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MONTE CARLO TREE SEARCH WITH VALUE NETWORKS FOR
AUTONOMOUS SPACECRAFT OPERATIONS

Adam Herrmann* and Hanspeter Schaub'

On-board spacecraft task scheduling is a requisite capability for the autonomous
exploration of challenging operational environments. Task execution time and
resource usage are heavily dependent on the dynamics of the system. Typically,
solutions to the spacecraft task scheduling problem consider a limited model of the
spacecraft tasks and dynamics or require large amounts of computational power,
severely limiting on-board planning and scheduling capability. This paper pro-
poses offline, high-fidelity dynamics simulations and Monte Carlo tree search
(MCTS) to compute solutions to the Earth-observing satellite scheduling prob-
lem, which are then generalized in a state-action value function approximator that
can be executed in real-time onboard spacecraft. MCTS and the state-action value
function approximator are deployed in a Basilisk Astrodynamics Software Archi-
tecture simulation and compared on the basis of reward, downlink utilization, and
computational overhead.

INTRODUCTION

Spacecraft task scheduling is a crucial activity that must be performed for all missions. Many re-
searchers investigate ground-based scheduling techniques, but few investigate on-board task schedul-
ing techniques that grant the spacecraft full control over operational decisions. Full operational con-
trol eliminates planning latency, reduces operational cost, and allows the spacecraft to respond to
unexpected events and opportunities. However, several challenges preclude full operational auton-
omy. Limited on-board computational resources and the requirement for verifiable safety guarantees
necessitate solutions to on-board scheduling problems that are safe, repeatable, and can be executed
using little computational resources.

Of particular interest for autonomous operations is the Earth-observing satellite (EOS) scheduling
problem, where one or more Earth-orbiting satellites must make operational decisions to collect and
downlink data to one or more ground stations. On-board solutions to the Earth-observing satellite
scheduling problem are typically limited in ability but provide large value to spacecraft missions.
Chien et al. discuss how weekly ground-based planning and on-board plan repair is used on the
Earth-Observing One mission, saving over $1M per year in operations cost.! This on-board planner
uses a limited model of the spacecraft tasks and is reserved for replanning activities only if a ground-
based plan fails. More recently, Chien et al. show that ground-based planning tools can be combined
with continuous activity planning on board the IPEX CubeSat to successfully manage spacecraft
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resources such as power, file storage, and downlink bandwidth in the event that onboard replanning
is required.> While this solution does not achieve full on-board autonomy, it shows that resource
management may be accomplished with on-board scheduling software.

Ground-based spacecraft scheduling techniques have been studied extensively, but typical formu-
lations of the problem consider limited operational modes or data, power, and attitude control system
dynamics.> Furthermore, the techniques used to solve these formulations preclude on-board plan-
ning due to computational complexity and the types of planning tools used, e.g. Systems Tool Kit
(STK). For example, Spangelo et al. formulate the Earth-observing satellite scheduling problem
as an optimization problem where operational decisions such as collecting imagery, downlinking
data, and charging batteries are considered to maximize downlinked data and keep the spacecraft
within its resource constraints.® Spangelo et al. assume linear dynamics between decision intervals
and develop techniques better suited for ground-based planning due to the disparate tools used for
planning.

While other formulations of the EOS scheduling problem make linearity assumptions or consider
only limited operational decisions, this formulation of the EOS scheduling problem limits linearity
assumptions and includes operational decisions outside of downlinking data. Basilisk*, an open-
source astrodynamics and flight software simulation architecture, is leveraged to construct a com-
plex spacecraft operations simulation that couples the astrodynamics, attitude dynamics and con-
trols, and power and data management of an Earth-observing satellite.” The high-fidelity Basilisk
simulation eliminates many assumptions and provides realistic data to the algorithms discussed
within this paper.

