AAS 25-207

ORBITING SPACECRAFT RELATIVE MOTION IN THE INERTIAL
FRAME FOR INERTIALLY FIXED CONSTRAINTS

Julian Hammerl* and Hanspeter Schaub’

While the description of orbiting spacecraft relative motion is usually done in the
rotating Hill frame due to analytical first-order solutions and the intuitive shape
of the relative orbits, it is disadvantageous for mission design requirements that
are fixed in the inertial frame. This includes distributed space telescopes aligned
with inertial targets as well as formations and servicing operations with inertially
fixed keep-in/out zones, e.g. constraints imposed by the Sun direction. This paper
studies the analytical first-order inertial frame solutions of the relative motion of
orbiting spacecraft and derives geometrically meaningful invariants of motion for
inertial frame relative orbits. Scenarios with both bounded and secularly drifting
relative motion are investigated. Solutions are presented for both circular and
elliptic chief motions and the new invariants of the relative motion are compared
to relative orbit elements and differential classic orbit elements.

INTRODUCTION

The relative motion of an orbiting deputy spacecraft with respect to a chief spacecraft is most
commonly described in a rotating frame aligned with the radial position vector of the chief, often
referred to as the Hill frame' or the Local-Vertical-Local-Horizontal (LVLH) frame. Some of the
benefits of the description in the Hill frame are the existence of simple analytical solutions for
circular orbits, such as for the Clohessy—Wiltshire equations,? the resulting intuitive shape of the
relative orbits, and the fact that the out-of-plane motion is uncoupled from the in-plane motion. For
bounded motion (no drift motion), the relative orbit has the shape of an ellipse (or in simpler cases
a single point) in the orbital plane and is either centered at the chief or offset in the along-track
direction. A difference in the semi-major axis of the two spacecraft results in drift motion in the
along-track direction. In the most complex case for drift motion, the relative orbit is a spiral motion
about the along-track direction.

However, the description in the Hill frame is disadvantageous for some mission design require-
ments. Distributed space telescopes have been proposed for large-aperture telescope architectures
that cannot be realized with a single spacecraft.>* Instead of having one spacecraft with all tele-
scope components, a two-spacecraft formation consisting of one spacecraft equipped with the lens
and another spacecraft equipped with the sensor is used. The VIrtual Super Optics Reconfigurable
Swarm (VISORS) mission is a demonstration for such a concept.’ Because a space telescope is
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Figure 1: Concept figures of space missions with inertial constraints

commonly aligned with inertial targets, the description of relative motion is beneficial in the inertial
frame, despite inertial frame relative orbits being more complex. That is, instead of expressing the
relative position and velocity vectors of the deputy with respect to the chief in a rotating frame, it
may be beneficial to describe these vectors in inertial frame components. Missions such as New
World Observer,® where a giant starshade’ is used to block the light from a star while searching for
exoplanets, may also benefit from a description in the inertial frame. Other missions such as the
Terrestrial Planet Finder® (TPF, canceled in 2011) and Large Interferometer For Exoplanets9 (LIFE,
in development) proposed to use a nulling interferometer consisting of multiple spacecraft to search
for exoplanets. These exoplanet search missions were planned to be located around the Sun-Earth
L2 Lagrange point. Thus, the relative motion occurs far away from a planet,'>!! in contrast to the
relative motion of two spacecraft orbiting a planet at lower altitudes as explored in this current work.
Other mission concepts call for formations where the spacecraft never eclipse each other, or where
one spacecraft is desired to be in the shadow of the other for prolonged periods. For example, the
Project for On-Board Autonomy 3 (PROBA-3) mission is a formation flying demonstration mission
that launched in December 2024, consisting of an occulter spacecraft that casts the Sun’s shadow on
a coronagraph spacecraft to study the Sun’s faint corona. For spacecraft orbiting Earth, this imposes
a keep-out or keep-in zone that is fixed in a quasi-inertial frame (because the Sun direction changes
slowly).

