex detail and materials in familiar CAD software tools. The only user required
input to the modeling is the spacecraft CAD model. The remainder of the inputs such as solar flux,
planetary ephemeris and spacecraft dynamics states are supplied by numerical simulation software.
This modeling approach is integrated into a stand alone tool which can be incorporated into any
trajectory numerical simulation. At each integration step the model is provided with updated vehicle
material and articulation parameters. The pipeline is executed returning the force and torque results
for each primitive. The final total force and torque are found by summing, on the CPU, the force
and torque contributions of each primitive.

MODEL VALIDATION

The initial validation is performed by comparing results from an analytic cannonball model and
a sphere shaped spacecraft model within the OpenGL method. The values for the LAGEOS II
spacecraft, given in Table 1, are used in both evaluations. A spherical model spacecraft is generated
to replicate the LAGEOS II spacecraft parameters. Figure 4 illustrates the spherical spacecraft
model being evaluated using the OpenGL method. The perturbative acceleration due to SRP as
given by the cannonball model and the OpenGL model are given in Table 2. The OpenGL model
yields a resultant torque of 1.51×10−12 Nm. However, it is expected that a perfectly spherical object
yields zero torque. The non-zero torque value returned by the OpenGL model is due to the faceted
nature of the model not being perfectly spherical. It is observed that by increasing the number of
vertices and therefore primitives in the model (better approximating a sphere), the resulting torque
value approaches zero. The agreement between the two simple evaluations provides confidence of
the methods correctness.

Additional validation is carried out using an equivalent implementation and data structures in
MATLAB. The MATLAB validation tool has been used to validate single time step evaluations of
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1 f o r ( i n t i = 0 ; i < 3 ; i++)
2 {
3 i f (i == 0) {
4 dvec3 edge1 = dvec3 (gs_in [ 1 ] . position_modelSpace − gs_in [ 0 ] .←↩

position_modelSpace ) ;
5 dvec3 edge2 = gs_in [ 2 ] . position_modelSpace − gs_in [ 0 ] . position_modelSpace ;
6 dvec3 faceNormal = c r o s s (edge1 ,edge2 ) ;
7 dvec3 nHat_B = n o r m a l i z e (faceNormal ) ;
8 cosTheta = d o t (nHat_B , sHat_B ) ;
9 double P_sun = solarFlux /c ; / / [N/mˆ 2 ] s o l a r r a d i a t i o n p r e s s u r e

10
11 i f (cosTheta > 0 . 0 && cosTheta <= 1 . 0 ) {
12 area = 0 .5∗ l e n g t h (faceNormal ) ;
13 V [ 0 ] = gs_in [ 0 ] . position_modelSpace .xyz ;
14 V [ 1 ] = gs_in [ 1 ] . position_modelSpace .xyz ;
15 V [ 2 ] = gs_in [ 2 ] . position_modelSpace .xyz ;
16 cg = (V [ 0 ] + V [ 1 ] + V [ 2 ] ) / 3 . 0 ;
17
18 forceSrp = −P_sun∗area∗cosTheta∗ (rho_a∗sHat_B + 2 .0∗rho_s∗cosTheta∗←↩

nHat_B + rho_d∗ (sHat_B + ( 2 . 0 / 3 . 0 ) ∗nHat_B ) ) ;
19 torqueSrp = c r o s s (cg ,forceSrp ) ;
20 } e l s e {
21 area = 0 . 0 ;
22 forceSrp = dvec3 ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
23 torqueSrp = dvec3 ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
24 }
25 } e l s e {
26 forceSrp = dvec3 ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
27 torqueSrp = dvec3 ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
28 cg = dvec3 ( 0 . 0 , 0 . 0 , 0 . 0 ) ;
29 area = 0 . 0 ;
30 cosTheta = 0 . 0 ;
31 }
32 / / Pas s t h r o u g h geomet ry s h a d e r p e r v e r t e x v a l u e s
33 gs_out .position_worldSpace = vec3 (gs_in [i ] . position_worldSpace ) ;
34 gs_out .normal_cameraSpace = vec3 (gs_in [i ] . normal_cameraSpace ) ;
35 gs_out .UV = vec2 (gs_in [i ] . UV ) ;
36 gs_out .eyeDir_cameraSpace = vec3 (gs_in [i ] . eyeDir_cameraSpace ) ;
37 gs_out .lightDir_cameraSpace = vec3 (gs_in [i ] . lightDir_cameraSpace ) ;
38 g l P o s i t i o n = gl_in [i ] . g l P o s i t i o n ;
39 Emi tVer t ex ( ) ;
40 }
41
42 E n d P r i m i t i v e ( ) ;

Figure 3. Core OpenGL shader language code of the custom geometry shader. The
force and torque computation as given at lines 18 and 19.