In recent years, reinforcement learning has become a viable option for operations in physical
systems due to advances in the field. High-fidelity dynamics simulations can be leveraged to train
neural networks offline and deploy them on board physical systems for on-the-fly planning. Sadeghi
et al. apply reinforcement learning to the collision avoidance problem, using Monte Carlo policy
evaluation to train an unmanned aerial vehicle to avoid collisions in the real world with simulation
data generated in Blender.® In the spacecraft domain, Harris et al. show how offline reinforcement
learning methods like Proximal Policy Optimization combined with a safety shield can successfully
plan in an Earth-observing satellite environment to collect data while taking into account modes
for battery charging and reaction wheel desaturation.”>!® While Harris et al. focus on shielded
techniques that can provide safety guarantees for reinforcement learning agents, this work focuses
on Monte Carlo tree search (MCTS) and value function approximation as a start-of-the-art technique
for spacecraft scheduling, inspired by the success of similar algorithms at the game of Go. Silver
et al. use a similar technique to train a Go-playing agent to achieve superhuman performance.'!
Unlike Silver et al., this paper does not execute the neural network within the MCTS algorithm
to continually improve upon the policy and value network. This paper explores using MCTS to
generate high-quality value-estimates that are used train a neural network for real-time execution.

In this paper, the EOS scheduling problem is formulated as a Markov decision process (MDP)
and high-fidelity Basilisk simulations are leveraged to compute solutions to the EOS scheduling
problem. Monte Carlo tree search, specifically the Upper Confidence Bound for Trees (UCT),!? is
applied to step through a Basilisk simulation and compute the schedule for random sets of initial
conditions in finite planning horizons. The value estimates computed during Monte Carlo tree
search are then used to train a feedforward neural network, which serves as the state-action value
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Figure 1: Scheduling of Flight Modes

function approximator. After each training cycle, the state-action value function approximator is
used to rapidly compute solutions to the EOS scheduling problem on a test set of initial conditions
and performance is measured.

This paper first describes the high-fidelity Basilisk simulation formulated as an OpenAl Gym
environment that simulates a representative EOS scheduling problem. The MDP formulation of
the EOS scheduling problem is discussed, as well as the specific MCTS algorithm used to solve
the problem. The design of the feedforward neural network that serves as the state-action value
network function approximator is also shown. The problem formulation is then followed up with a
discussion of the results and a conclusion.

PROBLEM FORMULATION
Earth-Observing Spacecraft Simulation

The Earth-observing satellite scheduling problem is simulated using the Basilisk Astrodynamics
Software Framework. In this formulation of the Earth-observing satellite scheduling problem, a
satellite in a 500-km orbit must make operational decisions to collect and downlink science data
to any of seven different ground stations around the Earth. A complete diagram of the associated
Basilisk modules may be found in Figure 2. Each module in the diagram represents a separate,
modularized block of code that receives inputs from other modules, performs computations, and
sends outputs to modules subscribed to its messages. Each module falls into one of two categories:
flight software or simulation. Each module is added to a separate task grouping, which may be run
at its own dynamics rate. There are four flight software tasks - nadir point, MRP control, sun point,
and reaction wheel desaturation. Three dynamics tasks - Spice, dynamics, and environment - are
also defined. The connections in the diagram represent a message passing interface (MPI) path or
standard interface between two or more modules.
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The modularity and speed of Basilisk allows for a high-fidelity simulation with cross-couplings
between disparate spacecraft subsystems to be constructed and quickly executed. Furthermore, the
framework provides the opportunity to simulate real flight software to be used on board a spacecraft.
The simulation architecture described within this paper lends itself to future autonomy work that
may one day fly on board a real spacecraft.