In a similar fashion, such inertially fixed keep-out or keep-in zones may be introduced for space-
craft servicing and docking operations. For example, during rendezvous it may be beneficial to
maintain certain lighting conditions, or to keep line-of-sight with another inertially fixed target.
Relative motion constraints for docking operations are often described in the body frame of the
target spacecraft. If the target satellite is not rotating, the body frame of the target remains aligned
with the inertial frame, and the insights from the inertial frame relative motion can be applied to the
body frame. Finally, plasma wakes also motivate a relative motion description in the inertial frame.
Plasma wakes form in the anti-ram-side direction behind the spacecraft if the ion thermal velocity
is greater than the electron thermal velocity,'> where the ram-side is determined by the spacecraft
velocity relative to the bulk velocity of the ions. The plasma and spacecraft charging dynamics
are more complex inside this wake, and inter-spacecraft electrostatic forces may also be stronger. '
This motivates to stay inside the wake to study the plasma and spacecraft charging dynamics, or
outside to minimize electrostatic perturbations.'* In Low Earth Orbit (LEO), the ion bulk velocity
is negligibly small, so the wake is approximately fixed in the spacecraft velocity frame.!> Outside
Earth’s magnetosphere, in contrast, the ions move with the solar wind. If the spacecraft velocity is



negligibly small compared to the solar wind velocity, the wake forms in the anti-sun direction and
is quasi-inertially fixed.'6

The aforementioned mission scenarios benefit from a relative motion description in the inertial
frame. A large body of work exists in the literature about relative motion described in the Hill
frame,!” for linear and non-linear models as well as near-circular and eccentric reference orbits.
Constraints such as keep-in and keep-out zones are also usually described in the Hill frame or body
frame of the target. Hill frame fixed keep-out zones are convenient for situations with larger space-
craft separation distances such as safety ellipses during approach of a spacecraft to the International
Space Station.!® Body frame fixed keep-out zones are often used for docking operations.'® Some
work exists for relative motion in the spacecraft velocity frame.?’ This description is especially
advantageous for atmospheric entry trajectories of two spacecraft or highly eccentric chief orbits.
Inertially constrained relative motion around a planet has only been studied for a very specific or-
bit to maximize the average power generation,”>?> but keep-out zones or general orbits were not
investigated.

This paper researches analytical first-order solutions to the orbiting spacecraft relative motion as
seen by the inertial frame. The relative equations of motion (EOM) are derived by transforming the
Hill frame first-order EOM into the inertial frame. First, this is done using the closed-form solution
of the Clohessy-Wiltshire relative motion equations for circular chief orbits. To make the inertial
relative motion more intuitive, the chief orbital elements and the six parameters that define the
Clohessy-Wiltshire closed-form solution are related to the shape, size and orientation of the relative
orbit in the inertial frame. That is, novel geometrically meaningful relative motion invariants are
derived for the inertial relative orbits. This allows for an easier analysis of violations of keep-in and
keep-out zones that are fixed in the inertial frame. Next, the study is extended to elliptic chief orbits,
using the non-dimensional orbit element difference description of relative motion.

BACKGROUND

Two spacecraft are orbiting a central body in close proximity to each other. Given the inertial
position of the chief (target spacecraft) r. and the deputy (servicing spacecraft) r4, the relative
position vector is defined as

pP=Tq—Tc ey

Relevant Coordinate Frames

The relative motion is commonly described in a rotating frame # : { h,., h, fzh} centered at the
chief C' with axes

by, = ¢ (2a)
‘7'0‘

hg = h;, x h, (2b)

