
(Preprint) AAS 23-146

REINFORCEMENT LEARNING FOR MULTI-SATELLITE AGILE
EARTH OBSERVING SCHEDULING UNDER VARIOUS

COMMUNICATION ASSUMPTIONS

Adam Herrmann*, Mark Stephenson†, and Hanspeter Schaub‡

This work explores the use of reinforcement learning (RL) for the multi-satellite
agile Earth-observing (MSAEO) scheduling problem. In this work, a policy is
trained in a single satellite environment on a fixed number of imaging targets
where the status is updated as they are imaged and downlinked by the spacecraft.
The policy is then deployed in a multi-satellite scenario where each spacecraft
has its own list of imaging targets. Each spacecraft in the multi-satellite scenario
has its own copy of the policy and makes decisions using a local observation of
the state. The spacecraft communicate with one another to update their lists of
targets. While the method applied to this problem generates sub-optimal poli-
cies in terms of global reward, the distributed nature of the architecture simplifies
the training process and required training time. Furthermore, this method readily
scales with changing numbers of satellites as no assumptions are made regarding
the constellation design in training. This autonomous scheduling approach is eval-
uated and benchmarked for four cross-link communication assumptions, namely
free communication, two line-of-sight communication methods, and no commu-
nication. A range of Walker-Delta constellations are explored to determine how
the performance of the trained agents relates to both the communication method
and constellation design. Experimental results demonstrate that the free commu-
nication assumption produces the best performance (i.e. fewer duplicate targets),
and the no communication assumption produces the worst performance (more du-
plicate targets). The performance of the line-of-sight communication assumption
depends heavily on the design of the constellation and how frequently the space-
craft can communicate with one another.

INTRODUCTION

In the multi-satellite agile Earth-observing (MSAEO) scheduling problem, a constellation of
spacecraft attempt to maximize the weighted sum of imaging targets collected and downlinked
while avoiding resource constraint violations. Each spacecraft maintains its own list of imaging
targets, which may be shared between spacecraft. These lists of targets may be modified in multi-
ple ways, either by the ground or another Earth-observing satellite outside of the constellation. An
example of this problem is depicted in Figure 1, where a constellation of SmallSats are tasked with
lists of imaging targets that are modified by both the ground station and a polar-orbiting satellite.

*PhD Candidate, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder,
Boulder, CO, 80309. AIAA Member.

†PhD Student, Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder,
Boulder, CO, 80309. AIAA Member.

‡Professor and Department Chair, Schaden Leadership Chair, Ann and H.J. Smead Department of Aerospace Engineering
Sciences, University of Colorado, Boulder, 431 UCB, Colorado Center for Astrodynamics Research, Boulder, CO, 80309.
AAS Fellow, AIAA Fellow.

1

Polar-Orbiting Spacecraft

SmallSat Constellation

Ground Station

Figure 1: Multi-Satellite Agile Earth-Observing Scheduling Problem.

The traditional approach to EOS planning and scheduling formulates and solves an optimization
problem over some planning horizon. The solution to this problem is sequenced into commands,
which are uplinked to the spacecraft and executed open-loop. Many mixed-integer programming
formulations of the multi-satellite EO scheduling problem are prevalent in the literature and address
challenges specific to EO scheduling.1–4 Both Planet5 and Spire Global6 take MIP-based optimiza-
tion approaches for their constellations. One of the primary challenges in Earth-observing satellite
scheduling that is difficult for optimization-based formulations and solutions to address is replan-
ning in the event of opportunistic science events, missed ground contacts, mismodeling, or task
execution taking longer or shorter than anticipated. Several authors have posed solutions to this
problem. Chien et al. use iterative repair in real on-board planning systems to improve science re-
turn.7–10 Valicka et al. formulate multi-stage stochastic MIP models for a constellation of satellites
that addresses cloud coverage uncertainty, which could necessitate re-planning in deterministic plan-
ning systems.11 The Scheduling Planning Routing Inter-satellite Network Tool (SPRINT) addresses
these issues by utilizing a global planner for constellation-level management and local planners to
handle unexpected opportunities and events.12, 13 In addition to optimization-based solutions, rein-
forcement learning has become popular for the multi-satellite agile EO scheduling problem. Rein-
forcement learning-based approaches are desirable because the planning is inherently closed-loop,
so the decision-making agent is always acting based on the current state of the environment. Wei