The Basilisk simulation includes a full attitude control system to simulate a representative space-
craft mission where many systems are coupled to the attitude dynamics. The hillPoint and
inertial3D modules compute the associated reference frames using position and attitude mes-
sages from the simple_nav module. The attTrackingError module receives the refer-
ence frames to compute the MRP tracking error, which is an input to the mrpFeedBack mod-
ule. The mrpFeedback module is used to control the reaction wheels onboard the satellite to
fulfill the pointing requirements of each flight mode. The rwStateEffectors are generated
from the Basilisk rwFactory and are modeled after the Honeywell HR16 reaction wheels. Mo-
mentum management is also simulated using Basilisk. The Basilisk momentum dumping module
thrMomentumDumping is implemented to map reaction wheel momentums to thruster impulse
requests, which are fulfilled by attitude control thrusters. The thrusterDynamicEffectors
are generated using the Basilisk thrusterFactory and are modeled after the Moog Monarc-1
thrusters. The thrusterDynamicEffectors are labeled as TH in Figure 2. A fuel budget for
momentum dumping is not modeled.

In addition to attitude control, several perturbations are modeled. The Basilisk densityModel
provides inputs to a facet drag effector module, facetDragEffector. An external torque is also
applied to the spacecraft to ensure the reaction wheels build momentum over the planning horizon
using the extForceTorque module.

A power system is simulated in Basilisk, leveraging its high-fidelity dynamics capabilities to ac-
curately compute power consumption and generation. The solarPanel module receives state
information from spacecraftPlus and the eclipse data from the ec1ipse module to compute
power generation over a planning interval. Incidence angle, panel efficiency, and panel area are all
taken into account. Furthermore, the instrumentPowerSink, transmitterPowerSink,
and reactionWheelPower modules are also included in the simulation to model power con-
sumption. Finally, a simpleBattery is modeled. The battery receives rates of power consump-
tion from all power nodes and computes net power generation or consumption, maintaining an
estimate of the state of charge within the battery.

Lastly, an on-board data management system is modeled. A simpleInstrument module
is implemented to collect data during observation modes. The instrument sends the data to a
simpleStorageUnit, which stores the data until a downlink mode is initiated and a ground sta-
tion is accessible. The spaceToGroundTransmitter removes the data from the storage unit
and downlinks the data to one of seven groundLocat ion instances, which simulate the different
ground stations. The spacecraft antenna is omni-directional, and it is assumed that nadir pointing
will suffice to communicate with a ground station that is within line of sight. Table 2 provides the
parameters of each ground station. The ground stations are selected from a list of government and
commercial stations utilized by NASA’s Near Earth Network.'> A Boulder, CO ground station is
included as well.

The key parameters for each subsystem of the simulated satellite may be found in Table 1. The
parameters are selected to create a balanced problem in which the satellite must manage its resources



Table 1: Spacecraft Parameters

General Spacecraft Parameters

Mass 330 kg
Dimensions 1.38 x 1.04 x 1.58 m
Power System

Solar Panel Area 1.0 m?
Solar Panel Efficiency 0.20
Instrument Power Draw 5W
Transmitter Power Draw 5SW
Battery Capacity 20 Whr
Attitude Control System

Max Wheel Speeds 6000 RPM
Max Momentum 50 Nms
Max Wheel Torque 0.2 Nm
Max Thrust 09N
Thruster Min On Time 0.02s
Data & Communications System

Data Buffer Storage Capacity 1 GB
Instrument Baud Rate 4 Mbps
Transmitter Baud Rate 4 Mbps

Table 2: Ground Station Parameters

Location Latitude Longitude | Elevation (m) | Min. Elevation Angle
Boulder, CO (USA) 40.0150 N | 105.2705 W 1624 m 10 deg
Ka Lae, HI (USA) 19.8968 N | 155.5828 W 9.0 m 10 deg
Merritt Island, FL (USA) | 28.3181 N | 80.6660 W 09144 m 10 deg
Singapore, Malaysia 1.3521 N | 103.8198E 15.0 m 10 deg
Weilheim, Germany 47.8407 N 11.1421 E 563 m 10 deg
Santiago, Chile 33.4489S | 70.6693 W 570 m 10 deg
Dongara, Australia 29.2452S | 1149326 E 34.0m 10 deg

to achieve the objectives within the planning horizon.