ilh _ & (2¢)
|re X 7l

where 7. is the inertial velocity of the chief. This frame is referred to as the Hill frame! and is
similar to the Local-Vertical-Local-Horizon (LVLH) frame L : {il = i’L@, Iy = —ﬁh, I3 = —fzr}.
The first axis of the Hill frame is aligned with the orbit radial direction of the chief and the third axis
is aligned with the orbit normal direction. Another frame N : {n1, nia, 73} is used with inertially
fixed directions of the frame axes 71, o, 123. Figure 2 illustrates the Hill frame and Inertial frame.
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Figure 2: Illustration of Hill frame and Inertial frame: The Hill frame H is centered at the chief
and rotates as the chief orbits the central body, with h, aligned with the orbit radial direction of the
chief and hy, aligned with the orbit normal direction. The inertial frame Ny is located at the central
body with fixed directions of the frame axes. A moving frame N¢ is used that is centered at the
chief, but its axes remain aligned with the inertial frame.

The direction cosine matrix (DCM) [H N| to map from the inertial frame A to the Hill frame H
may be obtained using the chief orbit elements. Using the DCMs for a generic rotation § about the
first frame axis -~ -

1 0 0
[Mi(0)]= |0 cosf sinf 3)
|0 —sinf cosf|
and the generic DCM about the third frame axis

[ cosf sinf 0
[M3(0)] = | —sinf cosf 0O 4)
0 0 1

the DCM for a (3-1-3) Euler angle rotation (€2, 4, w) is written as??
[PN (€, i,w)] = [Ms(w)][M1(i)][M5(€2)] ©)

where € is the right ascension of the ascending node (RAAN), ¢ is the orbit inclination, and w is
the argument of periapsis. The frame P : {p1, P2, P3} is the perifocal frame, in which the first
axis points from the focus of the orbit (the central body) to periapsis, the third axis points in the
chief orbit angular momentum direction, and the second axis completes the right-handed coordinate
frame. To map from the perifocal frame P to the Hill frame H, another rotation around the third
frame axis is performed using the true anomaly f

[HP(f)] = [Ms(f)] (6)
Thus, the DCM to map from the inertial frame to the Hill frame is equal to
[HN (i, w, )] = [HP][PN] = [M3(f)][M3(w)][M1(2)][M5(£2)] ©)
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Figure 3: Relative motion in Hill frame for a circular chief orbit: Ag creates a 2-by-1 relative orbit
ellipse that is offset in the y-direction by yo¢. Drift motion is induced by zof. The projections of
the relative orbit on the three planes are shown in lighter color.

Cartesian Coordinate Description

The relative position vector p of the deputy relative to the chief in Hill-frame components is

H

p= @®)

IS

where the left superscript indicates that the vector is expressed in Hill frame # components, and
x,y, z are the relative position coordinates in the Hill frame. In this frame, = and y describe the
relative motion in the chief orbit plane while z describes any out-of-plane motion. Assuming a
circular chief orbit (eccentricity e = 0) and small separation distances between the two spacecraft
(|p| < |7¢|), the relative equations of motion (EOM) in the Hill frame are equal to'

& —2ny —3n’z =0 (9a)
J+2ni =0 (9b)
54 n%2=0 (9¢c)

These relative EOM are known as the Clohessy-Wiltshire (CW) equations. Using the semi-major
axis a of the chief orbit and the standard gravitational parameter p of the central body, the mean
motion 7 is determined by n = \/1/a3. The analytical solution to the CW equations is equal to??

x(t) = Agcos(nt + a) + zoft (10a)
3

y(t) = —2Apsin(nt + ) — §nt$0ff + Yoff (10b)

z(t) = By cos(nt + () (10c)

The six relative motion parameters in Eq. (10) are called the linearized relative orbit elements
(LROESs) and are the invariants of the linearized relative motion:



* In-plane sinusoidal amplitude Ag * Along-track offset at epoch ¥
* In-plane phase angle « * QOut-of-plane sinusoidal amplitude By

* Orbit-radial offset xqg * Out-of-plane phase angle (5

These geometrically insightful invariants of motion are determined through the initial conditions
and fully define the relative motion under the given assumptions.