2

et al. formulate a scheduling and timing problem for a constellation of Earth-observing satellites
and apply actor-critic reinforcement learning, showing that it can outperform a genetic algorithm in
terms of optimality and execution time.14 The authors do not consider power or data constraints.
Cui et al. apply double DQN for communication scheduling of a constellation of Earth-orbiting
satellites.15 The authors do consider power as a resource and demonstrate that their algorithm is
superior to a genetic algorithm in terms of performance and computation time. Dalin et al. formu-
late a scheduling problem for multi-satellite tasking with both data and power constraints (although
it’s important to note that these are not replenishable resources) and apply the multi-agent deep de-
terministic policy gradient (MADDPG) algorithm to solve the problem.16 The performance of the
MADDPG algorithm is shown to be comparable to other solvers for this problem.

Reinforcement learning is an appealing approach for the MSAEO scheduling problem due to
the ability of policy-based decision-making agents to rapidly plan in a closed-loop fashion, re-
sponding to the rapid changes in target requests. However, multi-agent reinforcement learning
comes with many challenges, especially when decentralized deployment is desired. Multi-agent
environments with limited to no communication between agents appear non-stationary to individ-
ual agents because other agents change the environment with their actions. The problem may be
cast as a decentralized partially observable Markov decision process (Dec-POMDP) to account for
the uncertainty in the environment due to other agents. Several multi-agent robotics problems us-
ing macro-actions have demonstrated the success of such an approach.17–19 However, finding an
optimal solution for a finite-horizon Dec-POMDP is NEXP-complete.20 Determining the observa-
tions required for coordination amongst agents is also non-trivial. If free communication between
agents and full observability of the environment is assumed, the Dec-POMDP can be reduced to a
multi-agent Markov decision process (MMDP).21, 22 Finding an optimal solution for a finite hori-
zon MDP is only P-complete,23 but the joint action space is exponential in the number of agents.
Furthermore, the assumption that each agent has full observability over all other agents is a dubi-
ous one. To avoid the computational requirements of solving a Dec-POMDP or MMDP, this work
explores a problem formulation that treats the environment like it’s an MDP for each individual
spacecraft. The other spacecraft may change the environment, but this happens in a predictable
manner if some assumptions are made about the behavior of the trained agents. The agents trained
following the MDP assumption are deployed in a multi-satellite constellation, where each space-
craft uses its own local observations and policy to make decisions. Performance is benchmarked for
various communication assumptions and various Walker-delta constellation designs to determine
how the communication assumptions affect duplication of effort, global reward, and local reward.
A past iteration of this work was presented at the 2022 Rocky Mountain Guidance, Navigation, and
Controls Conference.24 This work expands upon past work by investigating various communication
assumptions. Furthermore, a slightly modified environment and updated agents are used for this
work.

This paper first describes the single and multi-satellite agile EOS scheduling problems. The
Markov decision process formulations, communication assumptions, and simulation architecture for
each problem formulation are then presented. Four communication assumptions are presented: free
communication, no communication, single-degree line-of-sight communication, and multi-degree
line-of-sight communication. The Monte Carlo tree search and supervised learning-based training
method is discussed, as well as the deployment of the trained decision-making agents in the multi-
satellite environment. Finally, the results that explore how the various communication assumptions
impact performance are presented. The paper then concludes with a summary of the findings and a

3

discussion of future work.