The spacecraft tasks are represented by four separate flight modes - observation, downlink,
charge, and desaturation. Figure 1 provides an example of the different flight modes. These flight
modes are used to manage resource constraints of the simulated spacecraft and achieve the objec-
tives of the mission. During each flight mode, different Basilisk flight software tasks are enabled
or disabled. Furthermore, the power and data modules associated with the instrument or transmitter
are also turned on or off. Table 3 displays which modules and tasks are enabled and disabled in
the flight modes. If a module or task provided in Figure 2 is not listed in the table, it is on for the
duration of the simulation.

Gym Environment

Building upon the work in Harris et al, an open-source Gym environment* is created to wrap the
Basilisk simulation described above. The Gym environment allows for an agent to step forward in

“http://github.com/atharris/basilisk_env
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Table 3: Flight Modes

Mode Observation | Downlink | Charge | Desaturation
Nadir Point Task Enabled Enabled | Disabled Disabled
Sun-Point Task Disabled Disabled | Enabled Enabled
MRP Control Task Enabled Enabled Enabled Enabled
RW Desat Task Disabled Disabled | Disabled Enabled
Instrument Power Model On Off Off Off
Instrument Data Model On Off Off Off
Transmitter Power Model Off On Off Off
Transmitter Data Model Off On Off Off

the simulation by switching into different spacecraft modes (actions). The agent receives a reward
based on the action taken and the subsequent system state. After the action is taken and the reward
is received, the agent selects a new action and the process continues until the end of the planning
horizon or until the agent fails. This process is displayed in Figure 3.

action

Environment
(Basilisk

Simulation)

reward, observation

Figure 3: OpenAl Gym Framework

The randomized initial conditions of the simulations are found in Table 4. A narrow range of
orbital parameters are selected to expedite training. The eccentricity, inclination, longitude of the
ascending node, and argument of periapsis are all bounded so the satellite is restricted to fewer
states and the agent does not need to learn how to operate in all low-Earth orbits. The satellite
begins with the batteries at less than 50% capacity and no data in the buffer at the start of each
planning horizon. All of data that the satellite downlinks to the ground stations is collected during
the planning horizon. While this is not necessarily representative of all planning horizons a satellite
may encounter, it provides an interesting problem for the algorithms discussed within this paper to
solve. All simulations are run on a 2.8 GHz Quad-Core Intel Core i7 with 16 GB of RAM.

A test set of 100 different initial conditions is generated from the table below. The first 10 sets
of initial conditions are used to benchmark performance of Monte Carlo tree search. The value
network is deployed on this subset of initial conditions as well as the full set.

Markov Decision Process

The Basilisk simulation is formulated as a finite-horizon deterministic Markov Decision Process,
defined by the 5-tuple M = (S, A, G, R,~). The planning horizon is split up into planning intervals



Table 4: Simulation Parameters

Orbit

Semi-Major Axis, a 6371+500 km
Eccentricity, e U[0, 0.01]
Inclination, 7 U[40, 60] deg
Long. of Ascend. Node, €2 UI0, 20] deg
Arg. of Periapsis, w UI0, 20] deg
True Anomaly, f U[0, 360] deg
Spacecraft

Disturbance Torque, Tcx 2 x 10~* Nm
Attitude Initialization, o 5,7 U[o0, 1.0] rad
Rate Initialization, B WB/N U[-1e-05, 1e-05] rad/s
Reaction Wheel Speeds U[-4000, 4000] RPM
Initial Battery Charge U[5, 10] Whr
Planning Horizon

Maximum Simulation Time, pax 90 minutes
General Mode Length, ?general 3 minutes
Desaturation Mode Length, tgesa 6 minutes

that span the length of the planning horizon. The end of the planning horizon, t,x, is defined in
minutes. The final interval is defined as the interval that ends with t; > tnax-

The variable S is defined as the state-space for the problem and is shown in Equation (1). Inertial
position and velocity unit vectors, expressed in inertial frame N components as Ni and V9, are
included in the state space so the agent can correlate the orbital parameters of the satellite to high-
value states when ground station access is approaching. Ground station access, ¢;, is defined for
each ground station location j as the percentage of the planning interval ¢ that the ground station is
visible to the spacecraft. Because access is computed at the end of the interval, the inertial position
and velocity give the agent a sense of when access can be anticipated so the agent can enter a
downlink mode before an access window has already passed. The percentage of the total planning
horizon that has already passed, p, is also included in the state space. Because the problem is a finite-
horizon problem, value at the start of the simulation (before any downlink windows have passed)
is typically higher than the value at the end of a simulation (when the majority of access windows
have already passed). By including p, the function approximator can compute more accurate value
estimates.