Table 1. LAGEOS II spacecraft parameters used for computation of SRP by cannonball model and
OpenGL model.

LAGEOS II Attribute Value

mass 405.38 [kg]
area 0.2817 [m2]

Φ (at 1 AU) 1.38×103 [W/m2]
Cr 1.12
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Table 2. LAGEOS II spacecraft SRP induced acceleration computed by cannonball and OpenGL
models.

Model SRP Acceleration a�

Cannonball 3.56×10−9 [m/s2]
OpenGL 3.60×10−9 [m/s2]
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Figure 4. A visualized single evaluation of a 1280 primitive, LAGEOS size satellite.
Orange vectors indicate ŝB incident on primitives. Blue vectors indicate primitive
face unit normal vector n̂B

more complex spacecraft model geometries. An example evaluation of a complex spacecraft geom-
etry is shown in Figure 5. In this evaluation a 14750 primitive model of the Mars Reconnaissance
Orbiter (MRO) is processed at a heliocentric distance of 1AU where the sun vector in defined in the
body frame is ŝB = [0,−1, 0]T . Approximate material optical properties are assigned to the space-
craft bus whereas the solar array emmissivity and diffusivity, as quoted by You et. al. are set at 0.12
and 0.05 respectively. The SRP force value as determined by the MRO navigation team post launch
of the spacecraft is a� ≈ 9×10−11 km/m2.17 The OpenGL method computed SRP acceleration is
a� = 8.51×10−11 km/m2. The small difference between these two results is a promising indication
that the OpenGL modeling method can offer a pre-launch SRP force accuracy close to that achieved
after on orbit small force calibration exercises. More promising is to acknowledge that this OpenGL
method result does not yet include modeling of thermal re-radiation and secondary photon impacts.
The MRO navigation team found that thermal re-radiation in particular was a significant contributor
to the total observed small forces due to radiation pressure.17 The authors are confident that future
near term model process additions such as thermal re-radiation and secondary photon impacts will
allow for a fidelity of the spacecraft physical processes.
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Figure 5. A single evaluation of a 14750 primitive, Mars Reconnaissance Orbiter.
Orange vectors indicate ŝB incident on primitives.

COMPUTATIONAL PERFORMANCE

It is evident that computational performance is a goal of the OpenGL modeling method. To
provide a crude demonstration of the increase in evaluation speed afforded by the OpenGL method a
single evaluation of the MRO model shown in Figure 4 is carried out using the MATLAB verification
tool and the OpenGL method. This comparison is termed ’crude’ as the same serial evaluation
implemented in MATLAB would undoubtedly execute in less time if implemented using a non-
interpreted programming language such as C++. However, in a C++ implementation a difference
in execution time would remain making the crude demonstration instructive. The reuslt of the two
evaluations are given in Table 3. While it is clear that the highly parallel OpenGL method evaluates
the model up to three orders of magnitude faster than the serial MATLAB implementation, much
work remains to optimize and further decrease the OpenGL method execution time. Primary areas
of optimization include moving the final per primitive force and torque summation process on to
the GPU and performing analysis as to which computations do and do not require double precision
variables in the shader code. Further, and most importantly, the authors are assessing the potential
to utilize a general computing shader stage called ”compute shader” in which to execute the entire
radiation modeling process.

Table 3. Execution time for single evaluation of MRO model using serial MATLAB verification tool
and the OpenGL method. (OpenGL 4.1 on 2015 MacBook Pro 3.1 GHz Intel Core i7, 8GB Ram, Intel
Iris 6100 1536 MB).

Model Implementation Execution Time [sec] 14750 Primitives

MATLAB 5.7
OpenGL Method 0.002
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ONGOING MODEL DEVELOPMENT

In the SRP analysis of particularly complex spacecraft structures, secondary photon impacts cause
significant variation of the final force and torque results.5 Further work is being undertaken to
implement the ability for the OpenGL method to compute secondary photon impacts. The addition
of a reduced spacecraft thermal inertia model and thermal re-radiation will similarly be developed
for on GPU execution.

CONCLUSION

The ability to resolve the SRP forces on a dynamically articulated spacecraft composed of het-
erogeneous surface materials presents opportunities in the areas of attitude maneuver design and
spacecraft control. This paper demonstrates how complex SRP forces can be resolved more accu-
rately and at high speed using an OpenGL/GPU solution. The greater geometric fidelity provided
by a vertex based model allows easy initialization and subsequent evaluation of spacecraft dynamics
given time varying spacecraft parameters.
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