PROBLEM FORMULATION

Single Satellite Agile Earth-Observing Satellite Scheduling Problem

Overview In the single satellite agile Earth-observing satellite (SSAEO) scheduling problem,
a spacecraft in low-Earth orbit attempts to maximize the weighted sum of targets collected and
downlinked while avoiding data buffer, reaction wheel speed, and battery charge resource violations.
Over the course of its three orbit planning horizon, the spacecraft has a set of 135 targets along its
�ight-path available, each with its own priority (1-3). This set of targets is referred to asT . The set is
ordered by spacecraft access time. The three orbit planning horizon is split into 45 decision-making
intervals, each of which last for a total of six minutes.

Markov Decision Process FormulationThe Markov decision process (MDP) formulation for the
SSAEO scheduling problem is described in detail in Reference 25. A Markov decision process is a
sequential decision making problem in which a decision-making agent selects an action,ai , in some
state,si , based on a policy,� : S � A . The agent transitions to a new state,si +1 , and receives a
reward,r i , based on the reward function of the MDP,R : S � A ! R . MDPs follow the Markov
assumption, which states that the next state is conditionally dependent only on the current state and
action:

T(si +1 jsi ; ai) = T(si +1 jsi ; ai ; si � 1; ai � 1; :::; s0; a0) (1)

The state space,S, must be constructed to maintain the Markov assumption. In the SSAEO
scheduling problem, the state space is given as follows to adhere to this assumption as closely as
possible:

• ECEF spacecraft position,Er

• ECEF spacecraft velocity,Ev

• Image tuples for targetscj 2 U

– Target position in the spacecraft Hill frame,H r j

– Priority, pj

• L 2 norm of Modi�ed Rodrigues Parameter (MRP) attitude error,jj � B=R jj

• L 2 norm of angular attitude rate vector,jjB ! B=N jj

• Reaction wheel speeds,

• Battery charge,z

• Eclipse indicator,k

• Stored data in buffer,b

• Data transmitted,h

• Ground station access indicators

4

Information on the spacecraft geometry, attitude states and rates, imaging target states and prior-
ities, and spacecraft resources are included in the state space. Eclipse indicators and ground station
access indicators are also included in the state space.

The action space,A is given as follows:

• Charge

• Desaturate

• Downlink

• Image targetc1 2 U

...

• Image targetcj 2 U

In the charging mode, the spacecraft points its solar panels at the sun to charge its batteries.
In the desaturation mode, the spacecraft points its solar panels at the sun to maintain power and
simultaneously maps reaction wheel momentum to thrust commands to remove momentum from
the wheels. In the downlink mode, the spacecraft points its antenna in the nadir direction and
downlinks data when a ground station is in view.

Finally, the last few modes deal with imaging. Because the spacecraft cannot image all targets
in T at any given timestep, only the next few upcoming targets are included in the action space for
imaging. The subset of upcoming targets,U , is de�ned in Equation 2, whereJ is the number of
targets in the state and action space.D is a subset ofT that contains the targets that have been
imaged by the spacecraft or passed by already.

U = f cj 2 (T � D) j 8 j 2 [1; J]g (2)

Finally, a reward function is created that accounts for a.) the desire to avoid resource constraint
violations and b.) the desire to image and downlink targets. The reward function is given in Equa-
tion 3.

R(si ; ai ; si +1) =

8
>>>>>>>>>><

>>>>>>>>>>:

� 1 if failure

1
45

P jT j
j H (dj) if : failure^ ai is downlink

0:1
45

H (wj) if : failure^ ai is imagecj

0 otherwise

(3)

The �rst condition checked for is the failure condition. If the spacecraft exceeds the maximum
reaction wheel speeds, expends all charge in the battery, or over�ows the data buffer then the failure
condition is true and the agent receives -1 reward.

failure = (z = 0 _ any(
̂ � 1) _ b � 1) (4)

5

The second condition checked for handles the downlink of targets. If the downlink mode occurs,
theH (dj) function is computed for all targets using a downlink state,dj , which represents whether
or not targetj has been downlinked. The total reward is summed and divided by 45, the total number
of planning intervals, to ensure the upper limit for this component of the reward is equal to 1.