S = {Nf‘vavo-B/Rast/Nvﬂazak7b7 h, q]7p} (D

To keep the satellite within resource constraints, several other states are added to S. The Modified
Rodrigures Parameter (MRP) attitude error, 05,5, the inertial angular velocity, Buwpg /N> and reac-

tion wheel velocities over the maximum allowable velocities, Q, are included to manage the attitude
determination and control system. The percent charge of the battery, z, an eclipse indicator, k, and
the percent fill of the data buffer, b are also included in the state space so the agent can correlate
other constraint violations with low-value states so corrective actions may be taken (ie. charging
batteries and downlinking data). The percentage of the planning interval spent downlinking data, h,
is also included in the state space. This state represents how much of the access time is utilized by
the satellite.

A = {Observation, Downlink, Charge, Desaturation } ()



The action-space, A, includes the four separate flight modes previously described - observation,
downlink, charge, and desaturation. The observation, downlink, and charging modes last for three
minutes each, Afgeneral. A timespan of three minutes was selected to ensure attitude error is negli-
gible by the end of the planning interval. The desaturation mode, however, lasts for a total of six
minutes, Atgesat, t0 give the satellite enough time to dump the momentum in the reaction wheels.
During the observation mode, the instrument is pointed in the nadir-direction of Earth to collect
data. Data is accumulated in the data buffer and power is consumed at the rates provided in Table 1.
During the downlink mode, the transmitter is pointed in the nadir-direction of Earth. Data is only
downlinked if a ground station is accessible to the satellite, but the transmitter is powered on for the
duration of the interval. During the charging mode, the solar panels are pointed in the direction of
the sun to maximize the amount of charge. The transmitter and instrument are turned off.

Several reward functions, R, were explored to produce optimal behavior. The selected reward
function is defined as the sum of the amount of data downlinked over each planning interval in
megabytes, H;, multiplied by the discount factor, v = 0.99, raised to the interval number, 7. A +1
success bonus is included in the reward if the agent reaches the end of the planning horizon without
failing. The success bonus is included so the agent will finish a planning horizon without failing if
no downlink windows remain. A non-discounted success bonus is selected so the satellite does not
utilize the desaturation mode to quickly finish the planning interval in a mode that consumes little
power.

H; if failure
R(s,a) = H; + 1if t > tp. and !failure 3)
0 if failure

In the EOS Markov Decision Process, a failure constitutes a violation of resource constraints. Zero
charge in the battery, reaction wheels exceeding their maximum speeds, and an overflow in the data
buffer all constitute failures. Failures are evaluated at the end of a planning interval <.

failure if z = 0, any(fl >1),orb>1 ()

The transition function, G, is a generative transition function integrated forwards in time by a
Basilisk simulation formulated as a Gym environment.

METHODS
Monte Carlo Tree Search

Monte Carlo tree search, specifically the Upper Confidence Bound for Trees (UCT),'? is used to
generate spacecraft schedules that maximize the reward over the planning horizon. The full algo-
rithm may be found in Appendix: Algorithms. In UCT, the agent runs a pre-determined number
of simulations at each step through the environment to estimate a state-action value function, @),
and associated policy w(s) = arg max Q(s, a) by performing directed searches that exploit inter-

a

mediate state-action value estimates and undirected searches that execute a rollout policy.'* The
rollout policy selects random actions, but defaults to downlinking data whenever a ground station
is in view and there is data within the buffer. Figure 4 demonstrates how UCT performs a single
simulation. This process is repeated for a predetermined number of simulations at each step through
the planning horizon.
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Figure 4: Upper Confidence Bound for Trees