Examining Eq. (10), one finds that the in-plane motion corresponds to a 2-by-1 ellipse in which
the along-track amplitude is twice the orbit-radial amplitude, and the out-of-plane motion corre-
sponds to an unforced oscillator. The motion may be offset in the y-direction with y.g or the
z-direction with x¢. An offset zof causes a drift in the along-track direction y over time due to the
difference in semi-major axis of the two spacecraft. Thus, z.gs must be zero for bounded motion.
For a simple lead-follower formation, all relative motion parameters besides o are zero. Some
relative orbit shapes in the Hill frame are shown in Fig. 3.

Orbit Element Difference Description
Given the general orbit elements
o = [a,e,i,Q,w, My]" (11)

with semi-major axis a, eccentricity e, inclination ¢, right ascension of the ascending node (2, argu-
ment of periapsis w and initial mean anomaly M, the orbit element differences between the deputy
and the chief spacecraft are equal to??

doe = aeq — ce. = [da, be, §i, 6, dw, M) T (12)

This differential orbit elements (DOEs) description does not make any assumptions the eccentricity
of the orbits. A semi-major axis difference da between the two spacecraft causes the mean anomaly
difference d M to drift over time. The relation between the differences in mean anomaly at time ¢

and time % is equal to
3da

OM = 6 My — 5—(M — M) (13)

a
where M and M are the mean anomalies of the chief at time ¢ and time ¢, respectively. Assuming
small relative orbit sizes, the relative position coordinates x, y, z can be expressed in terms of the
orbit element differences and as a function of the chief true anomaly f for general orbit eccentricities

z(f) = 2(5 aesmfdM —acos fde (14a)
y(f) = %(1 + ecos f)20M + réw + 7"57;121]“(2 + ecos f)oe + r cosi0f2 (14b)
z(f) = r(sin0di — cos O sinid6€?) (14c)

with the relation 7 = /1 — €2, the true latitude # = w + f and the chief orbit radius

D a(l —e?) an?
T = = =
14+ecosf 14ecosf 1+ecosf

15)

Note that most terms in Eq. (14) include the orbit radius r, which varies with true anomaly f.



Figure 4: Inertial frame relative orbit elements: The relative motion in the inertial frame traces an
epitrochoid curve, in which a circle with radius r; rolls without slip on a fixed circle with radius 7,
and the curve is generated by a point that is at a distance of d; away from the center of the rolling
circle. The formation is 3d; away from the origin and rotated by «;.

CIRCULAR CHIEF ORBITS

First, the inertial relative motion is investigated for circular chief orbits using the Clohessy-
Wiltshire equations. To express the relative motion in the inertial frame, the relative position p
is simply mapped from the Hill frame # to the inertial frame A" with the DCM [NH|] = [HN]T:

X
Np=[NH] - *p=[HN]" - "p=|Y (16)
VA

For general chief orbit elements ({2, ¢, w) and relative orbit parameters, this results in a rather
complex analytical expression that is difficult to analyze. Thus, to begin, it assumed that Q@ = ¢ =
w = 0. This corresponds to a description in the perifocal frame P:

X
Pp = [HN(0,0,0, )7 Mo = [HPT - Yp = | ¥, (17)
ZP

Once the relative motion is understood in the perifocal frame, it is rather straightforward to consider
general chief orbit orientations. For a circular orbit, f = nt, so using Egs. (10) and (17) as well as
significant simplification results in the analytical expression

X,(t) 2 (3Ag cos o — Ag cos(a + 2nt) + 3ntaog sin(nt) + 2z cos(nt) — 2yof sin(nt))
Yp(t) | = |3 (—3Apsina — Agsin(a + 2nt) — 3ntzeg cos(nt) + 2z sin(nt) + 2yof cos(nt))
Zp(1) By cos(B + nt)

(18)