H (x j) = (1 =pj) if : x j i ^ x j i +1 (5)

If the image targetcj mode is initiated, theH (wj) operator for targetcj is computed, returned,
and scaled by0:1=45. The variablewj represents if the target has been imaged or not. The addition
of this small positive reward helps to make reward less sparse and ensures that the decision-making
agent still has incentive to image after all downlink windows have been passed.

Multi-Satellite Agile Earth-Observing Satellite Scheduling Problem

Overview In the multi-satellite agile Earth-observing satellite (MSAEO) scheduling problem,
more than one spacecraft attempt to maximize the number of images collected and downlinked
while avoiding resource constraint violations. In this work, the decision-making agents on-board
each spacecraft attempt to maximize local reward and do not coordinate with other spacecraft to
maximize global reward. The spacecraft have access to a global set of targets,M , and each space-
craft k has its own set of targets,T k . Spacecraft may share targets withinM . The satellite con-
stellations are designed using the Walker-Delta notation. TheN satellites are distributed evenly
betweenP orbit planes. The orbital planes are distributed at360=P deg intervals of the longitude
of ascending node. Relative phasing may be prescribed in Walker-delta constellations, but is not in
this work.

The Markov decision process formulation of the problem is largely unchanged, at least for in-
dividual decision-making agents. The complete state space is now given byS : f s0

i ; � � � ; sk
i g, but

each decision-making agent maintains an observation over its own state,sk
i . The state changes with

the joint action space,A : A 1 � � � � � A k . The transition function is therefore a function of the
state space and joint actions,si +1 ; r 0

i ; � � � ; r k
i � G(si ; ai). Likewise, the joint reward function is a

function of the state space and joint actions,R (s;a) = (R0(s;a); � � � ; Rk (s;a)) . For the individual
decision-making agents, the reward function in Equation 3 is the same, but theH (x j) function now
sweeps through the global target setM to determine if a target was imaged or downlinked already.
If another spacecraft already imaged or downlinked the target, no new reward is returned.

The spacecraft may have the ability to communicate with one another to update whether or not
targets inT k have already been imaged or downlinked. The spacecraft do not update their tar-
get lists based on contact with ground stations. Only inter-satellite communication is considered.
Several communication assumptions are explored in this work, including no communication, free
communication, and line-of-sight communication. During the communication step at the end of
each decision interval, the spacecraft that have communicated with one another during the previ-
ous interval of simulation loop through the lists of targets available from other spacecraft and mark
which targets have already been imaged or downlinked, which in turn prevents them from being
added toU k and selected for imaging in the future. The four cases are as follows:

Free CommunicationFree communication models a scenario where additional communication
infrastructure supplements the imaging satellites, such as a communications constellation. In the
free communication case, every satellite is able to share imaged target lists with every other satellite
at the communication step of every decision interval; that is, ifci 2 T j is marked as imaged by

6

spacecraftj , ci is also marked as imaged by any other spacecraftk for whichci 2 T k . This behavior
is illustrated in Figure 2d. Note that even with communication, satellites do not actively coordinate
their next actions, so two satellites can still image the same target if they make the decision to do so
at the same interval.

Single Degree Line-of-Sight CommunicationSingle degree line-of-sight models a constellation
with limited inter-satellite communication bandwidth. Line-of-sight connectivity is de�ned as a
straight-line connection between two satellites unoccluded by Earth plus a 100km layer of atmo-
sphere. Each satellite updates its list against that of direct line-of-sight neighbors. Information is
only able to travel one degree through the network of satellites in a single communication step: If
satellitesi $ j $ k have line-of-sign connections but not betweeni 6$ k, k will receive updates
from j 's list but noti 's list.