In reinforcement learning, the state-action value function @ is an estimate of how good a certain
state and action are - i.e. how much future reward can be expected given the current state and
action. The optimal state-action value function is equal to the current reward plus the expected
value of the next state. The optimal policy is that which returns the same action as the optimal
state-action value function. The optimal state-action value is formally given in Equation (5). This
work does not claim to estimate the optimal state-action value function. Instead, this work uses
the state-action value function generated in UCT to train a neural network as a state-action value
function approximator.

Q*(s.a) = R(s,a) + vE[V*(s)) 5)

The depth of search, d, and exploration constant, c, of UCT are both diligently set to achieve optimal
results. The depth of the search is set dynamically at each step through the environment so the
algorithm always terminates at the end of the planning horizon, ¢y.x. An exploration constant
¢ = 100 is selected to balance exploration of the search space and exploitation of the intermediate
state-action value function.

Value Function Approximation

Q-value estimates are generated by Monte Carlo tree search on randomly generated sets of initial
conditions. The action-value estimates are used to train a neural network that serves as a value
function approximator. The training pipeline is shown in Figure 5. MCTS is used to compute state-
action value estimates and spacecraft task schedules on five sets of initial conditions at a time. After
each set of five runs, the state-action value estimates are added to the training set and used to train a
feedforward neural network.

A feedforward neural network is constructed using the Keras API *. All activation functions,
loss functions, and dropout functionality described within this section are implemented using the
standard functionality available in the Keras API. The mean squared error and mean absolute error
of the training and validation sets are minimized with the neural network parameters given in Table
5. Dropout, a technique applied to large neural networks that randomly drops neurons and their
weights during training, is used for each hidden layer within the neural network to significantly

*http://keras.io
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Table 5: Feedforward Neural Network Parameters

Layer Activation | Size | Dropout

Input — 23 —
Hidden 1 Tanh 100 0.25
Hidden 2 Tanh 150 0.25
Hidden 3 Tanh 600 0.25
Hidden 4 ReLLU 200 0.25
Hidden 5 ReLLU 100 0.25
Output — 4 —

reduce overfitting on the training set and reduce error on the test set.!> Tanh activation functions as
the first three hidden layer activation functions and Re LU activation functions for the final two hid-
den layer activation functions also prove to result in better convergence as compared to Sigmoid
or Softmax. Tanh activation functions are selected for the first three hidden layers because the
state inputs are normalized between [-1, 1], allowing for intermediate computations that are not
restricted to an output range of [0, 1]. ReLU activation is selected for the last two hidden layers to
restrict the neuron output to the range [0, 1]. State-action value should never be less than zero in
this MDP formulation.

Network loss and error plots may be found in Figure 6. An Adam optimizer using mean absolute
error as the loss function results in the best convergence for both mean absolute and mean squared
error. Other optimizers and loss functions result in sub-optimal performance for the problem but are
not shown here for brevity.

RESULTS
Monte Carlo Tree Search Performance

To correctly parameterize the MCTS algorithm and generate a performance baseline, MCTS is
executed on the first 10 out of the 100 test sets. Downlink utilization, total reward, and execution
time are measured as the number of simulations in MCTS is varied between 5 and 50. Downlink
utilization is defined as the amount of time the satellite spends downlinking to the ground stations

11
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Figure 6: Value Network Training and Validation Error

over the total amount of time the ground stations are within range of the satellite. In some instances,
no solution is 100% optimal in regards to this metric. This is due to the fact that the simulation can
start immediately over a ground station, before the agent has time to collect data. While this results
in some solutions that at best achieve 50-80% downlink utilization, it provides MCTS a challenging
problem in which data must be immediately collected and immediately downlinked to maximize the
reward.
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Figure 7: MCTS Performance - First 10 Initial Conditions