Using the identities

A
Asint 4+ Bcost = v/ A2 4+ B2 cos <t — tan~! ()) (19a)
B
Asint 4+ Bcost = —\/ A2 + B2?sin <t — tan ™! <>) (19b)



and other well-known trigonometric identities, Eq. (18) is rewritten to significantly reduce its com-
plexity

X,(t) 3d; cos a; — dj cos(2nt — ;) — 2r;sin(nt — ¢;)
Y,(t) | = |3disincy — d;sin(2nt — o) + 21 cos(nt — ¢;) (20)
Zp(t) B cos(nt — 3;)
with
1 3ntxofe 2 9
i = g\ (Yot — T + T (21a)
1
di = 5 Ao 21b)
_ Toff
¢7: = tan 1 <03nt$0ff> (21C)
Yoff — —5
o = —Q (21d)
Bi = BO (Zle)
Bi=—p (211)

Ignoring the constant offset of 3d; as well as the phase angles ¢; and o, the equations for X, and
Y), are equivalent to the parametric equations of an epitrochoid. An epitrochoid is the curve traced
by a point attached to a circle rolling around the outside of a fixed circle without slip*. In the case
of Eq. (20), the radius of both circles is equal to r;, and the distance between the generating point
and the center of the rolling circle is equal to d; (arm length). The fixed circle is offset by 3d; away
from the frame origin (the chief). The phase angle «; rotates the epitrochoid curve around the ps
axis, and ¢; is a phase offset of the rolling circle. The phase offset ¢; is zero unless xog 7# 0. Drift
motion through an orbit-radial offset xq¢ changes the radius r; of the circles and the phase offset ¢;
over time. That is, only r; and ¢; are time-varying if the orbit-radial offset x¢ is non-zero. The Z,
motion still corresponds to a simple unforced oscillator with amplitude B; and phase angle [3;.

Similar to the elliptic relative orbit shape in the Hill frame, the epitrochoid-based formulation
provides an intuitive description of the relative motion in the perifocal frame and consequently the
inertial frame, as shown in Fig. 4. The six inertial frame relative orbit elements (IROEs) in Eq. (21)
are the invariants of the inertial frame relative motion:

e Circle radius r; * In-plane rotation a
* Arm length d; * QOut-of-plane sinusoidal amplitude B;
* Phase offset of rolling circle ¢; * Out-of-plane phase angle 5;

Closed Relative Orbits

For a closed relative orbit (no drift motion), the orbit-radial offset in the CW equations must be
zero, i.e. Toff = 0. The shape and size of the inertial frame relative orbit are determined by r; and
d;. Figure 5 shows inertial frame relative orbits for several different values of r; and d;, with all

“see https://en.wikipedia.org/wiki/Epitrochoid. The equations only differ by a phase offset § = 7/2 — nt and are
mirrored with x = —X,. Last accessed December 16, 2024.
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Figure 5: Inertial frame relative orbits for circular chief orbits: The size of the relative orbit changes
with r;, while the shape changes with the ratio of r; and d;.

remaining IROEs equal to zero. If r; = 0, the relative orbit shape is circular. The target completes to
revolutions of this circle during one orbital period. This is more clear when 7; is slightly increased
from 0 to 0.2, where an inner loop becomes visible. Increasing r; causes the relative orbit size to
grow, while the inner loop becomes smaller. The inner loop disappears when r; = d;. Increasing r;
even more makes the the relative orbit shape more circular. If d; = 0, the relative orbit is circular
and centered at the chief, with one revolution per orbital period.

As mentioned in the discussion about the inertial frame relative motion invariants, the relative
orbit is offset from the chief by a distance of 3d;. Increasing r; increases the relative orbit size
due to the greater size of the circles that generate the epitrochoid curve. The ratio of r; and d;
determines the shape of the relative orbit. If r; < d;, the the generating point is outside the rolling
circle, creating an inner loop. If r; = d;, the generating point is on the surface of the rolling circle,
creating a cusp. Finally, if r; > d;, the generating point is inside the rolling circle, creating a curve
that becomes circular as d; — 0.