Multi-Degree Line-of-Sight CommunicationAs opposed to the single degree model, multi-degree
line-of-sight assumes satellites have high bandwidths and fast communication speeds. If at the com-
munication step there is any connection in the satellite network between two satellites, they will
share imaged satellite information. For example, if satellitesi $ j $ k but not betweeni 6$ k, k
will receive updates fromi 's list via j .

No CommunicationThe no communication case models the satellites as independent agents
without inter-satellite communication capabilities. Satellites never share information about imaged
targets with each other; ifci 2 T j is marked as imaged by satellitej , it does not affect any other
satellitek's T k .

Simulation Architecture

Both the single and multi-satellite agile EOS scheduling problems are simulated using the Basilisk*

astrodynamics software architecture, a high-�delity simulation framework for astrodynamics prob-
lems.26 Each of the simulations are wrapped within a Gym environment, which is a standard inter-
face for reinforcement learning problems that allows decision-making agents to pass action to the
simulation and receive observations and rewards in return, which is depicted in Figure 3.

The Basilisk simulation for both the single and multi-satellite agile EOS scheduling problem con-
tains an attitude control system with reaction wheels and thrusters, a power system with batteries,
solar panels, and power sinks, and an on-board data storage system that includes a transmitter, in-
struments, and a data buffer. Ground stations on the surface of the Earth are also simulated to ensure
the transmitter only downlinks when a ground station is in view. The simulation architectures are
described in detail in References 24 and 27. Furthermore, the source code for each of the simulation
architectures may be found on the develop branch of the basilisk-gym-interface library† under the
namesmultiTgtEarthEnvironment andmultiSatMultiTgtEarthEnvironment .

METHODS

MCTS-Train

The agents are trained using the MCTS-Train architecture, a training pipeline inspired by Alp-
haZero that is described in detail in References 25 and 27. A diagram of the MCTS-Train pipeline is

* https://hanspeterschaub.info/basilisk
†https://bitbucket.org/avslab/basilisk-gym-interface

7

(a)No communication. (b) Single degree line-of-sight communication.

(c) Multi degree line-of-sight communication. (d) Free communication.

Figure 2: Communication Methods.

provided in Figure 4. In summary, MCTS-Train utilizes Monte Carlo tree search, an online search-
based algorithm commonly used for RL problems, to generate solutions over the planning horizon
as well as an estimate of the state-action value function,Q̂(s; a), in the form of thousands of data
points. The state-action value estimates are regressed over using various neural networks, each with
a unique combination of hyperparameters, to generate a neural network approximation of the state-
action value function,Q� (s; a). The trained state-action value functions are then deployed in the
environment for validation using the following policy:

� (s) = arg max
a

Q� (s; a) (6)

At the core of the MCTS-Train pipeline is Monte Carlo tree search (MCTS). At each step through
the environment, MCTS runs a number of simulations in the environment to determine the next best
action to take. During the simulation step, MCTS selects the action that maximizes the current
estimate of the state-action value function (represented in tabular form at this point, based on the
simulated states) and the exploration term. If MCTS reaches a state it has never visited before, it ini-
tializesQ̂ and executes a rollout policy, a heuristic policy that avoids resource constraint violations
and downlinks or images in the nominal states.

8

	Introduction
	Problem Formulation
	Single Satellite Agile Earth-Observing Satellite Scheduling Problem
	Overview
	Markov Decision Process Formulation

	Multi-Satellite Agile Earth-Observing Satellite Scheduling Problem
	Overview
	Free Communication
	Single Degree Line-of-Sight Communication
	Multi-Degree Line-of-Sight Communication
	No Communication

	Simulation Architecture

	Methods
	MCTS-Train
	Deployment

	Results
	Single Plane
	Reward
	Target Duplication

	Multiple Planes
	Reward
	Target Duplication

	Conclusions
	ACKNOWLEDGEMENT