Due to the tradeoff between reward achieved, Q-estimates generated, and execution time, 50
simulations is selected as the number of simulations to use to train the value network. 50 simulations
is adequate to generate a quality solution and achieve the maximum amount of reward possible in
many cases. However, in some cases, 50 simulations does not achieve the maximum amount of
reward shown to be possible. In these cases, 10 or 25 simulations results in more reward. In fact,
on average, 10 and 25 simulations results in more reward than 50 simulations. In Figure 7b, 50
simulations achieves about 5 less reward on average. In Figure 7a, 50 simulations results in a 5%
reduction in ground station utilization. This is likely due to the greedy downlink within the random
rollout policy. It is possible that fewer simulations can result in a better solution if the state action
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value function computed in MCTS is higher for the optimal state-action pairs. In this case, fewer
simulations that more quickly find the reward will result in a higher state-action value estimate
because exploration is reduced and sub-optimal reward is not used to update the state-action value
function. While maximizing reward is an important part of this research, so is keeping the spacecraft
within its resource constraints. Therefore, high-quality Q-function estimates are weighted more
heavily than maximized reward, especially when only a 5% difference in question. More data
generated over more simulations per step is deemed more important than a small increase in reward
for value network performance.

In Figure 8, the execution time for MCTS is displayed. On average, it takes nearly three hours
for a single run of MCTS to complete due to the sheer number of spacecraft simulations that must
be executed. Furthermore, Basilisk requires that simulations are reset to the beginning and stepped
through to the current state once again after a single simulation of MCTS within a step forward in the
environment. The execution time of MCTS could be greatly reduced in future work if functionality
is built into Basilisk to save off copies of a simulation and restart them at a later time. However, even
with this modification, MCTS itself is not suited for on-board scheduling and should be reserved as
a ground-based planning tool.
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Figure 8: Execution Time

Value Network Deployment

The state-action value network is incrementally trained on five sets of Q-estimates at a time, which
are generated by individual runs of MCTS on random initial conditions. After each training cycle,
the value network is executed on the first 10 sets of test conditions and the performance is compared
to the average of 50-simulation MCTS. In Figure 9, the downlink utilization and reward are plotted
as the value network completes episodes. The performance of the value network eventually matches
MCTS in both reward and downlink utilization at around 75 simulations. It is perplexing that the
value network can perform better than the algorithm used to generate data to train it. However, this
is possible due to the wide-array of experience the value network is trained on and demonstrates the
ability of value function approximators to learn from experience.

While the state-action value function is able to match the performance of 50-simulation MCTS
in terms of reward and downlink utilization, the policy it has learned does not manage the states
of the spacecraft well, and most simulations fail to complete the entire planning horizon. This
can be seen in Figure 10b. In 50-simulation MCTS, no simulations fail to complete the planning
horizon. In execution of the value network, around 80% of simulations fail to complete. The
authors hypothesize that the policy the value network has learned ignores the battery charge and

13



g0 10 A
-
i<l 80
geo o
= T 60
=
=
2 40 3
£ 40
C
g 20 —— Value Net Mean 20 —— Value Net Mean
e —— MCTS Mean —— MCTS Mean
0 20 20 50 0 : 0 20 40 60 80 100
MCTS Training Runs MCTS Episodes
(a) Value Net Downlink Utilization (b) Value Net Reward

Figure 9: Value Network Performance - First 10 Initial Conditions

space available in the data buffer. The agent attempts to collect as much data as it can throughout
the duration of the simulation and downlink when a ground station is in view. This is likely due to
the fact that the reward bonus for finishing a simulation is too small compared to the reward received
from downlinking data, causing the value of managing states to successfully complete a simulation
to be lost in the error of the outputs from the value network.