Drift Motion

An orbit-radial offset x¢ causes drift of the deputy with respect to the chief due to the difference
in semi-major axis of the two spacecraft and that results in different orbital periods. In the Hill
frame, the drift motion occurs in the z-direction. In the inertial frame, the drift motion results in a
change of the circle radius r; and the in-plane phase offset ¢; over time. Such inertial frame drift
motion is shown in Fig. 6. Because r; changes while d; remains constant, the shape (inner loop,
cusp, no loop) of the epitrochoid changes over time as well.

General Chief Orbit Orientation

In Eq. (20), the relative motion is described in the perifocal frame, which corresponds to the
inertial frame only if 2 = ¢ = w = 0. However, the derived inertial relative orbit elements are
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Figure 6: Drift motion in the inertial frame: An offset x¢ causes the radius r; to change over time.
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Figure 7: Effect of chief orbit orientation (€2, 4, w) on inertial frame relative motion: the relative
motion may be conveniently described in the perifocal frame, as the mapping from perifocal frame

to inertial frame is a pure rotation.

considered to be the relevant parameters for the inertial frame relative motion, because for general
chief orbit elements only the orientation of the relative orbit changes, but not the shape. Unlike
the transition from the Hill frame H to the perifocal frame P, which results in a general change
of the relative orbit shape, the mapping from the perifocal frame P to the inertial frame N is
straightforward as it is a pure rotation. The effect of the chief orbit orientation due to (£2,4,w) on
the orientation of the inertial frame relative orbit is illustrated in Fig. 7.

ELLIPTIC CHIEF ORBITS

The Clohessy-Wilsthire equations assume a circular chief orbit and are not applicable to general
chief orbit eccentricities. For elliptic chief orbits, the orbit element difference description is more
appropriate. Using Eqgs. (14) and (17) results after several simplification steps in the analytical



expression

dacos f  de(2ecos f—cos(2f)+3)  SM(sin ftesin fcos f) . . ..
X,(f) r < 2 T pc dwsin f — 60 coszsmf)
. : 2
}Z/p<f) = r <6as;nf + 568;2%2‘]0) + 6M2(1+6 )cosé;3ecos(2f)+3e 4 8w cos f 4 69 cos i cos f)
o) 7 (6isin € — 6 sini cos )

(22)
Similar to the inertial frame transformation for circular chief orbits, Eq. (19) is used to rewrite and
simplify Eq. (22):

X,(f) ﬁ ((3 + 2ecos f)d; cos a; — d; cos(2f — ;) — 2r;sin(f — ¢;))
Y,(f)| = % ((3 4 2ecos f)d; sino; — d; sin(2f — a;) + 2r; cos(f — @) (23)
ZP(f) %Bi COS((.U -+ f — /87,)

Aside from the 2e cos f term and the formulation as function of true anomaly f instead of time £,
the form of these equations is the same as in Eq. (20). All components are multiplied by the chief
orbit radius 7, which is a function of f. For elliptic chief orbits and the differential orbit elements
description, the inertial frame relative orbit elements are determined by

a 1 2 5a\ >
T = 5 <35M + cosi6§) + (5w) + <) (24a)
’I7 a
d; = 2@773\/ (nde)? + (e5M)? (24b)
da
; = tan ™' a 24
¢; = tan (77135M+c0si69+5w> (240)
o 1 [ edM
& = tan (_n 56) (24d)
B; = a\/5i2 + (sin09Q)?2 (24e)
5
fi = tan <— sin iéﬂ) (24D)

Note that several of these IROEs are a function of the same differential orbital elements. However,
if one wants to specify d; and «;, for example, and determine the values for de and M that result
in these specified parameters, it is rather straightforward to substitute one equation into the other
and solve for de and 0 M. For e = 0, this differential orbit element description may be used for the
circular chief orbit relative motion. However, if e = 0, the in-plane rotation «; can not be adjusted
through de and 6 M. Instead, a true anomaly phase shift f = nt — fo must be used.