One benefit to state-action value network execution is that the execution time is several orders of
magnitude lower than MCTS. 50-simulation MCTS takes around three hours to compute a solution
for a single planning horizon. As shown in Figure 10a, the value network takes seconds to execute
on a single planning horizon. If the rate of simulation failure for the value network can be corrected,
it may be a viable technique for on-board execution given enough computational power.
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Figure 10: Value Network Execution Time - First 10 Initial Conditions

The value network is also executed on a full set of 100 initial conditions for a more accurate
representation of performance. Similarly to the smaller test set of 10 initial conditions, the larger
test set shows the value network execution results in a policy that attempts to collect and downlink
data, ignoring resource constraints and causing failures. As shown in Figure 11, the value network
performance plateaus at around 80 episodes. Unlike the first 10 sets of initial conditions, the full set
includes planning horizons with no downlink opportunities, so reward will be lower on average. As
shown in Figure 12b, the percent of simulations that complete the planning horizon plunge as the
reward increases.
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CONCLUSION

This work successfully demonstrates the use of Monte Carlo tree search (MCTS) as a ground-
based spacecraft scheduling technique that considers non-linear dynamics, resource constraints, and
multiple spacecraft modes. MCTS is shown to compute quality solutions to the EOS scheduling
problem with respect to downlink when possible. MCTS is also shown to generate solutions that
complete the planning horizon without violating spacecraft resource constraints. Future work should
explore how MCTS performs in comparison to traditional optimization-based approaches such as
simulated annealing or job shop scheduling.

This work also demonstrates that state-action value estimates generated by Monte Carlo tree
search can be used to train a state-action value network, which may be rapidly executed on the Earth-
observing spacecraft scheduling problem with some success. The state-action value network is able
to match the performance of MCTS in regards to downlink utilization and total reward, but fails
to consider resource constraints and fails planning horizons prematurely. Significant work remains
before state-action value functions can be executed onboard spacecraft for planning purposes. In
future work, the state-action value function should be used as the rollout policy within MCTS to
continually improve upon the state-action value estimates as Silver et al. did for AlphaGo.!!

Future work should also explore techniques to guarantee that agents successfully finish a planning
interval. Applying a shield during training or execution of the state-action value network will likely
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result in better performance, as shown by Harris et. al.!’ Better reward functions should also be
applied to return a larger penalty for failure or a larger bonus for success, and non-discounted reward
should be explored due to the finite-horizon nature of the problem. Furthermore, future work should
aim to reduce the assumptions made within this paper. Namely, a fuel budget for the desaturation
mode should be developed and the omni-directionality assumption of the antenna should also be
removed. A minimum attitude error should also be achieved by the spacecraft before collecting
observation data.
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APPENDIX: ALGORITHMS

Algorithm 1 MCTS Execution
1: Initialize env, s = sq, "sum = 0
2: t; = 0, tmax = 90 min, NumSteps = 30
3: while ¢; < tax
4: d = NumSteps — ¢

5: a = SelectAction(s, d)

6: (s',r, ep_over) = env.step(a)
7: Tsum +=7

8: if ep_over

9: break
10: tir1 =t; + At
11: . +=1
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Algorithm 2 Monte Carlo Tree Search

1: function SelectAction(s, d)

2 for Number of Simulations

3 Simulate(s, d)

4 return arg max Q(s, a)

5: ¢

6: function Simulate(s, d)

7 ifd=20

8 return 0

9: ifsgT

10: fora € A

11: N(s,a) «+ 1

12: Q(s,a) «+ 0

13: TUs

14: return Rollout(s, d)

logN(s)

15: a + arg max Q(s,a)+c Ns.a) 1
16: (s',r, ep_over) ~ G(s,a)

17: if ep_over

18: q<rT

19: else
20: q < r + ySimulate(s’, d — 1)
21: N(s,a) +=1 (5.0

q— Q(s,a

22: Q(s,a) += Ns,a)
23: return g
24:
25: function Rollout(s, d)
26: ifd=20
27: return 0
28: if any(g;) andb > 0
29: a = Downlink
30: else
31: a = rand({Observation, Downlink, Charge, Desaturation })
32: (s',r, ep_over) ~ G(s,a)
33: if ep_over
34: return r
35: else
36: return r + yRollout(s’,d — 1)
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