Figure 8 shows various closed inertial frame relative orbits for an elliptic chief orbit with eccen-
tricity of e = 0.5 and semi-major axis of a = 10000 km. For the DOE description, de is similar to
the in-plane amplitude A for the circular chief orbit, while dw is similar to the along-track offset
Yotf- An eccentric orbit essentially stretches part of the 2-by-1 relative orbit ellipse in the Hill frame
in the y-direction. This is due to the dependence of the relative motion on the chief orbit radius 7,
which is the greatest at apoapsis. The part of the Hill frame relative orbit ellipse that is stretched
the most in the y-direction corresponds to the part that is traversed while the spacecraft are on the
apoapsis side of the orbit. This is visible for the inertial frame relative orbits in Fig. 8 as well. For
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Figure 8: Inertial frame relative orbits for elliptic chief orbits: The relative orbit is stretched for

elliptic chief orbits.
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Figure 9: Rotation of inertial frame relative orbit for elliptic chief orbits: a rotation by «; also

changes the relative orbit shape.

de = —1.5e — 4, the inertial frame relative orbit is stretched equally in the —Y), and +Y), direc-
tion. For a positive dw the relative orbit stretches more in the —Y), direction. This is because dw
offset shifts the relative orbit in the +y direction of the Hill frame and stretches the orbit more in
the +y direction than the —y direction. This stretched part of the relative orbit is traversed when
the +y direction of the Hill frame is pointing in the —Y, direction of the perifocal frame, resulting
in a larger relative orbit part in —Y}, Similar to the circular chief orbit case, increasing r; while d;
remains the same causes the inner loop to disappear and turn into a cusp when r; = d;. Increasing
r; further such that r; > d; makes the inertial frame relative orbit more and more elliptic. If d; = 0,

the relative orbit is elliptic in the inertial frame.

An example for the inertial frame orbit rotation for an elliptic chief orbit is shown in Fig. 9. To

induce a rotation of «;, the ratio of (edM)/(—nde) must be changed. To maintain the same d;,
edM and —nde cannot be arbitrarily changed, however, and dw must be adjusted as well such that

r; remains the same. Thus, the relative orbit shape changes when a rotation of «; is applied.
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The effect of the chief orbit orientation (2, ¢, w) on the relative orbit shape in the perifocal frame
is already considered in Eq. (23). The remaining rotation of the relative orbit through (2,7, w) is
the same for the elliptic orbit as for the circular orbit, as illustrated in Fig. 7.

CONCLUSIONS

This paper investigates the relative motion of two spacecraft as seen from a frame that is centered
at the chief spacecraft and with axes that are aligned with an inertial frame. Such an inertial frame
description is beneficial compared to the conventional rotating Hill frame when the relative motion
is subject to inertially fixed constraints. Examples for such missions include inertial targets for
distributed space telescopes and coronagraphs, spacecraft formations and servicing operations with
constraints imposed by the Sun (lighting conditions, eclipses, space plasma conditions, etc.), as well
as rendezvous with a non-rotating target. The last example is relevant because the body frame of a
non-rotating body remains aligned with the inertial frame, and body frames are frequently used for
servicing and docking operations.

It is found that the inertial frame relative motion for a circular chief orbit is equivalent to the
epitrochoid curve, in which a circle rolls without slip on a fixed circle, and the curve is generated
by a point that is at a certain distance away from the center of the rolling circle. Thus, inertial frame
relative orbit elements (IROEs) are defined that are based on the parameters of an epitrochoid curve
and correspond to the invariants of relative motion in the inertial frame. This allows for an intuitive
description of the inertial frame relative motion. For elliptic chief orbits, the inertial frame relative
orbits are stretched and distorted compared to the epitrochoid curve for circular chief orbits, but
similar IROEs are defined as well.
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